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ABSTRACT

Estimating the 3DoF rotation from a single RGB image is an important yet chal-
lenging problem. Probabilistic rotation regression has raised more and more at-
tention with the benefit of expressing uncertainty information along with the pre-
diction. Though modeling noise using Gaussian-resembling Bingham distribution
and matrix Fisher distribution is natural, they are shown to be sensitive to out-
liers for the nature of quadratic punishment to deviations. In this paper, we draw
inspiration from multivariate Laplace distribution and propose a novel Rotation
Laplace distribution on SO(3). Rotation Laplace distribution is robust to the dis-
turbance of outliers and enforces much gradient to the low-error region, resulting
in a better convergence. Our extensive experiments show that our proposed dis-
tribution achieves state-of-the-art performance for rotation regression tasks over
both probabilistic and non-probabilistic baselines. Our project page is at pku-
epic.github.io/RotationLaplace.

1 INTRODUCTION

Incorporating neural networks to perform rotation regression is of great importance in the field of
computer vision, computer graphics and robotics (Wang et al., 2019b; |Yin et al., 2022; Dong et al.,
20215 Breyer et al., [2021). To close the gap between the SO(3) manifold and the Euclidean space
where neural network outputs exist, one popular line of research discovers learning-friendly rotation
representations including 6D continuous representation (Zhou et al.,|2019), 9D matrix representation
with SVD orthogonalization (Levinson et al., 2020), etc. Recently, Chen et al.| (2022) focuses on
the gradient backpropagating process and replaces the vanilla auto differentiation with a SO(3)
manifold-aware gradient layer, which sets the new state-of-the-art in rotation regression tasks.

Reasoning about the uncertainty information along with the predicted rotation is also attracting more
and more attention, which enables many applications in aerospace (Crassidis & Markleyl, [2003), au-
tonomous driving (McAllister et al.,[2017) and localization (Fang et al.; 2020). On this front, recent
efforts have been developed to model the uncertainty of rotation regression via probabilistic model-
ing of rotation space. The most commonly used distributions are Bingham distribution (Bingham),
1974) on S for unit quaternions and matrix Fisher distribution (Khatri & Mardial [1977) on SO(3)
for rotation matrices. These two distributions are equivalent to each other (Prentice, [1986) and
resemble the Gaussian distribution in Euclidean Space (Bingham, |1974; |Khatri & Mardia, [1977).
While modeling noise using Gaussian-like distributions is well-motivated by the Central Limit The-
orem, Gaussian distribution is well-known to be sensitive to outliers in the probabilistic regression
models (Murphy, 2012)). This is because Gaussian distribution penalizes deviations quadratically, so
predictions with larger errors weigh much more heavily with the learning than low-error ones and
thus potentially result in suboptimal convergence when a certain amount of outliers exhibit.

Unfortunately, in certain rotation regression tasks, we fairly often come across large prediction er-
rors, e.g. 180° error, due to either the (near) symmetry nature of the objects or severe occlusions
(Murphy et al| 2021). In Fig. [I(left), using training on single image rotation regression as an ex-
ample, we show the statistics of predictions after achieving convergence, assuming matrix Fisher
distribution (as done in Mohlin et al|(2020)). The blue histogram shows the population with dif-
ferent prediction errors and the red dots are the impacts of these predictions on learning, evaluated
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Figure 1: Visualization of the results of matrix Fisher distribution and Rotation Laplace distribution
after convergence. The horizontal axis is the geodesic distance between the prediction and the ground truth.
The blue bins count the number of data points within corresponding errors (2° each bin). The red dots illustrate
the percentage of the sum of the gradient magnitude ||0L/d(dist. param.)|| within each bin. The experiment
is done on all categories of ModelNet10-SO3 dataset.

by computing the sum of their gradient magnitudes ||0L/d(distribution param.)|| within each bin
and then normalizing them across bins. It is clear that the 180° outliers dominate the gradient as
well as the network training though their population is tiny, while the vast majority of points with
low error predictions are deprioritized. Arguably, at convergence, the gradient should focus more on
refining the low errors rather than fixing the inevitable large errors (e.g. arose from symmetry). This
motivates us to find a better probabilistic model for rotation.

As pointed out by Murphy| (2012}, Laplace distribution, with heavy tails, is a better option for robust
probabilistic modeling. Laplace distribution drops sharply around its mode and thus allocates most
of its probability density to a small region around the mode; meanwhile, it also tolerates and assigns
higher likelihoods to the outliers, compared to Gaussian distribution. Consequently, it encourages
predictions near its mode to be even closer, thus fitting sparse data well, most of whose data points
are close to their mean with the exception of several outliers(Mitianoudis| [2012), which makes
Laplace distribution to be favored in the context of deep learning(Goodfellow et al., 2016).

In this work, we propose a novel Laplace-inspired distribution on SO(3) for rotation matrices,
namely Rotation Laplace distribution, for probabilistic rotation regression. We devise Rotation
Laplace distribution to be an approximation of multivariate Laplace distribution in the tangent space
of its mode. As shown in the visualization in Fig. [T{right), our Rotation Laplace distribution is ro-
bust to the disturbance of outliers, with most of its gradient contributed by the low-error region, and
thus leads to a better convergence along with significantly higher accuracy. Moreover, our Rotation
Laplace distribution is simply parameterized by an unconstrained 3 x 3 matrix and thus accommo-
dates the Euclidean output of neural networks with ease. This network-friendly distribution requires
neither complex functions to fulfill the constraints of parameterization nor any normalization pro-
cess from Euclidean to rotation manifold which has been shown harmful for learning (Chen et al.,
2022).

For completeness of the derivations, we also propose the Laplace-inspired distribution on S for
quaternions. We show that Rotation Laplace distribution is equivalent to Quaternion Laplace distri-
bution, similar to the equivalence of matrix Fisher distribution and Bingham distribution.

We extensively compare our Rotation Laplace distributions to methods that parameterize distri-
butions on SO(3) for pose estimation, and also non-probabilistic approaches including multiple
rotation representations and recent SO(3)-aware gradient layer (Chen et al.| [2022). On common
benchmark datasets of rotation estimation from RGB images, we achieve a significant and consis-
tent performance improvement over all baselines.

2 RELATED WORK

Probabilistic regression [Nix & Weigend| (1994) first proposes to model the output of the neural
network as a Gaussian distribution and learn the Gaussian parameters by the negative log-likelihood
loss function, through which one obtains not only the target but also a measure of prediction un-
certainty. More recently, |Kendall & Gal| (2017) offers more understanding and analysis of the un-
derlying uncertainties. [Lakshminarayanan et al.|(2017) further improves the performance of uncer-
tainty estimation by network ensembling and adversarial training. Makansi et al.| (2019)) stabilizes
the training with the winner-takes-all and iterative grouping strategies. Probabilistic regression for
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uncertainty prediction has been widely used in various applications, including optical flow estima-
tion(llg et al.,|2018]), depth estimation (Poggi et al., 2020), weather forecasting (Wang et al., 2019a)),
etc.

Among the literature of decades, the majority of probabilistic regression works model the network
output by a Gaussian-like distribution, while Laplace distribution is less discovered. |Li et al.| (2021}
empirically finds that assuming a Laplace distribution in the process of maximum likelihood es-
timation yields better performance than a Gaussian distribution, in the field of 3D human pose
estimation. Recent work (Nair et al.l 2022) makes use of Laplace distribution to improve the ro-
bustness of maximum likelihood-based uncertainty estimation. Due to the heavy-tailed property
of Laplace distribution, the outlier data produces comparatively less loss and have an insubstan-
tial impact on training. Other than in Euclidean space, Mitianoudis| (2012) develops Generalized
Directional Laplacian distribution in S¢ for the application of audio separation.

