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ABSTRACT

The architectures of convolution neural networks (CNN) have a great impact on
the predictive performance and efficiency of the model. Yet, the development of
these architectures is still driven by trial and error, making the design of novel
models a costly endeavor. To move towards a more guided process, the impact of
design decisions on information processing must be understood better. This work
contributes by analyzing the processing of the information in neural architectures
with parallel pathways. Using logistic regression probes and similarity indices,
we characterize the role of different pathways in the network during the inference
process. In detail, we find that similar sized pathways advance the solution quality
at a similar pace, with high redundancy. On the other hand, shorter pathways
dominate longer ones by majorly transporting (and improving) the main signal,
while longer pathways do not advance the solution quality directly. Additionally,
we explore the situation in which networks start to “skip” layers and how the
skipping of layers is expressed.

1 INTRODUCTION

The architectures of Convolutional Neural Network (CNN) classifiers are an important influencing
factor regarding their predictive performance and computational efficiency, with many designs being
proposed over the years (Simonyan & Zisserman, 2015; He et al., 2016; Szegedy et al., 2015; Tan
& Le, 2019; Sandler et al., 2018). These architectures can be generally subdivided into two distinct
categories. First, the sequential architectures like VGG16 by Simonyan & Zisserman (2015), which
essentially consist of a sequence of layers leading from the input to the output of the network. While
these architectures are simplistic in structure, they have been surpassed by multi-path architectures
in efficiency and predictive performance.

Multipath architectures can be described as a directed acyclic graph, with the nodes representing
the layers. Information provided at the input of a multipath network can be processed by different
sequences of layers that are intertwined in the overall neural architecture. The Inception-family of
networks is an example for such an architecture (Szegedy et al., 2015; 2016; 2017), where each
building block features a different set of layers and allows for the parallel extraction of heteroge-
neous features. Networks featuring skip-connections like ResNet, MobileNetV2, MobileNetV3 and
EfficientNet (He et al., 2016; Sandler et al., 2018; Howard et al., 2019; Tan & Le, 2019) are a special
case of multipath architectures, since they may only feature a single sequence of layers.

However, since the skip-connections effectively allow signals to skip layers, it is possible for any
signal from the input to take multiple paths to the output, thus making these architectures multi-
path architectures. On the other hand, multi-path architectures require the model to implicitly make
decisions regarding the distribution of the inference process, since some routes connecting two layers
may differ in their capacity (number of parameters), depth and receptive field size. In essence, during
training, the model will learn to utilize the different pathways, implicitly deciding how the inference
process is distributed in branching paths and whether to skip certain layers.

These decisions have been discussed theoretically by authors like He et al. (2016), who for ex-
ample elaborate the possibility of identity-mappings in skip-connections, which effectively enable
the network to remove layers from the qualitative inference process. In this work, we empirically
investigate how parallel pathways and skip connections are utilized in multi-path CNN architectures.
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Our contributions can be summarized as follows:

• We find that networks with skip connections reliably skip layers when a mismatch between
receptive field and input resolution occurs. This finding is in agreement with the findings
of Richter et al. (2021b) and Richter et al. (2021a).

• We show that networks with parallel pathways of strongly different depth will prefer the
shorter pathway over the longer pathway due to a partial vanishing gradient.

• We demonstrate that multi-path architectures with parallel pathways of roughly similar size
advance the solution quality in a similar pace and with a high degree of redundancy.

