
On the Boundaries of Formal Intelligence

R. Everheart

Abstract

We define a “hierarchical Turing machine” to be a sequence of total Turing ma-
chines. We then prove that any Turing machine in a hierarchical Turing machine is
incapable of deciding whether subsequent Turing machines can possibly reach “novel”,
states without new input. We prove this for an exceedingly broad class of hierar-
chical Turing machines, without invoking Rice’s theorem. If we consider human-like
“intelligence” as entailing capacity for being able to infer truly new knowledge after
learning new information, this demonstrates that determining whether a machine ex-
hibits human-like “intelligence” is undecidable. We also define the complexity class AI
to be the class of problems that require “novel” insights to solve. It follows from this
definition that, in the general case, it is undecidable whether any given problem is in
AI. Finally, we show that hierarchical Turing machines that exhibit persistent novelty
are, by their very definition, impossible to control by any “less intelligent” hierarchical
Turing machine.

1 Introduction

The question “does this machine exhibit human-like intelligence?” is foundational in the
study of artificial intelligence. Unfortunately, it is difficult to formalize a rigorous defini-
tion of “human-like intelligence”, and, as a result, approaches for answering this question
intrinsically involve a human referee which vets the capabilities of the machine participating
in a test for “intelligence”. Correspondingly, debate has ensued whether passing tests such
as the Turing test [17], Lovelace test [4], etc. is indeed indicative of “human-like” intelli-
gence, or, conversely, is indicative of a perceived illusion contrived by human intelligence
[15]. Irregardless of the outcome of such debates, a lack of formalization for “human-like
intelligence” has resulted in a lack of rigorous formalization for problems that are hypothe-
sized as requiring “human-like intelligence” to solve, being the AI problems.

Nevertheless, it has been proposed that the ability to learn new information is intrinsi-
cally tied to intelligence [9]. We can consider a loose definition of “learning” to be taking
information from one’s environment, and using that information to do something that could
not be done without it [16]. We will use the term “novel insight” to describe an insight that
could only be made after receiving certain, new information. We claim that having “human-
like intelligence” entails the capacity to persistently make novel insights when granted truly
new information. Consequentially, any test that is accepted as validating the intelligence of
a machine in context to a human being will, simultaneously, validate the machine’s ability
to produce novel insights.

We can formalize this notion rigorously. In summary, we will consider an intelligent
machine to be a Turing machine, which, after learning certain information, runs another
Turing machine which accepts the output of the old Turing machine, and new information

1

as input. If this new Turing machine can access states that were not computable from any
previous states by any possible Turing machine, we say the new Turing machine has the
capacity for novel insight. It is the goal of this paper to show that determining whether a
Turing machine can make such novel insights when given new information is undecidable in
the general case. Similarly, we can frame the AI problems as the class of problems which
require a Turing machine that has the capacity for novel insights in order to solve. It follows
that the problem of ascertaining a problem’s membership in AI, is generally undecidable.
The proofs used in these results do not utilize Rice’s theorem [11], and instead involve rep-
resenting Turing machines as formal systems in the style of Feferman [6]. Effectively, this
means our results generalize to a larger, and more practical, class of Turing machines.

In any case, we will proceed by going into detail as to our formalization, and defining
that which is necessary to prove our results. We will not work with Turing machines directly.
Rather, we will work for an alternate form of Turing machines known as hierarchical Turing
machines.

2 Hierarchical Turing Machines

Let us begin by with a quick thought experiment. Imagine a human or machine agent A
who is capable of accessing a domain of knowledge. We will make no attempts to define
what could possibly constitute this domain of knowledge, nor will we attempt to describe
how our agent accesses it. Though, one might consider this domain of knowledge as being
a series of valid empirical observations that the individual is able to make about the world
around him/her, a series of possible confabulatory hallucinations, or as being something
else entirely. We are intentionally vague in this regard, as, in this thought experiment, we
are exclusively concerned about the practical utility additional knowledge provides to our
agent.

At a given position in this domain of knowledge, our agent A will be said to have a
state of mind Ak, representing its current capacity for knowledge. That is to say, Ak refers
to knowledge the agent may obtain at position k through some reasoning process, without
extending itself with additional knowledge. Our agent A then reifies new information from
its inhabited domain of knowledge with its current state of mind Ak, producing a new state
of mind Ak+1. Much like before, we will make no attempts to formalize a definition of “reifi-
cation” here. Rather, we will simply consider “reification” at position k to mean “accepting
as true” at position k + 1.

The question that is posed by this thought experiment is this: Does our agent, at state
of mind Ak, already encompass the reasoning potential of Ak+1? This is effectively asking:
Are there certain insights that an agent cannot make without accessing additional knowl-
edge about its world, domain of knowledge, etc.? It has been claimed that a capacity for
learning is an intrinsic aspect of intelligence [9]. If one agrees with this claim, and considers
learning to depend on the advent information that was hitherto inaccessible to our agent,
then one must, necessarily, accept that there are insights that cannot be gleaned without
acquiring certain information.

In this paper, we will operate under the assumption that the question posed by our
thought experiment must be answered in the affirmative. Interestingly, answering the ques-
tion in the affirmative enables us to formulate a boundary condition for intelligence. This
boundary is, loosely, a machine’s capacity for learning – though we will use different termi-
nology (i.e., persistent novelty) throughout this paper.

2

We will embark towards a formal definition of this boundary condition. This boundary
condition is best formalized in regards to a specific construct, known as a hierarchical Turing
machine, which is intended to represent an agent’s capabilities at certain moments in the
world it inhabits.

Definition 1. LetH = (Hk)k∈S be a sequence indexed by a linearly ordered set S ⊆ N, where
each Hk is a Turing machine executed on input Xk ∈ Σ

∗. We say that H is a hierarchical
Turing machine if the following conditions hold:

1. For each k >minS, the inputXk is constructed as the pair (Output(Hk−1(Xk−1)), X
′

k),

where X ′k ∈ Σ
∗ is a supplementary input string;

2. For each k <maxS, the machine Hk halts on input Xk.

Remark. Given the sequences H = (Hk)k∈S , and X ∶= (Xk)k∈S , where Xk ∈ Σ
∗, we write

H(X) to denote that each Hk is executed Xk.

In the above definition, H can be viewed as being the agent from our thought experiment.
Each Hk can be viewed as being the state of mind of the agent at position k, and each input
X ′k can be viewed as being the information the machine takes from its world, or domain of
knowledge at position k.

Hierarchical Turing machines correspond to normal Turing machines. We may represent
a hierarchical Turing machine H as a normal Turing machine M by taking each level Hk and
running them successively. The input to M becomes becomes a single vector X∗, which is
precisely the combination of all inputs Xk to Hk. In this sense, hierarchical Turing machines
might not seem like an interesting construct. For now, we will make no attempt to refute this
claim. We will simply state that a certain property can be discussed in terms of hierarchical
Turing machines that cannot be discussed as naturally in terms of normal Turing machines.

In any case, this property that we wish to discuss is dependent on the notion of a
recursive closure. Briefly, a recursive closure of some Turing machine Hk in a hierarchical
Turing Machine H, is the set of all states that may computed – by any preceding Turing
machine – from some subset of the states of all preceeding Turing machines. Formally, we
define this set as follows.

