
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MULTI-AGENT PATH FINDING VIA DECISION TRANS-
FORMER AND LLM COLLABORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-Agent Path Finding (MAPF) is a significant problem with pivotal appli-
cations in robotics and logistics. The problem involves determining collision-
free paths for multiple agents with specific goals in a 2D grid-world environ-
ment. Unfortunately, finding optimal solutions for MAPF is an NP-hard problem.
Traditional centralized planning approaches are intractable for large numbers of
agents and inflexible when adapting to dynamic changes in the environment. On
the other hand, existing decentralized methods utilizing learning-based strategies
suffer from two main drawbacks: (1) training takes times ranging from days to
weeks, and (2) they often tend to exhibit self-centered agent behaviors leading
to increased collisions. We introduce a novel approach leveraging the Decision
Transformer (DT) architecture that enables agents to learn individual policies ef-
ficiently. We capitalize on the transformer’s capability for long-horizon planning
and the advantages of offline reinforcement learning to drastically reduce training
times to a few hours. We further show that integrating an LLM (GPT-4o), en-
hances the performance of DT policies in mitigating undesirable behaviors such
as prolonged idling at specific positions and undesired deviations from goal po-
sitions. We focus our empirical evaluation on both scenarios with static environ-
ments and in dynamically changing environments where agents’ goals are altered
during inference. Results demonstrate that incorporating an LLM for dynamic
scenario adaptation in MAPF significantly enhances the agents’ performance and
paves the way for more adaptable multi-agent systems.

1 INTRODUCTION

Robot swarms are projected to have a significant impact across various sectors, including manufac-
turing, warehousing, and transportation logistics. Multi-Agent Path Finding (MAPF) encompasses
planning methods designed to identify collision-free paths for multiple agents operating within a
shared space, while ensuring the optimality of these paths according to specific cost functions (e.g.,
minimizing path length or travel time). Unfortunately, the MAPF problem is NP-Hard. Much of the
literature on MAPF has focused on centralized planning, where a single planner is assumed to have
full observability of the world including static and dynamic obstacles. The solution to MAPF com-
putes the plan (which is the set of conflict-free paths for all agents), and is obtained using heuristic
search and optimization techniques such as Conflict-Based Search (CBS), M* (a multi-agent ver-
sion of A*), and ODrM* Sharon et al. (2015); Hart et al. (1968); Wagner & Choset (2011); Ferner
et al. (2013). As centralized planning is essentially a constraint solving problem, it is unsurprising
that with enough computational resources, optimal collision-free paths for individual agents can be
found. However, centralized planning has several disadvantages: (1) it cannot scale to large envi-
ronments or large number of agents, (2) requires full observability of the agents and the world, (3)
produces plans that are not robust to changes in the environment.

In many practical multi-agent setups, the world map is not a priori available and each agent is re-
stricted to observing only its own field of view (FOV). In such partially observable environments,
autonomous or decentralized agents that have the ability to plan their own paths are suitable, and
learning-based MAPF methods have been explored. A prominent benchmark is an approach called
PRIMAL, where imitation learning (IL) is combined with reinforcement learning (RL), allowing
agents to imitate centralized planner behaviors while being trained in a decentralized manner Sar-
toretti et al. (2019). Prioritized Communication Learning method (PICO), an extension of PRIMAL,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

incorporates planning priorities and communication topologies into its learning pipeline to improve
collision avoidance and boost collaborative behavior Li et al. (2022). On the other hand, Distributed
Heuristic Learning with Communication (DHC) tries to achieve this objective by employing graph
convolution for agent cooperation, Ma et al. (2021a). Here, each agent operates independently
with heuristic guidance provided through potential shortest-path choices. Decision Causal Com-
munication (DCC) enhances DHC by focusing on selective communication. Unlike other methods,
DCC enables agents to choose relevant neighbors for communication, minimizing redundancy and
overhead Ma et al. (2021b). SCRIMP introduces a differentiable transformer-based communication
mechanism, which addresses the challenges posed by partial observations and enhances team-level
cooperation Wang et al. (2023). Finally, Confidence-based Auto-Curriculum for Team Update Sta-
bility (CACTUS) proposes a reverse curriculum approach that incrementally increases the potential
distance between start and goal locations to learn effective policy Phan et al. (2024).

Figure 1: Architecture of our pipeline: blue and orange arrows represent the processes of DT and
GPT-4o, respectively.

Most SOTA learning-based MAPF methods integrate complex modules into their pipelines to fa-
cilitate communication between agents. This is because the decentralized nature of multi-agent
reinforcement learning (MARL) methods often causes agents to act selfishly, disregarding other
agents in the environment. However, these intricate pipelines and extensive online interactions with
the environment result in prolonged training times. In the first part of our paper, we address this
challenge by leveraging Decision Transformer-based individual policies using an offline dataset,
and show significant reduction in training times.

In the second part of our paper, we explore scenarios where LLMs can be used to enhance the per-
formance of DT agents. LLMs have demonstrated the ability to understand and execute instructions
for control and embodied tasks in robotics Szot et al. (2023); Yu & Mooney (2022); Liang et al.
(2023); Hu et al. (2023); Ahn et al. (2022), coding Liu et al. (2023b); Chen et al. (2021b), strategic
planning Wu et al. (2023); Liu et al. (2023a), spatial reasoning Wu et al. (2023), and even planning
multi-agent collaboration tasks Li et al. (2023); Zhang et al. (2023); Talebirad & Nadiri (2023). In
our experience with DT agents, while they have overall good performance in static environments,
there are specific undesirable behaviors that can occur under DT-based policies; here, we use LLMs
to guide the agents. Specificially, we observe that LLMs can be useful in situations where an agent
gets “boxed in” due to surrounding obstacles, where an agent may oscillate between cells, or where it
cannot adapt to changes in the environment. We have integrated GPT-4o into our inference pipeline

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Achiam et al. (2023). Additionally, we provide comparative results for GPT-4o and Llama 3.1 on
sample environments1. Interestingly, we also show that the direct application of LLM-based agents
does not yield comparable results to current methods and underperforms the DT-based agents Chen
et al. (2024).

