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ABSTRACT

As deep learning becomes computationally intensive, the data parallelism is an es-
sential option for the efficient training of high-performance models. Accordingly,
the recent studies deal with the methods for increasing batch size in training the
model. Many recent studies focused on learning rate, which determines the noise
scale of parameter updates (Goyal et al., 2017; You et al., 2017; 2020) and found
that a high learning rate is essential for maintaining generalization performance
and flatness of the local minimizers (Jastrzebski et al., 2020; Cohen et al., 2021;
Lewkowycz et al., 2020). But to fill the performance gap that still exists in the
large batch optimization, we study a method to directly control the flatness of lo-
cal minima. Toward this, we define yet another sharpness measure called Connec-
tivity sharpness, a reparameterization invariant, structurally separable sharpness
measure. Armed with this measure, we experimentally found the standard no bias
decay heuristic (Goyal et al., 2017; He et al., 2019b), which recommends the bias
parameters and γ and β in BN layers are left unregularized in training, is a crucial
reason for performance degradation in large batch optimization. To mitigate this
issue, we propose simple bias decay methods including novel adaptive one and
found that this simple remedy can fill a large portion of the performance gaps that
occur in large batch optimization.

1 INTRODUCTION

Recently, deep learning has brought unprecedented success and change in various fields such as
computer vision (Radford et al., 2021), natural language understanding (Brown et al., 2020) with the
advent of huge models. In order to increase the accessibility and efficiency of such a large model,
the importance of data parallelism, which can reduce the learning time by using more computing re-
sources, is being emphasized. In particular, for training deep learning models based on synchronous
Stochastic Gradient Descent (SGD) with mini-batch, it is necessary to increase the batch size to
fully utilize computational resources, but it is well known that using a large batch degrades the
generalization performance of the model.

The basis of recent large batch optimization methods such as Goyal et al. (2017); You et al. (2017;
2020) is to properly increase the learning rate (LR). Tuning learning rate for large batch optimization
is quite convincing from three perspectives. First, the LR controls the searching speed in parameter
space. Since fewer steps are allowed in large batch optimization, a faster searching for each step
is required to match the overall search performance. Second, the LR controls the variance of opti-
mization trajectory. As the batch size increases, the variance of the gradient decreases, which makes
it difficult to escape from the sharp minima in large batch optimization (Smith & Le, 2018; Smith
et al., 2018; Park et al., 2019; Smith et al., 2020). By increasing the LR, we can artificially control the
variance of the optimization trajectory. Third, it is known that models trained with high LR achieve
flatter minima than models trained with low LR in batch gradient descent settings (Jastrzebski et al.,
2020; Cohen et al., 2021; Lewkowycz et al., 2020).

Since there is still a limit to maintaining performance in a large batch regime only with the existing
methods of tuning the learning rate, in this paper, we study a method to directly control the flatness
of local minima. For this purpose, we propose yet another sharpness measure called connectivity
sharpness, inspired by some recent works on pruning at initialization (Lee et al., 2019b; Wang et al.,
2020; Lee et al., 2020). Connectivity sharpness is distinguished from the existing sharpness mea-
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sures in that it is invariant to reparameterization and linearly separable with respect to substructures.
The reparameterization invariance is essential because it measures the same sharpness for different
networks expressing the same function. At the same time, the substructure separability is vital in
identifying which part of the network critically affects the flatness.

To systematically reduce the proposed connectivity sharpness, we analyzed the no bias decay heuris-
tic through a step-by-step experiment. Our analysis shows that the scale of bias parameters really
matters in large batch optimization with high learning rate and unregularizing bias parameters re-
sults poor generalization in large batch optimization. Based on this phenomenon, we propose bias
decay (without decaying scale parameter in BN) to properly resolve the dilemma between stability
of optimization and generalization. Moreover, we propose a layer-wise bias decay that selectively
apply the bias decay for layers whose sharpness of bias is large. We find that this simple remedy can
fill a large portion of the performance gaps that occur in large batch optimization.

Our contribution is threefold:

• We propose a novel sharpness measure, Connectivity sharpness. We present proposed con-
nectivity sharpness has two properties reparameterization invariance and substructure sep-
arability, which were less considered in previous works on sharpness and generalization.

• By analyzing the substructures connectivity sharpness of networks, we found that sharpness
of bias affect the sharpness of entire network. We explain the pitfalls of no bias decay
heuristic that results sharper model in terms of connectivity.

• Based on these observations, we propose a novel regularization methods, adaptive β decay,
to mitigate the pitfalls of no bias decay heuristics. We show that this method can fill a large
portion of the performance gaps in large batch optimization: improve top-1 accuracy of
ResNet50 from 76.56% to 77.24% in ImageNet training with batch size of 32k.

