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Abstract
In this work we describe OMEN, a neural ODE
based normalizing flow for the prediction of
marginal distributions at flexible evaluation hori-
zons, and apply it to agent position forecasting.
OMEN’s architecture embeds an assumption that
marginal distributions of a given agent moving
forward in time are related, allowing for an ef-
ficient representation of marginal distributions
through time and allowing for reliable interpo-
lation between prediction horizons seen in train-
ing. Experiments on a popular agent forecast-
ing dataset demonstrate significant improvements
over most baseline approaches, and comparable
performance to the state of the art while provid-
ing the new functionality of reliable interpolation
of predicted marginal distributions between pre-
diction horizons as demonstrated with synthetic
data.

1. Introduction
Autonomous driving has benefited tremendously from re-
cent progress in deep learning and computer vision (Grig-
orescu et al., 2019). The capability of recognizing traffic
signs (Arcos-Garcı́a et al., 2018; Zhou et al., 2020), lo-
calizing pedestrians (Mao et al., 2017; Liu et al., 2019),
etc. makes it possible for autonomous vehicles to “see” the
world (Zhao et al., 2019). However, one critical component
for safe and efficient planning in autonomous vehicles is
an accurate prediction of the future position of such agents
(such as pedestrians or moving vehicles) in the environment
(Mozaffari et al., 2019; Rudenko et al., 2020). Despite the
importance of the position prediction problem, the perfor-
mance on this task is still far from satisfactory because of the
following challenging requirements: (1) predictions must
be conditioned on the environment, as contextual clues are
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essential for an accurate prediction (an example is given
in Fig. 1a); and (2) predictions are required to be highly
multi-modal (shown in Fig. 1b) as the real-world environ-
ment often exhibits junctions where an agent has several
distinct possible future trajectories, and mode collapse in
these moments could lead to disastrous planning outcomes.

It is common to frame the agent forecasting task as learn-
ing marginal distributions over potential agent positions
(Makansi et al., 2019; Oh & Valois, 2019; Zieba et al.,
2020), also known as “occupancy maps”, a popular repre-
sentation in planning for robotics and autonomous vehicles
(Grigorescu et al., 2019; Mozaffari et al., 2019). By pre-
dicting the marginal distribution at a specific point in time,
these methods are often superior at capturing the complex
multi-modal nature of the data, avoiding the challenges of
generating diverse trajectories (Ma et al., 2020). In addi-
tion, while the underlying process of an agent’s trajectory
is continuous, most popular forecasting models operate on
a discretized representation of time chosen during train-
ing (Whittle, 1951; Rhinehart et al., 2018; Mozaffari et al.,
2019; Makansi et al., 2019; Salinas et al., 2019; Tang &
Salakhutdinov, 2019; Rhinehart et al., 2019; Oh & Valois,
2019; Zieba et al., 2020). The granularity of time-steps
used in training constrains the resolution and utility of these
approaches. Please refer to the Appendix for a detailed
discussion on related works.

Recently, Deng et al. (2020) demonstrated a conditional
temporal process which can produce marginals and trajecto-
ries fully continuous in time. However, the expressiveness
of this approach is ultimately bounded by the formulation as
a stochastic process, taken in their paper to be a differential
deformation of the Wiener process.

Building upon this approach, we propose a novel normaliz-
ing flow based architecture motivated by the assumption of
modelling a continuous temporal process, where our model
defines a new temporal process rather than deforming an
existing one. The described model is shown in Fig. 1c.
The main contributions of this work are summarized as
following: (1) An expressive, multi-modal conditional nor-
malizing flow based model for predicting agent positions.
(2) A model capable of predicting at flexible horizons, in-
cluding those not seen in training. (3) A flow architecture
that embeds assumptions that, for a continuous process, pre-



Agent Forecasting at Flexible Horizons using ODE Flows

Agent 1

Agent 2


Road 

Markings


Agent 
Histories
}

}

(a) Environmental conditioning.