Our experimental setup involves two scenarios: one with static environments and one with altered
environments. In the first case, DT agents are given a fixed amount of time to finish the episode.
GPT-4o is used if at least one of the DT agents fails to complete the task within the allocated time. In
the second scenario, we change the goal positions of some agents during the inference and include
GPT-4o for only five timesteps after introducing the change in the environment, then we switch
the agent policy back to the DT-based policy. In our experiments, we observed that DT agents
first explore the previous goal position before moving toward the new goal, whereas GPT-4o directs
agents directly toward their new goal. Therefore, alternating DT with GPT-4o for only five timesteps
allows for modifications and real-time adjustments, enhancing the adaptability of the agents.

The main contributions of our paper can be summarized as follows:

• We introduce an offline RL approach to train decentralized agents solve the MAPF problem
and reduce training time drastically from weeks to several hours while maintaining com-
parable performance. Table 1 presents a comparison of learning-based MAPF benchmarks
with respect to the time consumption of the training process.

• We adopt the decision transformer (DT) architecture to effectively addresses the credit
assignment problem in long-horizon MAPF scenarios where episodes can extend to 200-
300 time steps with positive rewards given only at the end.

• Our work is among the first to explore the potential of LLMs in MAPF and includes the
most comprehensive experiments conducted in randomly generated grid environments.

• We demonstrate that utilizing GPT-4o improves the performance of our DT-based agents in
specific navigation tasks within the robotics domain. Our approach highlights the potential
of integrating LLMs with RL agents to achieve effective and adaptive behavior in complex
environments.

2 PRELIMINARIES

2.1 PROBLEM SETTING

Our research focuses on a deterministic and partially observable environment where a team of agents
operates in a grid world to complete given tasks. Each agent is assigned to move from a start point
to an endpoint and can either move to neighboring cells or remain stationary. The goal is achieved
by all agents when they complete their tasks while minimizing the total time taken and avoiding
collisions with obstacles or other agents.

In real-world applications of this scenario, there may be some unexpected changes in the environ-
ment, hence in agents’ states. Changes in the position of obstacles and agents’ goals are the most
common dynamic modifications that require real-time adjustments to the strategy, i.e. adaptation of
actions.

2.2 MULTI-AGENT PATH FINDING

Our setup constitutes a Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
which is a framework used in multi-agent systems where multiple agents must make decisions based
on their individual observations of the environment Omidshafiei et al. (2017). The Dec-POMDP is
defined by the tuple;

(I, S,A, T,Ω, O,R, γ)

consisting of I: the set of agents, S: the set of states, A = ×i∈IAi: the set of joint actions, where
Ai is the set of actions available to agent i, T (s′ | s, a): the state transition function that gives
the probability of transitioning to state s′ from state s after joint action a, Ω = ×i∈IΩi: the set of

1As the primary objective of our paper is not to conduct a comparative analysis of LLMs, we limit our
experiments to a selection of representative environments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Effort relative to other benchmarks
Benchmark Training Time Training Episodes

PRIMAL ≈ 20 days 3.8M
DCC ≈ 1 day 128K
DT ≈ 3 hours 133K

joint observations, where Ωi is the set of local observations of agent i, O(o | s′, a): the observation
function that gives the probability of joint observation o given state s′ and joint action a, R(s, a):
the reward function that gives the immediate reward received after taking joint action a in state s,
and γ: the discount factor that determines the importance of future rewards.

In a shared environment, each agent behaves according to its policy πi(ai|s) = P (Ai
t = ai|St = s),

which is the probability distribution over actions given states. At a time step t, the joint action
a⃗(t) = (a1t , . . . , a

N
t), where N = |I|, leads to a transition to a new state st+1 according to the

transition function T , and each agent receives a reward rit according to the reward function R. We
consider a finite system where each episode plays out for a given T timesteps.

Additionally, we define G to be the set of goal states G ⊆ S and say that an agent i has reached its
goal if sit ∈ G for some t ≤ T. We consider an episode to terminate when all agents have reached
their goals or at timestep T, whichever is sooner.

2.3 DECISION TRANSFORMER

The Decision Transformer treats offline RL as a sequence modeling problem and learns a return-
conditioned policy from an offline dataset Chen et al. (2021a). It has provided a novel perspective
to reinforcement learning, and several extensions of this concept have been introduced subsequently
Zheng et al. (2022); Lee et al. (2022). In the architecture, embedded tokens of returns, states, and
actions are fed into a decoder-only transformer to generate the next tokens autoregressively using
a causal self-attention mask. In other words, the model learns the probability of the next token xt

conditioned on previous K tokens, Pθ(xt|xt−K<...<t), where Kis a hyperparameter called context
length. To achieve this, we consider sequences of the form:

τ i = (xi
1, . . . , x

i
t, . . . , x

i
T) where xi

t = (R̂i
t, o

i
t, a

i
t)

such that R̂i
t is return-to-go (rtg) representing the cumulative rewards from the current time step

until the end of the episode, oit is the observation, and ait is the action of agent i at time t. Instead
of using the discounted rewards as in traditional RL, DT uses rtg so that the model can predict the
future actions that achieve the desired return via cross-entropy loss.

We choose DT as the backbone for our method for three major reasons:

• It is an offline RL algorithm that enables training on an offline dataset and reduces training
time significantly since it does not require online interaction with the environment during
training.

• The transformer architecture effectively addresses the credit assignment problem in long-
horizon MAPF scenarios with positive rewards given only at the end.

• DT performs well without extensive reward engineering by conditioning on the desired
return.