Probabilistic rotation regression Several works focus on utilizing probability distributions on
the rotation manifold for rotation uncertainty estimation. [Prokudin et al.| (2018]) uses the mixture
of von Mises distributions (Mardia et al.| 2000) over Euler angles using Biternion networks. In
Gilitschenski et al.| (2019) and Deng et al. (2022), Bingham distribution over unit quaternion is
used to jointly estimate a probability distribution over all axes. [Mohlin et al.| (2020) leverages
matrix Fisher distribution (Khatri & Mardial|1977) on SO(3) over rotation matrices for deep rotation
regression. Though both bear similar properties with Gaussian distribution in Euclidean space,
matrix Fisher distribution benefits from the continuous rotation representation and unconstrained
distribution parameters, which yields better performance (Murphy et al.,[2021). Recently, Murphy
et al.| (2021)) introduces a non-parametric implicit pdf over SO(3), with the distribution properties
modeled by the neural network parameters. Implicit-pdf especially does good for modeling rotations
of symmetric objects.

Non-probabilistic rotation regression The choice of rotation representation is one of the core
issues concerning rotation regression. The commonly used representations include Euler angles
(Kundu et al.| [2018; Tulsiani & Malik, 2015)), unit quaternion (Kendall & Cipolla, 2017 [Kendall
et al., 2015} Xiang et al., 2017) and axis-angle (Do et al., 2018}, |Gao et al.| 2018; [Ummenhofer,
et al.l 2017), etc. However, Euler angles may suffer from gimbal lock, and unit quaternions doubly
cover the group of SO(3), which leads to two disconnected local minima. Moreover, Zhou et al.
(2019) points out that all representations in the real Euclidean spaces of four or fewer dimensions
are discontinuous and are not friendly for deep learning. To this end, the continuous 6D represen-
tation with Gram-Schmidt orthogonalization (Zhou et al [2019) and 9D representation with SVD
orthogonalization (Levinson et al., [2020) have been proposed, respectively. More recently, (Chen
et al.| (2022) investigates the gradient backpropagation in the backward pass and proposes a SO(3)
manifold-aware gradient layer.

3 REVISIT MATRIX FISHER DISTRIBUTION

3.1 MATRIX FISHER DISTRIBUTION

Matrix Fisher distribution (or von Mises-Fisher matrix distribution) (Khatr1 & Mardial |1977)) is one
of the widely used distributions for probabilistic modeling of rotation matrices.

Definition 1. Matrix Fisher distribution. The random variable R € SO(3) follows matrix Fisher
distribution with parameter A, if its probability density function is defined as

p(R;A) = exp (tr(ATR)) @)

1
F(A)
where A € R3*3 is an unconstrained matrix, and F(A) € R is the normalization factor. Without

further clarification, we denote F' as the normalization factor of the corresponding distribution in
the remaining of this paper. We also denote matrix Fisher distribution as R ~ MJF(A).

Suppose the singular value decomposition of matrix A is given by A = U’S’(V')T, proper SVD
is defined as A = USV7 where
U = U’ diag(1, 1, det(U")) V = V'diag(1, 1,det(V’))
S = diag(s1, s2, s3) = diag(s?, s5, det(U'V')s3)
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The definition of U and V ensures that det(U) = det(V) = 1 and U,V € SO(3).

3.2 RELATIONSHIP BETWEEN MATRIX FISHER DISTRIBUTION IN SO(3) AND GAUSSIAN
DISTRIBUTION IN R3

It is shown that matrix Fisher distribution is highly relevant with zero-mean Gaussian distribution
near its mode (Lee, 2018ajb). Denote Ry as the mode of matrix Fisher distribution, and define

R = R{'R, the relationship is shown as follows. Please refer to supplementary for the proof.

Proposition 1. Ler ® = logR € s0(3) and ¢ = ®" € R3. For rotation matrix R € SO(3)
Sollowing matrix Fisher distribution, when |R — Rg|| — 0, ¢ follows zero-mean multivariate
Gaussian distribution.

4 PROBABILISTIC ROTATION ESTIMATION WITH ROTATION LAPLACE
DISTRIBUTION

4.1 ROTATION LAPLACE DISTRIBUTION

We get inspiration from multivariate Laplace distribution (Eltoft et al., [2006; [Kozubowski et al.|
2013)), defined as follows.

Definition 2. Multivariate Laplace distribution. If means p = 0, the d-dimensional multivariate
Laplace distribution with covariance matrix X is defined as

v/2
p(x; %) = % (xTEflx) K, (\/QXTEflx)

where v = (2 — d)/2 and K, is modified Bessel function of the second kind.

We consider three dimensional Laplace distribution of x € R3 (i.e. d = 3 and v = —%). Given the
property K_1(§) o« ¢ ~2 exp(—£), three dimensional Laplace distribution is defined as

1 exp (—\/2XT2_1X)
F vxTY-1x

p(x; %) =

In this section, we first give the definition of our proposed Rotation Laplace distribution and then
shows its relationship with multivariate Laplace distribution.

Definition 3. Rotation Laplace distribution. The random variable R € SO(3) follows Rotation
Laplace distribution with parameter A, if its probability density function is defined as

1 ©xp (— tr (S — ATR))

PR A) = F(a) w(S_ ATR)

(@)

where A € R3*3 s an unconstrained matrix, and S is the diagonal matrix composed of the proper
singular values of matrix A, i.e., A = USVT. We also denote Rotation Laplace distribution as

R ~ RL(A).

Denote R as the mode of Rotation Laplace distribution and define R = R!R, the relationship
between Rotation Laplace distribution and multivariate Laplace distribution is shown as follows.

Proposition 2. Ler ® = logR € s0(3) and ¢ = & € R3. For rotation matrix R € SO(3)
following Rotation Laplace distribution, when ||R — Rg|| — 0, ¢ follows zero-mean multivariate
Laplace distribution.

Proof. Apply proper SVD to matrix A as A = USV”. For R ~ RL(A) , we have

op (VESATR)) e (M)

p(R)dR. o dR = dR 3

Vir(S-ATR) \/tr(S-SVTRV)
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With ¢ = (logR)" € R3, R can be parameterized as

R(d) = exn(d) — sin||@]l ;| 1—cos|@l ;2
R(¢) = exp(¢) =1+ 3 b+ Ik ¢
We follow the common practice (Mohlin et al [2020; [Lee, 2018a) that the Haar measure dR is

scaled such that | 50(3) dR = 1 and thus the Haar measure is given by

1 —cos |9l

dR =
4m2 |||

a9 = (g7 + OUl#I)*) ao. @
Also, R expanded at ¢ = 0 is computed as R = T+ ¢ + 3¢ + O(||$|°), we have

~ o 1 ~ p — 1 —/—-2 -
VIRV =1+ V¢V + VIV +0(|]*) =T+ VT + -VT¢" +0(|9]%)

V= 3(ua+u3)  Smaps —ps FHiks + p , ®)
= sphipe + ps 1— 5(pu3 + py) Zh2Ks = +O(llell”),
Tuips — p2 Lpops + pa 1— 3(uf+p3)

where (11, pi2, p3)" = VI, and

a(SSVIRV)= S L(s, 4 s0ud £ 08I = 167V [52“3 s1+s3 } Ve +0(¢l") (6
(i,j,k)ET s1+e2
Considering Eq. [3| ]and [6] we have
exp ( tr(S—ATR)) 1 exp (—\/ 2¢T271¢’) 2 %)
p(R)dR Wdl& =g (1+0dI¢I") dé

When |[R—Ry|| — 0, we have |[R—I|| — 0 and ¢ — 0, so Eq. follows the multivariate Laplace

distribution with the covariance matrix as 3, where ¥ = 4V diag(; 4+, s 535,) VY. O

Rotation Laplace distribution bears similar properties with matrix Fisher distribution. Its mode is
computed as UV”. The columns of U and the proper singular values S describe the orientation and
the strength of dispersions, respectively.