2s 6s 

8s 
5s 
A1

2s 

(b) Flexible prediction. (c) Continuous representation.

Figure 1. Overview. (a) Environmental conditioning. Agent location prediction requires synthesis of complex conditioning information,
e.g. road markings, agent histories, lidar, video data. (b) Flexible prediction. Our goal is to predict marginals across agent locations at any
choice of time, shown here for agent 1 (top, blue) and agent 2 (bottom, red). (c) Continuous representation. We propose a continuous flow
based architecture, explicitly connecting marginal predictions across horizons. Here a base distribution (left) is connected to a marginal
prediction at 2 seconds (middle) and 8 seconds (right) by a single neural ODE. Black lines show sample trajectories, corresponding to
solutions to the ODE with an initial value taken from the base distribution.

dicted marginal distributions deform smoothly in time. (4)
Demonstrations on both synthetic data, and an important
agent forecasting dataset.

2. Method
In this section, we present our model and its optimization.
We consider the task of predicting marginal distributions
over future vehicle positions based on asynchronous condi-
tioning information. Specifically, given 2D positional data
x := {x(t′i)

}i for an agent at asynchronous times t′i ∈ T ′,
we are interested in the marginal distributions p({x(ti)}i),
with T 3 ti > max(T ′), where T is a set of target hori-
zons. In practice, we may also have image-based auxiliary
information a = {a(t′i)}i, such as Lidar scans, and write
φ := {x,a} to summarize all available information up to
time t0 := max(T ′). Due to the nature of the data we work
with, we will principally refer to timepoints (e.g., ti, t′i),
however, our model is continuous in time, and as such it
will at times be necessary to refer to the continuous axis of
time twhich those observations lie on. Further the positional
data x(ti) is taken to be the discrete vectorized observations
of a function x(t).

Our approach builds upon previous work on normalizing
flows (NFs) and its continuous counterparts. We refer the
reader to (Rezende & Mohamed, 2016; Chen et al., 2018;
Grathwohl et al., 2018; Papamakarios et al., 2019; Kobyzev
et al., 2020) for additional details.

2.1. Normalizing Flows with Informative Base
Distributions

In the normalizing flow literature, it is usually assumed
that a sufficiently expressive flow makes the choice of base
distribution irrelevant (Papamakarios et al., 2019; Kobyzev

et al., 2020), and is therefore commonly chosen as a sim-
ple Gaussian distribution. However, recent works (Deng
et al., 2020; Jaini et al., 2020; Mahajan et al., 2020) have
started exploring constructions where the choice of base dis-
tribution embeds information about the target distribution,
allowing good approximations of the target distribution with
simpler flow transforms. For example, Jaini et al. (2020)
demonstrated that for a target distribution with heavy tails,
choosing a base distribution with similar heavy tails can be
more effective than a wide variety of modern complex NF
transforms in capturing the target distribution accurately.

Inspired by the aforementioned discussion, we suggest that
to model the distribution of pt(x(t)|φ) for a range of val-
ues of t > t0, a desired property of the model would be
that the distributions of pt(x(t)|φ) and pt+ε(x(t + ε)|φ)
should be similar for small ε and identical when ε → 0.1

In other words, pt(x(t)) can be served as an informative
base distribution of pt+ε(x(t+ ε)). This can be realized by
incrementally transforming distributions as time progresses.
Therefore, we can formulate the proposed model as follows:
at any target time in the future, we can describe the tar-
get distribution pt+ε(x(t + ε)) as a transform f (taken to
be a normalizing flow) forward in time from the previous
time-step pt(x(t)),

pt+ε(x(t+ ε)) = pt(f
−1(x(t+ ε)))

∣∣∣∣det ∂f−1

∂x(t+ ε)

∣∣∣∣ . (1)

In addition, we can take advantage of the fact that the series
of flow transforms at any point in a sequence building out
from the base distribution represents a valid normalizing
flow. Therefore, we can implement a network with multiple
outputs, with each output further from the base distribution

1To ease notation, we drop references to the conditioning infor-
mation φ from now on.
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Figure 2. Interpolation in Time with Synthetic Data. Plots of predicted likelihood vs. x− and y-coordinates at a series of times into
the future. The number of modes nm was provided as conditioning information, and times marked with * were seen in training. The times
shown here are a subset of those in Table 1.

learning to predict a point further into the future. This
formulation, inspired by recent progress on informative base
distributions for NFs (Deng et al., 2020; Jaini et al., 2020;
Mahajan et al., 2020), motivates our proposed architecture.