2 RELATED WORKS

Large batch optimization Although the large batch training can speed up network training dra-
matically, it is well-known that the generalization of small batch training is better than that of large
batch training. Many researchers delved into the large batch optimization with decent generalization.
In order to reduce the generalization gap, Goyal et al. (2017) scaled the learning rate in proportion to
the minibatch size and introduces several practical training techniques. However, because the larger
the minibatch size, the larger the learning rate, the proposed learning rate scaling in Goyal et al.
(2017) could easily diverge in huge minibatch regime. For this reason, You et al. (2017) proposed
Layer-wise Adaptive Rate Scaling (LARS) which incorporates the layer-wise gradient norm into the
learning rate scaling. Going further, You et al. (2020) extended the LARS strategy to Adam opti-
mizer that gave the birth to LAMB with which successfully train BERT in 76 minutes. Another work
(Johnson et al., 2020) also adjusted the learning rate exploiting the variance of gradients. However,
the very recent work (Nado et al., 2021) conducted extensive experiments to show that traditional
optimizers such as Nesterov could generalize well in large batch regime given ample hyperparameter
tuning.

Sharpness/Flatness of minima Keskar et al. (2017) argued that the sharp minima lead to gen-
eralization degradation. In similar spirit, He et al. (2019a) showed that local minima are on an
asymmetric valley. Among them, they also showed that he local minima biased towards the flat side
generalizes better. Under this motivation, Foret et al. (2020) proposed Sharpness-Aware Minimiza-
tion (SAM) that enhance model generalization by simultaneously minimizing the objective function
and loss sharpness. Extending SAM optimizer, Kwon et al. (2021) introduced adaptive sharpness
of loss landscape which is invariant to parameter re-scaling, and the authors show that adaptive
sharpness is related to generalization much more than sharpness. However, despite several studies
on the relationship between sharpness and generalization, Dinh et al. (2017) proved that all minima
of neural networks can be arbitrarily sharp depending on appropriate reparameterization, thereby in-
sisting that generalization has nothing to do with sharpness. Owing to this fact, a sharpness measure
invariant to reparameterization is indispensable.

Weight decay and generalization Loshchilov & Hutter (2019) suggested that the weight decay
should be decoupled from gradient computation, thereby improving the model performance trained
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(a) Test accuracy

0.0 0.005
512 94.00% 94.86%
8k 89.84% 94.17%

(b) log(Tr(H(θ)))

0.0 0.005
512 2.63 6.28
8k 7.13 5.99

(c) log(λ(H(θ)))

0.0 0.005
512 5.50 8.51
8k 9.30 8.15

Table 1: Correlation between sharpness measure and generalization performance of ResNet18 (He et al., 2016)
on CIFAR-10 (Krizhevsky, 2009) with the SGD optimizer. In the absence of weight decay (no weight decay for
entire network parameter), the sharpness measures tend to lower for better generalization performance. How-
ever, in the presence of weight decay (weight decay on entire network parameters), the tendency is reversed.

with adaptive gradient methods such as Adam. As another line of work, Novak et al. (2018) pro-
posed the metric, input-output Jacobian norm of networks, which is shown to be closely related
to the model generalizatThe I ion. Based on this observation, Zhang et al. (2019) showed that the
weight decay with K-FAC (Martens & Grosse, 2015) regularizes the sensitivity metric, input-output
Jabobian norm, which is shown to be closely related to model generalization. Also, the authors find
that when the networks with batch normalization (BN) are trained with first-order optimizers, the
weight decay play a role in controlling the effective learning rate, thereby bringing regularization
effect of gradient noise. Indeed, Neyshabur et al. (2015) showed that the norm-based regularization
including the weight decay theoretically reduces the model complexity, which improves the model
generalization.

3 CONNECTIVITY SHARPNESS

In the first part of this paper, we propose a novel sharpness measure that is the basis of our method
in the next section. Toward this, we consider an L-layer multi-layer perceptron (MLP), fθ : Rn0 →
RnL . Here, we denote an input as x0 ∈ Rn0 , the representation of l-th layer as xl ∈ Rnl , and
the output of network as fθ(x) = xL ∈ RnL . The weight and bias of layer l are θl ∈ Rnl−1×nl ,
bl ∈ R1×nl , respectively, and we denote the concatenation of all parameters in a single vector as
θ ∈ Rp where p =

∑L
l=1(nl−1 + 1)× nl. We also define pre-activation of each layer as hl ∈ Rnl .