4.2 NEGATIVE LOG-LIKELIHOOD LOSS

Given a collection of observations X = {x;} and the associated ground truth rotations R = {R;},
we aim at training the network to best estimate the parameter A of Rotation Laplace distribution.
This is achieved by maximizing a likelihood function so that, under our probabilistic model, the
observed data is most probable, which is known as maximum likelihood estimation (MLE). We use
the negative log-likelihood of R, as the loss function:

,C(CL', Rm) = —logp (Rwa Aw)

4.3 DISCRETE APPROXIMATION OF THE NORMALIZATION FACTOR

Efficiently and accurately estimating the normalization factor for distributions over SO(3) is non-
trivial. Inspired by [Murphy et al.| (2021), we approximate the normalization factor of Rotation
Laplace distribution through equivolumetric discretization over SO(3) manifold. We employ the
discretization method introduced in|Yershova et al.| (2010), which starts with the equal area grids on
the 2-sphere (Gorski et al., 2005 and covers SO(3) by threading a great circle through each point
on the surface of a 2-sphere with Hopf fibration. Concretely, we discretize SO(3) space into a finite
set of equivolumetric grids § = {R|R € SO(3)}, the normalization factor of Laplace Rotation
distribution is computed as

exp (~/ir(S~ ATR) exp (~/r(S—ATR,))

F(A) = / dR ~ AR;
SO(3) Vir (S — ATR) R,c0 tr (S — ATR;)
dR
where AR,; = fso‘(g% = ﬁ In experiments, we discretize SO(3) space into about 37k points.

Please refer to supplementary for analysis of the effect of different numbers of samples.
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4.4 QUATERNION LAPLACE DISTRIBUTION

In this section, we introduce our extension of Laplace-inspired distribution for quaternions, namely,
Quaternion Laplace distribution.

Definition 4. Quaternion Laplace distribution. The random variable q € S? follows Quaternion
Laplace distribution with parameter M and Z, if its probability density function is defined as

1 exp (—\/—qTMZMTq)
F(Z) \/—q"TMZMTq

where M € O(4) is a 4 x 4 orthogonal matrix, and Z = diag(0, 21, 22, z3) is a 4 x 4 diagonal
matrix with 0 > z1 > z5 > z3. We also denote Quaternion Laplace distribution as q ~ QL(M, Z).
Proposition 3. Denote qq as the mode of Quaternion Laplace distribution. Let 7 be the tangent
space of S* at qo, and w(x) € R* be the projection of x € R* on 7. For quaternion q € S*
Sollowing Bingham distribution / Quaternion Laplace distribution, when ¢ — qo, 7(q) follows
zero-mean multivariate Gaussian distribution / zero-mean multivariate Laplace distribution.

p(q; M, Z) = (8)

Both Bingham distribution and Quaternion Laplace distribution exhibit antipodal symmetry on S3,
i.e., p(q) = p(—q), which captures the nature that the quaternions q and —q represent the same
rotation on SO(3).

Proposition 4. Denote v as the standard transformation from unit quaternions to corresponding
rotation matrices. For rotation matrix R € SO(3) following Rotation Laplace distribution, q =
7~ 1(R) € S? follows Quaternion Laplace distribution.

Prop. [ shows that our proposed Rotation Laplace distribution is equivalent to Quaternion Laplace
distribution, similar to the equivalence of matrix Fisher distribution and Bingham distribution (Pren-
tice, |1986)), demonstrating the consistency of our derivations. Please see supplementary for the
proofs to the above propositions.

The normalization factor of Quaternion Laplace distribution is also approximated by dense dis-

cretization, as follows:
exp (_ /_qTMZMTq) exp (71/7q?MZMTq1>

rz) = §
S3

dq =~ Aq;
V—aTMZMTq qi;q \/—arMzM7q;
. .. 1 2
where G4 = {q|q c 83} denotes the set of equivolumetric grids and Aq; = s, Is.é (‘q = IQQLI
q a

5 EXPERIMENT

Following the previous state-of-the-arts (Murphy et al., 2021; Mohlin et al.| 2020), we evaluate our
method on the task of object rotation estimation from single RGB images, where object rotation is
the relative rotation between the input object and the object in the canonical pose. Concerning this
task, we find two kinds of independent research tracks with slightly different evaluation settings.
One line of research focuses on probabilistic rotation regression with different parametric or non-
parametric distributions on SO(3) (Prokudin et al.| [2018}; [Gilitschenski et al.l 2019; |Deng et al.,
2022; Mohlin et al., |2020; Murphy et al., |2021), and the other non-probabilistic track proposes
multiple rotation representations (Zhou et al.,[2019; |Levinson et al., [2020j |Peretroukhin et al.| [2020)
or improves the gradient of backpropagation (Chen et al.| 2022). To fully demonstrate the capacity
of our Rotation Laplace distribution, we leave the baselines in their original optimal states and adapt
our method to follow the common experimental settings in each track, respectively.

5.1 DATASETS & EVALUATION METRICS

Datasets ModelNet10-SO3 (Liao et al.| [2019) is a commonly used synthetic dataset for single
image rotation estimation containing 10 object classes. It is synthesized by rendering the CAD
models of ModelNet-10 dataset (Wu et al.| [2015) that are rotated by uniformly sampled rotations
in SO(3). Pascal3D+ (Xiang et al, [2014) is a popular benchmark on real-world images for pose
estimation. It covers 12 common daily object categories. The images in Pascal3D+ dataset are
sourced from Pascal VOC and ImageNet datasets, and are split into ImageNet_train, ImageNet_val,
PascalVOC _train, and Pascal VOC _val sets.
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Table 1: Numerical comparisons with probabilistic baselines on ModelNet10-SO3 dataset averaged on all cat-
egories. Numbers in parentheses (-) are our reproduced results. Please refer to supplementary for comparisons
with each category.

Acc@3°1  Acc@5°1 Acc@10°7 Acc@15°1 Acc@30°1 Med.(°))

Liao et al) (2019) - - - 0.496 0.658 28.7
Prokudin et al. (2018) - - - 0.456 0.528 493
Deng et al] (2022) (0.138) (0.301) (0.502) 0.562 (0.584)  0.694 (0.673)  32.6 (31.6)
Monhlin et al.| (2020) (0.164) (0.389) (0.615) 0.693 (0.684)  0.757 (0.751)  17.1 (17.9)
Murphy et al| (2021) (0.294) (0.534) (0.680) 0719 (0.714) 0735 (0.730)  21.5 (20.3)
Rotation Laplace 0.447 0.611 0.715 0.742 0.772 12.7

Table 2: Numerical comparisons with probabilistic baselines on Pascal3D+ dataset averaged on all categories.
Numbers in parentheses (-) are our reproduced results. Please refer to supplementary for comparisons with
each category.

