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ABSTRACT

Decision Tree (DT) Learning is a fundamental problem in Interpretable Machine
Learning, yet it poses a formidable optimisation challenge. Despite numerous
efforts dating back to the early 1990’s, practical algorithms have only recently
emerged, primarily leveraging Dynamic Programming (DP) and Branch & Bound
(B&B) techniques. These methods fall into two categories: algorithms like DL8.5,
MurTree and STreeD utilise an efficient DP strategy but lack effective bounds for
pruning the search space; while algorithms like OSDT and GOSDT employ more
efficient pruning bounds but at the expense of a less refined DP strategy. We
introduce BRANCHES, a new algorithm that combines the strengths of both ap-
proaches. Using DP and B&B with a novel analytical bound for efficient pruning,
BRANCHES offers both speed and sparsity optimisation. Unlike other methods, it
also handles non-binary features. Theoretical analysis shows its lower complexity
compared to existing methods, and empirical results confirm that BRANCHES out-
performs the state-of-the-art in speed, iterations, and optimality.

1 INTRODUCTION

Black-box models are ill-suited for contexts where decisions carry substantial ramifications. In
healthcare, for instance, an erroneous negative diagnosis prediction could delay crucial treatment,
leading to severe outcomes for patients. Likewise, in the criminal justice system, black-box models
may obscure biases associated with factors such as race or gender, potentially resulting in unjust and
discriminatory rulings. These considerations underscore the importance of adopting interpretable
models in sensitive domains.

Decision Trees (DTs) are valued for their ability to generate simple decision rules from data, making
them highly interpretable models. Unfortunately, DT optimization poses a significant challenge
due to its NP-completeness, as established by Laurent & Rivest (1976). Consequently, heuristic
methods, such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 2014) and CART (Breiman et al., 1984),
have been favoured historically. These methods construct DTs greedily by maximising some local
purity metric for each chosen split, however, while they are fast and scalable, their greedy nature
often leads to suboptimal and overly complex DTs, detracting from their interpretability.

This suboptimality issue spurred researchers into investigating alternatives since the early 1990’s,
these alternatives are mainly based on Mathematical Programming, they range from Continuous
Optimisation (Bennett & Blue, 1996; Norouzi et al., 2015; Blanquero et al., 2021) to Mixed Inte-
ger Programming (MIP) (Bertsimas & Dunn, 2017; Verwer & Zhang, 2019; Günlük et al., 2021),
Satisfiability (SAT) (Bessiere et al., 2009; Narodytska et al., 2018). However, solving these Mathe-
matical Programs scales poorly with large datasets and many features. Moreover, these approaches
often fix the DT structure and only optimise the internal splits and leaf predictions, which is sig-
nificantly less challenging than optimising both accuracy and DT structure (sparsity). Nonetheless,
breakthroughs based on Dynamic Programming (DP) and Branch & Bound (B&B) have emerged
recently (Hu et al., 2019; Aglin et al., 2020; Lin et al., 2020; Demirović et al., 2022; McTavish et al.,
2022; van der Linden et al., 2024) and they provided the first practical algorithms for DT optimisa-
tion. These methods fall into two categories, algorithms like DL8.5, MurTree and STreeD operate at
the level of the nodes, and consequently have an efficient DP strategy. However, they lack effective
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bounds pruning the search space. On the other hand, methods like OSDT and GOSDT operate at
the level of DTs, this confers them better pruning bounds but at the expense of a less refined DP
strategy.

In this work, we bridge the gap between the two categories. Our new DP and B&B algorithm,
BRANCHES, utilises an efficient DP strategy similarly to DL8.5, and employs a novel and more ef-
ficient analytical pruning bound than OSDT’s and GOSDT’s, called Purification Bound. For a com-
prehensive presentation of our approach, we frame it within a Reinforcement Learning (RL) frame-
work (Sutton & Barto, 2018), capitalizing on its convenient terminology for defining our recursive
DP strategy. We analyze BRANCHES’s computational complexity and demonstrate its superiority
over existing literature. Furthermore, we extensively compare BRANCHES with the state-of-the-art.
BRANCHES not only achieves faster optimal convergence in most cases, it also always terminates in
fewer iterations, thus validating our theoretical analysis. Our contributions are summarized below:

• We derive a novel analytical bound to prune the search space effectively.
• We develop BRANCHES within a RL framework, its search strategy utilises DP and B&B

with our novel pruning bound, called Purification bound.
• BRANCHES is not exclusively applicable to binary features.
• We analyse BRANCHES’s computational complexity and show its superiority compared to

the complexity bounds derived in the literature.
• We show that BRANCHES outperforms state of the art methods on various real-world

datasets with regard to optimal convergence, speed and number of iterations.

2 RELATED WORK

To seek optimal DTs, a significant body of literature was devoted to the Mathematical Programming
approach. We first review these approaches before delving into DP and B&B methods. Early ap-
proaches tackled the problem within a Continuous Optimization framework. Bennett (1992; 1994);
Bennett & Blue (1996) formulated a Multi-Linear Program to optimize a non-linear and non-convex
objective function over a polyhedral region. Norouzi et al. (2015) derived a smooth convex-concave
upper bound on the empirical loss, which serves as a surrogate objective amenable to minimiza-
tion via Stochastic Gradient Descent. In a recent development, Blanquero et al. (2021) introduced
soft (randomized) decision rules at internal nodes and formulated a Non-Linear Program for which
they minimise the expected misclassification cost. However, except for (Bennett & Blue, 1996),
the solvers employed by these methods are locally optimal. Furthermore, Continuous Optimization
lacks the flexibility needed to model univariate Decision Trees (DTs), where each internal split tests
only one feature. These DTs are of particular interest because they display better interpretability
than multi-variate DTs. To address this limitation, a Mixed Integer Programming (MIP) framework
was rather considered in a multitude of research papers (Bertsimas & Dunn, 2017; Verwer & Zhang,
2017; 2019; Zhu et al., 2020; Günlük et al., 2021), and alternatively, some studies have explored the
Satisfiability (SAT) framework (Bessiere et al., 2009; Narodytska et al., 2018; Avellaneda, 2020).
Despite the rich literature of Mathematical Programming approaches, they suffer from serious lim-
itations. The number of variables involved in the Mathematical Programs increases with the size of
the dataset and the number of features, slowing down the solvers and severely limiting scalability.
In addition, these methods often fix a DT structure a priori and only optimise its internal splits and
leaf predictions. While this simplifies the problem, it misses the true optimal DT unless the optimal
structure has been fixed in advance, which is highly unlikely. And finally, SAT methods seek DTs
that perfectly classify the dataset, as such, they are especially prone to overtraining.