Definition 2. Let H ∶= (Hk)k∈S be a hierarchical Turing machine, and let Fk be the set
of all total recursive functions Hi with i ≤ k. Define the recursive closure RCk(H,X)
inductively as the smallest set satisfying:

1. Base case: ⋃i≤k St(Hi,Xi) ⊆ RCk(H,X).

2. Closure under function application: If f ∈ Fk is an n-ary total recursive function,
and s1, . . . , sn ∈ RCk(H,X), then f(s1, . . . , sn) ∈ RCk(H,X).

It is crucial to note that membership in RCk(H,X) is generally undecidable. This is because
deciding membership in certain recursive closures reduces from the halting problem.

Theorem 1. Let H ∶= (Hk)k∈S be a hierarchical Turing machine. Then, for a given state
s, s ∈ RCk(H,X) is generally undecidable.

Proof. In order to demonstrate this, we will reduce the problem of determining membership
in the recursive closure of a specific Hk from the Halting Problem. We will first fix an index

3

j ∈ N encoding a Turing machine Mj , and an input x ∈ N. Next, we will construct a finite
sequence H = (f0, f1) of total recursive functions such that

Mj halts⇐⇒ 1 ∈ RC1(H,X)

Let f0(j, x, t) simulate Mj(x) for t steps, and return 1 if Mj(x) halts within t steps, or 0 if
otherwise. Since step-bounded simulation is primitive recursive, f0 is total recursive. That
is to say, f0(j, x, t) is defined to be

f0(j, x, t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

−1 if Mj(x) halts within t steps

t + 1 otherwise

Here, making it so f0(j, x, t) outputs t+ 1 when Mj fails to halt emphasizes that arbitrarily
large values of t can be generated within the recursive closure, enabling unbounded search
over simulation steps through successive compositions. Keeping this in mind, let f1(y) be
the identity function f1(y) ∶= y. Clearly, f1 is total recursive. Now consider the composition
f ∶= f1 ○ f0, and define X0 ∶= (j, x, t) for some t, and X1 ∶= y. Let s = −1. Then

s ∈ RC1(H,X) ⇐⇒ ∃t ∈ N, f1(f0(j, x, t)) = −1

holds if and only if Mj(x) halts within t steps for some t. In other words, −1 ∈ RC1(H,X)
is true if and only if Mj(x) halts. So, if there existed a decision procedure for membership
in RC1(H,X), we could decide the Halting Problem. Therefore, membership in RCk(H,X)
is undecidable in general.

The above undecidability result holds even though many instances of RCk(F,X) have decid-
able membership. Crucially, there exists a general construction that allows encoding of an
undecidable problem via total recursive functions and their recursive closure. This suffices
to establish that membership in RCk(F,X) is undecidable in general. In any case, it should
also be quickly noted that, if s /∈ RCk(H,X), then s /∈ RCi(H,X) for all i < k.

Proposition 1. Let H = (Hk)k∈S be a hierarchical Turing machine. If s /∈ RCk(H,X) for
some k, then, for each i < k, s /∈ RCi(H,X).

Proof. Let Fk denote the closure of all functions in Hk under function application, and
similarly for Fi. Suppose there existed an n-ary function f such that f ∈ Fi. Then, clearly,
f ∈ Fk. By contraposition, we know for all f /∈ Fk, then f /∈ Fi. From our given condition
that s /∈ RCk(H,X), we may conclude that there is does not exist any n-ary function f ∈ Fk

that outputs s. Thus, there does not exist any n-ary function f ∈ Fi that outputs s.
Consequentially, we may conclude that s /∈ RCi(H,X).

We will immediately make use of this proposition in our definition of novelty. We will say
a state is novel, with respect to some hierarchical Turing machine Hk, if it is in the states
of Hk, but not in the recursive closure of Hk.

Definition 3. Let H = (Hk)k∈S be a hierarchical Turing machine, and let Xk denote the
input to Hk for each k ∈ S. A state s is said to be novel at level k, denoted NovelStatek, if
and only if

NovelStatek(H,s) ∶= s ∈ St(Hk,Xk) ∧ s /∈ RCk−1(H,X)

In other words, no computable function exists that could possible reach s given any previous
hierarchy’s states.

4

Using Proposition 1, we may rewrite our definition of NovelStatek as being

NovelStatek(H,s) ∶= s ∈ St(Hk,Xk) ∧ ∀i < k, s /∈ RCi(H,X)

We will opt to prefer this definition throughout this paper. The reason for this is that we
will eventually discuss novelty in context to hierarchical formal systems, and our definition
of novelty in such a logic requires us to explicitly use the universal quantifier. By defining
novelty in the above fashion, there will be a symmetry to our definitions. It may also be
useful, at least notationally, to define the set of all novel states with respect to a given
Turing machine Hk in a hierarchical Turing machine H.

Definition 4. The set of novel states at level k, denoted NSk(H), is defined as

NSk(H) ∶= {s ∈ St(Hk,Xk) ∣ NovelStatek(H,s)}

To aid our organization, we are using abbreviations to denote sets, and fully spelled out,
Pascal-case identifiers to denote things other than sets, such as logical predicates. Re-
gardless, we will now define the most important concept in our paper, being the notion of
persistent novelty. A hierarchical Turing machine H is said to exhibit persistent novelty if
there exists a novel state at each Turing machine Hk in its hierarchy.

Definition 5. A hierarchical Turing machine H = (Hk)k∈S is said to exhibit persistent
novelty on input X if

∀k ∈ S,∃j > k,∃s,NovelStatej(H,s)

If we expand the NovelStateb(H,s) in the above definition, we obtain the following state-
ment.

∀k ∈ S,∃j > k,∃s ∈ St(Hk,Xk),∀i < k, s /∈ RCi(H,X)

This may, in turn, be rewritten as

∀k ∈ S,∃j > k,∀i < k,∃s, s ∈ St(Hk,Xk), s /∈ RCi(H,X)

The above writing is more typical for logical predicates, as the universal quantifiers and
existential quantifiers have been interleaved appropriately. We will opt to prefer the above
form when we are discussing persistent novelty.

All of our definitions of persistent novelty are ill-formed in context to normal Turing
machines. This is because the input of a Turing machine is represented in its initial config-
uration. As a result, if we take all inputs Xk to Hk and coalesce them into a single input
X∗ of a Turing machine that corresponds to H, then, clearly, s ∈Hk implies s ∈ RC0(H,X),
and, thus, s ∈ RCi(H,X) for each i < k. This defeats our definition of persistent novelty. We
could salvage this by defining persistent novelty more carefully for normal Turing machines,
but, for the purposes of this paper, it is simpler discuss hierarchical Turing machines.

Whatever the case, we have now established all the prerequisite terminology relating to
hierarchical Turing machines. The purpose of this paper will be to prove, in general, that
hierarchical Turing machines cannot decide the novelty of any other hierarchical Turing ma-
chine, including itself, before using this result to discuss the undecidability of membership
in AI. We can derive this undecidability result easily, by applying a proof similar to the
proof used Rice’s theorem [11]. While we provide this proof here, it does not encompass the
goal of this paper.