Acc@3°1  Acc@5°1  Acc@10°1  Acc@15°1 Acc@30°1 Med.(°))

Tulsiani & Malik|(2015) - - - - 0.808 13.6
Mahendran et al.| (2018) - - - - 0.859 10.1
Liao et al.|(2019) - - - - 0.819 13.0
Prokudin et al.|(2018) - - - - 0.838 12.2
Mohlin et al.|(2020) (0.089) (0.215) (0.484) (0.650) 0.825(0.827) 11.5(11.9)
Murphy et al.|(2021) (0.102) (0.242) (0.524) (0.672) 0.837 (0.838)  10.3(10.2)
Rotation Laplace 0.134 0.292 0.574 0.714 0.874 9.3

Evaluation metrics We evaluate our experiments with the geodesic distance of the network pre-
diction and the ground truth. This metric returns the angular error and we measure it in degrees. In
addition, we report the prediction accuracy within the given error threshold.

5.2 COMPARISONS WITH PROBABILISTIC METHODS
5.2.1 EVALUATION SETUP

Settings In this section, we follow the experiment settings of the latest work (Murphy et al., [2021)
and quote its reported numbers for baselines. Specifically, we train one single model for all cat-
egories of each dataset. For Pascal3D+ dataset, we follow Murphy et al.| (2021) to use (the more
challenging) PascalVOC_val as test set. Note that Murphy et al.| (2021) only measure the coarse-
scale accuracy (e.g., Acc@30°) which may not adequately satisfy the downstream tasks (Wang et al.,
2019b; [Fang et al.l [2020). To facilitate finer-scale comparisons (e.g., Acc@5°), we further re-run
several recent baselines and report the reproduced results in parentheses (-).

Baselines We compare our method to recent works which utilize probabilistic distributions on
SO(3) for the purpose of pose estimation. In concrete, the baselines are with mixture of von Mises
distributions [Prokudin et al.| (2018), Bingham distribution |GilitschenskKi et al. (2019); Deng et al.
(2022), matrix Fisher distribution Mohlin et al. (2020) and Implicit-PDF|Murphy et al. (2021). We
also compare to the spherical regression work of [Liao et al.|(2019) as Murphy et al.|(2021) does.

5.2.2 RESULTS

Table |1| shows the quantitative comparisons of our method and baselines on ModelNet10-SO3
dataset. From the multiple evaluation metrics, we can see that maximum likelihood estimation
with the assumption of Rotation Laplace distribution significantly outperforms the other distribu-
tions for rotation, including matrix Fisher distribution (Mohlin et al., |2020), Bingham distribution
(Do et al.,|2018)) and von-Mises distribution (Prokudin et al.,|2018)). Our method also gets superior
performance than the non-parametric implicit-PDF (Murphy et all [2021). Especially, our method
improves the fine-scale Acc@3° and Acc@5° accuracy by a large margin, showing its capacity to
precisely model the target distribution.

The experiments on Pascal3D+ dataset are shown in Table[2] where our Rotation Laplace distribution
outperforms all the baselines. While our method gets reasonably good performance on the median
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Table 3: Numerical comparisons with non-probabilistic baselines on ModelNet10-SO3 dataset. One model is
trained for each category.

Methods | Chair | Sofa | Toilet | Bed
| Mean] Med.l Acc@57 | Mean| Med.l Acc@51 | Mean| Med.l Acc@51 | Mean| Med.| Acc@57

6D 19.6 9.1 0.19 17.5 7.3 0.27 10.9 6.2 0.37 323 11.7 0.11
9D 17.5 8.3 0.23 19.8 7.6 0.25 11.8 6.5 0.34 30.4 11.1 0.13
9D-Inf 12.1 5.1 0.49 12.5 3.5 0.70 7.6 3.7 0.67 22,5 4.5 0.56
10D 18.4 9.0 0.20 20.9 8.7 0.20 11.5 5.9 0.39 299 11.5 0.11
RPMG-6D 12.9 4.7 0.53 11.5 2.8 0.77 7.8 34 0.71 20.3 3.6 0.67
RPMG-9D 11.9 4.4 0.58 10.5 24 0.82 7.5 3.2 0.75 20.0 2.9 0.76
RPMG-10D 12.8 4.5 0.55 11.2 24 0.82 7.2 3.0 0.76 19.2 2.9 0.75
Rot. Laplace ‘ 9.7 3.5 0.68 ‘ 8.8 2.1 0.84 ‘ 53 2.6 0.83 ‘ 15.5 23 0.82

Table 4: Numerical comparisons with non-probabilistic baselines on Pascal3D+ dataset. One model is trained
for each category.

| Bicycle | Sofa
Methods | Acc@10t  Acc@I5T  Acc@20f  Med. | Acc@10f  Acc@I5t  Acc@20?  Med.)
6D 0218 0390 0.553 18.1 0.508 0.767 0.890 9.9
9D 0.206 0.376 0.569 18.0 0.524 0.796 0.903 9.2
9D-Inf 0.380 0.533 0.699 134 0.709 0.880 0.935 6.7
10D 0.239 0.423 0.567 179 0.502 0.770 0.896 9.8
RPMG-6D 0.354 0.572 0.706 135 0.696 0.861 0.922 6.7
RPMG-9D 0.368 0.574 0.718 125 0.725 0.880 0.958 6.7
RPMG-10D 0.400 0.577 0.713 129 0.693 0.871 0.939 7.0
Rot. Laplace |  0.435 0.641 0.744 12 | 073 0.900 0.964 6.3

error and coarser-scale accuracy, we do not find a similar impressive improvement on fine-scale
metrics as in ModelNet10-SO3 dataset. We suspect it is because the imperfect human annotations
of real-world images may lead to comparatively noisy ground truths, increasing the difficulty for
networks to get rather close predictions with GT labels. Nevertheless, our method still manages to
obtain superior performance, which illustrates the robustness of our Rotation Laplace distribution.

5.3 COMPARISONS WITH NON-PROBABILISTIC METHODS
5.3.1 EVALUATION SETUP

Settings For comparisons with non-probabilistic methods, we follow the latest work of |Chen et al.
(2022) to learn a network for each category. For Pascal3D+ dataset, we follow (Chen et al.| (2022) to
use ImageNet_val as our test set. We use the same evaluation metrics as in (Chen et al.|(2022) and
quote its reported numbers for baselines.

Baselines We compare to multiple baselines that leverage different rotation representations to di-
rectly regress the prediction given input images, including 6D (Zhou et al.| 2019), 9D / 9D-Inf
(Levinson et al., |2020) and 10D (Peretroukhin et al., [2020). We also include regularized projective
manifold gradient (RPMG) series of methods (Chen et al., | 2022).

5.3.2 RESULTS

We report the numerical results of our method and on-probabilistic baselines on ModelNet10-SO3
dataset in Table [3] Our method obtains a clear superior performance to the best competitor under
all the metrics among all the categories. Note that we train a model for each category (so do all the
baselines), thus our performance in Table E] is better than Table E] where one model is trained for
the whole dataset. The results on Pascal3D+ dataset are shown in Table @] where our method with
Rotation Laplace distribution achieves state-of-the-art performance.
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Figure 2: Visualizations of the predicted distributions. The top row displays example images with the
projected axes of predictions (thick lines) and ground truths (thin lines) of the object. The bottom row shows
the visualization of the corresponding predicted distributions of the image. For clarity we have aligned the
predicted poses with the standard axes.