2.2. Representation Through a Continuous Conditional
Normalizing Flow

Built upon the discrete model described above, we realise
the proposed NF architecture by adopting a neural ODE rep-
resentation. With this approach, we find our model can, with
minimal regularization (Finlay et al., 2020), learn reasonable
interpolations between evaluation points at training phase,
allowing us to produce valid marginal distributions at arbi-
trary target times. The proposed model utilizes the above-
discussed “prior” intuition when constructing marginal dis-
tributions by taking marginals at earlier time-steps as in-
formative base distributions. A illustration outlining this
approach is available in the Appendix.

To facilitate asynchronous conditioning when predicting
conditional marginal distributions, a vector of conditioning
information from an encoder model is passed to the neural
ODE. Specifically, as an extension to (Chen et al., 2018;
Grathwohl et al., 2018), this information is concatenated to
the input of a fully-connected neural network f described
by the neural ODE transform ∂z(t)

∂t , such that for some
parameters θ and conditioning information φ we have

f(z(t), t,φ; θ) =
∂z(t)

∂t
. (2)

Following (Chen et al., 2018; Grathwohl et al., 2018), setting
z(ti) to match the an observation x(ti), we can solve the
initial value problem to find the equivalent point in the base
distribution z(0):

log p(z(ti)) = log p(z(0))−
∫ ti

0

tr
∂f

∂z(t)
dt. (3)

Calculating likelihood estimates at multiple horizons of
interest simply requires solving the initial value problem

for each different choice of t, where here the temporal axis
of the ODE is explicitly aligned with the axis of time in
the dataset of interest. A ‘trajectory’ can be generated by
first sampling from the base distribution and then solving
the ODE for the sampled point at t = 0, however unlike a
true trajectory the only source of stochasticity is the initial
sample from the base distribution.

Training. The proposed model can be optimized by mini-
mizing the mean negative log-likelihood of distributions at
|T | target horizons. Therefore, our optimization objective
can be formulated as:

LNLL(f(z(t), t,φ; θ), {x(ti)}i) = −
|T |∑
i=0

log(pti(x(ti)|φ, ti, θ))).

(4)
Note that although the model is trained on a finite selection
of time-steps, inference (evaluation) can be conducted at
any time.

3. Evaluation
In this section we demonstrate the ability of the model to
generate realistic position estimates for an agent at a future
time in both synthetic datasets and a complex autonomous
driving environment.

3.1. Position Estimation on Synthetic 2D Data

In order to explore our model’s ability to interpolate and
extrapolate through time we created a synthetic multi-modal
temporal process dataset. This process consists of radially
growing angular distribution bands. The bands have 3 dif-
ferent modes. The modes control the angular division of
distributional bands. At each time-step the radial distance
of the band grows with step length drawn from a normal
distribution. Conditioning information on the number of
modes nm ∈ {1, 3, 8} is encoded using an MLP before
concatenated to every layer of the neural ODE flow in place
of φ. Our model was trained on a specific subset of time
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nm
Prediction Horizon

10* 15 20* 25 30 35 40* 50* 60* 70* 80 90 100

1 • 1.588 2.159 2.399 2.713 2.938 3.117 3.335 3.656 3.942 4.195 4.441 4.78 5.426

◦ 1.834 1.957 2.311 2.565 2.782 3.012 3.227 3.579 3.931 4.112 4.443 4.578 4.770

3 • -0.006 0.344 0.676 0.974 1.188 1.379 1.580 1.930 2.181 2.435 2.677 2.942 3.1551