2.4 LARGE LANGUAGE MODELS

Large Language Models (LLMs) are foundation models pre-trained on extensive text corpora to
understand, predict, and generate natural language. The introduction of transformers in 2017, par-
ticularly due to their key components of positional encodings and self-attention mechanisms, marked
a revolutionary advancement in natural language processing Vaswani et al. (2017). Building upon
this breakthrough, significant advancements in language models such as BERT, T5, the GPT series,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Llama, and PaLM have extended the capabilities of LLMs and enabled their application to increas-
ingly sophisticated tasks Devlin et al. (2018); Raffel et al. (2020); Radford et al. (2018); Achiam
et al. (2023); Touvron et al. (2023); Chowdhery et al. (2023). Notably, these models function as
few-shot learners for downstream tasks through prompt engineering without requiring further train-
ing Chang et al. (2024).

In-Context Learning. (ICL) is an approach utilized by LLMs to handle downstream tasks by
conditioning on relevant input-output examples or demonstrations Brown et al. (2020); Dong et al.
(2022). This prompting process takes place during the inference stage and does not involve any
fine-tuning or updating of the model weights. The provided pairs of instances guide the model to
produce accurate responses for the input query. Consequently, a pre-trained LLM model can tackle
a wide range of tasks, from translation to question-answering, simply by modifying the examples in
the prompt. This flexibility renders ICL a powerful tool for leveraging LLMs in new tasks.

Chain of Thought. (CoT) process is an advanced demonstration designing technique for prompt
engineering used with LLMs to enhance their problem-solving abilities, particularly for tasks that
require complex reasoning including arithmetic, commonsense, and symbolic reasoning tasks Wei
et al. (2022). This method involves structuring prompts to guide models through a step-by-step
reasoning pathway, ultimately leading to a more informed and accurate output. In CoT prompting,
the usual input-output mapping is expanded to include intermediate steps and instead of directly
aiming for an answer, the model is prompted with triples: (input, chain of thought, output). Although
several advancements in prompt engineering have emerged such as SayCan, ReAct, ToT, and other
variations of CoT, we have chosen to utilize CoT in our work due to its simplicity and effectiveness
Ahn et al. (2022); Yao et al. (2022; 2024); Wang et al. (2022).

Figure 2: In the query prompt, the MAPF problem, environment, and constraints are first outlined,
followed by task-specific in-context examples provided using Chain-of-Thought (CoT). A complete
example is provided in the Appendix.

3 METHOD

We first create an offline dataset consisting of expert-level trajectories utilized to train the Decision
Transformer. The trained DT model is deployed to each agent to generate the next action at each
time step. The DT-based agents then navigate towards their goals within the test environment for
predetermined time steps of 128, 196, 228 timesteps for 20, 40, 80-size environments respectively.
Subsequently, GPT-4o is integrated into the pipeline to assist agents that have yet to reach their
goals. Environmental information, including the coordinates of static obstacles, the agents’ current

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

positions, and their target destinations, is encoded into a query-prompt. The prompt is then provided
to GPT-4o which generates the next set of actions for one time-step. This iterative process continues
for five time steps, after which the pipeline reverts to the DT policies to complete the episode. Fur-
thermore, we conducted experiments involving dynamic scenario adaptation by integrating GPT-4o
with real-time environmental changes. Detailed descriptions of the methodology and experimental
results are presented in the following sections. The overall architecture of our pipeline is depicted
in Figure 1.

3.1 BUILDING TRAINING DATASET

To generate expert-level behavior, we collected trajectories using the ODrM* algorithm, a central-
ized classical MAPF solver frequently employed in the literature to create expert trajectories for
imitation learning. The algorithm was executed on 80 randomly generated grid environments for
each combination of varying parameters: (4, 16, 32, 64) agents, grid sizes of (10, 20, 40, 80), and
obstacle densities of (0, 0.1, 0.2).

Each agent’s path constitutes a distinct trajectory in the training dataset. Given the paper’s emphasis
on partially observable environments, agents are constrained to observing only their own fields of
view (FOV), each of size 10 × 10. Observations are represented by four 2-dimensional arrays of
shape (10, 10), encoding the following information about their local environments:

• The positions of neighboring agents within the agent’s FOV, represented by agent number.
• The position of the agent’s own goal.
• The positions of neighbors’ goals within the agent’s FOV, represented by agent number.
• The positions of obstacles within the agent’s FOV, represented by ’1’s.

Unoccupied cells in the grid are represented by ’0’s, grid boundaries are treated as obstacles. If the
agent’s goal lies outside its field of view, the goal is projected onto the edge cell closest to it. If the
goal falls within the agent’s FOV, it is displayed in the corresponding cell.

Table 2: Hyperparameters for DT

Hyperparameter Value
Number of layers 6
Number of attention heads 8
Embedding dimension 128
Batch Size 128
Context Length K 50
Return-to-go conditioning 20
Encoder channels 8, 16
Encoder filter sizes 3× 3, 2× 2
Max epochs 5
Dropout 0.1
Learning rate 6 ∗ 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0

At each time step, agents have the option to either
wait or move in one of four directions (N/E/S/W)
while receiving rewards as outlined:−0.3 for mov-
ing, (0/ − 0.5) for waiting (on/off goal), −5 for
collision, and +20 for reaching the goal. We also
created a modified version of the dataset in which
agents receive an extra reward of +20 upon suc-
cessfully completing an episode, (i.e. all agents
reach respective goals). However, the DT model
trained on this modified dataset demonstrated infe-
rior performance compared to the model trained on
the original version.

Once the trajectories are collected, the dataset un-
dergoes pre-processing to align with the input for-
mat required by the DT model. The trajectory
for each agent, consisting of return-to-go, obser-
vations, and actions, is truncated upon reaching the
goal position, as no further rewards are expected beyond that point. With the context length for
the DT set to 50, we divided the trajectories into chunks of length 50. For chunks shorter than the
specified context length, we applied zero-padding. The final dataset, composed of these chunks, was
derived from a total of 133K episodes.

