
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GraphLearner: Graph Node Clustering with
Fully Learnable Augmentation

Anonymous Authors

ABSTRACT
Contrastive deep graph clustering (CDGC) leverages the power
of contrastive learning to group nodes into different clusters. The
quality of contrastive samples is crucial for achieving better per-
formance, making augmentation techniques a key factor in the
process. However, the augmentation samples in existing methods
are always predefined by human experiences, and agnostic from
the downstream task clustering, thus leading to high human re-
source costs and poor performance. To overcome these limitations,
we propose a Graph Node Clustering with Fully Learnable Aug-
mentation, termed GraphLearner. It introduces learnable augmen-
tors to generate high-quality and task-specific augmented samples
for CDGC. GraphLearner incorporates two learnable augmentors
specifically designed for capturing attribute and structural informa-
tion. Moreover, we introduce two refinement matrices, including
the high-confidence pseudo-label matrix and the cross-view sample
similarity matrix, to enhance the reliability of the learned affinity
matrix. During the training procedure, we notice the distinct opti-
mization goals for training learnable augmentors and contrastive
learning networks. In other words, we should both guarantee the
consistency of the embeddings as well as the diversity of the aug-
mented samples. To address this challenge, we propose an adversar-
ial learning mechanism within our method. Besides, we leverage a
two-stage training strategy to refine the high-confidence matrices.
Extensive experimental results on six benchmark datasets validate
the effectiveness of GraphLearner.

CCS CONCEPTS
• Theory of computation → Unsupervised learning and clus-
tering; • Computing methodologies→ Cluster analysis.

KEYWORDS
Graph Node Clustering, Graph Neural Networks, Learnable Aug-
mentation

1 INTRODUCTION
In recent years, graph learning methods have attracted considerable
attention in various multimedia applications, e.g., node classifica-
tion [18], clustering [14, 32, 37], etc. Among all directions, deep
graph clustering, which aims to encode nodes with neural networks

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and divide them into disjoint clusters without manual labels, has
become a hot auxiliary task in information systems.

With the strong capability of capturing implicit supervision,
contrastive learning has become an important technique in deep
graph clustering. In general, the existing methods first generate aug-
mented graph views by perturbing node connections or attributes,
and then keep the same samples in different views consistent while
enlarging the difference between distinct samples. Although veri-
fied effective, we find that the performance of the existing graph
contrastive clustering methods [15, 43] heavily depends on the
augmented view. However, the existing augmentation methods are
usually predefined and selected with a cumbersome search. The
connection of augmentation and the specific downstream task is
deficient. To alleviate this problem, in graph classification, JOAO
[39] selects a proper augmentation type among several predefined
candidates. Although better performance is achieved, the specific
augmentation process is still based on the predefined schemes and
cannot be optimized by the network. To fill this gap, AD-GCL [23]
proposes a learnable augmentation scheme to drop edges according
to Bernoulli distribution, while neglecting augmentations on node
attributes. More recently, AutoGCL [38] proposes an auto augmen-
tation strategy to mask or drop nodes via learning a probability
distribution. A large step is made by these algorithms by proposing
learnable augmentation. However, these strategies only focus on
exploring augmentation over affinity matrices while neglecting the
learning of good attribute augmentations. Moreover, previous meth-
ods isolate the representation learning process with the specific
downstream tasks, making the learned representation less suitable
for the final learning task, degrading the algorithm performance.

To solve this issue, we propose a fully learnable augmentation
strategy for deep contrastive clustering, which generates more
suitable augmented views. Specifically, we design the learnable
augmenters to learn the structure and attribute information dy-
namically, thus avoiding the carefully selections of the existing
and predefined augmentations. Besides, to improve the reliability
of the learned structure, we refine that with the high-confidence
clustering pseudo-label matrix and the cross-view sample similarity
matrix. Moreover, an adversarial learning mechanism is proposed
to learn the consistency of embeddings in latent space, while keep-
ing the diversity of the augmented view. Lastly, during the model
training, we present a two-stage training strategy to obtain high-
confidence refinement matrices. We summarize the properties of
the existing graph augmentation algorithms in Table. 1. From the
results, we could observe that our proposed method offers a more
comprehensive approach.

By those settings, the augmentation strategies do not rely on
tedious manual trial-and-error and repetitive attempts. Moreover,
we enhance the connection between the augmentation and the
clustering task and integrate the clustering task and the augmenta-
tion learning into the unified framework. Firstly, the high-quality

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: An overview of graph augmentation methods. "S"
and "A" denotes the structure augmentation and attribution
augmentation, respectively. Besides, "Opt" means that the
augmentation is optimized by the downstream task.

Method S A Opt Type Task
JOAO ! ! % Predefined Classification

AutoGCL ! ! % Predefined Classification
AD-GCL ! % % Predefined Classification
CCGC % ! % Learnable Clustering

CONVERT % ! % Learnable Clustering
Ours ! ! ! Learnable Clustering

augmented graph improves the discriminative capability of embed-
dings, thus better assisting the clustering task. Meanwhile, the high-
confidence clustering results are utilized to refine the augmented
graph structure. Concretely, samples within the same clusters are
more likely to link, while edges between samples from different
clusters are removed.

The key contributions of this paper are listed as follows:

• By designing the structure and attribute augmentor, we pro-
pose a fully learnable data augmentation framework for deep
contrastive graph clustering termed GraphLearner to dynam-
ically learn the structure and attribute information.

• We refine the augmented graph structure with the cross-
view similarity matrix and high-confidence pseudo-label
matrix to improve the reliability of the learned affinitymatrix.
Thus, the clustering task and the augmentation learning are
integrated into the unified framework and promote each
other.

• Extensive experimental results have demonstrated that our
method outperforms the existing state-of-the-art deep graph
clustering competitors.

2 METHOD
In this section, we propose a novel attribute graph contrastive clus-
tering method with fully learnable augmentation (GraphLearner).
The overall framework of GraphLearner is shown in Fig.1. The main
components of the proposed method include the fully learnable
augmentation module and the dual refinement module. We will
detail the proposed GraphLearner in the following subsections.

2.1 Notations Definition
For an undirected graph G = {X,A}. X ∈ R𝑁×𝐷 is the attribute
matrix, and A ∈ R𝑁×𝑁 represents the original adjacency matrix.
D = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . , 𝑑𝑁) ∈ R𝑁×𝑁 is denoted as the degree matrix,
where 𝑑𝑖 =

∑
(𝑣𝑖 ,𝑣𝑗) ∈E 𝑎𝑖 𝑗 . We define the graph Laplacian matrix

as L = D−A. With the help of renormalization trick Ã = A + I, the
normalized graph Laplacian matrix is denoted as L̃ = D̂− 1

2 L̂D̂− 1
2 .

Moreover, we define 𝑠𝑖𝑚(·) as a non-parametric metric function to
calculate pair-wise similarity, e.g., cosine similarity function. AugS
and AugX represent the augmented structure and attribute matrix,
respectively. The basic notations are summarized in Table 2.