In the last five years, DP and B&B offered the first practical algorithms for Optimal DTs, and as
such, triggered a paradigm shift from Mathematical Programming. The first of these algorithms is
OSDT (Hu et al., 2019), it seeks to minimise a regularised misclassification error objective with a
penalty on the number of leaves. To achieve this, OSDT employs a series of analytical bounds to
prune the space of DTs (its search space). OSDT was followed shortly after by GOSDT (Lin et al.,
2020) to generalise the approach to other objective functions. In contrast, DL8.5 (Aglin et al., 2020)
is a fundamentally different approach, it is based on ideas from the earlier DL8 algorithm (Nijssen &
Fromont, 2007; 2010). DL8 operates on a lattice of itemsets as its search space, from which it mines
the optimal DT, this is fundamentally distinct from the search space of DTs employed by OSDT and
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GOSDT. However, DL8 is a purely DP algorithm, and as such it is computationally and memory
costly. DL8.5 addressed this issue by incorporating B&B to DL8, which offers higher speed and
better scalability, albeit without addressing sparsity (DL8.5 fixes a maximum depth but does not ac-
tively minimise the depth or the number of leaves). Additionally, DL8.5’s B&B strategy is based on
the best solution found so far rather than more sophisticated analytical bounds, hindering its pruning
capacity of the search space. Meanwhile, OSDT and GOSDT solve for sparsity but are compara-
tively slower due to their less refined DP strategy. Our work is motivated by this landscape, aiming
to leverage the speed and scalability of methods like DL8.5 while addressing sparsity concerns and
improving on the pruning efficiency of OSDT and GOSDT.

Additional recent advancements in the field include MurTree (Demirović et al., 2022), which en-
hances DL8.5 with similarity bounds and a tailored method for handling DTs of depth 2. McTavish
et al. (2022) introduce a guessing strategy to navigate the search space, seeking solutions with per-
formance akin to a reference ensemble model. van der Linden et al. (2024) investigate separable
objectives and constraints and introduce a generalised DP framework called STreeD.

3 PROBLEM FORMULATION

We consider classification problems with categorical features X =
(
X(1), . . . , X(q)

)
and class

variable Y ∈ {1, . . . ,K} such that:

∀i ∈ {1, . . . q} : X(i) ∈ {1, . . . , Ci}, Ci ≥ 2

where q ≥ 2,K ≥ 2. We are provided with a dataset D = {(Xm, Ym)}nm=1 of n ≥ 1 exam-
ples. In the following sections, we define the notions of branches and sub-DTs that are key to our
formulation.

3.1 BRANCHES

A branch l is a conjunction of clauses on the features of the following form:

l =

S(l)∧
v=1

1

{
X(iv) = jv

}
such that ∀v ∈ {1, . . . ,S (l)} : iv ∈ {1, . . . , q}, jv ∈ {1, . . . , Civ} and:

∀v, v′ ∈ {1, . . .S (l)} : v ̸= v′ =⇒ iv ̸= iv′

This condition ensures that no feature is used in more than one clause within l. We refer to these
clauses as rules or splits. S (l) is the number of splits in l.

For any datum X , the valuation of l for X is denoted l (X) ∈ {0, 1} and defined as follows:

l (X) = 1 ⇐⇒
S(l)∧
v=1

1

{
X(iv) = jv

}
= 1

When l (X) = 1, we say that X is in l or that l contains X . The branch containing all possible
data is called the root and denoted Ω. Since the valuation of l for any datum remains invariant when
reordering its splits, we represent l uniquely by ordering its splits from the smallest feature index to
the highest, i.e. we impose 1 ≤ i1 < . . . < iS(l) ≤ q. This unique representation is at the core of
our DP memoisation.

In the following, we define the notion of splitting a branch. Let i ∈ {1, . . . , q} \ {i1, . . . , iS(l)} be
an unused feature in the splits of l. We define the children of l that stem from splitting l with respect
to i as the set Ch (l, i) = {l1, . . . , lCi

} where:

∀j ∈ {1, . . . , Ci} : lj = l ∧ 1
{
X(i) = j

}
(1)

The dataset D provides an empirical distribution of the data. The probability that a datum is in l is:

P [l (X) = 1] =
n (l)

n
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where n (l) =
∑n

m=1 l (Xm) is the number of data in l. Likewise, we want to define the probability
that a datum is in l and correctly classified. For this purpose, we define the predicted class in l as:

k∗ (l) = Argmax1≤k≤K{nk (l)}

Where nk (l) =
∑n

m=1 l (Xm)1{Ym = k} is the number data in l that are of class k. k∗ (l) is the
majority class in l. Then the probability that a datum is in l and correctly classified is:

H (l) = P [l (X) = 1, Y = k∗ (l)] =
nk∗(l) (l)

n
(2)

3.2 DECISION TREES

Let l be a branch, a sub-DT rooted in l is a collection of branches T =
{
l1, . . . , l|T |

}
that stem from

a series of successive splittings of l, its children and so on. T partitions l in the following sense:{
l =

∨|T |
u=1 lu

∀u, u′ ∈ {1, . . . , |T |} : u ̸= u′ =⇒ lu ∧ lu′ = 0

We denote S (T ) the number of splitting steps it took to construct T from l. For any datum X in l,
T predicts the majority class of the branch lu containing X:

T (X) =

|T |∑
u=1

lu (X) k∗ (lu)

Now we can define the proportion of data in D that is in l and is correctly classified by T :

H (T ) = P [l (X) = 1, T (X) = Y ] =

|T |∑
u=1

H (lu)

The additivity property is due to {l1, . . . , l|T |} forming a partition of l. A DT is a sub-DT that is
rooted in Ω. Let T be a DT, since Ω (X) = 1 for any datum X , then:

H (T ) = P [Ω (X) = 1, T (X) = Y ] = P [T (X) = Y ]

which is the accuracy of T . Maximising accuracy is not a suitable objective, it overlooks sparsity.
To incorporate sparsity, we rather consider the following regularised objective:

Hλ (T ) = −λS (T ) +H (T ) (3)

with λ ∈ [0, 1] a penalty parameter penalising DTs with too many splits. This objective is employed
by CART during the pruning phase, it was also considered by Bertsimas & Dunn (2017) and recently
by Chaouki et al. (2024). Hu et al. (2019); Lin et al. (2020) use a slightly different version, where
the total number of leaves is penalised instead.