Table 5: Numerical comparisons with our proposed Quaternion & Rotation Laplace distribution and baselines
on ModelNet10-SO3 dataset. One model is trained for each category. Quaternion Laplace distribution clearly
outperforms Bingham distribution (Deng et al., 2022)).

| Chair | Sofa | Toilet | Bed
‘ Mean]| Med.] Acc@571 ‘ Mean] Med.] Acc@51 ‘ Mean| Med.] Acc@51 ‘ Mean] Med.] Acc@57
Deng et al.|(2022)

10.8 4.6 0.55 11.1 3.5 0.70 6.4 3.5 0.70 16.0 38 0.66

12.6 52 0.49 ‘ 13.1 3.7 0.67 ‘ 59 3.4 0.69 ‘ 17.7 3.4 0.69

16.5 7.2 0.31 16.5 4.9 0.52 9.6 4.2 0.59 22.0 5.1 0.49
Mohlin et al.|(2020)

Quat. Laplace

Rot. Laplace 9.7 35 0.68 8.8 2.1 0.84 53 2.6 0.83 15.5 2.3 0.82

5.4 QUALITATIVE RESULTS

We visualize the predicted distributions in Figure [2] with the visualization method in [Mohlin et al.
(2020). As shown in the figure, the predicted distributions can exhibit high uncertainty when the
object has rotational symmetry, leading to near 180° errors (a-c), or the input image is with low
resolution (d). Subfigure (e-f) show cases with high certainty and reasonably low errors. Please
refer to the supplementary for more visual results.

5.5 IMPLEMENTATION DETAILS

For fair comparisons, we follow the implementation designs of Mohlin et al.| (2020) and merely
change the distribution from matrix Fisher distribution to our Rotation Laplace distribution. For
numerical stability, we clip tr(S — ATR) by max(le — 8,tr(S — ATR)) for Eq Please refer to
supplementary for more details.

5.6 COMPARISONS OF ROTATION LAPLACE DISTRIBUTION AND QUATERNION LAPLACE
DISTRIBUTION

For the completeness of experiments, we also compare our proposed Quaternion Laplace distribution
and Bingham distribution and report the performance in Table[5] As shown in the table, Quaternion
Laplace distribution consistently achieves superior performance than its competitor, which validates
the effectiveness of our Laplace-inspired derivations. However, its rotation error is in general larger
than Rotation Laplace distribution, since its rotation representation, quaternion, is not a continuous
representation, as pointed in Zhou et al.|(2019), thus leading to inferior performance.

6 CONCLUSION

In this paper, we draw inspiration from multivariant Laplace distribution and derive two novel dis-
tributions for probabilistic rotation regression, namely, Rotation Laplace distribution for rotation
matrices on SO(3) and Quaternion Laplace distribution for quaternions on S®. Extensive compar-
isons with both probabilistic and non-probabilistic baselines on ModelNet10-SO3 and Pascal3D+
datasets demonstrate the effectiveness and advantages of our proposed distributions.



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

We thank Haoran Liu from Peking University for the help in experiments. This work is supported
in part by National Key R&D Program of China 2022ZD0160801.

REFERENCES

Christopher Bingham. An antipodally symmetric distribution on the sphere. The Annals of Statistics,
pp. 1201-1225, 1974.

Michel Breyer, Jen Jen Chung, Lionel Ott, Roland Siegwart, and Juan Nieto. Volumetric grasping
network: Real-time 6 dof grasp detection in clutter. arXiv preprint arXiv:2101.01132, 2021.

Jiayi Chen, Yingda Yin, Tolga Birdal, Baoquan Chen, Leonidas J Guibas, and He Wang. Projective
manifold gradient layer for deep rotation regression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6646—6655, 2022.

Gregory S Chirikjian. Engineering applications of noncommutative harmonic analysis: with em-
phasis on rotation and motion groups. CRC press, 2000.

John L Crassidis and F Landis Markley. Unscented filtering for spacecraft attitude estimation. Jour-
nal of guidance, control, and dynamics, 26(4):536-542, 2003.

Haowen Deng, Mai Bui, Nassir Navab, Leonidas Guibas, Slobodan Ilic, and Tolga Birdal. Deep
bingham networks: Dealing with uncertainty and ambiguity in pose estimation. Infernational
Journal of Computer Vision, pp. 1-28, 2022.

Thanh-Toan Do, Ming Cai, Trung Pham, and Ian Reid. Deep-6dpose: Recovering 6d object pose
from a single rgb image. arXiv preprint arXiv:1802.10367, 2018.

Siyan Dong, Qingnan Fan, He Wang, Ji Shi, Li Yi, Thomas Funkhouser, Baoquan Chen, and
Leonidas J Guibas. Robust neural routing through space partitions for camera relocalization in
dynamic indoor environments. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8544-8554, 2021.

Torbjgrn Eltoft, Taesu Kim, and Te-Won Lee. On the multivariate laplace distribution. /IEEE Signal
Processing Letters, 13(5):300-303, 2006.

Qihang Fang, Yingda Yin, Qingnan Fan, Fei Xia, Siyan Dong, Sheng Wang, Jue Wang, Leonidas
Guibas, and Baoquan Chen. Towards accurate active camera localization. arXiv e-prints, pp.
arXiv-2012, 2020.

Ge Gao, Mikko Lauri, Jianwei Zhang, and Simone Frintrop. Occlusion resistant object rotation
regression from point cloud segments. In Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, pp. 0-0, 2018.

Igor Gilitschenski, Roshni Sahoo, Wilko Schwarting, Alexander Amini, Sertac Karaman, and
Daniela Rus. Deep orientation uncertainty learning based on a bingham loss. In International
Conference on Learning Representations, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Krzysztof M Gorski, Eric Hivon, Anthony J Banday, Benjamin D Wandelt, Frode K Hansen, Mstvos
Reinecke, and Matthia Bartelmann. Healpix: A framework for high-resolution discretization and
fast analysis of data distributed on the sphere. The Astrophysical Journal, 622(2):759, 2005.

Alfred Haar. Der massbegriff in der theorie der kontinuierlichen gruppen. Annals of mathematics,
pp. 147-169, 1933.

Eddy Ilg, Ozgun Cicek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, and Thomas

Brox. Uncertainty estimates and multi-hypotheses networks for optical flow. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 652-667, 2018.

10



Published as a conference paper at ICLR 2023

Ioan Mackenzie James. History of topology. Elsevier, 1999.

Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5974-5983, 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in neural information processing systems, 30, 2017.

Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-
time 6-dof camera relocalization. In Proceedings of the IEEE international conference on com-
puter vision, pp. 2938-2946, 2015.

CG Khatri and Kanti V Mardia. The von mises—fisher matrix distribution in orientation statistics.
Journal of the Royal Statistical Society: Series B (Methodological), 39(1):95-106, 1977.

Tomasz J Kozubowski, Krzysztof Podgorski, and Igor Rychlik. Multivariate generalized laplace
distribution and related random fields. Journal of Multivariate Analysis, 113:59-72, 2013.

Abhijjit Kundu, Yin Li, and James M Rehg. 3d-rcnn: Instance-level 3d object reconstruction via
render-and-compare. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3559-3568, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Taeyoung Lee. Bayesian attitude estimation with the matrix fisher distribution on so (3). IEEE
Transactions on Automatic Control, 63(10):3377-3392, 2018a.

Taeyoung Lee. Bayesian attitude estimation with approximate matrix fisher distributions on so (3).
In 2018 IEEE Conference on Decision and Control (CDC), pp. 5319-5325. IEEE, 2018b.

Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Ros-
tamizadeh, and Ameesh Makadia. An analysis of svd for deep rotation estimation. Advances
in Neural Information Processing Systems, 33:22554-22565, 2020.

Jiefeng Li, Siyuan Bian, Ailing Zeng, Can Wang, Bo Pang, Wentao Liu, and Cewu Lu. Human pose
regression with residual log-likelihood estimation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 11025-11034, 2021.