3.2 TRAINING DECISION TRANSFORMER

For the most part, we retained the original architecture of the Decision Transformer. However,
we introduced a few minor modifications, such as replacing the linear layer with a convolutional
encoder to process observations of shape (4, 10, 10). Additionally, the hyperparameters listed in
Table 2 were employed for training.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 PROMPTING GPT-4

We explored various prompting techniques throughout our work; the details and findings presented
in the discussion section. The prompt design that yielded the best performance has been integrated
into our pipeline; the prompt template is illustrated in Figure 2, and the complete prompt can be
found in the Appendix. In the query prompt, we begin by outlining the problem, environment spec-
ifications, constraints, and the task. Following this, we provide task-specific in-context examples
and pose a similar question generated by our pipeline. To construct these in-context examples, we
analyzed environments where the DT model failed to find a path to a goal for at least one agent
within T timesteps. Using both a simple and a challenging (failed) scenario, we curated sample
question-answer pairs.

Figure 3: Illustration of GPT-4o’s assistance in the event of a goal change. In the first environment,
the orange agent initially has its goal at (9,8), which is changed to (4,1) in the 5th time step. In
the second environment, the orange agent’s goal is initially at (18,1), but is altered to (8,16) in
the 20th time step. The orange arrows depict the path generated by the DT alone, while the blue
arrows represent the path taken when decision-making is switched to GPT-4o for five time steps
after the goal change, before returning to DT. Green rectangles highlight the five time steps during
which GPT-4o and DT make decisions. Without GPT-4o’s assistance, DT agents initially explore
the region around the previous goal before navigating to the new one. With GPT-4o’s assistance,
however, the agents can directly navigate toward the new goal.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiments are carried out on n×n grid environments, where n = { 20, 40, 80} with varying
numbers of agents {8, 16, 32, 64}, and obstacle densities {0, 0.1, 0.2}.

The results, summarized in the Tables 3 and 4, represent averages across 3 different obstacle density
values and 60 environments (combinations of grid size, number of agents), resulting in a total of
720 test environments. We evaluated the performance of the benchmarks and our models using
three key metrics: success rate (SR), makespan (MS), and collision rate (CR). The success rate
is defined as the ratio of successfully completed episodes (i.e. all agents reach their goals) to the
total number of test episodes. The makespan refers to the duration of an episode, specifically the
time taken for the last agent to reach its designated goal. Finally, the collision rate is computed as
the number of collisions among agents in a successful episode divided by the episode’s duration.
Collisions occurring in unsuccessful episodes are excluded from this calculation.The model training
and experiments have been executed on an NVIDIA Quadro RTX 5000 with 16 GB GPU memory.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparison of MAPF benchmarks vs our methods: MS, SR, and CR are abbreviations
for makespan, success rate, and collision rate, respectively. For makespan and collision rate, lower
values (indicated by arrows) means better performance.

PRIMAL DCC DT (ours) DT + GPT-4o (ours)
Env Size # Agents MS ↓ SR(%) CR ↓ MS ↓ SR (%) CR↓ MS↓ SR (%) CR↓ MS↓ SR (%) CR↓
20x20 8 50.3 94 0.34 29.6 100 0.71 35.2 100 0.15 32.7 100 0.13

16 75.5 90 1.60 42.5 96 1.52 60.9 93 0.52 53.8 97 0.52
32 125.5 80 10.01 90.8 81 4.34 90.8 87 1.55 102.6 84 1.74

40x40 8 80.1 96 - 59.6 100 0.11 57.7 100 0.04 56.9 100 0.02
16 115.7 89 - 71.3 100 0.60 71.6 98 0.17 71.2 98 0.14
32 140.3 80 - 93.5 100 1.94 105.1 88 0.61 104.1 88 0.65
64 175.6 71 - 135.5 93 11.39 160.6 76 2.29 142.7 80 2.23

80x80 8 140.8 86 - 101.4 96 0.02 115.2 97 0.02 115.8 100 0.00
16 180.7 81 - 122.2 96 0.38 123.9 92 0.05 118.1 90 0.04
32 230.3 75 - 132.9 96 0.59 146.6 88 0.27 144.5 90 0.23
64 250.4 57 - 159.6 91 2.75 183.1 64 0.76 177.8 72 0.69

4.2 RESULTS

Stationary Environments. The results presented in Table 3 indicate that DT-based agents demon-
strate strong performance (i.e. lower CR, lower MS, and higher SR) compared to SOTA MAPF
models2. We draw the following conclusions from our experiments:

1. DT-based agents consistently outperform PRIMAL across all evaluation metrics.
2. Our method surpasses DCC in terms of collision rates, indicating that our agents exhibit safer
behavior. This is particularly significant since collisions among agents in real-world scenarios, such
as warehouses, can lead to substantial costs and safety hazards.
3. Our methods outperform DCC in terms of success rate in 20x20 environments, indicating supe-
riority in smaller settings.
4. Further, the integration of GPT-4o with DT agents enables navigation along even shorter and
safer paths compared to DT agents alone. Although the primary intent of incorporating a LLM was
to handle real-time environmental changes, the results reveal that it also offers considerable benefits
in static environments.

Dynamic Scenario Adaptation. For 20, 40, 80 size environments, we modify the environment
once at 15th, 30th, and 50th timesteps respectively. We conduct our experiments according to two
difficulty levels; altering the goals of .25 of the agents and .5 of the agents in the environments
during inference. Based on the results presented in Table 4, we can draw the following conclusions:

1. The integration of GPT-4o reduces makespan across most environmental settings. This reduction
is particularly significant when the new goal location is in the opposite direction to the agents’ prior
trajectory. As illustrated in Figure 3, DT requires several timesteps to comprehend the goal change,
often exploring areas near the previous goal location before adjusting its direction. In contrast,
when the LLM-based suggestions are introduced concurrently with the dynamic goal change, agents
immediately reorient towards their new goal location – this significantly reduces the makespan.
2. The success rates achieved by DT and LLM collaboration are equal to or surpass those of the
DT alone in most environmental settings. Notably, when we alter the goal positions of half of
the agents, the advantages of LLM guidance become particularly evident in complex environments
characterized by larger sizes and a greater number of agents.
3. The reduction in CR in static environments by using an LLM also extends to dynamic environ-
ments; DT+GPT-4o consistently achieves lower collision rates, leading to safer agent behavior.