3.3 MARKOV DECISION PROCESS (MDP)

To frame the problem within a Reinforcement Learning framework, we define the following MDP.

State space: The set of all possible sub-DTs. A state with only one branch T = {l} is called a
unit-state. To make the notation lighter, we just denote it l. There are special types of states called
absorbing states. A state is absorbing if all actions transition back to it and yield 0 reward. The
initial state is always the root Ω.

Action space: At every state T , we denoteA (T ) the set of permissible actions at T . We first define
this set of actions for unit-states, then we generalise it to all states. Let l =

∧S(l)
v=1 1{X(iv) = jv} be

a unit-state, there are two types of actions:

• The terminal action a. It transitions from l to an absorbing state l. We denote l
a−−→ l.

• Split actions. The set of possible split actions at l is {1, . . . , q} \ {i1, . . . , iS(l)} the set of
unused features by l. Let i be a split action, taking i transitions l to state T = Ch (l, i),
defined in Eq. (1). We denote the transition with l

i−−→ T = Ch (l, i).

4
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ThusA (l) = {a}∪{1, . . . , q}\{i1, . . . , iS(l)}. When S (l) = q, thenA (l) = {a} and we can only
transition to l. We can now generalise the set of permissible actions to any state T = {l1, . . . l|T |}
as A (T ) = A (l1) × . . . × A

(
l|T |

)
. Taking action a =

(
a1, . . . , a|T |

)
∈ A (T ) in T is equivalent

to taking each action au in lu for 1 ≤ u ≤ |T |, thus performing the transition:

T
a−−→ T ′ =

|T |⋃
u=1

T ′
u, ∀u ∈ {1, . . . , |T |} : lu

au−−→ T ′
u

Reward function: For any state T and action a ∈ A (T ), r (T, a) is the reward of taking action a
in T . Similarly to the definition of the actions, we first define the reward for unit-states and then we
generalise it to all states. Let l be a unit-state and a ∈ A (l) then we have:

• If a is a split action, then r (l, a) = −λ regardless of l (except if l is absorbing).

• If a = a, then r (l, a) = H (l) as per Eq. (2).

• If l = l, i.e. l is an absorbing state, then r
(
l, a

)
= 0.

For any state T = {l1, . . . , l|T |} and action a =
(
a1, . . . , a|T |

)
∈ A (T ), we define the reward as:

r (T, a) =

|T |∑
u=1

r (lu, au)

A policy π maps each state T to one of its actions π (T ) ∈ A (T ). From a state T , the return of
policy π is defined as the cumulative reward of following π starting from T :

Rπ (T ) =

∞∑
t=0

r (Tt, π (Tt))

where T0 = T and ∀t ≥ 0 : Tt
π(Tt)−−−→ Tt+1. Each policy is evaluated by its return from the initial

state Ω, our objective is to find the optimal policy as we shall justify shortly. First, we need to ensure
that there are no divergence issues related to the infinite sum in the definition of the return.

Proposition 1. Let π be a policy, l a unit-state and consider T0 = l and ∀t ≥ 0 : Tt
π(Tt)−−−→ Tt+1.

Then, there exists τ ≥ 0 such that for any t ≥ τ , Tt = {l1, . . . , l|Tτ |} is an absorbing state. In which
case we call Tπ

l = {l1, . . . , l|Tτ |} the sub-DT of π rooted in l. If l = Ω we abbreviate the notation
Tπ
Ω ≡ Tπ and call Tπ the DT of π.

Proposition 1 states that all policies eventually arrive in an absorbing state after a finite number of
steps, regardless of where they start. Therefore all policies have finite returns. Now let us justify
why we seek the optimal policy.

Proposition 2. For any policy π and unit-state l, the return of π from l satisfies:

Rπ (l) = Hλ (T
π
l ) = −λS (Tπ

l ) +H (Tπ
l )

In particularRπ (Ω) = Hλ (T
π) = −λS (Tπ) +H (Tπ).

Proposition 2 links the return of a policy to the regularised accuracy of its sub-DT. On the other
hand, since any DT T is constructed with successive splittings starting from Ω, there always exists
a policy π such that Tπ = T , and thereforeRπ (Ω) = Hλ (T ). This result provides the equivalence
between finding the optimal DT and the optimal policy:

T ∗ = ArgmaxT {Hλ (T )}, π∗ = Argmaxπ{Rπ (Ω)}

in which case the optimal DT is the DT of π∗, i.e. T ∗ = Tπ∗
. To conclude this section, our objective

is now is to find π∗ and then deduce T ∗ as Tπ∗
. We abbreviate the notationRπ∗ ≡ R∗.

5
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4 THE ALGORITHM: BRANCHES

BRANCHES is a Value Iteration algorithm (Sutton & Barto, 2018) that is enhanced with a structured
B&B search. To describe this algorithm, it is convenient to further introduce the state-action return

quantity. For any policy π, state T and action a ∈ A (T ), let T a−−→ T1 and ∀t ≥ 1 : Tt
π(Tt)−−−→

Tt+1. Then the state-action return Qπ (T, a) is the cumulative reward of taking action a first, then
following π:

Qπ (T, a) = r (T, a) +

∞∑
t=1

r (Tt, π (Tt)) = r (T, a) +Rπ (T1)

Given the optimal state-action returns Q∗ (T, a) = Qπ∗
(T, a), we can deduce the optimal policy:

π∗ (T ) = Argmaxa∈A(T )Q∗ (T, a)

In the next section, we show how BRANCHES estimates these optimal state-action returns.

4.1 ESTIMATING THE OPTIMAL STATE-ACTION RETURNS Q∗ (l, a)

Let l be a non-absorbing unit-state and a ∈ A (l), we denote Q (l, a) the estimate of Q∗ (l, a). For
the terminal action a, Q∗ (l, a) is directly accessible from the data via:

Q (l, a) = Q∗ (l, a) = r (l, a) = H (l) =
nk∗(l) (l)

n
(4)

For a split action a ∈ A (l) \ {a}, such that l a−−→ T = {l1, . . . , l|T |}, Q (l, a) is defined according
to the Bellman Optimality Equations below.