With this notation, our MLP satisfies

xl := σ(hl), hl := x>l−1θl + bl, ∀l = 1, . . . , L. (1)

Here, we place an assumption that the activation function σ(·) in each layer is homogeneous for ease
of analysis, i.e.,

σ(a) = σ′(a)� a, ∀a ∈ R. (2)
This homogeneous property is satisfied in linear, rectified linear unit (ReLU), and Leaky ReLU. Note
that this homogeneous property is widely adopted in practical works including VGG (Simonyan &
Zisserman, 2015), ResNet (He et al., 2016). Finally, we solve the following empirical risk minimiza-
tion (ERM) problem:

min
θ
L(θ;D) := min

θ

1

m

m∑
i=1

`(i)(θ) := min
θ

1

m

m∑
i=1

`
(
θ;
(
xi, yi

))
(3)

where D = {(xi, yi)}mi=1 is a set of all input-output pairs, and `(·) is the loss function of single pair.

3.1 DEFINITION OF CONNECTIVITY SHARPNESS

Sharpness/Flatness of a minimizer is commonly defined in terms of Hessian of objective in equa-
tion 3 (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017). Well known sharpness metrics of a
minimizer are trace of Hessian, Tr(H(θ)) := Tr(∇2

θL) (Dinh et al., 2017; Jastrzebski et al., 2021),
and maximum eigenvalue of Hessian, λ(H(θ)) (Keskar et al., 2017). While these definitions of
sharpness of minima properly identify the curvature of loss function, there are two difficulties when
dealing with Hessian : (1) Computation cost of Hessian matrix is prohibitively expensive for state-of-
the-art models in computer vision and natural language understanding (Brown et al., 2020; Radford
et al., 2021), (2) Hessian is not invariant to the reparameterizations of equivalent network (Dinh
et al., 2017).

A well-known problem of parameterization dependent sharpness measure is that they fail in the
presence of weight decay. Li et al. (2018) showed that parameterization dependent visualization of

3



Under review as a conference paper at ICLR 2022

loss landscape results in a critical contradiction: a small-batch trained model whose test accuracy
is better shows sharper minima than large-batch trained model. We verify that similar results occur
in sharpness measures; Table 1b and 1c show Tr(H(θ)) and λ(H(θ)) with varying batch size and
weight decay. While test accuracy of small-batch trained model consistently better than large-batch
trained model, Tr(H(θ)) and λ(H(θ)) show inconsistent tendency: with weight decay, large-batch
trained model shows better sharpness metrics.

To complement other key sharpness metrics with this issue, we propose yet another sharpness mea-
sure, Connectivity sharpness, as follows:

C(θ) := ED
[∥∥∥∥ ∂`θ∂c>

∥∥∥∥
1

]
= ED

[∥∥∥∥ ∂`

∂θ>
� θ
∥∥∥∥
1

]
= ED

[
p∑
i=1

∣∣∣∣limε→0

`(θ + ε · θi)− `(θ)
ε

∣∣∣∣
]
. (4)

If we compute equation 4 with mini-batch loss 1
m

∑m
i=1 `

(i)(θ) instead of single-data loss `(i)(θ),
we denote it as Cm(θ).

Interpretation of connectivity sharpness To develop a reparameterization invariant sharpness
measure, we focus rather on the sensitivity of connection for each parameter. For this, we re-write
the equation 3 using auxiliary variable c:

L(c� θ;D) =
1

m

m∑
i=1

`θ(c; (xi, yi)) :=
1

m

m∑
i=1

`(c� θ; (xi, yi)). (5)

This loss function is mainly studied in network pruning literatures (Lee et al., 2019b; Wang et al.,
2020; Lee et al., 2020) given that c ∈ {0, 1}p. In this case, the effect of removing j-th parameter
given all connection is activated (c = 1 = (1, . . . , 1)) can be defined as

∆L(θ;D) = L(1� θ;D)− L((1− ej)� θ;D) (6)

where ej ∈ Rp is one-hot vector with j-th component. Since the computation of effect separately
requires prohibitively many computations, they measure connection sensitivity (Lee et al., 2019b) as
a continuous relaxation of effect for all parameters. This is a gradient of objective function 5 with
respect to the connections:

∆L(θ;D) ≈ ∇cL(c� θ)|c=1 = ED
[
∂`(c� θ)
∂(c� θ)>

∂(c� θ)>

∂c

]∣∣∣∣
c=1

= ED
[
∂`

∂θ>
� θ
]
. (7)

Therefore, C(θ) can be interpreted as a summation of independent pruning simulation effect of
loss (measured by absolute value of θi · ∂`/∂θi) for all individual parameters by definition.