2 RELATED WORK

2.1 MULTI-PATH NETWORKS

Since this work is focussed on multi-path architectures, we will introduce the most significant works
regarding this type of neural architecture as well as the contemporary reasoning for the introduction
of the proposed neural architectures. After the advent of CNNs, there were several works that fo-
cused on improving their performance by introducing novel architectures (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015). Although one of the most intuitive ways to improve the accuracy
of CNNs is by increasing the number of layers (depth), there is an upper limit to it. After a specific
level, there are certain hurdles that occur such as network overfitting, vanishing gradient (Hochreiter,
1998; Dong et al., 2015), and also it becomes computationally expensive to train them. Therefore,
to train such deep networks, several works proposed the idea of multipath networks (He et al., 2016;
Larsson et al., 2017; Huang et al., 2018; Kuen et al., 2017). The multipath networks presented in
(Mao et al., 2016; Tong et al., 2017; Srivastava et al., 2015) introduced shortcuts in the networks
structure that facilitate a customized flow of information such that the vanishing gradient problem
is reduced. The work by Szegedy et al. (2015) introduced sparsely connected architectures moti-
vated by Hebbian principle to solve the problem of overfitting and then clustering them to dense
matrices (Ümt V. Çatalyürek et al., 2010) so that the network can be trained efficiently on the hard-
ware. Further improvements to this network were introduced (Szegedy et al., 2016; 2017) to increase
its accuracy and training efficiency. Since the information available to the shallower layers is not
available to the deeper layers, He et al. (2016) introduced the Residual Networks (ResNets) which
used skip connections to preserve the gradient. The skip connections are operated by vector addi-
tion whereas in the method proposed by Huang et al. (2018), the skip connections are operated by
concatenation of the feature maps.

2.2 RELEVANT ANALYSIS TOOLS AND SIMILARITY METRICS

Since we are interested in the information processing of CNNs, a set of analysis tools is required
that allows us to analyze the processing within the neural architecture. Our main analysis tool that
is used extensively throughout this work are logistic regression probes (LRP) by Alain et al. (2020).
LRP are logistic regressions trained on the output of a hidden layer. Since classifiers implicitly
maximize the linear separability of the data, the predictive performance of the logistic regression
models on the test set allows us to track the progress of the intermediate solution quality while the
data is propagated from layer to layer (see Fig. 1). The usefulness of LRP has been demonstrated by
the works of Richter et al. (2020), Richter et al. (2021a) and Richter et al. (2021b), which utilize LRP
to identify inefficiencies in neural architectures caused by layers not contributing qualitatively to the
inference process. Alain et al. (2020) find by experimenting on multilayer perceptrons with skip
connections that the skipping of a sequence of layers is observable by logistic LRP by a degradation
in performance. A reproduction of this experiment on MNIST using a similar architecture can be
seen in Fig. 2. In section 3 we furthermore utilize saturation proposed by Richter et al. (2020) as an
additional tool for analyzing the output of hidden layers. Saturation uses PCA to approximate the
subspace the data is processed, and can be interpreted as the percentage of dimensions utilized by
the data in the output of space of a given layer. Thereby, highly saturated layers can be usually seen
as active, in the sense that they contribute qualitatively to the prediction, while layers that are low
saturated relative to the rest of the network tend to be unproductive. A sequence of unproductive
layers is referred to as a tail pattern.
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Figure 1: Logistic Regression Probes allow the practitioner to observe the evolution of the interme-
diate solution quality from layer to layer. The probe performance at each layer of VGG16 trained
on Cifar10. The performance is increasing layer by layer, indicating that the problem is solved
incrementally and that the inference process is evenly distributed among layers.

.

(a) The multi-layer perceptron architecture used for the reproduction of
the experiment on skip connections by Alain et al. (2020). The architec-
ture deviates slightly from the original by Alain et al. (2020) to make the
model easier to train.
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(b) The performance of the logistic regression probes in the order of the forward pass. Note
the stark difference in behavior between the first part (encapsulated by the skip connection)
and the second part of the network.

Figure 2: The images show the basic neural architecture with skip connection (a) and the probe
performances of each layer (b). The setup is designed to provoke the network to ”skip” the 128 layers
by learning some identity-mapping analog. By observing the probe performances, this behavior can
be observed. After the initial layer, the performance degrades until reaching chance level. The probe
performances recover as soon as the skip connection is added to the layers again. We will observe
similar behavior on convolutional neural networks over the course of this work.