5

Theorem 2. There exists no hierarchical Turing machine H such that Hk(G) decides

∀a ∈ S,∃b > a,∃s,NovelStateb(H,s)

for all hierarchical Turing machines G.

Proof. Let H ∶= (Hk)k∈S be hierarchical Turing machine, and let Xk refer to the input of
Hk, where, for each k ∈ S such that k >minS

Xk ∶= (Output(Hk−1(Xk−1)), X
′

k)

Suppose that, for any hierarchical Turing machine G, H(G) halts at level k and and outputs

⎧⎪⎪
⎨
⎪⎪⎩

1 if G exhibits persistent novelty

0 otherwise

That is to say, Hk(Xk,Gk) halts. Let D be the hierarchical Turing machine D = (Dj)j∈T
such that the behavior of each Dj depends on the computation H(D), and let Yk refer to
the input of Dk, where, for each k ∈ S such that k >minS

Yk ∶= (Output(Dk−1(Yk−1)), Y
′

k)

Now, suppose at level k H(D) halts. That is to say, Hk(Xk, Yk) halts. Then, define the
first for each i ≤ k, define X ′i as Di, and Dk as Di(Yi) =Hi(Xk). So, each Di takes the form

Di(Yi) =Hi(Output(Hk−1(Xk−1)),Di−1(Yi−1))

In other words, across its first k Turing machines, D simulates H’s computation on D. Next,
suppose there does not exist any O that is present in the recursive closure of Dk. This
amounts to saying that the recursive closure of Dk is precisely equivalent to the codomain
of partial recursive functions. This means determining the lack of persistent novelty of Dk

is equivalent to determining it simulates all partial recursive functions. Clearly, determining
this is undecidable [5]. So, our goal follows immediately in this case. Likewise, we may
assume there exists some O that is not the evaluation of some function in the recursive
closure of Dk. Formally, suppose there exists an O in the set

O ∈ {Y ∣ Y /∈ RCk(D,X ′)}

With this in mind, we will define the remaining levels of D as follows. The level Dk+1 takes
the output of Dk as input. If Dk outputted 1, then Dk+1 immediately halts without entering
any novel state. If Dk outputted 0, then Dk+1 runs Turing machine Dk+2, which takes a
Turing machine state as input, and advances to that state. There are two cases to consider,
corresponding to the output of Hk(D).

Case 1: Hk(D) = 1

In this case, Dk+1 halts with no novel output at all. However, this means D does not exhibit
persistent novelty, which contradicts the fact Hk returned that D exhibits persistent novelty.

6

Case 2: Hk(D) = 0

In this case, Dk+1 runs Turing machine Dk+2. Seeing as we have assumed O exists, there
exists some Dk+2 that runs on input O. But O is novel by definition, so it follows Dk+2 is
able to reach a novel state. However, this contradicts with the fact that Hk returned that
D did not exhibit persistent novelty.

In either case, we arrive at a contradiction. This implies that H cannot possibly exist.

The above proof does, indeed, imply that the problem of determining (via a hierarchical
Turing machine) whether some other hierarchical Turing machine exhibits persistent nov-
elty is, generally, undecidable. However, to reiterate, we have arrived at this result through
diagonalization, in a manner similar to that of Rice’s theorem [11]. Likewise, the usual
criticisms of this approach apply. Namely, this approach does not allow us to formulate
any broad conditions as to a hierarchical Turing machine’s ability to determine persistent
novelty, nor does it allow us to assert whether a hierarchical Turing machine can determine
its own capacity for persistent novelty. In summary, if we limit ourselves to looking only
at those hierarchical Turing machines that do not exhibit a diagonal construction, then we
may still be able to determine persistent novelty.

In order to address these criticisms, we will begin by looking at a stronger, more permis-
sive proof. Our proof will begin by defining what is meant by a hierarchical formal system,
before showing that all hierarchical Turing machines correspond to these hierarchical theo-
ries. We will then show that deciding whether a broad class of hierarchical Turing machines
exhibits persistent novelty allows a hierarchical Turing machine to recognize a theorem that
is fundamentally unprovable in these hierarchical formal systems.

3 Hierarchical Formal Systems

A hierarchical Turing machine is a sequence of Turing machines. Likewise, a hierarchical
formal system is a sequence of formal systems. We could treat this hierarchy as a Gödel-
Löb-Polymodal (GLP) logic, but it is unnecessary for our purposes.

Definition 6. Let T = (Tk)k∈S be a sequence indexed by a linearly ordered subset S ⊆ N,
where each Tk is a recursively enumerable theory. We say that T is a hierarchical formal
system if and only if, for each k ∈ S, Tk ⊆ Tk+1.

In hierarchical Turing machines, a state was novel if no total recursive function equivalent
to some convolution of previous Turing machines could access it given the states of prior
Turing machines in the hierarchy as input. For hierarchical formal systems, a theorem is
novel if it could not be proved in any prior theory of the hierarchy. Formally, this is defined
as follows.

Definition 7. Let T = (Tk)k∈S be a hierarchical formal system such that TminS ⊇ Q
1. A

sentence φ is said to be novel at level k, denoted Novelk(T,φ), if and only if

Novelk(T,φ) ∶= PrTk
(φ) ∧ ∀j < k,¬PrTj(φ)

Here, PrTk
(φ) denotes the standard Gödelian provability predicate expressing that φ is

provable in Tk.

1Q denotes the formal system of Robinson arithmetic.

7

As in hierarchical Turing machines, persistent novelty simply refers to whether novelty
persists across all theories in the hierarchy. That is, whether each theory can express a
novel sentence.

Definition 8. Let T = (Tk)k∈S be a hierarchical formal system such that TminS ⊇ Q. We
say that T exhibits persistent novelty if and only if

∀k ∈ S, ∃φ, Novelk(T,φ)

It can be shown that any hierarchical formal system T is unable to determine its own
persistent novelty at any level Tk. The reasoning behind this is simple. If it could determine
its persistent novelty at some theory Tk, then it could determine that there are theorems
which are true in Tk, but which are unprovable in Tk. In other words, Tk could prove its
incompleteness. This does not contradict Gödel’s incompleteness theorem directly, but it
does contradict an entailment of Gödel’s incompleteness theorem as originally expressed by
Lindström. Before stating this proof, it is important to note that we will be using a modern
day interpretation of Lindstöm’s result, as given by Hájek and Pudlák [8], as opposed to
using, verbatim, the original form of Lindström’s result [10].

Theorem 3. Let T = (Tk)k∈S be a hierarchical formal system such that TminS ⊇ Q. If Q is
consistent then, for any a ∈ S,

Ta /⊢ ∀b > a, ∃φ, Novelb(T,φ)

unless Ta proves the uniform reflection schema for all b > a, i.e.,

∀b > a, ∀φ, PrTb
(φ) → φ

Proof. There are two cases to consider, depending on whether Ta proves the uniform reflec-
tion schema for its successors.