Proposition 3. Let l be a non-absorbing unit-state, a ∈ A (l) \ {a} a split action such that l a−−→
T = {l1, . . . , l|T |}. Then we have:

Q∗ (l, a) = −λ+R∗ (T ) = −λ+

|T |∑
u=1

R∗ (lu)

∀u ∈ {1, . . . , |T |} : R∗ (lu) = Q∗ (lu, π
∗ (lu)) = max

a∈A(lu)
Q∗ (lu, a)

Proposition 3 suggests the following recursive definitions of the estimates:

Q (l, a) = −λ+

|T |∑
u=1

R (lu) (5)

∀u ∈ {1, . . . , |T |} : R (lu) = max
a∈A(lu)

Q (lu, a) (6)

The estimateQ (l, a) in Eq. (5) can only be calculated if the estimatesR (lu) in Eq. (6) are available.
Otherwise we initialise Q (l, a) with Eq. (7) according to Proposition 4.
Proposition 4 (Purification Bound). For any non-absorbing unit-state l and split action a ∈ A (l) \
{a}, we define the Purification Bound estimates:

Q (l, a) = −λ+ P [l (X) = 1] = −λ+
n (l)

n
(7)

R (l) = max{H (l) ,−λ+ P [l (X) = 1]} = max

{
nk∗(l) (l)

n
,−λ+

n (l)

n

}
(8)

Then the estimates Q (l, a) andR (l) are upper bounds on Q∗ (l, a) andR∗ (l) respectively.

In the following, we provide an intuition behind the Purification Bound. If the split action a yields
l

a−−→ T = {l1, . . . , l|T |} such that all the data in the resulting children branches lu are correctly
classified (in which case, the branches lu are called pure), then:

Q∗ (l, a) = −λ+H (T ) = −λ+ P [T (X) = Y, l (X) = 1] = −λ+ P [l (X) = 1]

6
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Thus the bound Eq. (7) coincides exactly with the optimal state-action value of an action that purifies
l (if it exists), hence the name Purification Bound.

Now we can straightforwardly define Q (T, a) for any state T . Consider a state T = {l1, . . . , l|T |}
and an action a =

(
a1, . . . , a|T |

)
∈ A (T ) such that:{
T

a−−→ T ′ =
⋃|T |

u=1 T
′
u

∀u ∈ {1, . . . , |T |} : lu
au−−→ T ′

u

Then we have the following:

Q∗ (T, a) = r (T, a) +R∗ (T ′)

=

|T |∑
u=1

r (lu, au) +

|T |∑
u=1

R∗ (T ′
u) =

|T |∑
u=1

(r (lu, au) +R∗ (T ′
u)) =

|T |∑
u=1

Q∗ (lu, au)

Therefore, this suggests defining the estimate Q (T, a) directly with:

Q (T, a) =

|T |∑
u=1

Q (lu, au) (9)

Summary: For any unit-state l, the estimateQ (l, a) for the terminal action a is known in advance
and calculated with Eq. (4). For any split action a ∈ A (l) \ {a}, Q (l, a) is calculated with Eq. (5)
when estimates for the children are available, otherwise it is initialised with Eq. (7). For a general
state T , the estimate is deduced straightforwardly via Eq. (9).

4.2 THE SEARCH STRATEGY

Initially, all the non-terminal unit-states l are labelled as unvisited and incomplete, which means that
R∗ (l) are still unknown. The absorbing states are labelled as complete on the other hand. Moreover,
the state-action pairs (l, a) (for non-absorbing unit-states l) are also labelled as incomplete since we
do not know Q∗ (l, a) either. We initialise an empty memo where the encountered state values
estimatesR (l) are stored. Each iteration of BRANCHES follows the Value Iteration pipeline below:

• Selection: Initialise an empty list path. Starting from the root l = Ω, choose the action
maximising the optimal state-action value estimate:

a = Argmaxa′∈A(l)Q (l, a′)

Append (l, a) to path and transition l
a−−→ T = {l1, . . . , l|T |}. Choose an incomplete unit-

state lu ∈ T and make it the current state l = lu, this choice can be arbitrary or according
to some heuristic. Repeat this process until reaching an unvisited or absorbing unit-state l.
Note that the path list does not include this final state l.

• Expansion: If l is absorbing, then we move to the Backpropagation step. Otherwise we
estimate Q (l, a) for all a ∈ A (l) as explained below.
For the terminal action, we set Q (l, a) = H (l) as per Eq. (4) and we label (l, a) as com-
plete. For any split action a ∈ A (l) \ {a}, let l a−−→ T = {l1, . . . , l|T |}. We calculate
Q (l, a) according to Eq. (5):

Q (l, a) = −λ+

|T |∑
u=1

R (lu)

where for each lu ∈ T , R (lu) is retrieved from the memo in case lu is labelled as visited,
otherwiseR (lu) is initialised with Eq. (8):

R (lu) = max

{
nk∗(lu) (lu)

n
,−λ+

n (lu)

n

}

7
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Table 1: Comparing the complexity bounds of BRANCHES and OSDT.
q = 10 q = 15 q = 20

λ BRANCHES OSDT BRANCHES OSDT BRANCHES OSDT

0.1 5.70× 104 5.61× 1013 5.80× 105 6.86× 1016 2.82× 106 8.35× 1018

0.05 3.94× 105 7.52× 10271 7.53× 107 1.53× 10473 3.01× 109 5.69× 10576

0.01 3.94× 105 1.64× 10392 1.43× 108 INF 4.65× 1010 INF

and we store R (lu) in the memo. If all children lu are complete, then we label (l, a) as
complete and we haveQ (l, a) = Q∗ (l, a). Once we have calculatedQ (l, a) for all actions
a ∈ A (l), we deduce the state value estimate of l as follows:

R (l) = max
a∈A(l)

Q (l, a)

If a∗ = Argmaxa∈A(l)Q (l, a) is such that (l, a∗) is complete, then we label l as complete
and we haveR∗ (l) = R (l) = Q (l, a∗) = Q∗ (l, a∗).

• Backpropagation: UpdateQ (l, a) andR (l) for all (l, a) in path via Backward recursion.
For j = length(path) − 1, . . . , 0, let (l, a) = path [j] with l

a−−→ T = {l1, . . . , l|T |},
then we update Q (l, a) and R (l) with Eq. (5) and Eq. (6) respectively. We update
R (l) in the memo. If all children lu are complete, we label (l, a) as complete. If
a∗ = Argmaxa∈A(l)Q (l, a) is such that (l, a∗) is complete, then we label l as complete.

BRANCHES terminates when the root Ω is complete. Algorithm 1 in Appendix E summarises these
steps in a pseudocode, and Appendix D provides a detailed implementation description.

5 THEORETICAL ANALYSIS

In this section, we prove the optimality of BRANCHES in Theorem 5 and we analyse its computa-
tional complexity in Theorem 6 and Corollary 7.