Since we are interested in the information processing of (partial) networks, tools that easily allow
the comparison of learned feature representation are required. Several works (Raghu et al., 2017;
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Morcos et al., 2018; Feng et al., 2020) proposed such tools to gauge the similarity of the features
learned by two models having the same architectures but trained with different initialization. The
similarity is calculated by taking the hidden state activations from each model in the form of a
feature matrix and finding a measure of correlation between them. The method proposed by Wang
et al. (2018) uses a subspace match model to find the similarity in terms of maximum and simple
matches. Raghu et al. (2017) uses Canonical Correlation Analysis (CCA) proposed in Golub &
Zha (1995) coupled with Singular Vector Decomposition (SVD) to compare the representations
presented by two neural networks in a process which is invariant to invertible linear transformations.
The technique by Morcos et al. (2018) further improves this method by giving more weight to
those intermediate CCA vectors which are more important for the representations. Another metric
proposed by Feng et al. (2020) called the Transferred Discrepancy (TD) focuses on the practical
usage of the representations by stating their similarity based on their performance in downstream
tasks.

Another approach to compare layer activations, that has gained popularity over the last years is Cen-
tered Kernel Alignment (CKA, Cortes et al., 2012), which we will use for this work. It is introduced
as a normalized version of the Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al., 2005),
and when used with linear kernels, it is equivalent to the RV coefficient Robert & Escoufier (1976).
In this form it has been applied successfully in recent works as an efficient alternative to SVCCA
and other methods (Nguyen et al., 2021; Kornblith et al., 2019), majorly because it requires less
number of data points (Kornblith et al., 2019).

3 DISTRIBUTION OF INFORMATION PROCESSING IN NETWORKS WITH
SKIP-CONNECTIONS

In this section, we will investigate the first scenario we identified in which a network with a skip
connection will reliably choose not to utilize the layers encapsulated by a skip connection. Skip-
ping of layers could be described as an autogenous pruning technique, where the model decides
during training to not utilize certain layers. Therefore, we hypothesize that layers that would be
unproductive are likely to be skipped if the network is given the opportunity. We find that it is pos-
sible to guarantee a convolutional layer will not be able to contribute to the quality of the solution
by utilizing the knowledge about the relation of receptive field and input resolution presented by
Richter et al. (2021b). The authors show experimentally that convolutional layers can only enhance
the quality of the solution if the receptive field of the layer’s input is smaller than the input image.
Simply speaking, if the layer is unable to integrate novel information into a feature map position
by convolving the kernel over the input, the layer will not improve the quality of the intermediate
solution.

In case of a simple sequential architecture neural network like VGG16 the layers pass the solved
problem from layer to layer while not enhancing the intermediate solution quality, as Fig. 3 (a) ex-
emplifies. The observed effect is caused by training the model on Cifar10 using the native resolution
of 32 × 32 pixels. When repeating this experiment on DenseNet18, we can see that the probe per-
formance no longer stagnates. Instead, the final dense-block of the model is skipped entirely, which
is apparent when looking at the decaying probe performance in Fig. 3 (b). A similar effect can be
observed when training ResNet34 in the same scenario. In this case, unproductive residual blocks
are skipped. Since the input of a residual block is added to its output, the performance recovers
after each building block and thus recovering the intermediate solution quality. This is reflected by
a zig-zag-pattern in the LRP.

Based on these results, we can see that unproductive layers are behaving differently in architectures
where these layers can be bypassed. Instead of learning to functionally emulate a pass-through
layer, the layers learn a representation which is functionally equivalent to an identity mapping. With
functionally equivalent, we refer to the behavior of the layers being similar to a pass-through layer
or an identity mapping regarding the predictive performance. We find that skipped layers do in-fact
not learn an identity mapping. Instead, these layers learn a harmless non-zero representation that
does not hurt the intermediate solution quality when added to the feature map containing a good
solution. This makes it also impossible to remove these skipped layers in a primitive pruning step
without retraining the model, since the changes in the data caused by the unproductive layers are
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(a) VGG16 tail layers maintain the quality of the intermediate so-
lution.
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(b) The tail of DenseNet18 shows a decay in probe performance,
indicating that the last DenseBlock is skipped entirely (Alain et al.,
2020).
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(c) ResNet34 skips most residual blocks in the tail, which is ap-
parent by the zig-zag pattern in probe performances caused by the
starts and end of skip-connections (Alain et al., 2020).