Table 2: Notation summary.

Notation Meaning

X ∈ R𝑁 ×𝐷 Attribute matrix
A ∈ R𝑁 ×𝑁 Original adjacency matrix
D ∈ R𝑁 ×𝑁 Degree matrix
F𝑣𝑘 ∈ R𝑁 ×𝑑 Node embeddings in 𝑘-th view
𝑠𝑖𝑚 (·) Non-parametric metric function
S ∈ R𝑁 ×𝑁 Similarity sample matrix
Z ∈ R𝑁 ×𝑁 High-confidence pseudo label matrix
Aug𝑋 ∈ R𝑁 ×𝑑 Augmented attribute matrix
Aug𝑆 ∈ R𝑁 ×𝑁 Augmented structure matrix

2.2 Fully Learnable Augmentation Module
Different from previously augmentation method, in this subsection,
we propose a fully learnable graph augmentation strategy in both
structure and attribute level. To be specific, we design the structure
augmentor and attribute augmentor to dynamically learn the struc-
ture and attribute, respectively. In the following, we will introduce
these augmentors in detail.

2.2.1 Structure Augmentor. We design the structure augmentor
to obtain the structure of the augmented view. Specifically, we
propose three types structure augmentor, i.e., MLP-based structure
augmentor, GCN-based structure augmentor, and Attention-based
augmentor.

MLP-based Structure Augmentor. We use Multi-Layer Per-
ception (MLPs) to generate the structure AugS. This procedure can
be represented as follows:

F = 𝑀𝐿𝑃 (𝐴), A𝑀𝐿𝑃 = 𝑠𝑖𝑚(F · FT), (1)

where F ∈ R𝑁×𝐷 is the embedding of the original adjacency. We
adopt the cosine similarity function as 𝑠𝑖𝑚(·) to calculate the simi-
larity of F. The calculated similarity matrix can be regarded as the
learned structure matrix A𝑀𝐿𝑃 .

GCN-based Structure Augmentor is the second type of our
designed structure generator, which embeds the attribute matrix
X and original adjacency matrix A into embeddings in the latent
space. For simplicity, we define the GCN-based structure augmentor
as:

F = 𝜎 (D̃− 1
2 ÃD̃− 1

2X), A𝐺𝐶𝑁 = 𝑠𝑖𝑚(F · F⊤), (2)
where F is embedding extracted by the GCN-based network, for
example, GCN [12], GCN-Cheby [6], etc. 𝜎 (·) is a non-linear opera-
tion.

Attention-based Structure Augmentor. Inspire by GAT [27],
we design an attentive network to capture the important structure
of the input graph G. To be specific, the normalized attention co-
efficient matrix A𝑎𝑡𝑡𝑖 𝑗 between node 𝑥𝑖 and 𝑥 𝑗 could be computed
as:

A𝑎𝑡𝑡𝑖 𝑗 = ®n⊤ (W𝑥𝑖 | |W𝑥 𝑗
),

A𝑎𝑡𝑡𝑖 𝑗 =
𝑒
(A𝑎𝑡𝑡𝑖 𝑗

)∑
𝑘∈N𝑖

𝑒
(A𝑎𝑡𝑡𝑖𝑘

) ,
(3)

where ®n andW is the learnable weight vector and weight matrix,
respectively. | | is the concatenation operation between the weight

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GraphLearner: Graph Node Clustering with
Fully Learnable Augmentation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Illustration of the fully learnable augmentation algorithm for attribute graph contrastive clustering. In our proposed
algorithm, we design the learnable augmentors to to dynamically learn the structure and attribute information. Besides,
we optimize the structure of the augmented view with two aspects, i.e., high-confidence clustering pseudo label matrix and
cross-view similarity matrix, which integrates the clustering task and the augmentation learning into the unified framework.
Moreover, we propose an adversarial learning mechanism to keep cross-view consistency in the latent space while ensuring the
diversity of augmented views. Lastly, a two-stage training strategy is designed to obtain high-confidence refinement matrices,
thus improving the reliability of the learned graph structure.

matrix W𝑥𝑖 and W𝑥 𝑗
, and N𝑖 represents the indices the neighbors

of node 𝑥𝑖 . By this setting, the model could preserve important
topological and semantic graph patterns via the attention mecha-
nism.

2.2.2 Attribute Augmentor. To make the augmented view in a
fully learnable manner, we design the attribute augmentor to dy-
namically learn the original attribute. Specifically, we design two
types attribute augmentor, i.e., MLP-based attribute augmentor and
attention-based attribute augmentor.

MLP-based Attribute Augmentor. Similar to the MLP-based
structure augmentor, we utilize the Multi-Layer Perception (MLP)
as the network to learn the original attribute matrix X. The learned
attribute matrix AugX ∈ R𝑁×𝐷 can be presented as:

X𝑀𝐿𝑃 = 𝑀𝐿𝑃 (X). (4)
where𝑀𝐿𝑃 (·) is the MLP network to learn the attribute.

Attention-based Attribute Augmentor. To guide the network
to take more attention to the important node attributes, we design
an attention-based attribute augmentor. Specifically, we map the
node attributes into three different latent spaces:

Q = W𝑞X⊤

K = W𝑘X⊤

V = W𝑣X⊤
(5)

where W𝑞 ∈ R𝐷×𝐷 ,W𝑘 ∈ R𝐷×𝐷 ,W𝑣 ∈ R𝐷×𝐷 are the learnable
parameter matrices. And Q ∈ R𝐷×𝑁 ,K ∈ R𝐷×𝑁 and V ∈ R𝐷×𝑁

denotes the query matrix, key matrix and value matrix, respectively.
The attention-based attribute matrix AugX can be calculated by:

AugX = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (K
⊤Q
√
𝐷

)V⊤, (6)

After the structure augmentor and attribute augmentor, we could
obtain the augmented view G′ = (AugS,AugX). The , which is
fully learnable.

2.3 Dual Refinement Module
In this subsection, we propose a dual refinement module to optimize
the learned graph structure. To be specific, the cross-view sample
similarity matrix and the high-confidence matrix are generated to
improve the quality of the structure in augmented view. Firstly, we
use encoder network F (·) to obtain the embeddings of the original
view G and the augmented view G′ with ℓ2-norm as follows:

F𝑣1 = F (G),
F𝑣2 = F (G′).