Shuai Liao, Efstratios Gavves, and Cees GM Snoek. Spherical regression: Learning viewpoints,
surface normals and 3d rotations on n-spheres. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9759-9767, 2019.

Siddharth Mahendran, Haider Ali, and Rene Vidal. A mixed classification-regression framework for
3d pose estimation from 2d images. arXiv preprint arXiv:1805.03225, 2018.

Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox. Overcoming limitations of mixture den-
sity networks: A sampling and fitting framework for multimodal future prediction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7144-7153, 2019.

Kanti V Mardia, Peter E Jupp, and KV Mardia. Directional statistics, volume 2. Wiley Online
Library, 2000.

Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto Cipolla, and
Adrian Weller. Concrete problems for autonomous vehicle safety: Advantages of bayesian deep
learning. International Joint Conferences on Artificial Intelligence, Inc., 2017.

Nikolaos Mitianoudis. A generalized directional laplacian distribution: Estimation, mixture models
and audio source separation. IEEE Transactions on Audio, Speech, and Language Processing, 20
(9):2397-2408, 2012.

11



Published as a conference paper at ICLR 2023

David Mohlin, Josephine Sullivan, and Gérald Bianchi. Probabilistic orientation estimation with
matrix fisher distributions. Advances in Neural Information Processing Systems, 33:4884-4893,
2020.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Kieran A Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, and Ameesh Makadia.
Implicit-pdf: Non-parametric representation of probability distributions on the rotation manifold.
In International Conference on Machine Learning, pp. 7882-7893. PMLR, 2021.

Deebul S Nair, Nico Hochgeschwender, and Miguel A Olivares-Mendez. Maximum likelihood
uncertainty estimation: Robustness to outliers. arXiv preprint arXiv:2202.03870, 2022.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability
distribution. In Proceedings of 1994 ieee international conference on neural networks (ICNN’94),
volume 1, pp. 55-60. IEEE, 1994.

Valentin Peretroukhin, Matthew Giamou, David M. Rosen, W. Nicholas Greene, Nicholas Roy, and
Jonathan Kelly. A Smooth Representation of SO(3) for Deep Rotation Learning with Uncertainty.
In Proceedings of Robotics: Science and Systems (RSS’20), Jul. 12-16 2020.

Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. On the uncertainty of self-
supervised monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3227-3237, 2020.

Michael J Prentice. Orientation statistics without parametric assumptions. Journal of the Royal
Statistical Society: Series B (Methodological), 48(2):214-222, 1986.

Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. Deep directional statistics: Pose estimation
with uncertainty quantification. In Proceedings of the European conference on computer vision
(ECCV), pp. 534-551, 2018.

Joan Sola, Jeremie Deray, and Dinesh Atchuthan. A micro lie theory for state estimation in robotics.
arXiv preprint arXiv:1812.01537, 2018.

Zachary Teed and Jia Deng. Tangent space backpropagation for 3d transformation groups. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10338—
10347, 2021.

Shubham Tulsiani and Jitendra Malik. Viewpoints and keypoints. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1510-1519, 2015.

Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey Dosovit-
skiy, and Thomas Brox. Demon: Depth and motion network for learning monocular stereo. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5038-5047,
2017.

Bin Wang, Jie Lu, Zheng Yan, Huaishao Luo, Tianrui Li, Yu Zheng, and Guangquan Zhang. Deep
uncertainty quantification: A machine learning approach for weather forecasting. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp- 2087-2095, 2019a.

He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas.
Normalized object coordinate space for category-level 6d object pose and size estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642—
2651, 2019b.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912-1920, 2015.

Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for 3d object
detection in the wild. In IEEE winter conference on applications of computer vision, pp. 75-82.
IEEE, 2014.

12



Published as a conference paper at ICLR 2023

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A convolutional neu-
ral network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199,
2017.

Anna Yershova, Swati Jain, Steven M Lavalle, and Julie C Mitchell. Generating uniform incremental
grids on so (3) using the hopf fibration. The International journal of robotics research, 29(7):801—
812, 2010.

Yingda Yin, Yingcheng Cai, He Wang, and Baoquan Chen. Fishermatch: Semi-supervised rotation
regression via entropy-based filtering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11164-11173, 2022.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5745-5753, 2019.

A NOTATIONS AND DEFINITIONS

A.1 NOTATIONS FOR LIE ALGEBRA AND EXPONENTIAL & LOGARITHM MAP

This paper follows the common notations for Lie algebra and exponential & logarithm map (Lee,
2018aj; [Teed & Dengl, 2021} |Sola et al., 2018]).

The three-dimensional special orthogonal group SO(3) is defined as
SO(3) = {R € R**RR" =1,det (R) = 1}.
The Lie algebra of SO(3), denoted by s0(3), is the tangent space of SO(3) at I, given by
s0(3) = {® e R¥*|® = —@"}.
50(3) is identified with (R3, x) by the hat A map and the vee V map defined as

0 7¢Z (by vee V ¢I
50(3)3 | & 0 —¢u = | ¢, | €eR?
7¢y d)z O hat A ¢Z

The exponential map, taking skew symmetric matrices to rotation matrices is given by

exp(¢

iqi sm@(ﬁJr 1—‘9c2086’(7327

where 6 = ||¢||. The exponential map can be inverted by the logarithm map, going from SO(3) to
50(3) as
0

log(R) = 5519

(R - RT)v

—1
where 8 = arccos %.

A.2 HAAR MEASURE

To evaluate the normalization factors and therefore the probability density functions, the measure
dR on SO(3) needs to be defined. For the Lie group SO(3), the commonly used bi-invariant mea-
sure is referred to as Haar measure (Haar, 1933} |James|, |{1999). Haar measure is unique up to scalar
multiples (Chirikjian, 2000) and we follow the common practice (Mohlin et al.| 2020; |[Lee), [2018a)
that the Haar measure dR is scaled such that fso 3) dR = 1.

B MORE ANALYSIS ON GRADIENT W.R.T. OUTLIERS

In the task of rotation regression, predictions with really large errors (e.g., 180° error) are fairly
observed due to rotational ambiguity or lack of discriminate visual features. Properly handling these
outliers during training is one of the keys to success in probabilistic modeling of rotations.

13
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Figure 3: Visualization of the gradient magnituide ||0L/d(distribution param.)|| w.r.t. the prediction
errors on ModelNet10-SO3 dataset after convergence.
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Figure 4: Visualization of the indication ability of the distribution entropy w.r.t. the perfor-
mance. The horizontal axis is the distribution entropy and the vertical axis is the number of data
points (in log scale), color coded by the errors (in degrees). The experiments are done on the test set
of ModelNet10-SO3 dataset (left) and Pascal3D+ dataset (right).

In Figure [3] for matrix Fisher distribution and Rotation Laplace distribution, we visualize the gra-
dient magnitudes ||0L/O(distribution param.)|| w.r.t. the prediction errors on ModelNet10-SO3
dataset after convergence, where each point is a data point in the test set. As shown in the figure, for
matrix Fisher distribution, predictions with larger errors clearly yield larger gradient magnitudes,
and those with near 180° errors (the outliers) have the biggest impact. Given that outliers may be
inevitable and hard to be fixed, they may severely disturb the training process and the sensitivity
to outliers can result in a poor fit (Murphy, 2012} [Nair et al [2022). In contrast, for our Rotation
Laplace distribution, the gradient magnitudes are not affected by the prediction errors much, leading
to a stable learning process.