Theorem 5 (Optimality of BRANCHES). When BRANCHES terminates, the optimal policy is the
greedy policy with respect to the estimated state-action values Q (l, a), which means that for any
state T :

π∗ (T ) = Argmaxa∈A(T )Q (T, a)

To the best of our knowledge, Hu et al. (2019) are the only authors providing a complexity analysis
of their algorithm in the DP and B&B literature of optimal DTs. (Hu et al., 2019, Theorem E.2)
derives an upper bound on the total number of DT evaluations performed by OSDT. There is an
inaccuracy in the result, the sum should be up to the maximum depth of the optimal DT rather than
the maximum number of its leaves. We provide a corrected version and discuss it in Theorem 9.
To compare the computational complexities of OSDT and BRANCHES, we analyse the number of
branch evaluations, i.e. calculations ofH (l), performed by BRANCHES to reach termination.

Theorem 6 (Problem-dependent complexity of BRANCHES). Let Γ (q, C, λ) denote the total num-
ber of branch evaluations performed by BRANCHES for an instance of the classification problem
with q ≥ 2 features, 0 < λ ≤ 1 the penalty parameter, and C ≥ 2 the number of categories per
feature. Then, Γ (q, C, λ) satisfies the following bound:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
S (T ∗)− 1 +

1−H (T ∗)

λ

⌋
, q

}

Corollary 7 (Problem-independent complexity of BRANCHES). Let Γ (q, λ, C) be defined as in
Theorem 6, then it satisfies:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
1

Kλ

⌋
− 1, q

}

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparing BRANCHES with OSDT, PyGOSDT and GOSDT; objective here refers to the
regularised objectiveHλ. TO refers to timeout.

Dataset OSDT PyGOSDT GOSDT BRANCHES
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monk1-l 0.93 71 2e6 0.93 181 3e6 0.93 0.71 3e4 0.93 0.11 617
monk1-f 0.97 TO 2e4 0.97 TO 2e3 0.983 4.02 9e4 0.983 1.07 1e4
monk1-o 0.9 0.02 64
monk2-l 0.95 TO 7e4 0.95 TO 400 0.968 10 1e5 0.968 2.7 3e4
monk2-f 0.90 TO 4e4 0.90 TO 3e4 0.933 11.1 1e5 0.933 5.29 7e4
monk2-o 0.955 0.10 1e3
monk3-l 0.979 TO 596 0.979 TO 123 0.981 7.38 8e4 0.981 1.11 9e3
monk3-f 0.975 TO 1e4 0.973 TO 9e3 0.983 2.13 5e4 0.983 1.14 9e3
monk3-o 0.987 0.04 156

tic-tac-toe 0.765 TO 40 0.808 TO 37 0.850 41 1.6e6 0.850 61 2.5e5
tic-tac-toe-o 0.773 0.90 3339

car-eval 0.799 18 9e5 0.799 56 3e5
car-eval-o 0.812 0.10 579

nursery 0.765 TO 7e5 0.772 144 2e5
nursery-o 0.822 0.26 195

mushroom 0.945 TO 4e6 0.945 TO 2e6 0.925 TO 1e6 0.938 TO 2e4
mushroom-o 0.975 0.17 6

kr-vs-kp 0.900 TO 6e4 0.900 TO 2e4 0.815 TO 4e5 0.900 TO 8e4
kr-vs-kp-o 0.900 TO 8e4

zoo 0.992 34 3e5 0.992 15 3e4
zoo-o 0.993 0.94 1456

lymph 0.784 TO 1e6 0.808 TO 1e5
lymph-o 0.852 12 1e4
balance 0.693 TO 1e5 0.693 TO 3e4 0.693 21 1e6 0.693 54 3e5

balance-o 0.671 0.02 126

It is difficult to analytically compare the the bound in Corollary 7 with the bound in (Hu et al., 2019,
Theorem E.2). For this reason, we compare them numerically on some reasonable instances of the
problem. Table 1 clearly shows the vast computational gains that BRANCHES offers over OSDT.
This claim is further validated in our experiments. We note however, that the immense numbers
upper bounding the complexity of OSDT do not reflect OSDT’s true complexity but rather that the
bound is too loose. Indeed, the reasoning behind (Hu et al., 2019, Theorem E.2) pertains to counting
all the possible DTs which depths do not exceed the maximum depth of the optimal DT, it does not
analyse OSDT’s pruning capacity. In fact, it is unclear how such analysis could be performed with
OSDT’s pruning bounds. On the other hand, the Purification bound we provide in Proposition 4
offers a natural pruning strategy that allows for such analysis.

6 EXPERIMENTS

We compare BRANCHES with the state of the art based on the following metrics: optimal conver-
gence, execution time and number of iterations. We provide the source code of our implementa-
tion in the supplementary material.

We employ 11 datasets from the UCI repository, which we chose because of their frequent use in
benchmarking optimal Decision Tree algorithms. For each dataset, different types of encodings
are considered: Suffix -l indicates a One-Hot Encoding where the last category of each feature is
dropped, likewise -f drops the first category, -o is for an Ordinal Encoding. We chose different
encodings because they yield problems with varying degrees of difficulty. Moreover, the state of the
art algorithms exclusively consider binary features, thus necessitating a preliminary binary encoding.
This seemingly benign detail can significantly harm performance by introducing unnecessary splits
as we explain in Appendix C. BRANCHES can sidestep this issue since it is directly applicable to
an Ordinal Encoding of the data. We set a time limit of 5 minutes for all experiments. Table 5
summarises the characteristics of the datasets we consider.

Table 2 shows that BRANCHES outperforms OSDT, PyGOSDT and GOSDT on almost all the
experiments, with GOSDT being the most competitive method. We especially notice the large
computational gains achieved by applying BRANCHES to the datasets in their original form
through Ordinal Encoding. On the monk datasets, while both GOSDT and BRANCHES are al-
ways optimal, BRANCHES is faster, sometimes significantly. On the other hand, OSDT and Py-
GOSDT are only optimal for monk1-l, and they are prohibitively slow. There are a few datasets
where BRANCHES does not perform the best. On Mushroom, OSDT and PyGOSDT surpris-
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Table 3: Comparing BRANCHES with CART, DL8.5, MurTree and STreeD; objective here refers to
the regularised objectiveHλ. TO refers to timeout.