Figure 3: Depending on the neural architecture, tail patterns may deviate in their appearance in probe
performance. In sequential architectures (a) the layers maintain the quality of the intermediate so-
lution. If shortcut connections exist in the architecture, layers may be skipped. Skipped layers are
apparent by their decaying probe performance Alain et al. (2020). This is apparent on DenseNet18
(b) and ResNet34 (b) where a single DenseBlock and multiple ResidualBlocks are skipped respec-
tively. All models are trained on Cifar10 at native resolution.

still expected by the following layers. Nevertheless, removing the skipped layers and retraining the
pruned model will lead to a more efficient network (Richter et al., 2021b).

4 DISTRIBUTION OF INFORMATION PROCESSING IN MULTI-PATH
ARCHITECTURES

We proceed to investigate networks with parallel sequences of layers. To make the results of this
investigation easier to visualize, we use a simple CNN architecture that is composed of building
blocks that contain two distinct pathways. The basic template for this architecture can be seen in
Fig. 4. The architecture itself consists of four stages consisting of k building blocks each. The
filter size is doubled from stage to stage, while the first layers to process the data in every stage
downsample the filter map with convolutions with stride size 2. The downsampling and the increases
in filter sizes over multiple stages are a common feature in modern neural architectures such as
ResNet He et al. (2016) or EfficientNet (Tan & Le (2019)). The individual building blocks have a
two-pathway layout, see Fig. 4 (b). Each pathway is a sequence of layers using the same kernel
size. The number of layers and kernel sizes in each pathway are varied throughout the experiments
and will be explicitly mentioned in the respective experiment. The pathways are reunited using an
element-wise addition. We decided to utilize element-wise addition instead of concatenation, since
it avoids the otherwise necessary 1 × 1 convolution for dimension reduction after each building
block. From additional experiments, we find that the 1 × 1 convolutions also do not impact the
results of the experiments substantially. We refer to this multipath architectures as MPNetK(n1 :
s1 × s1, n2 : s2 × s2), where K is the number of building blocks, n1 and n2 refer to the number of
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layers for the first and second pathway and k1 and k2 refer to the kernel sizes used in the first and
second pathway respectively. We refer to the sequence of layers composed by only the pathways that
feature the smaller kernel size as pl,min and to the path with the larger kernel sizes as pl,max. While
these pathways are intertwined in the architecture, we visualize these two pathways as separate
sequences, which makes the visualizations more digestible.

(a) Overall structure (b) Building Block

Figure 4: The architecture used for the experiments in this section. Each stage consists of k blocks
and has double the filters of the previous stage. The first layer of each stage is a downsampling layer
with a stride size of 2. Each building block consists of two pathways, which resemble sequences of
convolutional layers.

Training is conducted on the datasets of ImageNette and Cifar10. We choose ImageNette over the
full ImageNet dataset, since the large number of experiments is necessary to make the results pre-
sented in this work quantifiable. Since LRPs are very resource and time intensive to train on large
datasets, we make this concession to practicality. Training is conducted using the same preprocess-
ing as He et al. (2016), training is conducted for 30 epochs using stochastic gradient descent with a
learning rate of 0.1. The learning rate is reduced by a factor of 0.1 every 10 epochs.

4.1 DOMINANT AND NON-DOMINANT PATHWAYS IN HETEROGENEOUS BUILDING BLOCKS

We first investigate scenarios where the pathways behave substantially different when measured
with LRP. We find that this can be achieved by increasing the heterogeneity between the different
pathways. To exemplify this, a building block is used with a 3 × 3 pathway with 4 layers and a
7 × 7 pathway with a single layer. These two pathways differ in three important properties. The
number of layers, resulting in a strong difference in capacity, receptive field and gradient flow. We
train these models on ImageNette with an 250× 250 input resolution. When using a single building
block per stage, we can see in Fig. 5a that now the second building block is only utilizing the short
pathway. When doubling the number of building blocks per stage, we observe in Fig. 5b that this
behavior has spread to all building blocks. While this indicates that pl,min is utilized while layers
of pl,max are skipped, we were unable to confirm this experimentally. When removing the skipped
layers, we find that the performance decreases by 2.16%-points on average, which indicates that’s
these paths are still not entirely irrelevant for the inference process. For this reason, we will not
refer to these paths as skipped. Instead, we will refer to the path as dominant when they advance
the intermediate solution quality directly and non-dominant when their contribution is not directly
measurable by logistic regression probes.