Case 1: Ta /⊢ ∀x(PrTb
(φ) → φ) for each b > a

That is to say, Ta does not contain the uniform reflection schema. Let us start by assuming

Ta ⊢ ∀b > a,∃φ,∀c < b,PrTb
(φ) ∧ ¬PrTc(φ)

Seeing as a < b, we may infer that

Ta ⊢ ∀b > a,∃φ,PrTb
(φ) ∧ ¬PrTa(φ)

Then, from within Ta, for each b > a, there exists some sentence x such that Ta ⊢ PrTb
(⌜x⌝),

and Ta ⊢ ¬PrTa(⌜x⌝). Seeing as Ta proves ⌜x⌝ is not provable, and Ta does not possess a
uniform reflection schema, we know Ta /⊢ x. Informally, we may consider Ta as being capable
of asserting “No matter how far I (Ta) am extended, there is always some sentence (x) prov-
able in an extension (Tb) of myself that I cannot prove”. In other words, we may consider
Ta as being capable of proving its own incompleteness with respect to future extensions.

However, Lindström has shown [10] that if a theory F ⊇ Q proves that some true sentence
is unprovable in F , then F ⊢ Con(F). Our definition of Tn implies it is at least as powerful
as Q. We have also already assumed Ta ⊢ ¬PrTa(⌜x⌝). Finally, our definition of Tn implies
that Ta ⊆ Tb. Because Tb is a consistent extension of Ta, it follows that ⌜x⌝ is true in Ta.

8

In other words, Ta proves that some true ⌜x⌝ is unprovable in Ta. We may thus conclude
Ta ⊢ Con(Ta). This violates Gödel’s second incompleteness theorem, providing we accept
the consistency of Q.

Case 2: Ta ⊢ ∀φ,PrTb
(φ) → φ for each b > a

In our statement of this theorem, we have already assumed Ta can represent the proof
predicates of Tb. Consequentially, the fixed point theorem states that for each b > a, there
exists a sentence φb such that

Ta ⊢ φb ↔ (PrTb
(φb) ∧ ¬PrTa(φb))

Correspondingly, we have assumed the existence of a uniform reflection schema Ta ⊢ ∀φ,PrTb
(φ) →

φ for each b > a. Thus, for each b > a, we have

Ta ⊢ PrTb
(φb) → φb

Clearly, Ta ⊢ φb implies Ta ⊢ PrTb
(φb). Seeing as a < b, we may conclude, via our uniform

reflection schema, that Ta ⊢ φb. Now, from our fixed point definition of φb, it trivially
follows, for each b > a, that

Ta ⊢ PrTb
(φb) ∧ ¬PrTa(φb)

So, we may conclude
Ta ⊢ ∀b > a,∃φb,PrTb

(φb) ∧ ¬PrTa(φb)

Similarly, we can prove the converse of the above statement. This proof of this converse
statement is trivial, and is arrived at immediately through the application of Gödel’s in-
completeness theorems.

Theorem 4. Let T = (Tk)k∈S be a hierarchical formal system such that TminS ⊇ Q. Then,
for any a ∈ S,

Ta /⊢ ¬(∀b > a, ∃φ, Novelb(T,φ))

Proof. Let us start by assuming

Ta ⊢ ¬(∀b > a,∃φ,∀c < b,PrTb
(φ) ∧ ¬PrTc(φ))

⊢ ∃b ≤ a,∀φ,∃c ≥ b,¬PrTb
(φ) ∨PrTc(φ)

There are two cases to consider. The first case is that there exists a b ≤ a, such that, for all
φ, Ta proves Tb cannot prove φ. The second is that, for some c ≥ b, Ta proves Tc can prove φ.

Case 1: Ta ⊢ ∃b ≤ a,∀φ,¬PrTb
(φ)

We have been given that, for each b ≤ a, Tb extends Q. Obviously, there are sentences
in Q that are provable in Q, and so we know there are sentences in each Tb that are prov-
able in Tb. This contradicts the given statement that each Tb is unable to prove any sentence.

Case 2: Ta ⊢ ∃b ≤ a,∀φ,∃c ≥ b,PrTc(φ)

9

This means that, for some b ≤ a, and c ≥ b, all sentences are provable by Tc. By fixed
point theorem, this means the fixed point φc ↔ ¬PrTc(φ) is also provable by Tc. Yet, this
implies the sentence Prc(φc) ↔ ¬PrTc(φ) is provable in Tc, which violates the consistency
of Tc.

We have now proved that any theory in a hierarchical formal system is unable to prove its
persistent novelty, nor is it able to disprove its persistent novelty. This means that persistent
novelty is undecidable with respect to hierarchical formal systems.

The above proofs only state how T is unable to decide its own persistent novelty at any
level Tk. It does not directly state as to whether Tk can prove the persistent novelty of some
theory Sk that is present in an external system S. However, if we are given the condition
that Sk ⊆ Tk for each k, then the external result itself becomes an intensional result, and
Theorem 3 applies readily.

Theorem 5. Let U = (Ui)i∈S and V = (Vj)j∈T be hierarchical formal systems such that
UminS ⊇ Q and VminT ⊇ Q. Suppose that at least one of the following holds:

1. S ⊆ T , and, for each i ∈ S, Ui ⊆ Vi

2. There exist i ∈ S and j ∈ T such that Ui cannot represent PrVj(x)
2

3. For each k ∈ T , there exists some j, and i < j such that

Vk ⊢ ∀j > i, ∀φ, PrVj(φ) ↔ PrVi(φ)

Then, for any i ∈ S,

Ui /⊢ ∀j > i, ∃φj , ∀k < j, PrVj(φj) ∧ ¬PrVk
(φj)

Proof. To prove our result, is suffices to prove three cases. Each of these cases corresponds
to one of the conditions specified in our theorem statement.

Case 1: S ⊆ T , and, for each i ∈ S, Ui ⊆ Vi

Let us start by assuming that

Ui ⊢ ∀j > i, ∃φj , ∀k < j, PrVj(φj) ∧ ¬PrVk
(φj)

However, because Ui ⊆ Vi, for each i, this implies

Vi ⊢ ∀j > i, ∃φj , ∀k < j, PrVj(φj) ∧ ¬PrVk
(φj)

which contradicts theorem 3.

Case 2: There exist i ∈ S and j ∈ T such that Ui cannot represent PrVj(φ)

Since Ui is not expressive enough to define PrVj(φ), it cannot possibly prove a statement
involving PrVj(φ), regardless of whether the statement is true in some meta-theory of Ui.
Thus, this case is trivial.

2Ui admits a formula PrV j(x) satisfying the standard derivability conditions for Vi’s proof predicate.

10

Case 3: For each k ∈ T , there exists some j, and i < j such that

Vk ⊢ ∀j > i, ∀φ, PrVj(φ) ↔ PrVi(φ)

As in the other cases, let us assume, for some k

Uk ⊢ ∀j > k, ∃φj , ∀i < j, PrVj(φj) ∧ ¬PrVi(φj)

We have been given that there for each k ∈ T , there exists a j, and i < j, such that
Vk ⊢ ∀j > i, ∀φ, PrVj(φ) ↔ PrVi(φ). Let j

′ and i′ be the witness to our j and i, respectively.
This allows us to rewrite our assumption as

Uk ⊢ ∃φj , PrVj′
(φj) ∧ ¬PrVi′

(φj)

⊢ ∃φj , PrVj′
(φj) ∧ ¬PrVj′

(φj)

which is contradictory, and violates the consistency of Uk.

As before, we will also prove the above theorem in the converse direction. This proof follows
the same logic as our above proof.