(7)

In the following, we fuse the two views of the node embeddings
as follows:

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

F =
1
2
(F𝑣1 + F𝑣2) . (8)

Then we perform K-means [9] on F and obtain the clustering
results. After that, we will refine the learned view in two manners,
i.e., similarity matrix and pseudo labels matrix refinement.

SimilarityMatrix Refinement.ThroughF (·), we could obtain
the embeddings of each view. Subsequently, the similarity matrix S
represents the similarity between 𝑖-th sample in the first view and
𝑗-th sample in the second view as formulated:

S =

〈
F𝑣1 · (F𝑣2)⊤

〉
| |F𝑣1 | |2 · | |F𝑣2 | |2

, (9)

where S is the cross-view similarity matrix, and ⟨·⟩ is the function
to calculate similarity. Here, we adopt cosine similarity. The pro-
posed similarity matrix S measures the similarity between samples
by comprehensively considering attribute and structure informa-
tion. The connected relationships between different nodes could
be reflected by S. Therefore, we utilize S to refine the structure in
augmented view with Hadamard product:

AugS = AugS ⊙ S. (10)

Pseudo Labels Matrix Refinement. To further improve the
reliability of the learned structure matrix, we extract reliable clus-
tering information to construct the matrix to further refine the
structure in augmented view. Concretely, we utilize the top 𝜏 high-
confidence pseudo labels p to construct the matrix as follows:

Z𝑖 𝑗 =
{

1 p𝑖 = p𝑗 ,

0 p𝑖 ≠ p𝑗 ,
(11)

where Z𝑖 𝑗 denotes the category relation between 𝑖-th and 𝑗-th
samples. In detail, when Z𝑖 𝑗 = 1, two samples have the same
pseudo label. While Z𝑖 𝑗 = 0 implies that two samples have dif-
ferent pseudo labels. The pseudo-label matrix is constructed by the
high-confidence category information. Therefore, the adjacency
relation in the graph could be well reflected, leading to optimizing
the structure of the learned structure in the augmented view. The
pseudo labels matrix refines the learned structure with Hadamard
product as:

AugS = AugS ⊙ Z. (12)

In summary, in this subsection, we propose two strategies to
refine the structure of the augmented view. Firstly, S is calculated by
the cross-view similarity. The value of S represents the probability
of connection relationships of the nodes. The structure of AugS
is optimized by S in the training process. Besides, we utilize the
high-confidence clustering pseudo labels to construct the reliable
node connection, which is constructed when the node belongs
to the same category. By those settings, the learned structure is
regularized by the similarity matrix and the high-confidence matrix,
thus improving the reliability of the structure in the augmented
view. Moreover, the connection between augmentation and the
clustering task is enhanced.

Algorithm 1 GraphLearner
Input: The input graph G = {X,A}; The iteration number 𝐼 ;
Hyper-parameters 𝜏, 𝛼 .
Output: The clustering result R.
1: for 𝑖 = 1 to 𝐼 do
2: Obtain the learned structure matrix AugS and attribute matrix

AugX with our augmentors.
3: Encode the node with the network F(·) to obtain the node

embeddings F𝑣1 and F𝑣2 .
4: Fuse F𝑣1 and F𝑣2 to obtain F with Eq. (8).
5: Perform K-means on F to obtain the clustering result.
6: Calculate the similarity matrix of F𝑣1 and F𝑣2 .
7: Obtain high-confidence pseudo label matrix.
8: Refine the learned structure matrix AugS with Eq.(10) and Eq. (12).
9: Calculate the learnable augmentation loss L𝑎 with Eq. (13).
10: Calculate the contrastive loss L𝑐 with Eq. (14).
11: Update the whole network by minimizing L in Eq. (15).
12: end for
13: Perform K-means on F to obtain the final clustering result R.

2.4 Loss Function
The proposed GraphLearner framework follows the common con-
trastive learning paradigm, where the model maximizes the agree-
ment of the cross-view [45]. In detail, GraphLearner jointly opti-
mizes two loss functions, including the learnable augmentation loss
L𝑎 and the contrastive loss L𝑐 .

To be specific, L𝑎 is the Mean Squared Error (MSE) loss be-
tween the original graph G = {X,A} and the learnable graph
G′ = {AugX,AugS}, which can be formulated as:

L𝑎 = −(
A − AugS

2
2 +

X − AugX
2
2). (13)

In GraphLearner, we utilize the normalized temperature-scaled
cross-entropy loss (NT-Xent) to pull close the positive samples,
while pushing the negative samples away. The contrastive loss L𝑐

is defined as:

𝑙𝑖 = −𝑙𝑜𝑔
exp(sim(F𝑣1

𝑖
, F𝑣2

𝑖
)/temp)∑𝑁

𝑘=1,𝑘≠𝑖 exp(sim(F𝑣1
𝑖
, F𝑣2

𝑘
)/temp)

,

L𝑐 =
1
𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑖),
(14)

where temp is a temperature parameter. sim(·) denotes the function
to calculate the similarity, e.g., inner product.

The total loss of GraphLearner is calculated as follows:

L = L𝑎 + 𝛼L𝑐 , (15)
where 𝛼 is the trade-off between L𝑎 and L𝑐 . The first term in

Eq.(15) encourages the network to generate the augmented view
with distinct semantics to ensure the diversity in input space, while
the second term is the contrastive paradigm to learn the consistency
of two views in latent space. The discriminative capacity of the
network could be improved by minimizing the total loss function.
The network is optimized by Eq.(15) during the whole training
process. The detailed learning process of GraphLearner is shown
in Algorithm 1.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GraphLearner: Graph Node Clustering with
Fully Learnable Augmentation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 3: Clustering performance on six datasets (mean ± std). Best results are bold values and the second best values are
unerlined. OOM denotes out-of-memory during the training process.