4.1.1 PARTIAL VANISHING GRADIENT IN NON-DOMINANT PATHWAYS

So far, we observe two distinct causes for degradation in LRP performance. First, the degrada-
tion caused by an excessively large receptive field in section 3, second the dominant/non-dominant
behavior observed in section 4.1 caused by heterogeneity in the pathways. The pathways of the pre-
viously tested models in section 4.1 differ in depth and receptive field size. We hypothesize that the
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(a) MPNet2(1 : 3× 3, 4 : 7× 7)
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(b) MPNet4(1 : 3× 3, 4 : 7× 7)

Figure 5: When training MPNet with pathways of different depth, a deeper pathway is skipped for a
building block (a), which is apparent by the deteriorating probe performance. This effect occurs on
all building blocks when the depth is increased. The models are trained on Cifar10.

observed behavior is caused by one of those two factors. We test this hypothesis by using a building
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(a) MPNet2(8 : 3× 3, 1 : 21× 21)
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Figure 6: Different from tail patterns, the shallower pathway is dominating the deeper pathway even
if their receptive field sizes are identical (a). We attribute the dominating-behavior to a vanishing
gradient in the deeper pathway, evident in the overall lower size of the gradients (b).

block with a pathway using 8 3×3 layers and a second pathway using a single 21×21 convolutional
layer. The result of this unusual setup is that the single layer on the pl,min-pathway will increase the
receptive field more than the stack of 3× 3 in the other pathway. If the receptive field is responsible
for this behavior, we should be able to observe a skipping-behavior in the shorter path. As we can
see in Fig. 6a, this is not the case. Instead, the layers still appear to be dominant for the most part.
A better explanation for this behavior is provided by analyzing the accumulated gradients of a neu-
ral architecture with a clear dominant/non-dominant behavior lime MPNet4(1 : 3 × 3, 4 : 7 × 7)
trained on ImageNette using an 160×160 input resolution in Fig. 6b. This is done by computing the
average over the absolute mean of all gradients, which gives us an idea on the size of the gradient
that is propagated back through a given layer. We can clearly see that the gradients of the long,
non-dominant pathway are strictly smaller than the gradient of the dominant pathway. We interpret
this as a partial vanishing gradient problem, where the gradient flow is following the path of least
resistance, implicitly preferring shorter pathways to longer ones, where the signal may be more
diluted by the number of layers the gradient has to pass through.

4.2 COEXISTENCE OF HOMOGENEOUS PARALLEL PATHWAYS IN MULTIPATH
ARCHITECTURES

We continue to analyze scenarios in which both pathways are less heterogeneous. For this reason,
we train a MPNet2(2 : 3 × 3, 2 : 7 × 7) on Cifar10. The equal number of layers in both pathways
ensures that the gradient travels through a similar amount of layers in both pathways. We chose the
kernel sizes to make both pathways slightly heterogeneous, similarly to the different pathways in the
Inception architectures. We additionally train MPNet2(1 : 3× 3, 2 : 7× 7), which features one less
3 × 3 convolution to increase the heterogeneity of the pathways. We train both models on Cifar10
and train LRP on each layer of the architecture. From the results in Fig. 7 we observe that the probe
performance of the two pathways pl,min and pl,max are almost indistinguishable. We interpret this
as a coexisting behavior, these pathways do not necessarily extract different features to achieve the
depicted increase in LRP accuracy. We will see further evidence of this in the next section.
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(a) MPNet2(2 : 3× 3, 2 : 7× 7)
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(b) MPNet2(1 : 3× 3, 2 : 7× 7)

Figure 7: The MPNet architectures with only slightly different pathways in each building block
show a coexisting behavior, which is indicated by the probe performances of the 3 × 3-pathway
pl,min and the 7× 7 pathway pl,max increasing at a similar rate.