It is also worthwhile to note that C(θ) is a `1 norm of gradient rescaled by the parameter coordinate-
wisely. Similar rescaling-based measure was proposed in Liang et al. (2019), called Fisher-Rao (FR)
metric:

‖θ‖2FR := θ>F(θ)θ = ED
[
θ>
∂ log pθ(y|x)

∂θ>
∂ log pθ(y|x)

∂θ
θ

]
(8)

where F(θ) is Fisher Information Matrix (FIM)1 (Amari, 1998) . Liang et al. (2019) shows (i) FR
metric is invariant to the network parameterization, and (ii) FR metric is closely related to other gen-
eralization metric such as Rademacher complexity and norm-based capacity measures (Neyshabur
et al., 2015). One big difference between FR metric and the connectivity sharpness is the existent of
bias: FR metric assumes MLP without bias, while we consider biases in equation 1. We will show in
Section 3.2 that this seemingly minor difference in assumptions is critical in their correlation with
the generalization performance.

In the following subsections, we study the answers to the fundamental questions on proposed con-
nectivity sharpness:

• Is connectivity sharpness a predictive measure of generalization as Tr(H(θ)) or λ(H(θ))?
• Is connectivity sharpness invariant to network reparameterization?
• Is there any other helpful property of connectivity sharpness analyzing networks?

1Note that the distribution of label y is model’s prediction in case of FIM. While this distribution is not
identical to the data distribution of ERM, Thomas et al. (2020); Jastrzebski et al. (2021) showed that Tr(∇2

θL) '
Tr(F) along the optimization trajectory.
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(c) Connectivity Sharpness

Figure 1: Sharpness-Generalization plots of VGG11 (Simonyan & Zisserman, 2015) trained on CIFAR-
10. To measure the correlation between sharpness and generalization, we compute the R2 score between
log (sharpness) and test accuracy. We found all three sharpness measures have negative correlations with gen-
eralization performance. Results on other metrics, datasets, and network architectures are presented in Ap-
pendix B.

3.2 PROPERTIES OF CONNECTIVITY SHARPNESS

Sharpness-Generalization plot To verify connectivity sharpness is a proper measure for sharp-
ness and generalization, we examine the correlation between sharpness metrics (Tr(H(θ)), ‖θ‖FR,
Cm(θ)) and generalization performance for networks trained with various hyperparameters. For
this, we first train a VGG11 (Simonyan & Zisserman, 2015) on CIFAR-10 (Krizhevsky, 2009) with
batch size of 8k for 200 epochs with fixed hyperparameters: weight decay (Loshchilov & Hutter,
2019) as 0.01, the peak learning rate of LAMB optimizer (You et al., 2020) as 0.02 , and no bias de-
cay as in Goyal et al. (2017). These hyperparameters are widely used in large batch optimization. We
also warm-up the learning rate for 30% of initial optimization step to stabilize the learning. Then we
train networks with eight ablative settings: batch size {512, 2048}, weight decay {0.1, 0.001}, peak
learning rate {0.05, 0.01}, and bias decay {0.1, 1.0}. We plot test accuracy and sharpness measures
for networks and computeR2 scores of correlation between sharpness measure and test accuracy. We
find that log (sharpness) measure shows more clear tendency than naı̈ve sharpness measure. Results
are shown in Figure 1.

Since the sharpness measure lead to generalization degradation, Tr(H(θ)), ‖θ‖FR, and Cm(θ) show
negative correlations on generalization performance. We found that ‖θ‖FR shows less clear relation
between test accuracy than Tr(H(θ)) and Cm(θ). On the other hand, the connectivity sharpness
shows clear correlation as much as Tr(H(θ)), but much more efficiently without expensive Hessian
computation. The results on CIFAR-100 and VGG-19 with Batch Normalization (Ioffe & Szegedy,
2015) are presented in Appendix B.

Reparameterization invariance As explained in Dinh et al. (2017), one possible explanation
on the failure of parameter sharpness is its reprameterization dependent property. One can define
reparameterization ρc,l,k(·) : Rp → Rp of MLP formally as follows:

ρc,l,k(θ) =


c(θl′)ij , if l′ = l, j = k

(θl′)ij/c , if l′ = l + 1, i = k

(θl′)ij , otherwise
for θ,

{
c(bl′)j , if l′ = l, j = k

(bl′)j , otherwise
for b (9)

where c > 0 is a constant. Note that this reparameterization amplifies c times for incoming weights
and bias of j-th component of pre-activation hl and scales down c for outgoing weights. Therefore,
this reparameterization only controls pre-activation (hl)k but maintaining fθ(x) = fρc,l,k(θ)(x) for
any input. We now prove that connectivity sharpness is invariant to ρc,l,k(·).

Theorem 3.1. For MLP defined as equation 1, following equation holds for arbitrary c > 0, l =
1, . . . , L, k = 1, . . . , nl:

C(θ) = C(ρc,l,k(θ)) (10)

Proof. The high level idea of proof is proving connection sensitivity ∂`/∂θ � θ is invariant to
ρc,l,k(·). We delay the full proof to Appendix C due to the space constraints.
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A simple understanding of reparameterization invariance of connectivity sharpness is following: As
mentioned in Section 3.1, connectivity sharpness can be interpreted as a summation of independent
pruning simulation effect for all individual parameters. Since this effect is measured in terms of the
loss function not parameterization, all equivalent networks result in identical summation.