These findings demonstrate that LLM-assisted DT-based agents are highly effective for real-time
adaptations and offer significant advantages in safety-critical environments.

2We do not report CR for PRIMAL in 40x40, 80x80 grid sizes as they are not available in the literature;
training time for PRIMAL is very high (≈ 3 weeks), so repeating experiments to obtain the CR is infeasible.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Impact of GPT-4o on dynamic environments: MS, SR, and CR are abbreviations for
makespan, success rate, and collision rate, respectively. For makespan and collision rate, lower
values (indicated by arrows) means better performance.

DT (1/4) DT+GPT-4o (1/4) DT (1/2) DT+GPT-4o (1/2)
Env Size # Agents MS ↓ SR(%) CR ↓ MS ↓ SR (%) CR↓ MS↓ SR (%) CR↓ MS↓ SR (%) CR↓
20x20 8 48.5 95 0.21 44.7 97 0.11 48.9 96 0.14 52.8 97 0.08

16 68.5 85 0.48 68.1 88 0.51 71.5 85 0.49 74.2 95 0.37
32 100.1 73 1.68 101.1 71 1.64 112.1 78 1.68 102.2 75 1.55

40x40 8 80.9 98 0.02 77.0 100 0.02 92.4 96 0.04 91.8 100 0.03
16 97.2 98 0.15 92.4 98 0.14 104.4 92 0.13 97.1 98 0.12
32 126.4 82 0.67 125.5 82 0.50 120.2 75 0.48 120.2 82 0.54
64 162.9 60 2.03 150.7 61 1.82 172.7 60 2.18 161.5 64 1.82

80x80 8 133.0 94 0.01 128.5 94 0.00 147.9 93 0.02 145.4 92 0.01
16 144.4 92 0.03 141.0 97 0.03 146.0 90 0.04 150.1 94 0.07
32 155.5 82 0.18 158.0 81 0.17 171.7 78 0.16 166.3 85 0.24
64 182.4 66 0.59 176.3 62 0.72 169.8 63 0.70 183.0 62 0.53

Figure 4: Success rates for 20, 40, 80-size environments in static environments.

4.3 COMPARATIVE ANALYSIS

Centralized vs. Decentralized Approaches in MAPF. Centralized MAPF algorithms such as
ODrM* cannot scale to larger numbers of agents due to inherent intractability of the MAPF problem,
and as the number of agents increases, the central planner must consider a growing number of poten-
tial interactions and paths. Assumptions of full map observability can be unrealistic in environments
with sensory limitations or privacy constraints. Decentralized learning-based agents can make opti-
mal decisions based on partial and local observations, which allows the model to be replicated across
many agents. Constraint-solving based centralized planning methods must also perform expensive
re-planning for all agents whenever any environmental change occurs. These issues of scalability,
full observability, and adaptability associated with centralized methods can make them impractical
in many MAPF settings. In our experiments, we thus skip comparing to centralized methods as it is
not an appropriate comparison.

Offline vs. Online RL Approaches in MAPF. We show that incorporating offline RL in MAPF
(through the DT architecture) is an effective learning strategy that yields performance comparable to
other learning-based methods that require online interaction with the environment during training.
Table 1 highlights the significant reduction in required effort and our success in eliminating the
necessity for real-time interaction with environments during training. Notably, our model does
not experience the distributional shift issues that challenge offline RL algorithms when tested in
new environments. By utilizing a dataset consisting of a broad range of samples from randomly
generated grid environments, we mitigate the risk of distributional shift (analogous to Tobin et al.
(2017)).

4.4 DISCUSSION

Decision Transformer in Multi-Agent Setting. The effectiveness of treating offline reinforce-
ment learning as a sequence modeling problem and leveraging the transformer architecture has been
demonstrated by the Decision Transformer. Our findings indicate that the Decision Transformer

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison of LLMs on sample environments
GPT-4o Llama-3.1

Env Size # Agents Makespan ↓ Success Rate (%) Makespan ↓ Success Rate (%)

10x10 8 46.7 80 36.1 60
20x20 8 51.4 50 52.5 40

performs well in a multi-agent RL setting when agents are trained using a decentralized approach.
Notably, this application achieves good performance without necessitating any modifications to the
original model.

LLMs’ Efficiency in Real-Time Adjustments. The environments in which agents operate can be
dynamic with obstacles being added or removed and goal locations altered in real-time. We observe
that the DT agents performs well in response to changes in obstacles, which makes LLM assistance
unnecessary in such cases. Agents quickly adapt and navigate around newly introduced obstacles.
However, DT agents struggle when goal locations change as indicated in Figure 3. Initially, they
move toward their previous goal positions and explore those areas before eventually redirecting to
the new goals. This delay is critical, as it increases both time and energy consumption in practical
applications. Our trials using GPT-4o for 3, 5, 7, and10 timesteps indicate that guidance from GPT-
4o for 5 timesteps yields the best performance. By incorporating an LLM, agents can take more
efficient actions, which reduces unnecessary movements and prevents repetitive behaviors.

Prompt Engineering. Prompt engineering is crucial for harnessing the potential of LLMs in com-
plex reasoning tasks. We conducted several trials targeting two main objectives: optimizing the
prompt itself and selecting appropriate in-context examples. To identify the most effective prompt,
we utilized GPT-4o iteratively. We first described the problem, environment, and task, then asked
GPT-4o to rephrase the problem and setup in its own words. This process was followed by tests in
sample environments with corrective feedback provided to GPT-4o. This cycle continued until no
further improvements in performance were observed.