◦ 0.719 0.649 0.779 0.994 1.248 1.476 1.641 1.956 2.239 2.39 2.670 2.915 3.231

8 • 1.092 1.516 1.805 2.153 2.380 2.572 2.788 3.064 3.321 3.558 3.803 4.150 4.601

◦ 1.681 1.726 1.91 2.133 2.368 2.562 2.71 3.082 3.348 3.662 3.842 4.092 4.329

Table 1. Performance (NLL) on Target Horizons. The number of modes nm is treated as a conditioning variable of the model. • marks
the model trained on times marked with * for respective columns, and interpolated/extrapolated to times with no *. ◦ marks a model
trained and evaluated only on times not marked with a *. Performance can be seen to be broadly equivalent between the two models,
demonstrating an ability to both interpolate and extrapolate to times unseen in training.

Method Test ê

PRECOG-ESP (Rhinehart et al., 2019) 0.634± 0.006
HCNAF (Oh & Valois, 2019) 0.114
CTFP* (Deng et al., 2020) 0.500± 0.014

OMEN* 0.185± 0.002
OMEN-discrete 0.144± 0.006
OMEN-nocon* 0.791± 0.010

Table 2. PRECOG-Carla single agent forecasting evaluation.
Lower is better. All models use PRECOG-Carla Town 1 Training
set in training, and are evaluated on the PRECOG-Carla Town 1
test set. OMEN, OMEN-nocon, and CTFP, marked with *, are
able to produce likelihood estimates for unseen target horizons.

points t ∈ {10, 20, 40, 50, 60, 70}, then evaluated at a va-
riety times never seen in training, including examples of
both interpolation and extrapolation. Performance on log-
likelihood estimation are comparable to a model trained
explicitly on held out times. Full results are show in Table
1, qualitative results are shown in Fig. 2.

3.2. Agent Forecasting Experiments

Baselines and Ablations. Results from our model are com-
pared to several leading approaches for likelihood estima-
tion on agent forecasting. Minor modifications to the CTFP
model (Deng et al., 2020), a discrete ablation of OMEN,
and an ablation of OMEN without conditioning information
are described in the appendix. While all baselines are ca-
pable of producing likelihood estimates for times seen in
training, only the full OMEN model, its ablation without
conditioning information, and the CTFP model (Deng et al.,
2020) are able to produce likelihood estimates for unseen
time points.

Metrics. Following Rhinehart et al. (2019), results are
presented here using the extra nats metric ê, which pro-
vides a normalized and bounded likelihood metric, ê :=
H(p′, q) −H(η)/(|T | · ND), where H(p′, q) is the cross-
entropy between the true distribution p′ perturbed by some
noise η (taken here as η = N (0, 0.012 · I to match Rhine-

hart et al. (2019)) and our models prediction q, ND is the
number of dimensions in the position data, and H(η) can
be calculated analytically. Following Oh & Valois (2019)
we combine our marginal predictions at separate horizons
to form a joint prediction to allow direct comparison to
Rhinehart et al. (2019).

PRECOG Carla Dataset. The PRECOG Carla dataset
(Rhinehart et al., 2019) is comprised of the complex sim-
ulated trajectories of an autopilot and four other agents in
the Carla traffic simulation (Dosovitskiy et al., 2017), and
includes additional Lidar data centred on the main autopilot
agent. Here train, validation, and test data subsets were
chosen to match Rhinehart et al. (2019). OMEN and its
ablations were trained to minimize the NLL of PRECOG
Carla’s autopilot for all future time-steps available in the
dataset. Results are presented in Table 2, and plots showing
example predictions are available in the Appendix. We also
refer the readers to the Appendix for further implementation
details.