Substructure separability In addition to predictive performance for generalization and
reparamerization invariance of connectivity sharpness, we highlight the substructure separability
of connectivity sharpness. Since the connectivity sharpness is computed as an `1 norm of connec-
tion sensitivity, it is linearly separable to the substructures: that is, the summation of connectivity
sharpness of sub-networks is equal to the total connectivity sharpness of entire network:

C((θ, θ′)) = C(θ) + C(θ′) (11)

where (θ, θ′) is a concatenation of θ and θ′ to a single vector. Since one can decompose the sharpness
of entire network as a summation of layer-wise sharpness, this property can be used to determine
at which layer of the network sharpness occurs. In Section 4, we apply this property to devise a
way to reduce connectivity sharpness and thus improve generalization performance in large batch
optimization.

4 REGULARIZING CONNECTIVITY SHARPNESS WITH ADAPTIVE β DECAY

In the previous section, we experimentally examined that connectivity sharpness can be an important
factor reflecting generalization performance. Then the question naturally arises: how to reduce this
connectivity sharpness to obtain performance improvement. In the rest of the paper, we propose
new parameter decaying strategies that can reduce the connectivity sharpness of networks than the
‘no bias decay’ heuristic, which recommends the bias parameters and γ and β in BN layers are left
unregularized in training, in the large batch optimization. Before starting discussion, let us define a
normalization layer N(·) : R→ R as

N(x) := γ · x− µ(x)

σ(x)
+ β (12)

where γ, β is learnable scaling, translation parameters. Note that this normalization layer can be con-
verted to typical weight and bias parameters in MLP by fixing µ(x), σ(x) as accumulated statistics
after training with moving averaged value during training.

4.1 β ONLY DECAY

In this subsection, we experimentally find that by simply decaying β only (with γ still unregularized)
of the BN layer, the connectivity sharpness of the entire network in a large batch optimization can
be drastically reduced and the performance can be greatly improved. Below, we present indirect
evidence through a step-by-step experiment on how β only decaying can bring down the connectivity
sharpness of the entire network:

• β decay can reduce C(β).

• C(γ) can be reduced when C(β) is reduced

• C(θ) can be reduced when C(β) and C(γ) is reduced.

β decay can reduce C(β) Considering the definition of connectivity sharpness in equation 4, we
can see that reducing the absolute value of the parameter can contribute to reducing the correspond-
ing connectivity sharpness. To this end, we study how applying decay to two learnable parameters
β and γ in the BN layer, along with the convolution parameters to which weight decay is already
applied, affects the values of their corresponding C(β) and C(γ). As a typical example, we em-
pirically validate this with ResNet18 (He et al., 2016) trained on CIFAR-10 dataset. By comparing
Figure 2 (evolution of parameters and corresponding C for no-bias decayed network) and Figure 3
(evolution of parameters and corresponding C for weight decayed network), it can be confirmed
that C(β) can be indeed reduced by this simple decay regularizer for the β of BN layer. It can also
be confirmed that this regularization effect of weight decay on C does not clearly appear for γ or
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Figure 2: Evolution of parameters and corresponding C for no-bias decayed ResNet18 trained on CIFAR-10
dataset with 8k batch and LAMB optimizer.
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Figure 3: Evolution of parameters and corresponding C for ResNet18 with weight decay on corresponding
parameter on CIFAR-10 dataset with 8k batch and LAMB optimizer. (a) shows the relationship on β decayed
network, (b) shows the relationship on γ-decayed network and (c) shows the relationship on original weight
decayed network (apply weight decay on all parameters). Note that in all three cases, the weight decay on other
parameters except β, γ is applied following the standard.

other convolution parameters. Here, since no-bias decayed network already applies weight decay for
convolution parameters, we strengthen the weight decay coefficient from 0.01 to 1.0 in this case.

If we focus on the trajectory of β and explain it a little more specifically, these bias parameters β
of the network are initialized as zero (He et al., 2016) or small values (Lee et al., 2019a) at the start
of optimization. This means C(β) is extremely small value at the initialization for all layers. As
learning progresses, C(β) grows because the magnitude of β increases from (almost) zero to non-
zero value (progressively sharpening). This increase in C(β) occurs until the scale of β stabilized.
After sufficient training, the scale of β changes a little and C(β) decreases since the gradient scale
of β becomes smaller by learning (progressively flattening).