Dataset CART DL8.5 MurTree STreeD BRANCHES
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monk1-l 0.863 0.002 0.270 0.01 0.930 0.10 0.930 2.80 0.930 0.11
monk1-f 0.971 0.002 0.925 0.007 0.968 0.36 0.983 6.11 0.983 1.07
monk1-o 0.9 0.02
monk2-l 0.950 0.002 0.870 0.01 0.967 2.67 0.968 135 0.968 2.7
monk2-f 0.915 0.004 0.894 0.01 0.928 2.96 TO 0.933 5.29
monk2-o 0.955 0.10
monk3-l 0.979 0.002 0.938 0.02 0.970 0.79 0.981 9.77 0.981 1.11
monk3-f 0.980 0.003 0.957 0.009 0.966 0.02 0.983 3.98 0.983 1.14
monk3-o 0.987 0.04

tic-tac-toe 0.835 0.003 −1.05 0.05 0.850 20 0.850 169 0.850 61
tic-tac-toe-o 0.773 0.90

car-eval 0.793 0.003 −3.19 0.127 0.799 65 TO 0.799 56
car-eval-o 0.812 0.10

nursery 0.769 0.013 −126 7.08 0.772 151 TO 0.772 144
nursery-o 0.822 0.26

mushroom 0.933 0.022 0.270 0.08 0.945 148 0.945 116 0.938 TO
mushroom-o 0.975 0.17

kr-vs-kp 0.888 0.004 0.434 28 0.583 122 TO 0.900 TO
kr-vs-kp-o 0.900 TO

zoo 0.992 0.002 0.983 0.36 0.989 0.36 0.992 21 0.992 15
zoo-o 0.993 0.94

lymph 0.779 0.003 0.24 0.01 TO 0.808 TO
lymph-o 0.852 12
balance 0.649 0.003 −2.30 0.05 0.692 42 TO 0.693 54

balance-o 0.671 0.02

ingly outperform both BRANCHES and GOSDT; on tic-tac-toe, car-eval and balance, GOSDT and
BRANCHES terminate but GOSDT is faster. However, we suspect that this is mainly due to GOSDT’s
optimised C++ implementation, which confers it an advantage over BRANCHES’s Python implemen-
tation. In fact, the difference in speed between these programming languages is very evident from the
large gap in execution times between GOSDT and PyGOSDT. We note however, that BRANCHES al-
ways converges in fewer iterations than GOSDT, around 10 times less in many cases. This corrob-
orates our complexity analysis in Section 5, indicating that our Purification bound improves the
pruning efficiency of the search algorithms. A future C++ implementation of BRANCHES will fur-
ther improve BRANCHES’s scalability, especially since it is amenable to true parallel computing.
Indeed, the Algorithmic steps Selection, Expansion and Backpropagation can all be run through
parallel synchronous threads. Unfortunately, Python is limited in its parallel computing capacity,
it does not permit multithreading, and its multiprocessing module requires copying the data, which
greatly slows down the algorithm and loses all the computational benefits of parallel computing.

In Table 3, for a fair comparison, since BRANCHES and GOSDT do not constrain the depth of the
searched solutions, we impose a similar condition on the DL8.5, MurTree and STreeD. In the im-
plementation of STreeD (as of version v1.3.1), a maximum depth lower than 20 has to be specified.
For this reason, we set the maximum depth to 20, we further impose a maximum number of nodes
of 80 to avoid memory issues. Table 3 shows that only BRANCHES and STreeD truly solve for spar-
sity, which means that upon terminating they return the optimal solution with respect to Hλ. The
second take-away from Table 3 is that BRANCHES outperforms STreeD on almost all the datasets
except mushroom. Moreover, due to its heuristic nature, CART never achieves optimality in these
experiments.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK

For now BRANCHES is limited to categorical features. In fact, all the cited optimal DT methods were
developed for categorical features and are applied to numerical features through discretisation. Fur-
thermore, BRANCHES is currently implemented in Python, which hinders its execution times some-
times compared to the C++ implementations. The large gap in performance between PyGOSDT
and GOSDT motivates a future implementation of BRANCHES in C++. Since BRANCHES far out-
performs the existing Python methods and is even competitive and often better than GOSDT, we
believe that a future C++ implementation of BRANCHES will yield further great improvements over
the state of the are, especially in scalability.
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A TABLE OF NOTATION

Table 4: Table of Notation

X =
(
X(1), . . . , X(q)

)
, an input of features.

X(i) ∈ {1, . . . , Ci}, an feature.
Y ∈ {1, . . . ,K}, a class.
D = {(Xm, Ym)}nm=1, Dataset of examples.
l =

∧S(l)
v=1 1

{
X(iv) = jv

}
a branch. Also, a unit-state in our MDP.

S (l) ≜ The number of splits in l, the number of clauses in l.
l (X) ≜ Valuation of l for input X . When l (X) = 1, we say that X is in l.

Ω ≜ The root. Branch that valuates to 1 for all possible inputs.
Ch (l, i) ≜ Children of l when splitting with respect to feature i.
Ch (l, i) = {l1, . . . , lCi

}, lj = l ∧ 1
{
X(i) = j

}
n (l) ≜ Number of examples in l.
nk (l) ≜ Number of examples in l of class k.
k∗ (l) = Argmax1≤k≤K{nk (l)}, majority class in l

P [l (X) = 1] ≜ Empirical probability that X is in l.
H (l) = P [l (X) = 1, Y = k∗ (l)], probability that an example is in l and is cor-

rectly classified.
sub-DT rooted in l ≜ Collection of branches partitioning l, it stems from a series of splits of

l. Also a state in our MDP.
DT ≜ A sub-DT rooted in Ω.

T (X) ≜ Predicted class of X by T . Majority class of the branch containing X .
H (T ) = P [T (X) = Y ], accuracy of DT T .
Hλ (T ) ≜ Regularized Objective function of DT T .
Hλ (T ) = P [T (X) = Y ]− λS (T ).
S (T ) ≜ Number of splits to construct sub-DT T from the branch where it is

rooted.
λ ∈ [0, 1], penalty parameter.

T ∗ = ArgmaxT {Hλ (T )}, optimal DT.
A (T ) ≜ Action space at state T .

a ≜ Terminal action.
T

a−−→ T ′ ≜ Transition from T to T ′ through action a.
T ≜ Absorbing state, T a−−→ T .

r (T, a) ≜ Reward of taking action a in state T .
π ≜ Policy, maps each state T to an action π (T ) ∈ A (T ).

Rπ (T ) ≜ Return of policy π starting from T .
Qπ (T, a) ≜ State-action value of policy π at state-action pair (T, a).

Tπ
l ≜ Sub-DT of π rooted in l. See Proposition 1.