Dataset Metric DAEGC SDCN DCRN AGC-DRR CCGC CONVERT SUBLIME GCA AFGRL AutoSSL Ours

CORA

ACC 70.43±0.36 35.60±2.83 61.93±0.47 40.62±0.55 73.01±1.11 73.21±1.23 71.14±0.74 53.62±0.73 26.25±1.24 63.81±0.57 74.91±1.78
NMI 52.89±0.69 14.28±1.91 45.13±1.57 18.74±0.73 55.78±0.57 54.34±0.13 53.88±1.02 46.87±0.65 12.36±1.54 47.62±0.45 58.16±0.83
ARI 49.63±0.43 07.78±3.24 33.15±0.14 14.80±1.64 51.45±0.75 50.01±2.12 50.15±0.14 30.32±0.98 14.32±1.87 38.92±0.77 53.82±2.25
F1 68.27±0.57 24.37±1.04 49.50±0.42 31.23±0.57 70.45±1.73 71.33±1.09 63.11±0.58 45.73±0.47 30.20±1.15 56.42±0.21 73.33±1.86

AMAP

ACC 75.96±0.23 53.44±0.81 OOM 76.81±1.45 76.44±0.48 76.34±0.65 27.22±1.56 56.81±1.44 75.51±0.77 54.55±0.97 77.24±0.87
NMI 65.25±0.45 44.85±0.83 OOM 66.54±1.24 66.78±0.71 65.48±0.87 06.37±1.89 48.38±2.38 64.05±0.15 48.56±0.71 67.12±0.92
ARI 57.12±0.24 31.21±1.23 OOM 60.15±1.56 56.45±0.87 57.48±1.24 05.36±2.14 26.85±0.44 54.45±0.48 26.87±0.34 58.14±0.82
F1 69.87±0.54 50.66±1.49 OOM 71.03±0.64 71.57±0.94 72.48±0.61 15.97±1.53 53.59±0.57 69.99±0.34 54.47±0.83 73.02±2.34

BAT

ACC 52.67±0.00 53.05±4.63 67.94±1.45 47.79±0.02 75.00±0.44 74.12±1.57 45.04±0.19 54.89±0.34 50.92±0.44 42.43±0.47 75.50±0.87
NMI 21.43±0.35 25.74±5.71 47.23±0.74 19.91±0.24 49.15±0.67 50.01±0.25 22.03±0.48 38.88±0.23 27.55±0.62 17.84±0.98 50.58±0.90
ARI 18.18±0.29 21.04±4.97 39.76±0.87 14.59±0.13 46.45±0.17 50.66±1.97 14.45±0.87 26.69±2.85 21.89±0.74 13.11±0.81 47.45±1.53
F1 52.23±0.03 46.45±5.90 67.40±0.35 42.33±0.51 73.15±0.43 75.02±0.53 44.00±0.62 53.71±0.34 46.53±0.57 34.84±0.15 75.40±0.88

EAT

ACC 36.89±0.15 39.07±1.51 50.88±0.55 37.37±0.11 55.78±1.29 56.14±0.22 38.80±0.35 48.51±1.55 37.42±1.24 31.33±0.52 57.22±0.73
NMI 05.57±0.06 08.83±2.54 22.01±1.23 07.00±0.85 31.54±1.55 32.14±0.10 14.96±0.75 28.36±1.23 11.44±1.41 07.63±0.85 33.47±0.34
ARI 05.03±0.08 06.31±1.95 18.13±0.85 04.88±0.91 24.87±2.23 25.14±1.87 10.29±0.88 19.61±1.25 06.57±1.73 02.13±0.67 26.21±0.81
F1 34.72±0.16 33.42±3.10 47.06±0.66 35.20±0.17 56.44±0.74 56.47±0.27 32.31±0.97 48.22±0.33 30.53±1.47 21.82±0.98 57.53±0.67

CITESEER

ACC 64.54±1.39 65.96±0.31 69.86±0.18 68.32±1.83 68.48±0.44 67.54±0.58 68.25±1.21 60.45±1.03 31.45±0.54 66.76±0.67 70.12±0.36
NMI 36.41±0.86 38.71±0.32 42.86±0.35 43.28±1.41 42.84±1.78 40.28±0.63 43.15±0.14 36.15±0.78 15.17±0.47 40.67±0.84 43.56±0.35
ARI 37.78±1.24 40.17±0.43 43.64±0.30 43.34±2.33 43.48±0.11 40.24±0.46 44.21±0.54 35.20±0.96 14.32±0.78 38.73±0.55 44.85±0.69
F1 62.20±1.32 63.62±0.24 64.83±0.21 64.82±1.60 62.78±0.53 63.85±0.85 63.12±0.42 56.42±0.94 30.20±0.71 58.22±0.68 65.01±0.39

UAT

ACC 52.29±0.49 52.25±1.91 49.92±1.25 42.64±0.31 52.48±2.87 53.47±0.16 48.74±0.54 39.39±1.46 41.50±0..25 42.52±0.64 54.76±1.42
NMI 21.33±0.44 21.61±1.26 24.09±0.53 11.15±0.24 24.48±0.88 24.16±2.13 21.85±0.62 24. 05±0.25 17.33±0.54 17.86±0.22 25.23±0.96
ARI 20.50±0.51 21.63±1.49 17.17±0.69 09.50±0.25 18.51±1.57 19.40±0.97 19.01±0.45 14. 37±0.19 13.62±0.57 13.13±0.71 19.44±1.69
F1 50.33±0.64 45.59±3.54 44.81±0.87 35.18±0.32 51.87±2.23 52.52±0.08 46.19±0.87 35.72±0.28 36.52±0.89 34.94±0.87 53.61±2.61

Table 4: Dataset information.

Dataset Type Sample Dimension Edge Class

CORA Graph 2708 1433 5429 7
AMAP Graph 7650 745 119081 8

CITESEER Graph 3327 3703 4732 6
UAT Graph 1190 239 13599 4
BAT Graph 131 81 1038 4
EAT Graph 399 203 5994 4

The memory cost of L is acceptable. We utilize 𝐵 to denote
the batch size. The dimension of the embeddings is 𝐷 . The time
complexity ofL isO(𝐵2𝐷). And the space complexity ofL isO(𝐵2)
due to matrix multiplication. The detailed experiments are shown
in section 3.3. Besides, we design a two-stage training strategy
to improve the confidence of the clustering pseudo labels during
the overall training procedure. To be specific, the discriminative
capacity of the network is improved by the first training stage.
Then, in the second stage, we refine the learned structure AugS in
the augmented view with the more reliable similarity matrix and
the pseudo labels matrix.

3 EXPERIMENT
In this section, we implement experiments to verify GraphLearner.
The downstream task of our method is graph node clustering, which
is implemented in unsupervised scenario. Therefore, the compared
methods do not include the graph classification method, e.g., JOAO
[39], AutoGCL [38], AD-GCL [23]. We have already described the
differences in the Introduction and Related work. The effective-
ness and superiority of our proposed GraphLearner can be illus-
trated by answering the following questions: RQ1: How effective
is GraphLearner for attribute node clustering? RQ2: How about
the efficiency about GraphLearner? RQ3: How does the proposed
module influence the performance of GraphLearner? RQ4: How do

the hyper-parameters impact the performance of GraphLearner?
RQ5: What is the clustering structure revealed by GraphLearner?