4. Conclusion
We presented a normalizing flow based architecture with a
structure motivated by the assumption of modelling a con-
tinuous temporal process. Experimental evidence suggested
that the constraints that allow for the smooth interpolation
of likelihood estimates did cause some degradation in per-
formance, however novel new capabilities are demonstrated
in comparison to other leading approaches for likelihood
estimation on agent forecasting. Specifically we demon-
strated the ability to conditionally model complex processes,
and to both interpolate and extrapolate those results through
time. Further, performance on the important and challeng-
ing task of agent forecasting is explored, and comparable
performance to the state-of-the-art is achieved.

In future work the authors plan to extend this approach to the
important task of multi-agent forecasting, where a normal-
izing flow formulation is expected to be particularly useful
for capturing the complex high dimensional distributions.
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A. Related Works
The proposed framework is intrinsically related with two
broad literature families: (1) ode based time-series forecast-
ing models, and (2) distribution based forecasting models.
In this section, we review statistical models from relevant
literature, and discuss the difference between the proposed
method with previous works.

Neural ODEs for Time Series Forecasting. Much re-
cent work has explored embedding neural ODEs in models
designed to process sequential data, like Recurrent Neural
Networks (RNNs), replacing the hidden state with a neural
ODE which evolves as a function of time (Rubanova et al.,
2019; Brouwer et al., 2019; Voelker et al., 2019). These
works are principally pre-occupied with solving the prob-
lem of encoding asynchronous time series data, in contrast
we instead focus predicting the evolution of a probability
distribution in what is assumed to be a continuous process.
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Other recent works have used neural ODE based flows to
connected multiple distributions (Li et al., 2020; Rempe
et al., 2020). As in our architecture this models leverage
a neural ODE flow to smoothly interpolate between mul-
tiple complex distributions. However unlike our model
this transformation is not aligned with the temporal axis
of the observed data. Similar to our proposed architecture,
Tong et al. (2020) uses a neural ODE flow to connect pre-
dictions at several horizons, aligning ODE ’time’ with the
time of observations. However their model uses no con-
ditional information, and generates plausible trajectories
between observed data rather than attempting to forecast
future marginal distributions.

In Deng et al. (2020) the model learns a distribution through
time by flowing from the target distribution to a Wiener
process. Similar to the work presented here this approach
allows for an efficient estimation of the marginal distribution
at any target horizon of interest. The key distinction is in
their method the continuous prediction as a function of
prediction horizon comes from the choice of a Wiener base
distribution, separate from the choice of flow model. In our
work the continuous behaviour is instead a direct result of
the flow architecture used, defining a new temporal process
rather than deforming an existing one.

Concurrent and closely related to our work is Chen et al.
(2021), which explores a similar architecture for the related
problem of point processes, and also utilizes a continu-
ous normalizing flow to describe a marginal distribution
across predicted event features as a function of target time.
However their approach differs from our own as they are
principally concerned with conditioning on the features and
timing of past events, to predict the timing and features of
discrete future events, where our model is concerned with
the smoothly interpolated prediction of an underlying con-
tinuous process (e.g. the path of a vehicle) using a synthesis
of extremely high dimensional conditioning information
(lidar, cameras etc.). Practically this means that the way
conditioning information is passed to the continuous flow
model is quite distinct in the two approaches. Specifically
in their model an attention mechanism allows sharp changes
in the conditional distribution as a function of time, con-
sistent with modelling a discontinuous point process. In
our model a single vector of conditioning information in
used across all time, consistent with modeling a continuous
temporal process, and allowing for the smooth interpolation
of marginals through time- a core functionality our model
provides in contrast to other leading approaches.

Distribution-Based Forecasting Models. Auto-
regressive forecasting models provide a way to generate
trajectories of any length(Whittle, 1951), with modern
models allowing for the prediction of expressive distribu-
tions which in can capture complex multi modal behavior

(Salinas et al., 2019; Qiu et al., 2020) with a number of
approaches utilizing normalizing flows in some way (Kumar
et al., 2019; Shchur et al., 2019; Mehrasa et al., 2019;
Bhattacharyya et al., 2019; Rasul et al., 2021) However in
order to infer the statistics of a marginal distribution beyond
the next time-step extensive sampling is required, and in
these works a fixed discrete sampling in time is assumed.