C(γ) can be reduced when C(β) is reduced While γ decay does not directly reduce the sharp-
ness of γ in the previous experiments (in Figure 2b and Figure 3b), we show a rough connection
that a decrease in C(β) by β decay can lead to a decrease in C(γ). Toward this, we first evaluate
the connectivity sharpness of normalization layer. The common idea in normalization layers is scale
invariance of output and loss:

N(cx) = N(x)⇒ `(N(cx)) = `(N(x)), ∀c > 0. (13)

Note that the definition of x (e.g. activations of single instance for LayerNorm) determines what
normalization layer we use. From equation 13, the following holds:

x>
∂`(N(x))

∂x
=
∂`(N(cx))

∂c
=
∂`(N(x))

∂c
= 0. (14)

This property was first mentioned in (Ioffe & Szegedy, 2015) and studied in (Hoffer et al., 2018;
Arora et al., 2019). If activation-wise normalization layer (apply equation 12 for each activation) is
applied after l-th layer, we obtain

0 = (xl)i

(
∂`(N(xl))

∂xl

)
i

= σ (hl)i

(
∂`(N(xl))

∂xl

)
i

(15)

= (xl−1(θl)·i + (bl)i)

(
∂`(N(xl))

∂hl

)
i

= (θl)·i

(
∂`(N(xl))

∂θl

)
i

+ (bl)i

(
∂`(N(xl))

∂bl

)
i

(16)
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Figure 4: γ vs. C(γ) for β decayed ResNet18
on CIFAR-10 dataset with 8k batch and LAMB
optimizer.

Table 2: Effect of β decay on C of each sub-structure of
ResNet18. We use CIFAR-10 dataset with 8k batch and
LAMB optimizer.

No bias decay β decay (1.0)
Conv 2.74e-1 1.80e-1
γ 3.88e-2 1.87e-2
β 1.81e-2 1.39e-3

FC (w) 3.32e-3 3.56e-3
FC (b) 2.00e-5 1.14e-7
Total 3.34e-1 2.04e-1

Table 3: Pitfalls of no bias decay heuristic. Experiments are on ResNet18 for CIFAR-10/100 datasets and
ResNet50 for ImageNet, respectively. In the training of all three datasets, the LAMB optimizer is used. Hyphen
(-) is used to indicate the training failure. We found that β decay can effectively improve the generalization
performance on all three datasets. On small datasets (CIFAR-10/100), all the other options are better than no
bias decay heuristic.

CIFAR-10 (8k) CIFAR-100 (8k) ImageNet (32k)
no bias decay 94.49% 76.77% 76.56%

BN frozen 94.64% 77.59% -
γ frozen 94.47% 76.99% 76.57%

γ decay (0.01) 94.46% 77.59% 76.62%
β frozen 94.87% 77.81% -

β decay (1.0) 94.90% 77.99% 76.97%

for all i = 1, . . . , nl by the homogeneous property of activation. Therefore, the summation of con-
nection sensitivity of all weights and biases incoming each activation of l-th layer is zero. In practice,
stacking normalization layer interleaving with affine transformation is widely used (He et al., 2016;
Vaswani et al., 2017). In this case, equation 15 is equivalent to :

(γl)i

(
∂`(N(xl))

∂γl

)
i

+ (βl)i

(
∂`(N(xl))

∂βl

)
i

= 0, ∀i, . . . , nl (17)

Therefore, the connectivity sharpness of γl and βl are equal. While equation 17 holds only for
stacking activation-wise normalization layers, we empirically evaluate that β decay regularizes C(γ)
in practice. Figure 4 plots γ vs. C(γ) relation for β decayed network (same network considered in
Figure 3a). Comparing it to Figure 2b, one can confirm that β decay results scales down γ for
35% (from 3764.895 to 2450.888) and C(γ) for 25% (from 0.035 to 0.026).

C(θ) can be reduced when C(β) and C(γ) is reduced. As confirmed in Figure 3a and Figure 4,
β decay regularizes C(β) and C(γ). Since connectivity sharpness of BN layer is C(β) + C(γ)
by substructure separability in equation 11, β decay regularizes entire BN layer. To extend this
regularization effect for entire network, we refer an empirical observation of Tanaka et al. (2020)
on gradient structure of MLP that each layer has similar scale. Based on this, we hypothesize that
regularization effect of β decay for BN layer might spread to the entire parameters. To empirically
verify this, we present connectivity sharpness of sub-structures of two networks (no bias decay,
β decay ResNet18 of CIFAR-10 in previous paragraph) in Table 2. From Table 2 we can see that
regularization effect of β decay appears across the entire network in terms of connectivity sharpness.