Consistent results can also be seen in Figure [I] of the main paper, where the red dots illustrate the
sum of the gradient magnitude over the population within an interval of prediction errors. We argue
that, at convergence, the gradient should focus more on the large population with low errors rather
than fixing the unavoidable large errors.

C UNCERTAINTY QUANTIFICATION MEASURED BY DISTRIBUTION ENTROPY

Probabilistic modeling of rotation naturally models the uncertainty information of rotation regres-
sion. proposes to use the entropy of the distribution as an uncertainty measure.
We adopt it as the uncertainty indicator of Rotation Laplace distribution and plot the relationship
between the error of the prediction and the corresponding distribution entropy on the testset of
ModelNet10-SO3 and Pascal3D+ datasets in Figure @] As shown in the figure, predictions with
lower entropies (i.e., lower uncertainty) clearly achieve higher accuracy than predictions with large
entropies, demonstrating the ability of uncertainty estimation of our Rotation Laplace distribution.
We compute the entropy via discretization, where SO(3) space is quantized into a finite set of
equivolumetric girds G = {R|R € SO(3)}, and

H (p) = —/ plogpdR ~ — > pilogpiAR;
SO(3) R,cG

We use about 0.3M grids to discretize SO(3) space.

D EFFECT OF DIFFERENT NUMBERS OF DISCRETIZATION SAMPLES

To compute the normalization factor of our distribution, we discretize SO(3) space into a finite set
of equivolumetric grids using Hopf fibration. Here we show the comparison on different numbers
of samples. We experiment with ModelNet10-SO3 toilet dataset on a single 3090 GPU.
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Table 6: Comparison on different numbers of discretization samples. The experiment is done on
ModelNet10-SO3 toilet dataset on a single 3090 GPU.

Number of samples Training time (min)J Mean(°)J Med.(°)J Acc@5°1

0.6k 122 5.8 2.8 0.80
4.6k 122 53 2.6 0.82
37k 136 53 2.6 0.83
295k 168 5.3 25 0.82

Table 7: Per-category results ModelNet10-SO3 dataset.

avg. bathtub bed chair desk dresser tv  n.stand sofa table toilet
Deng et al.|(2022) 0.562 0.140 0.788 0.800 0.345 0.563 0.708 0.279 0.733 0.440 0.832
Acc@15°7 Prokudin et al.|(2018) 0.456 0.114 0.822 0.662 0.023 0.406 0.704 0.187 0.590 0.108 0.946
Mohlin et al. (2020} 0.693 0322 0.882 0.881 0.536 0.682 0.790 0.516 0.919 0.446 0.957
Murphy et al. (2021} 0.719 0.392 0.877 0.874 0.615 0.687 0.799 0.567 0.914 0.523 0.945
Rotation Laplace 0.741 0.390 0.902 0.909 0.644 0.722 0.815 0.590 0.934 0.521 0.977
Deng et al.|(2022) 0.694 0.325 0.880 0.908 0.556 0.649 0.807 0.466 0.902 0.485 0.958
Acc@30°1 Prokudin et al.|(2018) 0.528 0.175 0.847 0.777 0.061 0.500 0.788 0.306 0.673 0.183 0.972
Mohlin et al. (2020} 0.757 0.403 0.908 0.935 0.674 0.739 0.863 0.614 0.944 0.511 0.981
Murphy et al. (2021} 0.735 0.410 0.883 0917 0.629 0.688 0.832 0.570 0.921 0.531 0.967
Rotation Laplace 0.770 0.430 0911 0.940 0.698 0.751 0.869 0.625 0.946 0.541 0.986
Deng et al.|(2022) 32.6 1478 92 83 250 119 98 369 100 58.6 85
Median  |Prokudin et al. |(2018) 49.3 1228 36 96 1172 299 6.7 73.0 104 1155 4.1
Error (°)!  [Mohlin et al.|(2020} 17.1 89.1 44 52 130 63 5.8 13.5 40 258 40
Murphy et al. (2021} 21.5 161.0 44 55 7.1 5.5 5.7 7.5 4.1 9.0 438
Rotation Laplace 12.2 85.1 23 34 54 2.7 3.7 4.8 21 96 25

As stated in Table [6] the approximation with too few samples leads to inferior performance, and
increasing the number of samples yields a better performance at the cost of a longer runtime. The
performance improvement saturates when the number of samples is sufficient. We choose to use
37k samples in our experiments.

E ADDITIONAL RESULTS

E.1 ADDITIONAL NUMERICAL RESULTS

Table [7] and [8] extend the results on ModelNet10-SO3 dataset and Pascal3D+ dataset in the main
paper and show the per-category results. Our prediction with Rotation Laplace distribution is at or
near state-of-the-art on many categories. The numbers for baselines are quoted from Murphy et al.
(2021).

E.2 ADDITIONAL VISUAL RESULTS

We show additional visual results on ModelNet10-SO3 dataset in Figure[5|and on Pascal3D+ dataset
in Figure[§] As shown in the figures, our distribution provides rich information about the rotation
estimations.

To visualize the predicted distributions, we adopt two popular visualization methods used inMohlin
et al.| (2020) and Murphy et al.| (2021). The visualization in [Mohlin et al| (2020) is achieved by
summing the three marginal distributions over the standard basis of R® and displaying them on the
sphere with color coding. Murphy et al|(2021) introduces a new visualization method based on
discretization over SO(3). It projects a great circle of points on SO(3) to each point on the 2-sphere,
and then uses the color wheel to indicate the location on the great circle. The probability density is
shown by the size of the points on the plot. See the corresponding papers for more details.
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Table 8: Per-category results on Pascal3D+ dataset.

avg. aero bike boat bottle bus car chair table mbike sofa train tv

Tulsiani & Malik | 0.808 0.81 0.77 0.59 0.93 0.98 0.89 080 0.62 088 0.82 0.80 0.80

Mahendran et al. 1 0.859 0.87 0.81 0.64 0.96 0.97 095 092 0.67 085 097 0.82 0.88

Acc@30°+ Liao et al.|(2019 0.819 0.82 0.77 0.55 093 095 094 0.85 061 080 095 0.83 0.82
Prokudin et al. (2018 0.838 0.89 0.83 046 0.96 0.93 090 080 0.76 090 090 0.82 091

Mohlin et al. (2020 0.825 090 0.85 0.57 0.94 095 096 0.78 0.62 087 0.85 0.77 0.84

Murphy et al. (2021 0.837 0.81 0.85 0.56 093 095 094 0.87 /078 085 0.88 0.78 0.86

Rot. Laplace (Ours) 0.876 090 0.90 0.60 096 098 096 091 076 088 097 0.81 0.88

Tulsiani & Malik l 13.6 13.8 17.7 213 129 58 9.1 148 152 147 137 87 154

Mahendran et al.|(2018 10.1 85 148 205 70 31 51 93 113 142 102 56 117

Median  |Liao et al.|(2019 13.0 13.0 164 29.1 103 48 68 116 120 171 123 86 143
error (°) 1 |Prokudin et al.|(2018 12.2 9.7 155 456 54 29 45 131 126 11.8 9.1 43 120
Mohlin et al.|(2020 11.5 10.1 156 243 78 33 53 135 125 129 138 74 117

Murphy et al. (2021 10.3 10.8 129 234 88 34 53 100 73 136 95 64 123

Rot. Laplace (Ours) 9.4 86 11.7 218 69 28 48 79 9.1 122 81 69 116

J

Distribution visual. Distribution visual.