4.2.1 CORRELATION ANALYSIS IN MULTIPATH ARCHITECTURES

To provide additional insights and also a different perspective on the division of information in
multipath networks, we utilize the CKA as a metric to quantify correlations. While our main analysis
tool, LRP, measures the quality of the information being carried in terms of accuracy, the CKA can
provide the correlation measurement between the latent representations of layers. We compute the
CKA for all the layers (for both the paths) with the final output of the network. This is calculated in
a similar way as the LRP accuracy (see section 2.2). The resulting graphs can be seen in the Fig. 8.
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(a) MPNet2(1 : 3×3, 2 : 7×7) trained on Cifar10
dataset.
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(b) MPNet2(2 : 3×3, 2 : 7×7) trained on Cifar10
dataset.
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(c) MPNet4(8 : 3 × 3, 1 : 7 × 7) trained on Ima-
geNette200 dataset.

Figure 8: Comparison of the representational similarity score given by the Centered Kernel Align-
ment (Cortes et al., 2012; Kornblith et al., 2019) and the probe performance of MPNet architectures
with different sets of pathways in each building block. The CKA value is calculated to quantify each
layer’s representational similarity with the final output of the network. The min and max subscript
refer to the path with the smaller and larger kernel sizes. The CKA values are in accordance with the
probe performance, indicating that the shorter paths and the longer paths are extracting more similar
features in early layers of the network when compared to later layers.

We observe that initially both the shorter and the longer paths have relatively similar internal repre-
sentations because the plots of CKA for these paths are close to each other. In the later stage, we can
see that the CKA values are significantly different from each other, which signifies that shorter paths
and longer paths are learning different representations in the later stage of the network. Another
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trend that we observe is, that the shorter path exhibits higher internal representation correlation with
that of the final output of the neural network than the longer path. This is substantial as the CKA
values of the shorter path are higher throughout compared to the CKA values of the longer path.
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Figure 9: MPNet2(8 : 3×3, 8 : 3×3) trained on ImageNette dataset showing the correlation among
8 layers deep parallel pathways. We observe that layers of the two pathways have high redundancy
with their respective counterparts in the other pathway, indicating a parameter inefficiency.

.

Additionally, we are interested in learning how much work is shared when pathways are very deep
and identical in their structure. We test this by analyzing the last building block of MPNet2(8 :
3 × 3, 8 : 3 × 3) trained on ImageNette. Since both pathways are identical, we can compare the
layers in a building block directly with their counterparts from the other pathway. This is different
compared to the previous experiment, where we measured CKA similarity of all layers with the
final output of the network. When looking at the CKA similarity heatmap of a building block in
Fig. 9, we can observe that layers in the first pathway show a high similarity with their respective
counterparts in the other pathway, implying a high degree of redundancy in the extracted features.
This could be considered a parameter inefficiency.

5 DISCUSSION AND CONCLUSION

In this work, we analyzed the distribution of the inference process in multipath architectures. We
first investigated sequential models with skip connections like ResNet and DenseNet. For these ar-
chitectures, we find that layers are skipped when they are part of the tail pattern (see the works of
Richter et al. (2021a) and Richter et al. (2021b)), which can be predicted by applying the border-
layer rule of Richter et al. (2021b). We then moved on to architectures with multiple pathways in
each building block. Our analysis suggests, that only the pathways with fewer layers are utilized
if the parallel pathways differ strongly in depth. We were able to attribute this to a localized van-
ishing gradient problem experimentally. When the pathways are homogeneous, the behavior of the
pathways changes to a coexisting behavior, where both pathways improve the intermediate solution
quality at a similar pace. We find that slight differences in the pathways result in increasingly distinct
extracted features in later layers. However, if the pathways are identical, also the extracted features
become identical according to our CKA analysis.

It can be argued that the parameters of the layers in multipath architectures are not utilized fully in
the heterogeneous and homogeneous case. In one scenario because of the redundancy in extracted
features, and in the other case because of layers not directly advancing the intermediate solution
quality. Following the line of thought, architectures with parallel pathways may be prone to inef-
ficiencies. This may also explain why most efficient state-of-the-art architectures in recent years
like ResNet, MobileNet and EfficientNet only feature skip connection, which do not suffer from this
problem.
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