3.1 Experimental Setup
Benchmark Datasets The experiments are implemented on six
widely-used benchmark datasets, including CORA [5], BAT [19],
EAT [19], AMAP [15], CITESEER 1, and UAT [19]. The summarized
information is shown in Table 4. Detailed description of the datasets
are shown in Section 1 of Appendix.

Training Details The experiments are conducted on the Py-
Torch deep learning platform with the Intel Core i7-7820x CPU, one
NVIDIA GeForce RTX 3080Ti GPU, 64GB RAM. The max training
epoch number is set to 400. For fairness, we conduct ten runs for
all methods. For the baselines, we adopt their source with original
settings and reproduce the results.

Evaluation Metrics The clustering performance is evaluated
by four metrics, including Accuracy (ACC), Normalized Mutual
Information (NMI), Average Rand Index (ARI), and macro F1-score
(F1).

Parameter Setting In our model, the learning rate is set to 1e-3
for UAT, 1e-4 for CORA/CITESEER, 1e-5 for AMAP/BAT, and 1e-7
for EAT, respectively. The threshold 𝜏 is set to 0.95 for all datasets.
The epoch to begin the second training stage is set to 200. The trade-
off 𝛼 is set to 0.5. Due to the limited space, The hyper-parameter
settings are summarized in Table. 1 of the Appendix.

3.2 Performance Comparison (RQ1)
In this subsection, to verify the superiority of GraphLearner, we
compare the clustering performance of our proposed algorithm
with 10 baselines on six datasets with four metrics. We divide these
methods into four categories, i.e., classical deep clustering methods
1http://citeseerx.ist.psu.edu/index

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 5: Ablation studies over the learnable graph augmentation module of GraphLearner on six datasets. “(w/o) AugX”, “(w/o)
AugS” and “(w/o) AugX & AugS” represent the reduced models by removing the structure augmentor, the attribute augmentor,
and both, respectively. Additionally, our algorithm is compared with four classic data augmentations.

Dataset Metric (w/o) Aug_X (w/o) Aug_S (w/o) Aug_X & Aug_S Mask Feature Drop Edges Add Edges Diffusion Ours
ACC 65.60±4.95 71.92±1.32 62.16±2.57 70.60±0.91 60.29±2.42 68.02±1.93 72.68±1.00 74.91±1.78
NMI 48.81±3.95 53.82±1.99 40.84±1.45 53.99±1.48 48.40±1.91 50.78±1.93 55.80±1.22 58.16±0.83
ARI 42.42±5.09 49.20±1.56 34.84±2.82 47.80±1.09 39.78±2.21 43.56±1.83 50.45±1.24 53.82±2.25CORA

F1 60.86±8.35 69.82±0.88 60.46±3.10 69.39±0.85 55.40±4.64 66.93±1.96 69.11±0.78 73.33±1.86
ACC 73.18±4.67 73.14±1.10 68.32±0.98 72.73±0.41 64.22±4.15 74.51±0.16 72.99±0.53 77.24±0.87
NMI 61.27±5.13 60.99±0.75 53.76±1.12 61.99±0.59 53.07±3.57 62.94±0.28 61.57±0.92 67.12±0.92
ARI 51.89±6.11 52.27±1.72 44.50±1.28 49.98±0.83 46.07±3.58 53.45±0.32 50.64±0.67 58.14±0.82AMAP

F1 69.19±4.57 68.73±1.39 63.58±0.93 68.36±0.85 56.14±5.21 69.16±0.14 68.16±0.57 73.02±2.34
ACC 69.01±2.58 70.84±2.64 64.43±2.35 58.85±3.14 53.28±2.60 66.03±3.19 56.95±3.63 75.50±0.87
NMI 46.52±1.00 47.96±2.04 40.98±2.30 38.04±2.80 28.44±2.01 41.05±3.20 37.79±4.76 50.58±0.90
ARI 42.16±1.43 42.97±2.08 35.19±2.96 25.67±4.52 20.86±2.67 36.03±4.28 29.43±3.67 47.45±1.53BAT

F1 67.05±4.28 70.03±3.71 63.08±3.08 57.94±3.94 52.27±3.00 65.09±3.15 49.84±4.73 75.40±0.88
ACC 56.42±1.57 55.31±0.88 38.80±1.67 50.13±2.11 47.19±1.81 40.03±5.50 45.56±1.86 57.22±0.73
NMI 33.11±1.34 32.65±1.02 12.06±2.35 25.74±2.54 28.25±4.64 09.01±7.18 21.12±3.12 33.47±0.34
ARI 26.66±0.95 25.70±0.86 07.72±2.55 18.46±2.48 22.37±4.43 07.72±6.23 16.28±4.00 26.21±0.81EAT

F1 56.36±1.99 54.51±2.79 31.53±2.62 48.40±4.36 44.39±2.37 38.57±5.36 36.22±2.63 57.53±0.67
ACC 48.54±0.54 57.86±0.67 39.25±0.85 63.62±1.10 66.00±1.47 64.16±1.06 65.74±0.56 70.12±0.36
NMI 20.23±0.23 30.73±0.84 27.67±0.41 39.13±1.17 39.46±1.44 39.35±1.13 40.98±0.57 43.56±0.35
ARI 13.34±0.66 27.13±0.45 12.57±0.72 37.09±1.73 38.66±2.24 37.78±1.43 39.66±0.91 44.85±0.69CITESEER

F1 43.50±0.42 54.73±0.58 30.40±0.28 60.36±0.85 58.50±1.24 60.39±1.01 62.00±0.81 65.01±0.39
ACC 47.61±1.52 49.83±1.17 45.65±0.66 47.09±2.19 53.09±0.71 50.47±1.31 52.39±2.00 55.31±2.42
NMI 21.66±1.42 25.46±0.62 18.50±1.25 16.79±2.90 22.61±0.67 23.20±1.43 23.30±1.26 24.40±1.69
ARI 17.71±1.90 21.62±1.06 14.46±1.72 11.82±3.19 21.00±1.58 14.64±2.76 22.17±2.43 22.14±1.67UAT

F1 43.01±2.30 47.69±1.64 45.58±0.80 45.04±2.37 51.32±0.86 50.26±2.45 48.81±2.62 52.77±2.61

DAEGC SDCN GCA AutoSSL SUBLIME Ours

Figure 2: 2D 𝑡-SNE visualization of seven methods on two benchmark datasets. The first row and second row corresponds to
CORA and AMAP dataset, respectively.