Finally, we make some remarks on the role of β in large batch optimization. According to the Table
3, freezing β or BN layer (β as 0 and γ as 1) possibly hinder the convergence in a large batch regime
while manipulating γ has no significant effect. This implies that the bias parameters really matter in
large batch optimization, so we can conclude that the no bias decay heuristic stabilizes the training
with larger β. However, this stabilization sacrifices generalization performance as shown in results
of freezing β or BN on CIFAR-10/100. Hence, one can conclude that no bias decay heuristic often
results inferior generalization with useless γ, β.
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Table 4: Test accuracy of adaptive β decay. We use ResNet18 on CIFAR-10/100 datasets with the LAMB
optimizer. First row indicates the batch size. We found that the fixed β decay and adaptive β decay are better
than no bias decay heuristic (baselines). Furthermore, the adaptive β decay nearly restores the performances on
small batches.

512 2k 8k 8k w. β decay (1.0) 8k w. adaptive β decay
CIFAR-10 95.12% 94.59% 94.49% 94.90% 95.01%

CIFAR-100 78.09% 78.03% 76.77% 77.99% 78.11%

Table 5: Test accuracy of of adaptive β decay. We use ResNet50-D (He et al., 2019b) on ImageNet dataset with
the LAMB optimizer. We found that fixed β decay is better than no bias decay and adaptive β decay is better
than fixed β decay. Interestingly, the adaptive β decay is superior to the performance on small batch (1k).

1k 32k 32k w. β decay (1.0) 32k w. adaptive β decay
77.16% 76.56% 76.97% 77.24%

4.2 ADAPTIVE β DECAY

From Section 4.1, we can hypothesize that the difficulty of large optimization problem is affected by
the utilization of bias parameters: (i) In no bias decay, the network allows the bias parameters to be
completely free and shows decent performance. On the other hand, (ii) in case of β-frozen/BN frozen,
the network cannot utilize the bias parameters at all, hence the optimization under this constraint
becomes hard and it diverges.

In this sense, although the β decay is effective in practice, each layer’s utilization of the bias pa-
rameters is still not fully considered. Since the connectivity sharpness C(β) is a relative quantity
across layers, more accurate metric is required to measure “how much each layer exploits the bias
parameters”. To this end, motivated by the proportionality of C(β) and C(γ) in equation 17, we
devise a simple layer-wise metric rl that can be used to evaluate the bias utilization of each layer l
as rl := C(βl)/C(γl).

Interpretation of rl As mentioned in Section 3.1, the connectivity sharpness of each parameter
can be interpreted as a sensitivity of loss function to losing the corresponding parameter. Therefore,
shrinking β of BN layers with large rl affects the loss function more severely than layers with small
rl. This means that the layers with large rl value are less dependent to the input data than those with
small rl because the parameter β has much less correlation with the input data than γ according
to the equation 12 (note that γ is multiplied to the input data directly). Hence, if a normalization
layer achieves low loss value with high rl, it can be thought that the optimization proceeds without
considering the input data enough, so the parameters might converge to sub-optimal solutions.

Based on this interpretation, we can say that the layers with large rl tend to use bias for cheating (try
to find shortcuts by making the problem easier using bias). Thus we suggest to take weight decay
to those layers only since the layers with small rl already fully exploit the bias while having low
connectivity sharpness C(βl) (and hence have low C(γl) as discussed in Section 4.1). To make such
selective use of weight decay, we propose the adaptive β decay that takes weight decay to the layers
only with rl ≥ R where R ∈ R is a hyperparameter. In the optimization with adaptive β decay, we
calculate rl for each layer l at every optimization step and apply the weight decay to the layers only
with rl ≥ R. Algorithmic details are presented in Appendix D. As shown in the Table 4 and 5, we
verify that the adaptive β decay can effectively leverage the generalization performance on large
batch regimes.

5 CONCLUSION

Large batch optimization is a key technique to fully utilize the huge computational resource. To ex-
tend the toolbox of analyzing generalization of large scale models, we proposed a reparameterization
invariant sharpness measure, connectivity sharpness. Since connectivity sharpness can be computed
with only gradient information, it can be easily adapted to analyze sharpness of large scale models.
Based on connectivity sharpness, we found that (i) unregularized bias in normalization layer sharp-
ens model and (ii) this can be fixed with (adaptive) β decay. By using adaptive β decay, we improved
top-1 accuracy of ResNet50 from 76.56% to 77.24% in ImageNet training with batch size of 32k.
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A EXPERIMENTAL SETTINGS

In this appendix, we provide the detailed settings of experiments.

A.1 LEARNING RATE SCHEDULING

For the LAMB optimizer, we use the polynomial learning rate scheduling as in Nado et al. (2021)
with pwarmup = pdecay = 2 and ηinit = ηfinal = 0.0. Various ηpeak are used according to the
dataset, network architecture and batch size. We use 30% of initial optimization step for learning
rate warm-up. We use 0.9 and 0.999 for the first/second order momentum hyperparameter of LAMB
optimizer. For the SGD optimizer, we use the standard cosine scheduling (He et al., 2019b) and
linear warm-up with 10 epochs.