Additionally, to determine which in-context examples produced the best outcomes, we tested var-
ious sets of examples: one set of simple example pairs, one set of difficult example pairs, a set
arranged by increasing difficulty (analogous to curriculum learning), and sets with varying numbers
of examples. For challenging environments, we analyzed agent failures and provided step-by-step
reasoning for correct actions, similar to Chain-of-Thought (CoT) prompting. We observed that a set
of four example pairs ordered by increasing difficulty was the most effective in our problem setting.
Figures 5 and 6 in the Appendix illustrate the environments used in our final testing experiments.

5 CONCLUSION

Despite their success in diverse areas, LLMs may hallucinate, i.e., yield outputs that deviate from
factual accuracy or contextual relevance, particularly in long-horizon reasoning and planning prob-
lems Kambhampati (2024). This research attempts to harness the capabilities of LLMs within MAPF
and points out contexts wherein the utilization of the models addresses specific challenges.

Limitations & Future Work. In this paper, we opted for textual inputs because LLMs are still
largely unexplored within the MAPF literature. Replicating this approach using visual inputs and
Visual Language Models (VLMs) presents a promising direction for future research. Furthermore,
our trials with OpenAI’s recent o1-preview (Strawberry) model demonstrated success in environ-
ments where GPT-4o failed. This highlights the rapid advancements in LLM capabilities. Given
these developments, we believe that the integration of LLMs into MAPF methods is promising.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Weizhe Chen, Sven Koenig, and Bistra Dilkina. Why solving multi-agent path finding with large
language model has not succeeded yet. 2024. URL https://arxiv.org/abs/2401.
03630.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

C Ferner, G Wagner, and H Choset. Odrm* optimal multirobot path planning in low dimensional
search spaces. In 2013 IEEE International Conference on Robotics and Automation, pp. 3854–
3859, Karlsruhe, Germany, 2013.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Bin Hu, Chenyang Zhao, Pu Zhang, Zihao Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu. En-
abling intelligent interactions between an agent and an llm: A reinforcement learning approach.
arXiv preprint arXiv:2306.03604, 2023.

Subbarao Kambhampati. Can large language models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15–18, 2024.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
formers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia Sycara. Theory of mind for multi-agent collaboration via large language models. arXiv
preprint arXiv:2310.10701, 2023.

Wenhao Li, Hongjun Chen, Bo Jin, Wenzhe Tan, Hongyuan Zha, and Xiangfeng Wang. Multi-agent
path finding with prioritized communication learning, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

11

https://arxiv.org/abs/2401.03630
https://arxiv.org/abs/2401.03630

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023b.

Ziyuan Ma, Yudong Luo, and Hang Ma. Distributed heuristic multi-agent path finding with com-
munication, 2021a.

Ziyuan Ma, Yudong Luo, and Jia Pan. Learning selective communication for multi-agent path
finding, 09 2021b.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In Inter-
national Conference on Machine Learning, pp. 2681–2690. PMLR, 2017.

Thomy Phan, Joseph Driscoll, Justin Romberg, and Sven Koenig. Confidence-based curriculum
learning for multi-agent path finding. arXiv preprint arXiv:2401.05860, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

G Sartoretti, J Kerr, Y Shi, G Wagner, T K S Kumar, S Koenig, and H Choset. Primal: Pathfinding
via reinforcement and imitation multi-agent learning. IEEE Robotics and Automation Letters, pp.
2378–2385, 2019.

G Sharon, R Stern, A Felner, and N R Sturtevant. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence, pp. 40–66, 2015.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Na-
talie Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In The Twelfth International Conference on Learning Representa-
tions, 2023.

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv preprint arXiv:2306.03314, 2023.

Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
CoRR, abs/1703.06907, 2017. URL http://arxiv.org/abs/1703.06907.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Glenn Wagner and Howie Choset. M*: A complete multirobot path planning algorithm with perfor-
mance bounds. In 2011 IEEE/RSJ international conference on intelligent robots and systems, pp.
3260–3267. IEEE, 2011.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

12

http://arxiv.org/abs/1703.06907

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. Scrimp: Scalable communi-
cation for reinforcement- and imitation-learning-based multi-agent pathfinding, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. arXiv preprint arXiv:2310.01557, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Albert Yu and Raymond J Mooney. Using both demonstrations and language instructions to effi-
ciently learn robotic tasks. arXiv preprint arXiv:2210.04476, 2022.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

A APPENDIX

A.1 IN-CONTEXT EXAMPLES

Figure 5: 10× 10 Simple sample environment used to create in-context examples

After running multiple experiments, we have observed that using one simple and one difficult envi-
ronments to create in-context examples gives the best performance of LLMs. Figures 5 and 6 are
the environments used in our final testing experiments.

A.2 FULL PROMPT

There are several unique agents positioned on a two-dimensional n*n grid environment. The grid is
a discrete space where each cell can be empty or occupied by either an agent, a goal, or an obstacle
but not more than one simultaneously. Each agent is associated with a specific goal position on the
grid.

Task:. Navigate a two-dimensional grid to reach designated goal positions efficiently while obeying
the following movement specifications and restrictions:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 6: 10× 10 Difficult sample environment used to create in-context examples

Allowed Actions:. Only able to move horizontally or vertically (i.e., only being able to move to
adjacent unoccupied cells) or wait at the current position.

Avoid Static Obstacles:. Navigate around any immovable objects placed on the grid. You must not
move through cells that contain these obstacles.

Prevent Collisions:. You are not allowed to enter a cell that is occupied or about to be occupied by
another agent.

Map Boundaries:. Stay within the confines of the grid map. You are not permitted to move to a
position outside the map’s boundaries.