(DAEGC [28], SDCN [1]), contrastive deep graph clustering meth-
ods (DCRN [15], AGC-DRR [7], CCGC[36], CONVERT[37]), graph
structure learning methods (SUBLIME [17]), and graph augmenta-
tion methods (GCA [45], AFGRL [13], AutoSSL [11]). Moreover, due
to the limitation of the space, we conduct additional comparison
experiments with 5 baselines. These results are shown in Table. 2 of
the Appendix. The results could also demonstrate the superiority
of GraphLearner.

Here, we adopt the attention structure augmentor and the MLP
attribute augmentor to generate the augmented view in a learnable
way. The results are shown in Table.3 , we observe and analyze as
follows.

1) GraphLearner obtains better performance compared with clas-
sical deep clustering methods. The reason is that they rarely design
a specifically contrastive learning strategy to capture the supervi-
sion information implicitly.

2) Contrastive deep graph clusteringmethods achieve sub-optimal
performance compared with ours. We conjecture that the discrimi-
native capacity of our GraphLearner is improved with fully learn-
able augmentation and optimization strategies.

3) The classical graph augmentation methods achieve unsatisfied
clustering performance. This is because they merely consider the
learnable of the structure, while neglecting the attribute. Moreover,
most of those methods can not optimize with the downstream tasks.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GraphLearner: Graph Node Clustering with
Fully Learnable Augmentation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

CORA AMAP UAT EAT BAT CITESEER

Figure 3: Sensitivity analysis of the hyper-parameter 𝛼 .

Table 6: Training Time Comparison on five datasets with six
methods. The algorithms are measured by seconds. The Avg.
represents the average time cost on five datasets.

Method CORA AMAP EAT CITESEER UAT Avg.
DEC 91.13 264.20 26.99 223.95 42.30 129.71
DCN 47.31 94.48 9.56 74.69 29.57 51.12

DAEGC 12.97 39.62 5.14 14.70 6.44 15.77
AGE 46.65 377.49 3.86 70.63 8.95 101.52

MVGRL 14.72 131.38 3.32 18.31 4.27 64.4
SCAGC 54.08 150.54 47.79 50.00 64.70 73.42
Ours 10.06 83.26 2.21 17.24 4.15 23.38

4) It could be observed that the graph structure learning methods
are not comparable with ours. We analyze the reason is that those
methods refine the structure with the unreliable strategy at the
beginning of the training. In summary, our method outperforms
most of other algorithms on six datasets with four metrics. Taking
the result on CORA dataset for example, GraphLearner exceeds the
runner-up by 1.70%, 2.38%, 2.37%, 2.00% with respect to ACC, NMI,
ARI, and F1.

Moreover, we implement experiments on other augmentors. The
results are shown in Table. 7, we conclude that our proposed aug-
mentors could achieve better performance on most metrics com-
pared with other graph clustering algorithms.

3.3 Time Cost and Memory Cost (RQ2)
In this subsection, we implement time and memory cost experi-
ments to demonstrate the effectiveness of the proposedGraphLearner.

Specifically, we test the training time of GraphLearner with six
baselines on six datasets. For fairness, we train all algorithms with
400 epochs. From the results in Table 6, we observe that the training
time of GraphLearner is comparable with other seven algorithms.
The reason we analyze is as follows: instead of using GCN as the
encoder network, we adopt the graph filter to smooth the feature.
This operation effectively reduces time consumption.

Moreover, we conduct experiments to test GPU memory costs of
our proposed GraphLearner. Due to the limited space, we conduct
the memory experiments on Fig.1 of the Appendix. The results
demonstrate that the memory costs of our GraphLearner are also
comparable with other algorithms.

3.4 Ablation Studies (RQ3)
In this section, we first conduct ablation studies to verify the ef-
fectiveness of the proposed modules. Due to the limited space, we
conduct experiments about the effectiveness of the the similarity

Table 7: Clustering performance on other augmentors.

Method Metric CORA AMAP BAT EAT UAT

X_ATT&A_GCN

ACC 74.48 77.76 74.89 57.89 56.02
NMI 54.95 65.97 50.37 34.07 26.09
ARI 51.09 58.70 46.42 27.32 22.87
F1 73.79 69.89 74.97 58.05 55.49

X_ATT&A_MLP

ACC 73.91 77.58 72.06 57.22 55.18
NMI 57.92 66.74 47.24 33.77 23.73
ARI 49.58 58.47 42.48 27.38 21.92
F1 70.70 72.21 71.86 56.40 52.28

X_ATT&A_ATT

ACC 74.37 77.22 74.96 57.52 55.33
NMI 55.30 66.71 50.04 33.67 25.17
ARI 50.57 57.53 46.40 27.05 21.40
F1 73.95 72.65 75.04 57.62 55.36

X_MLP&A_GCN

ACC 74.70 77.29 73.44 56.97 52.04
NMI 56.54 66.14 51.55 33.07 22.08
ARI 50.80 57.04 47.26 26.05 17.20
F1 74.47 70.96 71.93 57.25 48.01

X_MLP&A_MLP

ACC 73.97 77.54 75.19 56.89 55.60
NMI 55.07 66.59 50.20 33.48 24.99
ARI 49.80 58.14 46.78 26.37 24.38
F1 73.55 72.47 75.25 57.09 53.97

X_MLP&A_ATT

ACC 74.91 77.24 75.50 57.22 55.31
NMI 58.16 67.12 50.58 33.47 24.40
ARI 53.82 58.14 47.45 26.21 22.14
F1 73.33 73.02 75.40 57.53 52.77

and pseudo-label matrix refinement strategies on Fig. 2 in Appen-
dix.

3.4.1 Effectiveness of the Structure and Attribute Augmentor. To
verify the effect of the proposed structure and attribute augmentor,
we conduct extensive experiments as shown in Table 5. Here, we
adopt “(w/o) AugX”, “(w/o) AugS” and “(w/o) AugX & AugS” to
represent the reduced models by removing the structure augmentor,
the attribute augmentor, and both, respectively. From the observa-
tions, it is apparent that the performance will decrease without any
of our proposed augmentors, revealing that both augmentors make
essential contributions to boosting the performance. Taking the
result on the CORA dataset for example, the model performance is
improved substantially by utilizing the attribute augmentor.