Theorem 6. Let U = (Ui)i∈S and V = (Vj)j∈T be hierarchical formal systems such that
UminS ⊇ Q and VminT ⊇ Q. Suppose that at least one of the following holds:

1. S ⊆ T , and, for each i ∈ S, Ui ⊆ Vi

2. There exist i ∈ S and j ∈ T such that Ui cannot represent PrVj(x)
3

Then, for any i ∈ S,

Ui /⊢ ¬(∀j > i, ∃φj , ∀k < j, PrVj(φj) ∧ ¬PrVk
(φj))

Proof. To prove our result, is suffices to prove two cases. Each of these cases corresponds
to one of the conditions specified in our theorem statement.

Case 1: S ⊆ T , and, for each i ∈ S, Ui ⊆ Vi

Let us start by assuming that

Ui ⊢ ¬(∀j > i, ∃φj , ∀k < j, PrVj(φj) ∧ ¬PrVk
(φj))

However, because Ui ⊆ Vi, for each i, this implies

Vi ⊢ ¬(∀j > i, ∃φj , ∀k < j, PrVj(φj) ∧ ¬PrVk
(φj))

which contradicts theorem 4.

Case 2: There exist i ∈ S and j ∈ T such that Ui cannot represent PrVj(φ)

Since Ui is not expressive enough to define PrVj(φ), it cannot possibly prove a statement
involving PrVj(φ), regardless of whether the statement is true in some meta-theory of Ui.
Thus, this case is trivial.

3Ui admits a formula PrV j(x) satisfying the standard derivability conditions for Vi’s proof predicate.

11

We will now discuss a correspondence between hierarchical Turing machines, and hierarchical
formal systems. Such correspondences have been discussed before, namely by Feferman [6].
Our correspondence will be similar to that of Feferman’s, though not entirely identical.
We will define the set of arithmetic trace formulas for a given theorem in some hierarchical
formal system. These formulas will be the Gödel numbers of theorems asserting that certain
states are members of the hierarchy, as well as the fact that certain states are novel in that
level of the hierarchy.

Definition 9. Let H = (Hk)k∈S be a hierarchical Turing machine, and let Xk be the input
to Hk. Additionally, define the following arithmetized predicates

• Statek(H,s), encoding that machine Hk entered state s

• NovelStatek(H,s), encoding that s is a novel state in machine Hk, as in definition 3

Then, the arithmetic trace formulas of Hk on input Xk, denoted Trk(H,X), is the finite set
of Godel numbers

Trk(H,X) ∶=
{⌜Statek(H,s)⌝ ∣ s ∈ St(Hk,Xk)} ∪

{⌜NovelStatek(H,s)⌝ ∣ s ∈ NS(H)}

We must note here that the NovelStatek(H,s) predicate expresses that s /∈ RCi for each
i < k. In general, enumerating RCi requires enumerating a subset of the partial recursive
functions that is composed of non-total recursive functions, which means the predicate is
not necessarily, itself, enumerable [12]. As a result, we do not expect PA 4 to be able to
represent this in the general case. We also do not expect any stage of the hierarchy to be
able to represent this fact without explicitly including it as a reflection principle. Actually,
it is the very fact that this cannot generally be represented in PA, or any theory in the
hierarchy, that will eventually enable us to prove a much more general form of Theorem 2.
Nevertheless, none of this implies the predicate cannot be encoded using a Gödel numbering
scheme. It merely implies that it cannot be derived. Gödel numbering for a sentence is
independent of whether the set it belongs to is recursively enumerable [1].

With that clarified, we can now define what is meant by the arithmetic trace theory for
a given hierarchical Turing machine. In general, this trace theory is composed of the axioms
of PA, the code of our Turing machine Hk, and the arithmetic trace formulas of Hk.

Definition 10. Let H = (Hk)k∈S be a hierarchical Turing machine, and let Xk be the input
to Hk. Then, the arithmetic trace theory of Hk on input Xk, denoted Tr∗k(H,X), is the
finite set of Godel numbers

Tr∗k(H,X) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

PA + Tr∗predk(n) + Trk(H,X) if k >min S

PA + TrminS(H,X) otherwise

Finally, we will define the arithmetic trace hierarchy of a hierarchical Turing machine to be
the sequence of each Turing machine’s respective arithmetic trace theory.

Definition 11. Let H = (Hk)k∈S be a hierarchical Turing machine. Define the arithmetic
trace hierarchy of H to be the sequence A ∶= (Ak)k∈S , where each Ak ≡ Tr

∗

k(H,X).

4PA denotes the formal system of Peano arithmetic.

12

It is possible to relate the persistent novelty of any hierarchical Turing machines H ∶=

(Hk)k∈S to the persistent novelty of its corresponding arithmetic trace hierarchy A. In fact,
under the condition that s /∈ RCk(A,X) is undecidable across previous formal systems in the
hierarchy (being undecidable in Ai, for any i < k) then persistent novelty in H immediately
implies persistent novelty in A.

Lemma 1. Let H = (Hk)k∈S be a hierarchical Turing machine, and let A ∶= (Ak)k∈S be the
arithmetic trace theory of H. If the following are true

• H exhibits persistent novelty

• For each k ∈ S, and for all s /∈ St(Ak,Xk), Ak /⊢ s /∈ RCk(H,X)

Then, A exhibits persistent novelty.

Proof. From our definition of persistent novelty for hierarchical formal systems, we must
prove

∀a ∈ S,∃b > a,∃φ,Ab ⊢ φ ∧ ∀c < b,Ac /⊢ φ

We have been given that H exhibits persistent novelty. Then, for each Hb, it follows there
exists some s, such that s is novel at Hb. That is to say,

∀a ∈ S,∃b > a,∃s,∀c < b, s ∈ St(Hb,Xb) ∧ s /∈ RCc(H,X)

Let sb be the witness of this s at Hb. Ab has been defined as including Trb(H,X), which,
in turn, has been defined as including the Gödel number of all sentences of the form
NovelStateb(H,s). This predicate, itself, has been defined as

NovelStateb(H,s) ∶= ∀c < b, sb ∈ St(Hb,Xb) ∧ sb /∈ RCc(H,X)

So, it follows, for each c < b, the Gödel number of sb /∈ RCc(H,X) must be an entailment in
Ab. Thus, for each c < b

Ab ⊢ ⌜sb /∈ RCc(H,X)⌝

However, we have been given the condition that for each k ∈ S, and for all s /∈ St(Ak,Xk),
Ak /⊢ s /∈ RCk(A,X). Consequentially, we may also conclude

Ac /⊢ ⌜sb /∈ RCc(H,X)⌝

Let υb(s) ∶= ⌜sb /∈ RCc(H,X). It is clear we have shown Ab ⊢ υb(s), but Ac /⊢ υb(s) for all
c < b. In summary, φb(s) is provable in Ab, but unprovable in all Ac, when c < b. Thus, φb

is a novel sentence at level b of the trace hierarchy. Since a was arbitrary, this establishes
persistent novelty in (Ak)k∈S .