Optimize Time:. Find the shortest and fastest route to your designated goal position. Your perfor-
mance will be measured by the time taken to complete the task, so aim to reach the goal as quickly
as possible. Prioritize taking actions that move agents directly to the goal. If both directions are
blocked by obstacles or agents, try to move around if they are both obstacles or wait for a time step
and let the agent move away then start the movement in the next timestep.

Do Not Block Paths:. While navigating to your goal, be aware of other agents’ goals and paths.
Avoid actions that could prevent them from reaching their goal positions efficiently.

The origin (0,0) is placed in the bottom-left corner. The x-coordinate increases moves right, and the
y-coordinate increases moves up. Each coordinate on the x-axis and y-axis can range from 0 to n.

Question:. These are the coordinates for static obstacles: [(4,5),(4,4),(4,3)], meaning no agent will
be permitted to move into any of these cells. These are the coordinates for agents’ current positions
in order: [(0,7), (3,1), (6,3), (5,7)] These are the coordinates for agents’ goals in order: [(1,9), (5,3),
(3,4), (7,7)]

Considering the above specifications and restrictions, what should be the agents’ actions for the next
time-step? Give me actions in order for all 4 agents.

Answer:. For the agent in (0,7), the distance between the agent and its goal can be decomposed into
1 step to the right and 2 steps to the up. There are no agents or static obstacles adjacent to the agent.
If we move up, the new cell is (0,8) which is not occupied by another agent or static obstacles and
brings the agent closer to its goal at (1,9). Hence, let’s choose UP for the next action.

For the agent in (3,1), the distance between the agent and its goal can be decomposed into 2 steps
to the right and 2 steps to the up. There are no agents or static obstacles adjacent to the agent. If
we move right, the new cell (4,1) is not occupied by another agent or static obstacles also brings the
agent closer to its goal position at (6,3). Hence, let’s choose RIGHT for the next action.

For the agent in (6,3), the distance between the agent and its goal can be decomposed into 3 steps to
the left and 1 step to the up. There are no agents or static obstacles adjacent to the agent. But there
are static obstacles on the shortest path to its goal, so the agent should consider long-term planning.
Considering this, the distance between the agent and its goal can be decomposed into 1 step to the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

down, 3 steps to the left and 2 steps to the up. If we move down, the agent moves to (6,2) which
brings the agent closer to the goal position at (3,4). Let’s choose DOWN for the next action.

For the agent in (5,7), the distance between the agent and its goal can be decomposed into 2 steps
to the right. There are no agents or static obstacles adjacent to the agent. If we move right, the new
cell is (6,7) which is not occupied by another agent or static obstacles and brings the agent closer to
its goal at (7,7). Hence, let’s choose RIGHT for the next action.

Hence, the answer is [”UP”, ”RIGHT”, ”DOWN”, ”RIGHT”].

Question: These are the coordinates for static obstacles: [(4,5),(4,4),(4,3)], meaning no agent will
be permitted to move into any of these cells. These are the coordinates for agents’ current positions
in order: [(0,8), (4,1), (6,2), (6,7)] These are the coordinates for agents’ goals in order: [(1,9), (5,3),
(3,4), (7,7)]

Considering the above specifications and restrictions, what should be the agents’ actions for the next
time-step? Give me actions in order for all 4 agents.

Answer: For the agent in (0,8), the distance between the agent and its goal can be decomposed into
1 step to the right and 1 step to the up. There are no agents or static obstacles adjacent to the agent.
If we move up, the new cell is (0,9) which is not occupied by another agent or static obstacles and
brings the agent closer to its goal at (1,9). Hence, let’s choose UP for the next action.

For the agent in (4,1), the distance between the agent and its goal can be decomposed into 1 step
to the right and 2 steps to the up. There are no agents or static obstacles adjacent to the agent. If
we move right, the new cell is (5,1) which is not occupied by another agent or static obstacles and
brings the agent closer to its goal at (5,3). Hence, let’s choose RIGHT for the next action.

For the agent in (6,2), the distance between the agent and its goal can be decomposed into 3 steps
to the left and 2 steps to the up. There are no agents or static obstacles adjacent to the agent. If the
agent goes up now, there may be static obstacles on the shortest path to its goal, the agent should
consider long-term planning. Considering this, the agent should complete the left steps first, then go
up. If the agent choses left, the new position will be (5,2) which brings the agent closer to its goal at
(3,4). Let’s choose LEFT for the next action.

For the agent in (6,7), the distance between the agent and its goal can be decomposed into 1 step to
the right. There are no agents or static obstacles adjacent to the agent. If we move right, the new
cell is (7,7) which is not occupied by another agent or static obstacle and brings the agent to its goal
at (7,7). Hence, let’s choose RIGHT for the next position.

Hence, the answer is [“UP”, “RIGHT”, “LEFT”, “RIGHT”]

Question: These are the coordinates for static obstacles: [(0,8), (1,8), (2,8), (0,4), (1,3), (2,5), (2,4),
(2,3), (2,2), (3,6), (3,2), (3,1), (4,1), (8,6), (8,5), (8,4), (8,3), (8,2), (8,1), (8,0), (9,6)], meaning no
agent will be permitted to move into any of these cells. These are the coordinates for agents’ current
positions in order: [(0,9), (2,9), (0,2), (5,2), (7,2)] These are the coordinates for agents’ goals in
order: [(3,9), (1,9), (0,5), (9,2), (8,2)]

Considering the above specifications and restrictions, what should be the agents’ actions for the next
time-step? Give me actions in order for all 5 agents.

Answer: For the agent in (0,9), the distance between the agent and its goal can be decomposed into
3 steps to the right. There is an obstacle adjacent to this agent at (0,8) so we will not be able to
move down. The agent can move to the right. If we move right, the new cell is (1,9) which is not
currently occupied by any agents or static obstacles and brings the agent closer to its goal. Let’s
choose RIGHT for the next action.