3.4.2 Effectiveness of our learnable augmentation. To avoid the
existing and predefined augmentations on graphs, we design a
novel fully learnable augmentation method for graph clustering.
In this part, we compare our view construction method with other
classical graph data augmentations, including mask feature [43],
drop edges [34], add edges [34], and graph diffusion [25]. Concretely,
in Table 5, we adopt the data augmentation as randomly dropping
20% edges (“Drop Edges”), or randomly adding 20% edges (“Add

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Edges”), or graph diffusion (“Diffusion”) with 0.20 teleportation
rate, or randomly masking 20% features (“Mask Feature”). From the
results, we observe that the performance of commonly used graph
augmentations is not comparable with ours. In summary, extensive
experiments have demonstrated the effectiveness of the proposed
learnable augmentation.

3.5 Hyper-parameter Analysis (RQ4)
We verify the sensitivity of 𝛼 . The experimental results are shown in
Fig.3. The performancewill not fluctuate greatlywhen𝛼 ∈ [0.1, 0.9].
From these results, we observe that our GraphLearner is insensitive
to 𝛼 when 𝛼 ∈ [0.1, 0.9]. Due to the limited space, we investigate
the influence of the hyper-parameter threshold 𝜏 . Experimental
evidence can be found in Fig. 3 in Appendix.

3.6 Visualization Analysis (RQ5)
In this subsection, we visualize the distribution of the learned em-
beddings to show the superiority of GraphLearner on CORA and
AMAP datasets via 𝑡-SNE algorithm [26]. We implement experi-
ments with DAEGC [28], SDCN [1], GCA [45], AutoSSL [11], SUB-
LIME [17] and ours. The results are shown in Fig. 2. From the results,
we can conclude that GraphLearner better reveals the intrinsic clus-
tering structure.

4 RELATEDWORK
4.1 Contrastive Deep Graph Clustering
The existing deep graph clustering methods can be roughly cat-
egorized into three classes: generative methods [1, 4, 22, 25, 28,
29, 42], adversarial methods [20, 21, 24], and contrastive methods
[5, 10, 15, 16, 34, 43]. In recent years, the contrastive learning has
achieved great success in vision [2, 3, 8, 41] and graph [33, 40, 44].
In this paper, we focus on the data augmentation of the contrastive
deep graph clustering methods. Concretely, a pioneer AGE [5] con-
ducts contrastive learning by a designed adaptive encoder. Besides,
MVGRL [10] generates two augmented graph views. Subsequently,
DCRN [15] aims to alleviate the collapsed representation by re-
ducing correlation in both sample and feature levels. Meanwhile,
the positive and negative sample selection have attracted great at-
tention of researchers. Concretely, GDCL [43] develops a debiased
sampling strategy to correct the bias for negative samples. Although
promising performance has been achieved, previous methods gener-
ate different graph views by adopting uniform data augmentations
like graph diffusion, edge perturbation, and feature disturbation.
Moreover, these augmentations are manually selected and can not
be optimized by the network, thus limiting performance. To solve
this problem, we propose a novel contrastive deep graph clustering
framework with fully learnable graph data augmentations.

4.2 Data Augmentation in Graph Contrastive
Learning

Graph data augmentation [30, 31] is an important component of con-
trastive learning. The existing data augmentation methods in graph
contrastive learning could rough be divided into three categories,
i.e., augment-free methods[13], adaptive augmentation methods
[39, 45], and learnable data augmentation methods [11, 23, 35, 38].

AFGRL[13] generates the alternative view by discovering nodes that
have local and global information without augmentation. While
the diversity of the constructed view is limited, leading to poor
performance. Furthermore, to make graph augmentation adaptive
to different tasks, JOAO [39] learns the sampling distribution of the
predefined augmentation to automatically select data augmentation.
GCA [45] proposed an adaptive augmentation with incorporating
various priors for topological and semantic aspects of the graph.
However, the augmentation is still not learnable in the adaptive
augmentation methods. Besides, in the field of graph classification,
AD-GCL [23] proposed a learnable augmentation for edge-level
while neglecting the augmentations on the node level. More re-
cently, AutoGCL[38] proposed a probability-based learnable aug-
mentation. Although promising performance has been achieved,
the previous methods still rely on the existing and predefined data
augmentations. CONVERT [37] places a strong emphasis on the
semantic reliability of augmented views by leveraging a reversible
perturb-recover network to generate embeddings for these aug-
mented views. However, it tends to overlook the significance of
the underlying graph topology. In this work, we propose a fully
learnable augmentation strategy specifically tailored for graph data.
To highlight the uniqueness of our approach, we draw comparisons
with existing graph data augmentation methodologies. First and
foremost, GraphLearner stands out by introducing a fully learnable
augmentation approach for graphs. This sets it apart from adaptive
augmentation methods such as GCA [45] and JOAO [39], which
still rely on predefined augmentations. GraphLearner dynamically
generates augmented views using a learnable process, considering
both structural and attribute aspects of the graph. Moreover, while
existing learnable augmentation methods design specific adaptable
strategies, they often lack task-specific adaptability.

Most of those methods are always graph classification, e.g., AD-
GCL [23] and AutoGCL [38]. In contrast, GraphLearner addresses
this limitation by tailoring the augmentation strategy to graph node
clustering in an unsupervised scenario. This ensures that the aug-
mentation is not only learnable but also responsive to downstream
task results, enhancing its overall effectiveness.

5 CONCLUSION
In this work, we propose a fully learnable augmentation method
for graph contrastive clustering termed GraphLearner. To be spe-
cific, we design a fully learnable augmentation with the structure
augmentor and the attribute augmentor to dynamically learn the
structure and attribute information, respectively. Besides, an ad-
versarial mechanism is designed to keep cross-view consistency
in the latent space while ensuring the diversity of the augmented
views. Meanwhile, we propose a two-stage training strategy to ob-
tain more reliable clustering information during the model training.
Benefiting from the clustering information, we refine the learned
structure with the high-confidence pseudo-label matrix. Moreover,
we refine the augmented view with the cross-view sample similar-
ity matrix to further improve the discriminative capability of the
learned structure. Extensive experiments on six datasets demon-
strate the effectiveness of our proposed method. In the future, it is
worth trying the augmentors designed in GraphLearner for other
graph downstream tasks, e.g., node classification and link predic-
tion.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GraphLearner: Graph Node Clustering with
Fully Learnable Augmentation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. 2020.

Structural deep clustering network. In Proceedings of The Web Conference 2020.
1400–1410.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[3] Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15750–15758.

[4] Jiafeng Cheng, QianqianWang, Zhiqiang Tao, Deyan Xie, and Quanxue Gao. 2021.
Multi-view attribute graph convolution networks for clustering. In Proceedings
of the Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence. 2973–2979.