Jain et al. (2019) proposes an architecture which, similar
to our approach, explicitly relates marginal distributions in
time. However their model is discrete in both time and agent
position, and doesn’t use the formalism of Normalizing
Flows. Instead learning direct transforms on an discretized
representation of the marginal distribution or an “occupancy
grid” (Grigorescu et al., 2019; Mozaffari et al., 2019).

Rhinehart et al. (2019) describes a model which uses a series
of affine transforms to learn a conditional joint distribution
over a selection of agents and horizons. This formulation
is similar to a discrete version of our model with a much
less expressive choice of Normalizing Flow, and unlike our
model is limited to only predict times seen in training.

Most similar to our model is Oh & Valois (2019) a condi-
tional auto-regressive flow for marginal prediction at flexible
horizons. Here however the flow model is a series of discrete
layers, specifically a conditional extension of Neural Au-
toregressive Flows (Huang et al., 2018b) with the predicted
horizon passed as an explicit conditioning variable.

B. Method
Figure 3 shows an overview of our models computational
graph.

B.1. Mapping Data Time to ODE Time

One clear exception to the assumptions outlined earlier in
the paper, is in the earliest possible predicted marginal, at
some time t, with t > t0. This distribution can be arbitrarily
distinct from the base distribution. To solve this problem
a “warm-up” period is introduced between the base distri-
bution and the first evaluation point, with the length of the
warm-up period optimized as a parameter in training. With
this formulation, the translation from time in the target space
ti to time in the ODE space τi, given the warm-up period
set by the parameter α is given simply as τi = α+ ti.

C. Evaluation
C.1. Position Estimation on Synthetic 2D Data

C.1.1. SYNTHETIC GAUSSIANS

Following (Oh & Valois, 2019), we explore an extension
of the synthetic Gaussian experiment from (Huang et al.,
2018a), where a single model conditionally represents one
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Figure 3. Architecture. Computation graph and model outline for our proposed architecture OMEN. Data. Shown in pink is the process
we hope to predict, with observations x(t′i)

in the past and x(ti) in the future shown as circles. At inference only points t′m through t′0
are available, with t0 through tn used in training. The process shown in green represents additional conditioning information passed
to the encoder that we don’t intend to predict, reported at points a(t′i)

e.g. periodic lidar and video observations of the environment.
Encoder. Observations from t′m through t′0 are combined in a neural network to produce a single vector of conditioning information φ.
LL. Log-likelihood is calculated by solving our neural ode given the observation zτn at time ODE time τn, and conditioning information
φ to find the corresponding points in the base distribution z0 and the log determinant of the transform given by the trace of transform
(boxed blue line). Sampling. Here we first sample from the base distribution to find z0, then solve for that point, conditioning information
φ, and n ODE time points of interest τ0, · · · , τn to find points on the corresponding trajectory zτ0 , · · · , zτn (boxed blue line).
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of three multi-modal configurations. For OMEN, condi-
tioning information nm ∈ 0, 1, 2 is encoded using an MLP
before concatenated to every layer of the neural ODE flow
in place of φ. Results are shown in table 3, performance is
comparable to the HCNAF approach and demonstrates that
our choice of a conditional neural ODE based normalizing
flow is capable of conditionally representing complex multi
modal data.

Model AAF NAF HCNAF OMEN

2 by 2 6.056 3.775 3.896 3.896
5 by 5 5.289 3.865 3.966 3.975
10 by 10 5.087 4.176 4.278 4.336

Table 3. NLL for the synthetic Gaussian experiments. The AAF
(Kingma et al., 2016) and NAF v results are for individual models
for each configuration. The HCNAF and OMEN results are for
a single model across all three configurations. Results for AAF,
NAF, and HCNAF models are taken from (Oh & Valois, 2019).