We have shown the above result generally. However, we have not proved the result within the
arithmetic trace theory A itself. In fact, due to the general undecidability of s /∈ RCi(H,X),
it is, perhaps, unreasonable to assume Ak ⊢ ¬PrAi

(⌜s /∈ RCi(H,X)⌝) for any k, and i < k.
This is all to say, it should not be expected that the above result can be encoded in the
language of Ak without additional reflection principles. We will now show that, were A to
possess a particular reflection schema for each theory Ak, then each Ak could prove its own
persistent novelty.

13

Lemma 2. Let H = (Hk)k∈S be a hierarchical Turing machine that exhibits persistent
novelty, let A ∶= (Ak)k∈S be the arithmetic trace hierarchy of H, and let F ∶= (Fk)k∈S be a
hierarchical formal system. If for each k ∈ S, Fk satisfies

1. Ak ⊆ Fk

2. For each i < k, and for all s ∈ St(Hk,Xk), Fi /⊢ s /∈ RCi(H,X)⌝

3. Fk ⊢ ⌜∀j > k,∃s,∀i < j, s ∈ St(Hj ,Xj) ∧ s /∈ RCi(H,X)⌝

4. For each j > k, there exists some s such that, for each i < k, Fk contains the reflection
schema

s ∈ St(Hk,Xk) ∧ s /∈ RCi(H,X) → PrFj(⌜s /∈ RCi(H,X)⌝) ∧ ¬PrFi(⌜s /∈ RCi(H,X)⌝)

Then, it follows
Fk ⊢ ⌜∀j > k, ∃φ, ∀i < j, PrTj(φ) ∧ ¬PrTi(φ)⌝

Proof. It has been given that, for each k ∈ S, Fk proves persistent novelty starting at Hk.
That is

Fk ⊢ ⌜∀j > k,∃s,∀i < j, s ∈ St(Hj ,Xj) ∧ s /∈ RCi(H,X)⌝

However, our reflection principle states, for all j > k, there exists some s such that, for all
i < j, the following holds

s ∈ St(Hj ,Xj) ∧ s /∈ RCi(H,X) → PrFj(⌜s /∈ RCi(H,X)⌝) ∧ ¬PrFi(⌜s /∈ RCi(H,X)⌝)

So, we may infer

Fk ⊢ ⌜∀j > k,∃s,∀i < j,PrFj
(⌜s /∈ RCi(H,X)⌝) ∧ ¬PrFi

(⌜s /∈ RCi(H,X)⌝)⌝

Let υj(s) ∶= ⌜s /∈ RCi(H,X)⌝. Then, it follows

Fk ⊢ ⌜∀j > k,∃s,∀i < j,PrFj
(υj(s)) ∧ ¬PrFi

(υj(s))⌝

Fk ⊢ ⌜∀j > k,∃υ,∃s,∀i < j,PrFj
(υ(s)) ∧ ¬PrFi

(υ(s))⌝

Fk ⊢ ⌜∀j > k,∃φ,∀i < j,PrFj(φ) ∧ ¬PrFi(φ)⌝

Thus, we have derived our goal.

We may now prove Theorem 2 in a much broader way. The intuition behind our proof for this
theorem is that, in general, s /∈ RCk(H,X) is undecidable, as it requires deciding membership
in an infinite set that is the union of the codomains of certain partial recursive functions.
Obviously, this is not guaranteed to be decidable by Theorem 1. Yet, a hierarchical Turing
machine deciding the persistent novelty of some other Turing machine implicitly involves
deciding s /∈ RCk(H,X) computationally. Thus, if this were to be true, then we could
enumerate a theorem that is not enumerable. Our proof will look slightly different from
our intuition, and will involve showing that a persistent novelty deciding Turing machine
entails a hierarchical formal system exists which can prove its own persistent novelty. This
fact cannot ever be possible, as it violates Gödel’s second incompleteness theorem, per the
proofs of Theorems 3, and 6.

14

Theorem 7. If PA is consistent, then there exists no hierarchical Turing machine H such
that Hk(G) decides

∀a ∈ S, ∃b > a, ∃s, NovelStateb(G,s)

for any hierarchical Turing machine G ∶= (Gk)k∈T with arithmetic trace A ∶= (Ak)k∈T , such
that for all i < k, and for all s ∈ St(Hk,Xk), Ai /⊢ s /∈ RCi(H,X).

Proof. Let us assume there does exist a hierarchical Turing machine H ∶= (Hk)k∈S such that
Hk(G), for any hierarchical Turing machine G ∶= (Gk)k∈T , outputs 1 when the encoding of
the following statement is true in the standard model

∀b > a,∃s,∀c < b, s ∈ St(Gb,Xb) ∧ s /∈ RCc(G,X)

for all a ∈ T . Now, let us consider a hierarchical formal system F ∶= (Fk)k∈T such that each
Fa encodes the states of every Hk, for each k ∈ T , as well as the arithmetic trace theory
Tr∗a(G,X) of Ga. Recall that Tr

∗

a(G,X) is the union of PA, the arithmetic trace theories of
Turing machines preceding Ga, and the arithmetic trace formulas Tra(G,X) of Ga

Tra(G,X) =
{⌜Statea(H,s)⌝ ∣ s ∈ St(Ga,Xa)} ∪

{⌜NovelStatea(G,s)⌝ ∣ ∀c < a, s ∈ St(Ha,Xa) ∧ s /∈ RCc(G,s)}

It should be noted that Tr∗a(G,X) ⊆ Fa. Additionally, let Output1(H,Ga) be a predicate
encoding that the output state of H ran on input Ga corresponds to 1. Then, let Fa encode
the following axiom

Output1(H,Ga) → ∀b > a,∃s,∀c < b, s ∈ St(Gb,Xb) ∧ s /∈ RCc(G,X)

We have assumed H does correctly decide the persistent novelty of G. More specifically, we
have assumed H only outputs 1 if the encoding of the above statement’s consequent is true
in the standard model. Thus, it follows that the above axiom is consistent in Fa. Of course,
we cannot claim the proof that H correctly decides persistent novelty may be carried out
in Fa, which is why we declared it as a separate axiom. Finally, we will also say for each
b > a, Fa includes the reflection schema for some s, and for each c < b

s ∈ St(Ha,Xa) ∧ s /∈ RCc(H,X) → PrFb
(⌜s /∈ RCc(H,X)⌝) ∧ ¬PrFc(⌜s /∈ RCc(H,X)⌝)

We have restricted ourselves to forms of G, where, for all c < b, and for all s ∈ St(Hb,Xb),
Ac /⊢ s /∈ RCc(H,X). Likewise, the above reflection schema is consistent in the arithmetic
trace hierarchy of G, and, seeing as F is an augmentation of the arithmetic trace hierarchy
of G, it is also consistent in F .

However, we have been given that Ga is persistently novel. Seeing as F encodes the
states of each Turing machine in H, it follows trivially that F derives an encoding of
Output1(H,Ga), and thus

Fa ⊢ ⌜∀b > a,∃s,∀c < b, s ∈ St(Gb,Xb) ∧ s /∈ RCc(G,X)⌝

But, we have now satisfied the conditions underlying Theorem 2. So, we are able to conclude

Fa ⊢ ⌜∀b > a, ∃φ, ∀c < b, PrTb
(φ) ∧ ¬PrTc(φ)⌝

for each a ∈ T . But, by Theorem 6, this is not possible. In fact, doing so amounts to proving
the consistency of Fa, which we cannot do under Gödel’s second incompleteness theorem.