[5] Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. 2020. Adaptive graph
encoder for attributed graph embedding. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 976–985.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems (2016).

[7] Lei Gong, Sihang Zhou, Xinwang Liu, and Wenxuan Tu. 2022. Attributed Graph
Clustering with Dual Redundancy Reduction. In IJCAI.

[8] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own la-
tent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733
(2020).

[9] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c (applied
statistics) 28, 1 (1979), 100–108.

[10] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[11] Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, and Jiliang Tang. 2021.
Automated self-supervised learning for graphs. arXiv preprint arXiv:2106.05470
(2021).

[12] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations.

[13] Namkyeong Lee, Junseok Lee, and Chanyoung Park. 2021. Augmentation-Free
Self-Supervised Learning on Graphs. arXiv preprint arXiv:2112.02472 (2021).

[14] Xingfeng Li, Yinghui Sun, Quansen Sun, Jia Dai, and Zhenwen Ren. 2023. Dis-
tribution Consistency based Fast Anchor Imputation for Incomplete Multi-view
Clustering. In Proceedings of the 31st ACM International Conference on Multimedia.
368–376.

[15] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang,
and En Zhu. 2022. Deep Graph Clustering via Dual Correlation Reduction. In
AAAI Conference on Artificial Intelligence.

[16] Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Siwei Wang, Ke Liang, Wenx-
uan Tu, and Liang Li. 2023. Simple contrastive graph clustering. IEEE Transactions
on Neural Networks and Learning Systems (2023).

[17] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan.
2022. Towards unsupervised deep graph structure learning. In Proceedings of the
ACM Web Conference 2022. 1392–1403.

[18] Yujie Mo, Yuhuan Chen, Liang Peng, Xiaoshuang Shi, and Xiaofeng Zhu. 2022.
Simple self-supervised multiplex graph representation learning. In Proceedings of
the 30th ACM International Conference on Multimedia. 3301–3309.

[19] Nairouz Mrabah, Mohamed Bouguessa, Mohamed Fawzi Touati, and Riadh Ksan-
tini. 2021. Rethinking Graph Auto-Encoder Models for Attributed Graph Cluster-
ing. arXiv preprint arXiv:2107.08562 (2021).

[20] Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, and Chengqi Zhang.
2019. Learning graph embedding with adversarial training methods. IEEE
transactions on cybernetics 50, 6 (2019), 2475–2487.

[21] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. Adversarially regularized graph autoencoder for graph embedding. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence.
2609–2615.

[22] Zhihao Peng, Hui Liu, Yuheng Jia, and Junhui Hou. 2021. Attention-driven Graph
Clustering Network. In Proceedings of the 29th ACM International Conference on
Multimedia. 935–943.

[23] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph
augmentation to improve graph contrastive learning. Advances in Neural Infor-
mation Processing Systems 34 (2021), 15920–15933.

[24] Zhiqiang Tao, Hongfu Liu, Jun Li, Zhaowen Wang, and Yun Fu. 2019. Adversarial
graph embedding for ensemble clustering. In International Joint Conferences on
Artificial Intelligence Organization.

[25] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, Jieren Cheng,
et al. 2020. Deep Fusion Clustering Network. arXiv preprint arXiv:2012.09600

(2020).
[26] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, 11 (2008).
[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[28] ChunWang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang.
2019. Attributed graph clustering: A deep attentional embedding approach. arXiv
preprint arXiv:1906.06532 (2019).

[29] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management. 889–898.

[30] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup
for node and graph classification. In Proceedings of the Web Conference 2021.
3663–3674.

[31] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi.
2020. Nodeaug: Semi-supervised node classification with data augmentation.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 207–217.

[32] Jie Wen, Zheng Zhang, Yong Xu, and Zuofeng Zhong. 2018. Incomplete multi-
view clustering via graph regularized matrix factorization. In Proceedings of the
European conference on computer vision (ECCV) workshops. 0–0.

[33] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. SimGRACE: A
Simple Framework for Graph Contrastive Learning without Data Augmentation.
arXiv preprint arXiv:2202.03104 (2022).

[34] Wei Xia, Qianqian Wang, Quanxue Gao, Ming Yang, and Xinbo Gao. 2022. Self-
consistent Contrastive Attributed Graph Clustering with Pseudo-label Prompt.
IEEE Transactions on Multimedia (2022). https://doi.org/10.1109/TMM.2022.
3213208

[35] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. 2017. Towards
k-means-friendly spaces: Simultaneous deep learning and clustering. In interna-
tional conference on machine learning. PMLR, 3861–3870.

[36] Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Wenxuan Tu, Qun Zheng,
Xinwang Liu, Liming Fang, and En Zhu. 2023. Cluster-guided Contrastive Graph
Clustering Network. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 37. 10834–10842.

[37] Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia,
Stan Z Li, Xinwang Liu, and En Zhu. 2023. CONVERT: Contrastive Graph Clus-
tering with Reliable Augmentation. In Proceedings of the 31th ACM International
Conference on Multimedia.

[38] Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. 2022.
Autogcl: Automated graph contrastive learning via learnable view generators. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 8892–8900.

[39] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In International Conference on Machine Learning.
PMLR, 12121–12132.

[40] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[41] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. 2021. Bar-
low twins: Self-supervised learning via redundancy reduction. arXiv preprint
arXiv:2103.03230 (2021).

[42] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. 2019. Attributed graph
clustering via adaptive graph convolution. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence. 4327–4333.

[43] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. 2021. Graph
debiased contrastive learning with joint representation clustering. In Proc. IJCAI.
3434–3440.

[44] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. In ICML Workshop on Graph
Representation Learning and Beyond. http://arxiv.org/abs/2006.04131

[45] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

https://doi.org/10.1109/TMM.2022.3213208
https://doi.org/10.1109/TMM.2022.3213208
http://arxiv.org/abs/2006.04131

	Abstract
	1 Introduction
	2 Method
	2.1 Notations Definition
	2.2 Fully Learnable Augmentation Module
	2.3 Dual Refinement Module
	2.4 Loss Function

	3 Experiment
	3.1 Experimental Setup
	3.2 Performance Comparison (RQ1)
	3.3 Time Cost and Memory Cost (RQ2)
	3.4 Ablation Studies (RQ3)
	3.5 Hyper-parameter Analysis (RQ4)
	3.6 Visualization Analysis (RQ5)

	4 Related Work
	4.1 Contrastive Deep Graph Clustering
	4.2 Data Augmentation in Graph Contrastive Learning

	5 Conclusion
	References