A.2 DETAILED CONFIGURATIONS

We train the ResNet18 / VGG11 / VGG19-BN networks on CIFAR-10/100 and ResNet50-D (He
et al., 2019b) network on ImageNet with LAMB optimizer. We use the peak learning rate ηpeak =
0.04 for the batch size 8k on CIFAR-10/100, the same peak learning rate for the batch size 32k
on ImageNet. For these base peak learning rates, we use square root learning rate scaling : ηpeak =
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0.04×
√

batch size/8k (or 32k). We use weight decay coefficient 0.01 for non-normalization layers.
We use R = 0.1 for the criterion of adaptive β decay.

When we train the ResNet18 with SGD optimizer (Table ??), we use the learning rate η = 0.1 and
momentum 0.9. Other hyperparameters are specified in description of the tables and figures.

Other minor details are as follows :

• For CIFAR-10/100, we apply the standard data augmentation for training :
RandomCrop(32, padding=4) and RandomHorizontalFlip() . We train

the network for 200 epochs.
• For ImageNet, we apply the standard data augmentation for training :
RandomResizeCrop(224) and RandomHorizontalFlip() , for evalua-

tion : Resize(256) and CentorCrop(224) . We train the network for 90
epochs.

• We use the ghost batch normalization layer as in Hoffer et al. (2018) with ghost batch size
32.

• For each dataset, we use the standard data split.

B ADDITIONAL SHARPNESS-GENERALIZATION EXPERIMENTS
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Figure 5: Sharpness-Generalization plot results on VGG11 network trained on CIFAR-100.
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Figure 6: Sharpness-Generalization plot results on VGG19-BN network trained on CIFAR-10.

4 5 6 7 8 9
log(Tr(H( )))

62

64

66

68

Te
st

 a
cc

ur
ac

y

R2 : 0.9361

5.5 5.0 4.5 4.0 3.5 3.0
log(|| ||2FR)

62

64

66

68

Te
st

 a
cc

ur
ac

y

R2 : 0.0060

0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(C( ))

62

64

66

68

Te
st

 a
cc

ur
ac

y

R2 : 0.9128

Figure 7: Sharpness-Generalization plot results on VGG19-BN network trained on CIFAR-100.
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C REPARAMETERIZATION INVARIANCE OF CONNECTIVITY SHARPNESS
PROOF

Theorem C.1. For MLP defined as equation 1, following equation holds for arbitrary c > 0, l =
1, . . . , L, k = 1, . . . , nl:

C(θ) = C(ρc,l,k(θ)) (18)

Proof. It is sufficient to show that ∂`/∂θ � θ is invariant to ρc,l,k(c)̇ with arbitrary c > 0, l =
1, . . . , L, k = 1, . . . , nL.

• For incoming weights(θl) and biases(bl), we have θ → c · θ for parameter value, ∂`/∂θ →
(1/c) · ∂`/∂θ for its corresponding gradients. Note that inversely scaled outgoing weights
affect gradient to incoming edges.

• For outgoing weights(θl+1), we have θ → (1/c) ·θ for parameter value, ∂`/∂θ → c ·∂`/∂θ
for its corresponding gradients. Note that scaled incoming weights and bias affect gradient
to outcoming edges.

• For the other parameters, both parameter value θ and its gradient ∂`/∂θ do not change.
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D DETAILED ALGORITHM OF ADAPTIVE β DECAY

Algorithm 1 Adaptive β decay with LAMB (You et al., 2020)

Require: Initialized parameter θ0 ∈ Rp, learning rate scheduling {ηt}Tt=1, momentum hyperparam-
eters β1, β2 ∈ (0, 1) (e.g. β1 = 0.9, β2 = 0.999), weight decay coefficient for non-normalization
layer λw (e.g. 0.01), weight decay coefficient for λβ > 0 (e.g. 1.0), criterion for selection of
weight decay R (e.g. 0.1).

Set m0 = 0, v0 = 0

for t = 1, . . . , T do
Draw mini-batch B from D.
Compute mini-batch gradient as gt ← 1

|B|
∑
b∈B∇θ`(b)(θt).

Update first order momentum as mt ← β1mt−1 + (1−mt)gt.
Update second order momentum as vt ← β1vt−1 + (1− vt)gt � gt.
Compute the ADAM ratio as rt ← mt/vt.
if layer l is not normalization layer then

λtl ← λw
else

if parameter is β then
if rl > R then

λtβ ← λβ
else

λtβ ← 0
end if

else
λtl ← 0

end if
end if
Add weight decay effect to ADAM ratio ut ← rt + λt � θt
Update parameter with layer-wise rescaling

θt+1
l ← ‖θ

t‖
‖ut‖

ut. (19)

end for
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