C.2. Precog Carla Dataset, Example Results

For Precog Carla dataset, an encoder network which is a
partial re-implementation of that in (Oh & Valois, 2019),
is used. LSTM modules encode the past trajectories of
agents in the environment, and a residual CNN encodes
Lidar information from a single main agent. Specifically
two seconds of historical position data at a sampling of 5hz,
or 10 historical points in time, are provided to the LSTM.
The encoded trajectory and Lidar information is combined
in a MLP and concatenated to every layer of a Neural ODE
describing a normalizing flow, as outlined in Section 3.3.
The model is trained and evaluated on the future position
data of the main agent over four seconds at a sampling of
5hz, or 20 future time points.

In addition to Table 2, we also provide qualitative results.
Figures 4, 5, and 6 show example predicted conditional
marginal distributions for four of the twenty horizons in
the Precog Carla Dataset. All examples are taken from the
precog carla town01 test set.

C.2.1. BASELINES AND ABLATIONS

Minor extensions are made to the CTFP (Deng et al., 2020)
model to provide a functional baseline. Specifically ad-
ditional encoding information was concatenated with the
output of the ODE-RNN, and an extra loss on extrapolating
the predicted process into the future was added in training.

OMEN-discrete has a separate ODE flow transform between
each inference time point in training. In this way it resem-
bles a model following Eq. 1 where ε in the delta between
forecast time points in the training set, and each neural ODE
transform represents a separate but sequential normalizing
flow transform. This ablation is expected to have superior
expressive power as the representation no longer is con-

strained to be fully continuous in time, and each separate
ODE transform can learn its own ODE stop time, allow-
ing for expressive power between time steps to vary. This
highlights a small degradation in performance from using a
single Neural ODE to represent all time points, and suggests
future approaches would benefit from a learned mapping of
data time t to ODE time τ . However it does not allow for
continuous interpolation of marginals in time.

OMEN-nocon has no conditioning information φ appended
to the neural ODE. This ablation is expected to have signifi-
cantly worse overall performance as the model only learns
a distribution over all points observed in the training set,
and we expect the task of predicting agent locations to be
strongly conditional on the available environmental informa-
tion. This highlights the importance the extension to (Chen
et al., 2018; Grathwohl et al., 2018) presented in this paper
to include conditioning information.
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Figure 4. Example Preco-Carla Prediction example predicted conditional marginal distributions for four of the twenty horizons in the
Precog Carla Dataset. The full conditioning information available to the agent is shown at the top, specifically the autopilots historical
trajectory, the historical trajectory of the four closest cars, and a lidar captured by the autopilot at t = 0. A single future point for each
agent is appended to the top plot to aid the reader when estimating the direction of those agents. The four bottom plots show marginals at
t ∈ 1, 2, 3, 4s into the future and the true future location of the autopilot at those times.

.
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Figure 5. Example Preco-Carla Prediction example predicted conditional marginal distributions for four of the twenty horizons in the
Precog Carla Dataset. The full conditioning information available to the agent is shown at the top, specifically the autopilots historical
trajectory, the historical trajectory of the four closest cars, and a lidar captured by the autopilot at t = 0. A single future point for each
agent is appended to the top plot to aid the reader when estimating the direction of those agents. The four bottom plots show marginals at
t ∈ 1, 2, 3, 4s into the future and the true future location of the autopilot at those times.

.
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Figure 6. Example Preco-Carla Prediction example predicted conditional marginal distributions for four of the twenty horizons in the
Precog Carla Dataset. The full conditioning information available to the agent is shown at the top, specifically the autopilots historical
trajectory, the historical trajectory of the four closest cars, and a lidar captured by the autopilot at t = 0. A single future point for each
agent is appended to the top plot to aid the reader when estimating the direction of those agents. The four bottom plots show marginals at
t ∈ 1, 2, 3, 4s into the future and the true future location of the autopilot at those times.

.