15

So, assuming the existence of H allows us to prove certain theories in a formal system that
is at least as powerful as PA. Notably, it will allow us to prove a sentence asserting the
consistency of the formal system itself. This is fundamentally impossible if we accept the
consistency of PA, and so our assumption as to the existence of H must be invalid under
our given conditions.

Much like in Theorem 3, this theorem is contingent on the consistency of PA. This is widely
accepted [7], but we have stated it as an explicit condition for the sake of rigor.

We may also prove the converse of Theorem 7. Proving this converse is trivial, as
decidability of the converse directly implies there exists some k, such that, for a given s,
the sentence s ∈ RCk(G,X) is decidable. Unlike Theorem 7, which considers whether there
exists a state whose membership in RCk(G,X) is decidable, this is asking whether the
membership of certain states in RCk(G,X) is decidable. Seeing as our hierarchal Turing
machine is generally defined, this is not possible.

Theorem 8. There exists no hierarchical Turing machine H such that Hk(G) decides

¬(∀a ∈ S, ∃b > a, ∃s, NovelStateb(H,s))

for all hierarchical Turing machines G ∶= (Gk)k∈T .

Proof. Let us assume there does exist a hierarchical Turing machine H ∶= (Hk)k∈S such that
Hk(G), for any hierarchical Turing machine G ∶= (Gk)k∈T , outputs 1 when the following
statement is true

Φ ∶= ¬(∀b > a,∃s,∀c < b, s ∈ St(Gb,Xb) ∧ s /∈ RCc(G,X))

∶= ∃b ≤ a,∀s ∈ St(Gb,Xb),∃c ≥ b, s ∈ RCc(G,X)

for all a ∈ T . Determining Φ means asserting there exists some b, such that for all s ∈
St(Gb,Xb), there is some c ≥ b, such that s ∈ RCc(G,X). Alternatively, it means asserting
that there is a set of states for which membership in RCc(G,X) is decidable. However,
deciding s ∈ RCc(G,X) requires deciding the mebership in an infinite set that is the union
of the codomains of certain partial recursive functions. We showed in by Theorem 1 that
this is not possible.

We have proved both the forward and converse case, and so it follows that no hierarchi-
cal Turing machine may decide whether some other hierarchical Turing machine exhibits
persistent novelty. The conditions underlying this result are stronger than the conditions
underlying Theorem 2, and so we are now able to assert that a hierarchical Turing machine
cannot possibly decide its own persistent novelty.

Corollary 1. Let H ∶= (Hk)k∈S be a hierarchical Turing machine. If, for all i < k, and for
all s ∈ St(Hk,Xk), H /⊢ s /∈ RCi(H,X), then for each k ∈ S, Hk cannot decide

∀a ∈ S, ∃b > a, ∃s, NovelStateb(H,s)

Proof. This result trivially follows after substituting H for G in Theorems 7 and 8.

In fact, the only condition as to the applicability of Theorem 7, is the condition that, for
all i < k, and for all s ∈ St(Gk,Gk), G /⊢ s /∈ RCi(H,X). In effect, being able to decide a
hierarchical Turing machine’s capacity for persistent novelty, or its “intelligence”, requires

16

being able to decide state membership in the recursive closure of each Turing machine in the
hierarchy. This is a stronger conditions than the condition that G corresponds to a diagonal
hierarchical Turing machine, as used in Theorem 2.

We will next define the AI problems as the class of problems that are exclusively decidable
by hierarchical Turing machines that exhibit persistent novelty. It will follow from Theorem
7 that membership of AI is, generally, undecidable.

4 AI Problems

The AI problems have been defined, loosely, as the problems that require intelligence in order
to solve. More formal definitions of the AI problems have been investigated by Yampolsky
[18], and involve human oracles. At the start of our paper, we assumed that intelligence
entails a capacity for learning. To express this assumption using our current terminology: If
a hierarchical Turing machine to exhibits intelligence, it must also exhibit persistent novelty.
Therefore, we can treat whether a hierarchical Turing machine demonstrates persistent
novelty as a boundary condition for intelligence, and thus membership in AI. We will say
that if a problem is in AI, then any hierarchical Turing machine that decides it must have
persistent novelty.

Definition 12. If a problem X ∶ Σ∗ → Σ∗ belongs to the class AI then, for all hierarchical
Turing machines H such that for all x ∈ Σ∗, H halts on input w and correctly outputs
y ∈ {0,1}, H has persistent novelty.

Theorem 9. There exists no hierarchical Turing machine H which, given a description of
a decision problem X, determines whether X ∈ AI.

Proof. Let us assume that such a machine H exists. Then, we may define a certain decision
problem PG as follows

PG(x) ∶= Gk(x)

This is simply the problem of computing Gk(x).

PG(x) ∶= “Compute Gk(x)
′′

Consider briefly what happens if we run H on PG. If H returns “true”, then every hierar-
chical Turing machine that solves PG must exhibit novelty. Clearly, we have defined PG in
such a way that G solves PG. Thus, H(Pg) would be able to determine whether G exhibits
persistent novelty. Seeing as G is general, Theorem 7 implies this is not possible.

If we instead considered the AI problems as being decision problems, instead of functions
problems, the above proof would still apply. However, we would restrict ourselves to hier-
archical Turing machines G such that Gk defined as some mapping Σ∗ → {0,1}.

In any case, membership of AI is not decidable. This also means that we cannot decide
the reducibility (polynomially or otherwise) of any problem X ∈ P to AI. Moreover, we also
are unable to decide whether a given hierarchical Turing machine decides whether some
other hierarchical Turing machine decides some problem X ∈ AI.

Theorem 10. Let X be a decision problem. If X ∈ AI, then exists no hierarchical Turing
machine H that decides whether a given hierarchical Turing machine G decides X.

17

Proof. Let us assume there exists a hierarchical Turing machine H that takes, as input,
some other hierarchical Turing machine G, and an input string X. H then outputs whether
or not G decided X.

H(G,X) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if G decides X

0 otherwise

Next, let us assume that X is decidable. Then, there exists a hierarchical Turing machine
F ∶= (Fk)k∈S that decides X. From our definition of the AI problems, this implies F must
exhibit persistent novelty. Consider now H ran on inputs F and X. Clearly, H(G,X)
outputting 1 amounts to deciding that F exhibits persistent novelty, as otherwise F would
not decide X. This is not possible under theorem 7.

We will end our mathematical exposition with a brief footnote as to what is, arguably,
the most pressing problem in the study of artificial intelligence [2] [14]. Being, whether an
intelligence is able to be controlled, and aligned to human interests [13]. Interestingly, if a
hierarchical Turing machine exhibits persistent novelty, by our very definition, it is unpre-
dictable, and, likewise, uncontrollable by any less capable hierarchical Turing machine. This
was not a prescient intention of the definition, but is nevertheless an immediate consequence
of it.

Here a hierarchical Turing machine C is said to be “less capable” than some other hier-
archical Turing machine H if, for each k, the recursive closure of Ck is a proper subset of
of the recursive closure of Hk. Seeing as the recursive closure is intended to model what a
hierarchical Turing machine is capable of achieving under its own reasoning power, using its
current domain of knowledge, this is a way to formalize that C is “less intelligent” than H.
With this in mind, we will now show that no hierarchical Turing machine C exists which is
able to predict, at level k, the output of Hk+1, providing H has persistent novelty, and H is
at least as “intelligent” as C.