Tπ ≡ Tπ
Ω

π∗ = ArgmaxπRπ (Ω), the optimal policy.
T ∗ = Tπ∗

R∗ ≡ Rπ∗

Q∗ ≡ Qπ∗

R (T ) ≜ Estimated upper bound onR∗ (T ).
Q (T, a) ≜ Estimated upper bound on Q∗ (T, a)
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B PROOFS

Proposition 1. Let π be a policy, l a unit-state and consider T0 = l and ∀t ≥ 0 : Tt
π(Tt)−−−→ Tt+1.

Then, there exists τ ≥ 0 such that for any t ≥ τ , Tt = {l1, . . . , l|Tτ |} is an absorbing state. In which
case we call Tπ

l = {l1, . . . , l|Tτ |} the sub-DT of π rooted in l. If l = Ω we abbreviate the notation
Tπ
Ω ≡ Tπ and call Tπ the DT of π.

Proof. Let l be a unit-state, π a policy, and (Tt)
∞
t=0 such that:{

T0 = l

∀t ≥ 0 : Tt
π(Tt)−−−→ Tt+1

The proof is conducted by induction on q−S (l) ∈ {0, . . . , q}, where we recall that q is the number
of features.

If q − S (l) = 0, then A (l) = {a} and π (l) = a. Therefore T1 = l and we deduce that the
proposition holds with τ = 1.

Inductive hypothesis: Suppose that the proposition is true for q−S (l′) = n ∈ {0, . . . , q− 1}, and
let us show that it is true for q − S (l) = n+ 1.

If π (l) = a, then T1 = l and the proposition holds. Otherwise π (l) is a split action, and we have

l
π(l)−−→ T1 = {l1, . . . , l|T1|} where:

∀u ∈ {1, . . . , |T1|} : q − S (lu) = n

Therefore, the proposition is true for all lu.
Let us now denote the following: {

T
(u)
1 = lu

∀t ≥ 1 : T
(u)
t

π−−→ T
(u)
t+1

According to the proposition:

∃τu ≥ 0,∀t ≥ τu : T
(u)
t =

{
l
(u)
1 , . . . , l

(u)

|T (u)
τu |

}
By taking τ = max1≤u≤|T1|{τu}, we get:

∀t ≥ τ , ∀u ∈ {1, . . . , |T1|} : T (u)
t =

{
l
(u)
1 , . . . , l

(u)

|T (u)
τj

|

}
=

{
l
(u)
1 , . . . , l

(u)

|T (u)
τ |

}
On the other hand ∀t ≥ 1 : Tt =

⋃|T1|
u=1 T

(u)
t , thus:

∀t ≥ τ : Tt =

|T1|⋃
u=1

{
l
(j)
1 , . . . , l

(u)

|T (u)
τ |

}
Which concludes the inductive proof.

Proposition 2. For any policy π and unit-state l, the return of π from l satisfies:

Rπ (l) = Hλ (T
π
l ) = −λS (Tπ

l ) +H (Tπ
l )

In particularRπ (Ω) = Hλ (T
π) = −λS (Tπ) +H (Tπ).

Proof. Let l be a unit-state, π a policy, and (Tt)
∞
t=0 such that:{

T0 = l

∀t ≥ 0 : Tt
π(Tt)−−−→ Tt+1

By Induction on S (Tπ
l ):

14
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If S (Tπ
l ) = 0, then π (l) = a and ∀t ≥ 1 : Tt = l. Thus:

Rπ (l) = r (l, a)︸ ︷︷ ︸
=H(l)

+
∑
t≥1

r
(
l, π

(
l
))︸ ︷︷ ︸

=0

= H (l)

On the other hand Tπ
l = l, therefore:

Hλ (T
π
l ) = −λS (Tπ

l )︸ ︷︷ ︸
=0

+H (l) = H (l)

HenceRπ (l) = Hλ (T
π
l )

Inductive hypothesis: Suppose the proposition is true up to S (Tπ
l ) = n ≥ 0 and let us prove it for

S (Tπ
l ) = n+ 1

If π (l) = a then we have again:

Rπ (l) = r (l, a)︸ ︷︷ ︸
=H(l)

+
∑
t≥1

r
(
l, π

(
l
))︸ ︷︷ ︸

=0

= H (l)

Since Tπ
l = l, then:

Hλ (T
π
l ) = −λS (Tπ

l )︸ ︷︷ ︸
=0

+H (l) = H (l)

HenceRπ (l) = Hλ (T
π
l )

Now suppose that π (l) is a split action. We have the following:

Rπ (l) = r (l, π (l)) +

∞∑
t=1

r (Tt, Tt+1)

= r (l, π (l)) +Rπ (T1)

= r (l, π (l)) +

|T1|∑
u=1

Rπ (lu)

Where T1 = {l1, . . . , l|T1|}. We know that:

∀u ∈ {1, . . . , |T1|} : Rπ (lu) = Hλ

(
Tπ
lu

)
=⇒ Rπ (l) = −λ+

|T1|∑
u=1

{
− λS

(
Tπ
lu

)
+H

(
Tπ
lu

)}

= −λ
{
1 +

|T1|∑
u=1

S (lu)
}
+H (Tπ

l )

We know that the total number of splits to construct Tπ
l is 1 (corresponding to the split π (l)) plus

the sum of the number of splits required to construct each sub-DT Tπ
lu

, i.e.

S (Tπ
l ) = 1 +

|T1|∑
u=1

S
(
Tπ
lu

)
Therefore we deduce that:

Rπ (l) = −λS (Tπ
l ) +H (Tπ

l ) = Hλ (T
π
l )

Which concludes the inductive proof.

Proposition 4 (Purification Bound). For any non-absorbing unit-state l and split action a ∈ A (l) \
{a}, we define the Purification Bound estimates:

Q (l, a) = −λ+ P [l (X) = 1] = −λ+
n (l)

n
(7)

R (l) = max{H (l) ,−λ+ P [l (X) = 1]} = max

{
nk∗(l) (l)

n
,−λ+

n (l)

n

}
(8)

Then the estimates Q (l, a) andR (l) are upper bounds on Q∗ (l, a) andR∗ (l) respectively.