: : Distribution visual. Distribution visual.
Inputimage - gihimeial202) — Muphyeralpoay  [0PUCIMAge
Figure 5: Visual results on ModelNet10-SO3 dataset. We adopt the distribution visualization methods in
Mohlin et al (2020) and Murphy et al] (202I). For input images and visualizations with [Mohlin et al (2020),

predicted rotations are shown with thick lines and the ground truths are with thin lines. For visualizations with
Murphy et al.| (2021)), ground truths are shown by solid circles.

F DERIVATIONS
Proposition 1 in the main paper. Let ® = logR € 50(3) and ¢ = ®V € R3. For rotation matrix
R € SO(3) following matrix Fisher distribution, when |R — Ry| — 0, ¢ follows zero-mean

multivariate Gaussian distribution.

Proof. For R ~ MF(A), we have

p(R)R x exp (tr(ATR)) dR = exp (tr(svTﬁV)) dR )
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Figure 6: Visual results on Pascal3D+ dataset. We adopt the distribution visualization methods in Mohlin

et al.|(2020) and Murphy et al.|(2021). For input images and visualizations with Mohlin et al.|(2020), predicted

rotations are shown with thick lines and the ground truths are with thin lines. For visualizations with[Murphy|

(2021)), ground truths are shown by solid circles.

Considering Eq. [5]in the main paper, we have

~ 1
tr(SVIRV) = tx(S)+ Y —5 (s +su)ui +O(|8])
G k)el (10)
. 71 T s2+s3 e T
7tr(S) 2¢ V[ 1+ 351+S2]V ¢
Thus
p(R)dR  exp (tr(ATR)) dR
tr(S 1 _
= OB oxp (547210 (1-+ O(I417)) do
When | R—Rg| — 0, we have |[R—1I|| — 0 and ¢ — 0, so Eq. follows the multivariate Gaus-

sian distribution with the covariance matrix as 3, where ¥ = V diag(s -+, 595 575;) V' O

an

Proposition 3 in the main paper. Denote qq as the mode of Quaternion Laplace distribution. Let
7 be the tangent space of S® at q, and 7(x) € R* be the projection of x € R* on . For quaternion
q € S? following Bingham distribution / Quaternion Laplace distribution, when q — qo, 7(q)
follows zero-mean multivariate Gaussian distribution / zero-mean multivariate Laplace distribution.

Proof. Denote qr = (1,0,0,0)7 as the identity quaternion. Define M as an orthogonal matrix such
that M7 q¢ = q1. Given 7(q) = q — (q - qo)qo, we have
M'7(q) =M"q- (M"q) - (M qo))ar = M"q — war, (12)
where MTq = (w, z,y, 2)T. Let (eg, e1, 2, e3) be the column vectors of I, 4, we have
(Me;) -qo=e;-qr=0 (13)
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fori = 1,2, 3. Therefore, Me; (i = 1,2, 3) form an orthogonal basis of .
Given M”'q = weq + ze; + yes + zes, we have
q=w(Meo) + z(Me1) + y(Mez) + z2(Mes) (14)
Therefore, 7 = (z, y, z) is the coordinate of w(q) in 7 under the basis of Me;.
The Jacobian of the transformation q — 7} is given by
_da _ 4,9 (M"q)

J on on
—z/w 1 0 0 (15)
=M| —y/w 0 1 0
—z/w 0 0 O
Therefore, the scaling factor from 7 to q is given by
d 2+ 2+ 2
G = det(@I7) = 14 ZEE T 4 O(nlf) = 1+ O(nl). (16)
n w
Thus
0 w
qTMZMTq:[ w o Yy z ] |: 1 2 z ‘|
z3 z
z1 x an
:[ Tz Yy =z } z2 Y
z3 z
=nZn

where we define Z = diag(z1, 22, 23).

For Bingham distribution, we have
p(a)dq o< exp (qTMZMTq) dq
= exp (1" Zn) (1+ O(In|”))dn (1)

= exp (—n"="n) (1+ O(In|l*))dn
which follows the multivariate Gaussian distribution with the covariance matrix as X, where X =
~diag(+, L, 1)

zZ1 ’ 22 ? z3
For Quaternion Laplace distribution, we have
exp (—\/ —qTMZMTq)
dq
/—qTMZMTq
—\/-nT7Z
- () (1+ O(ml*))dn (19)
V2 /_,,]T217

1 exp (f\/QnTE—ln)

- V2 /onTE-1n

which follows the multivariate Laplace distribution with the covariance matrix as 3, where ¥ =
—2diag(L, L, L). O

217227,23

p(q)dq

(1+O(|Inl*))dn

Proposition 4 in the main paper. Denote v as the standard transformation from unit quaternions
to corresponding rotation matrices. For rotation matrix R € SO(3) following Rotation Laplace
distribution, g = y~!(R) € S? follows Quaternion Laplace distribution.

Proof. For a quaternion q = [qo, q1, g2, g3, we use the standard transform function v to compute
its corresponding rotation matrix:
1-2¢3 — 263 2q1¢2 — 2qogs  2q143 + 20g2
(@) = | 2142 +2q0q3 1 -2 —2¢5 2q2q3 — 2q0 (20)
2¢1G3 — 290q2  2q2q3 + 2q0q1 1 — 2q7 — 243

18
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Letu=~"}(U),v =v"(V) and
d= 0,0, @ @)" =7 (U'RV) = uqv @

Note that the transformation q — Tqv is an orthogonal transformation on S3. Therefore, there
exists an orthogonal Matrix M, such that

M'q=1uqv=4q (22)
The scaling factor from quaternions to rotation matrices is given by
1
dR = —d 23
5,294 (23)

Suppose R follows Quaternion Laplace distribution as

R)dR = L~ (VirsATR) dR 24
PIRYR = 35 tr(S-ATR) @9

Given
tr(S-A"R) = tr(S-SUTRV) = > 2(s; + sx)q;
(3,5,k)ET
o (25)
= ZGT st s1+s3 :|
L s1+s2

0
_ ot ~
exp (— 2qT |: F2res s1+s3 :| q)
1 s1+s
1+s2 q

272 F 0
[ s

0
so+ts:
exp [ —,|29™M |: 2 351+53 :| MTq (26)
1 s1+s2

we have

p(R)dR

1 exp (—,/—qTMZMTq)
= 22 F V—aTMZMTq da,
where M is an orthogonal matrix and Z = —2 diag(0, s2 + s3, $1 + S3, 81 + $2) is a4 x 4 diagonal
matrix. O

Elaboration of Eq. 3]in the main paper
Given Ry = UV T and R = RgR,
exp ( tr(S — ATR)) exp (\/tr(S — VSUTR)) exp (\/tr(S — SUTRV))
p(R)dR dR = dR = dR
V(S — ATR) V/tr(S — VSUTR) V/tr(S — SUTRV)

oxp (Vi —SUTRAV)) e (s —SVTRY) ) @

= dR = dR

tr(S — SUTRoRV) \/tr(S — SVTRYV)

G MORE IMPLEMENTATION DETAILS

For fair comparisons, we follow the implementation designs of Mohlin et al.|(2020) and merely
change the distribution from matrix Fisher distribution to our Rotation Laplace distribution. We
use pretrained ResNet-101 as our backbone, and encode the object class information (for single-
model-all-category experiments) by an embedding layer that produces a 32-dim vector. We apply a
512-512-9 MLP as the output layer.

The batch size is set as 32. We use the SGD optimizer and start with the learning rate of 0.01. For
ModelNet10-SO3 dataset, we train 50 epochs with learning rate decaying by a factor of 10 at epochs
30, 40, and 45. For Pascal3D+ dataset, we train 120 epochs with the same learning rate decay at
epochs 30, 60 and 90.
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