For the agent in (2,9), the distance between the agent and its goal can be decomposed into 1 step to
the left. There are obstacles adjacent to the agent at (2,8) and an agent at (1,9), thus preventing this
agent from moving to the down and to the left. The agent that is blocking needs to move right to
arrive at its goal. To not block that agent’s path, we move to right now, the new cell is (3,9) which is
not currently occupied by any agents or static obstacles and then continue to the goal once the agent
has moved away. If the agent moves right, it will be in the (3,9) cell which is currently unoccupied.
Let’s choose RIGHT for the next action.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For the agent in (0,2), the distance between the agent and its goal can be decomposed into 3 steps to
the up. There are no agents or static obstacles adjacent to the agent, however, if the agent goes up,
there is a static obstacle at (0,4) on its path to the goal at (0,5). Considering the static obstacles on
the agent’s path to its goal, the agent needs to move towards an obstacle-free path to its goal, so it
needs to go around the obstacles. Going down accomplishes this and (0,1) is currently empty. Let’s
choose DOWN for the next action.

For the agent in (5,2), the distance between the agent and its goal can be decomposed into 4 steps
to the right. There are no agents or static obstacles adjacent to the agent. If we move right, the new
cell is (6,2) which is not currently occupied by any agents or static obstacles and moves the agent
closer to its goal at (9,2). Let’s choose RIGHT for the next action.

For the agent in (7,2), the distance between the agent and its goal can be decomposed into 1 step to
the right. However, if we move right, the new cell will be (8,2) which is blocking another goal in
(9,2) which is the goal for the agent currently in 8(5,2). To not block another agent’s path, we move
up or down now. If we move up, the new cell is (7,3) which is not currently occupied by any agents
or static obstacles. Let’s choose UP for the next action.

Hence, the answer is [”RIGHT”, ”RIGHT”, ”DOWN”, ”RIGHT”, ”UP”].

Question: These are the coordinates for static obstacles: [(0,8), (1,8), (2,8), (0,4), (1,3), (2,5), (2,4),
(2,3), (2,2), (3,6), (3,2), (3,1), (4,1), (8,6), (8,5), (8,4), (8,3), (8,2), (8,1), (8,0), (9,6)], meaning no
agent will be permitted to move into any of these cells. These are the coordinates for agents’ current
positions in order: [(1,9), (3,9), (0,1), (6,2), (7,3)] These are the coordinates for agents’ goals in
order: [(3,9), (1,9), (0,5), (9,2), (8,2)]

Considering the above specifications and restrictions, what should be the agents’ actions for the next
time-step? Give me actions in order for all 5 agents.

Answer: For the agent in (1,9), the distance between the agent and its goal can be decomposed into
2 steps to the right. There is a static obstacle at (1,8) meaning the agent is not allowed to move
down. The agent can move to the right. If we move right, the new cell is (2,9) which is not currently
occupied by any agents or static obstacles and moves the agent closer to its goal at (3,9). Let’s
choose RIGHT for the next action.

For the agent in (3,9), the distance between the agent and its goal can be decomposed into 2 steps to
the left. However, if we move left, the new cell is (2,9) which will be occupied by another agent. To
not block that agent’s path, we move down now, the new cell is (3,8) which is not currently occupied
by any agents or static obstacles. Let’s choose DOWN for the next action.

For the agent in (0,1), the distance between the agent and its goal can be decomposed into 4 steps to
the up. There are no agents or static obstacles adjacent to the agent. However, if the agent goes up,
there is a static obstacle on its path to the goal at (0,4). Considering the static obstacles on the agent’s
path to its goal. The agent needs to move towards an obstacle-free path to its goal, so it needs to go
around the obstacles. Let’s choose UP for the next action which moves the agent to (0,2) which is
closer to the goal but be sure to remember that we have to move around the obstacle at (0,4).

For the agent in (6,2), the distance between the agent and its goal can be decomposed into 3 steps
to the right. There are no agents or static obstacles adjacent to the agent. If we move right, the new
cell is (7,2) which is not currently occupied by any agents or static obstacles and moves the agent
closer to the goal at (9,2). Let’s choose RIGHT for the next action.

For the agent in (7,3), the distance between the agent and its goal can be decomposed into 1 step to
the right and 1 step to the down. There is a static obstacles adjacent to the agent at (8,3) meaning
the agent is not allowed to move to the right. There is also an agent at (7,2) meaning the agent is
not allowed to move down. Hence, let’s choose WAIT for the next action and once the agent below
moves, we can move down and get closer to the goal at (8,2).

Hence, the answer is [”RIGHT”, ”DOWN”, ”DOWN”, ”RIGHT”, ”WAIT”].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The query question below is generated by our pipeline:

Question:

Consider the above question-answer examples and give me the next actions which would lead agents
towards their goal positions. Display the actions at the end of the response. Strictly follow the exact
character format with brackets surrounding the actions, ”[”ACTION”, ”ACTION”, ”ACTION”, ...]”.

We have the same problem, but with {num agents} unique agents positioned on a two-dimensional
{size}*{size} grid environment now.

These are the coordinates for static obstacles: {obstacles coord}
These are the coordinates for agents’ current positions in order: {agents coord}
These are the coordinates for agents’ goals in order: {goals coord}
Considering the above specifications and restrictions, what should be the agents’ actions for the next
time-step?

Take into consideration that we have to move towards the goal, thus we shouldn’t be waiting if we
can take an action that gets an agent closer towards its goal. If an action would collide an agent
into a static obstacle, prefer actions that aim to move around that obstacle while also making sure
those directions wouldn’t collide into another obstacle. Give me the set of actions in order for all
{num agents} agents.

17

	Introduction
	Preliminaries
	Problem Setting
	Multi-Agent Path Finding
	Decision Transformer
	Large Language Models

	Method
	Building Training Dataset
	Training Decision Transformer
	Prompting GPT-4

	Experiments
	Experimental Setup
	Results
	Comparative Analysis
	Discussion

	Conclusion
	Appendix
	In-context Examples
	Full Prompt