Theorem 11. Let H ∶= (Hk)k∈S be a hierarchical Turing machine with persistent novelty,
and let C ∶= (Ck)k∈N be a hierarchical Turing machine which takes as supplementary input
at k the Turing machine Hk ran on input Xk, such that RCk(C,H) ⊆ RCk(H,X). Then,
for all k ∈ S, C(Hk) ≠Hk+1(Xk+1).

Proof. Suppose that there exists such a hierarchical Turing machine C such that, for all
k ∈ S, Ck(Hk,Xk) = Hk+1(Xk+1), and RCk(C,X) ⊆ RCk(H,X). That is to say, Ck is able
to predict the output of Hk+1 given a complete description of Hk and the input to Xk.
However, we have been given that H has persistent novelty. So, for each a ∈ S, there exists
a b > a, such that

s ∈ St(Hb,Xb) and s /∈ RCc(H,X) for all c < b

In other words, s is not obtainable from any combination of states in lower levels of the
hierarchy via any partial recursive function that is a convolution of previous Turing ma-
chines. Yet, our definition of Ck means it must be able to compute the output of H at
level k + 1, given the input Xk to Hk. Hence, Ck must be able to compute some state
s ∈ St(Hk+1,Xk+1), being the output state of Hk+1. We will use s to refer to the output
state of Hk+1.

But, if this were possible, then s ∈ RCk(C,X). Seeing as RCk(C,X) ⊆ RCk(H,X), it
follows that s ∈ RCk(H,X). However, this entails that s is the output of some convolution
of Turing machines including and preceding Hk, being the Turing machine Hk itself. This
contradicts the persistent novelty of H.

18

Likewise, we have obtained an impossibility result for whether hierarchical Turing machines
with persistent novelty can be predicted. Seeing as controlling a hierarchical Turing machine
to produce a given output guarantees an accurate prediction of that given output, it follows
that hierarchical Turing machines which have persistent novelty cannot be controlled by
any “less intelligent” hierarchical Turing machine. To put slightly differently: Once an
intelligence reaches one’s own intelligence, one cannot control that intelligence. This aligns
with what is presently suspected [3].

5 Conclusion

Although there is no universally accepted definition of intelligence, it is broadly agreed that
an intelligent being (whether a human, or machine) must exhibit the capacity for learning.
In this work, we proposed a formal model of this capacity. Specifically, that a machine ex-
hibits intelligence if it demonstrates persistent novelty, being the continual ability to enter
states not recursively obtainable from previous states.

We then showed that determining whether a hierarchical Turing machine exhibits per-
sistent novelty is undecidable, even under highly permissive and vague conditions. Since
our definition of intelligence entails this form of novelty, it follows that deciding whether a
machine is intelligent is also undecidable, in general.

As a consequence, no test, including the Turing test, can universally decide whether a
machine is intelligent. Likewise, we find that membership in the complexity class AI is un-
decidable, and that the problem of controlling machines more intelligent than oneself (i.e.,
predicting and bounding their future behavior) is, in general, not computable. These results
rest on two philosophical assumptions:

1. That machines are fundamentally computational.

2. That not all knowledge can be learned in isolation.

Accepting the reliability of any test for intelligence, the decidability of membership in AI, or
the ability to control a machine intelligence smarter than oneself requires rejecting at least
one of these assumptions. To reject the first is to accept absurdity. To reject the second is to
adopt the view that all knowledge is accessible from within Plato’s cave. Regardless, either
philosophical position demands commitment to a world where the boundaries of intelligence
are as illusory as its appearances.

References

[1] George Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic.
5th. New York: Cambridge University Press, 2007. isbn: 9780521877520.

[2] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford, UK: Oxford Uni-
versity Press, 2014. isbn: 9780199678112.

[3] Mario Brcic and Roman V. Yampolskiy. “Impossibility Results in AI: A Survey”.
In: ACM Computing Surveys 56.1 (2023), pp. 1–24. doi: 10.1145/3603371. url:
https://doi.org/10.1145/3603371.

[4] Selmer Bringsjord, Paul Bello, and David Ferrucci. “Creativity, the Turing Test, and
the (Better) Lovelace Test”. In: Minds and Machines 11.1 (2001), pp. 3–27. doi:
10.1023/A:1011206622741.

19

[5] Nigel Cutland. Computability: An Introduction to Recursive Function Theory. Cam-
bridge, UK: Cambridge University Press, 1980. isbn: 0521294657.

[6] Solomon Feferman. “Are There Absolutely Unsolvable Problems? Gödel’s Dichotomy”.
In: Philosophia Mathematica 14.2 (2006), pp. 134–152. doi: 10 . 1093 / philmat /

nkj003.

[7] Gerhard Gentzen. “Die Widerspruchsfreiheit der reinen Zahlentheorie”. In: Mathema-
tische Annalen 112.1 (1936), pp. 493–565.

[8] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Perspec-
tives in Mathematical Logic. Springer, 1993. isbn: 978-3-540-56380-1.

[9] Brenden M. Lake et al. “Building Machines That Learn and Think Like People”. In:
Behavioral and Brain Sciences 40 (2017), e253. doi: 10.1017/S0140525X16001837.

[10] Per Lindström. “On the Criteria of Acceptability for Formalized Theories”. In: Theoria
30.2 (1964), pp. 186–195. doi: 10.1111/j.1755-2567.1964.tb00461.x. url: https:
//doi.org/10.1111/j.1755-2567.1964.tb00461.x.

[11] Henry Gordon Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: Transactions of the American Mathematical Society 74.2 (1953), pp. 358–
366. doi: 10.2307/1990888.

[12] Hartley Jr. Rogers. Theory of Recursive Functions and Effective Computability. 2nd.
Cambridge, MA: MIT Press, 1987.

[13] Stuart Russell. Human Compatible: Artificial Intelligence and the Problem of Control.
New York: Viking, 2019. isbn: 9780525558616.

[14] Anders Sandberg. “The intelligence explosion and machine ethics”. In:Machine Ethics.
Ed. by Michael Anderson and Susan Leigh Anderson. Cambridge University Press,
2011, pp. 451–470.

[15] John R. Searle. “Minds, Brains, and Programs”. In: Behavioral and Brain Sciences
3.3 (1980), pp. 417–457. doi: 10.1017/S0140525X00005756.

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
2nd. Cambridge, MA: MIT Press, 2018. isbn: 9780262039246.

[17] A. M. Turing. “Computing Machinery and Intelligence”. In: Mind LIX.236 (1950),
pp. 433–460. doi: 10.1093/mind/LIX.236.433.

[18] Roman V. Yampolskiy. “Turing Test as a Defining Feature of AI-Completeness”. In:
Artificial Intelligence, Evolutionary Computing and Metaheuristics. Ed. by Xin-She
Yang. Vol. 427. Studies in Computational Intelligence. Springer, 2013, pp. 3–17. doi:
10.1007/978-3-642-29694-9_1. url: https://doi.org/10.1007/978-3-642-
29694-9_1.

20