15
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Proof. Let l be a non-terminal unit-state, a ∈ A (l) \ {a} and:

Q (l, a) = −λ+ P [l (X) = 1]

Let us show that Q (l, a) ≥ Q∗ (l, a). Consider l
π(l)−−→ T1 = {l1, . . . , l|T1|}, we have the following:

Q∗ (l, a) = −λ+

|T1|∑
u=1

R∗ (lu)

According to Proposition 2, we have:

∀u ∈ {1, . . . , |T1|} : R∗ (lu) = Hλ

(
T ∗
lu

)
Q∗ (l, a) = −λ+

|T1|∑
u=1

Hλ

(
T ∗
lu

)
On the other hand, we have:

∀u ∈ {1, . . . , |T1|} : Hλ

(
T ∗
lu

)
= −λS

(
T ∗
lu

)
+H

(
T ∗
lu

)
≤ H

(
T ∗
lu

)
≤ P

[
lu (X) = 1, T ∗

lu (X) = Y
]

≤ P [lu (X) = 1]

Which implies the following:

Q∗ (l, a) ≤ −λ+

|T1|∑
u=1

P [lu (X) = 1] ≤ −λ+ P [l (X) = 1] = Q (l, a)

For the optimal value function, we have:

R∗ (l) = max
a∈A(l)

Q∗ (l, a)

= max
a∈A(l)\{a}

{
Q∗ (l, a) ,Q∗ (l, a)

}
≤ max

a∈A(l)\{a}

{
H (l) ,Q (l, a)

}
≤ max

{
H (l) ,−λ+ P [l (X) = 1]

}

Lemma 8. For any unit-state l and action a ∈ A (l), the estimateQ (l, a) is an upper bound on the
optimal state values.

Q (l, a) ≥ Q∗ (l, a)

Proof. For the terminal action, we always have:

Q (l, a) = H (l) = Q∗ (l, a)

Let us now consider a split action a ∈ A (l) \ {a}. We have the following:

Q (l, a) = −λ+

|T1|∑
u=1

R (lu)

Where l
a−−→ T1 = {l1, . . . , l|T1|}. It suffices to show that:

∀u ∈ {1, . . . , |T1|} : R (lu) ≥ R∗ (lu)

We define the following policy:{
π (l′) = Argmaxa′∈A(l′)Q (l′, a′) for l′ that have been visited.
π (l′) = a for l that have never been visited.

16
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The proof now proceeds by induction on the number of visits of l which we denote here v (l) ≥ 0.

If v (l) = 0, then:
R (l) = max

{
H (l) ,−λ+ P [l (X) = 1]

}
≥ R∗ (l)

Induction hypothesis: Suppose that this is true for any number of visits ≤ n where n ≥ 0, and let
us show that the result still holds for v (l) = n+ 1. We have

R (l) = max
{
H (l) ,−λ+

|T1|∑
u=1

R (lu)
}

On the other hand

∀u ∈ {1, . . . , |T1|} : v (lu) ≤ n

=⇒ ∀u ∈ {1, . . . , |T1|} : R (lu) ≥ R∗ (lu)

Thus

R (l) ≥ max{H (l) ,−λ+

|T1|∑
u=1

R∗ (lu)} = R∗ (l)

Which concludes the inductive proof, and we get that:

∀u ∈ {1, . . . , |T1|} : R (lu) ≥ R∗ (lu)

Implying

Q (l, a) = −λ+

|T1|∑
u=1

R (lu) ≥ Q∗ (l, a)

Remark: During the inductive reasoning, we used the fact that the number of visits of children
branches is lower than the number of visits of their parent branch. However, this is not true when
Dynamic Programming is considered. Indeed, due to memoisation, some children branches could
have been visited more than their parents. The result still stems from a similar induction, albeit
through a more technical proof. The general idea is that, for children branches lu that are visited
more than n+1 times, we consider their children, and so on, until we arrive at descendant branches
that are either visited less than n times or that are terminal. In both casesR (lu) ≥ R∗ (lu), and we
backpropagate this result toR (l).

Theorem 5 (Optimality of BRANCHES). When BRANCHES terminates, the optimal policy is the
greedy policy with respect to the estimated state-action values Q (l, a), which means that for any
state T :

π∗ (T ) = Argmaxa∈A(T )Q (T, a)

Proof. Define the policy π̃ (T ) = ArgmaxA(T )Q (T, a). First, we show that for any unit-state l, if
l is complete and a∗ = Argmaxa∈A(l)Q (l, a), then a∗ = π∗ (l).

Since l is complete, we have Q (l, a∗) = Q∗ (l, a∗). By Lemma 8, we get

∀a ∈ A (l) : Q∗ (l, a∗) = Q (l, a∗) ≥ Q (l, a) ≥ Q∗ (l, a)

=⇒ a∗ = Argmaxa∈A(l)Q∗ (l, a) = π∗ (l)

On the other hand, l is complete if and only if (l, π∗ (l)) is complete, which is satisfied if and only

if for all u ∈ {1, . . . , |T |} : lu is complete, where l
π∗(l)−−−→ T = {l1, . . . , l|T |}.

BRANCHES terminates when Ω is complete. Let us define the following:{
T0 = Ω

∀t ≥ 0 : Tt
π̃(Tt)−−−→ Tt+1; Tt =

{
l
(t)
1 , . . . , l

(t)
|Tt|

}
17
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Since Ω is complete, we have shown π̃ (Ω) = π∗ (Ω), and it follows that:

∀u ∈ {1, . . . , |T1|} :l(1)u is complete

=⇒ ∀u ∈ {1, . . . , |T1|} :π̃
(
l(1)u

)
= π∗

(
l(1)u

)
...

=⇒ ∀u ∈ {1, . . . , |Tt|} :l(t)u is complete

=⇒ ∀u ∈ {1, . . . , |Tt|} :π̃
(
l(t)u

)
= π∗

(
l(t)u

)
...

Thus π̃ is optimal:

R∗ (Ω) =

∞∑
t=0

r (Tt, π
∗ (Tt))

=

∞∑
t=0

|Tt|∑
u=1

r
(
l(t)u , π∗

(
l(t)u

))

=

∞∑
t=0

|Tt|∑
u=1

r
(
l(t)u , π̃

(
l(t)u

))
=

∞∑
t=0

r (Tt, π̃ (Tt))

= Rπ̃ (Ω)

Theorem 9. Let ΓOSDT (q, λ) denote the total number of evaluations that OSDT performs for an
instance of the binary classification problem with q ≥ 2 binary features and penalty parameter
0 ≤ λ ≤ 1, then we have:

ΓOSDT (q, λ) ≤ 1 +

κ∑
h=1

{
Nh +

(
q

h

)
− P (q, h)

}
Where P (q, h) is the number h−permutations of q, Nh is the number of possible binary DTs of
depth h defined in (Hu et al., 2019, Formula (1)) and:

κ = min

{⌊
1

2λ

⌋
− 1, q

}

The difference with (Hu et al., 2019, Theorem E.2) is in the term κ, the authors write it as:

κ = min

{⌊
1

2λ

⌋
, 2q

}
The term 2q is the maximum number of leaves that any DT can have, however, following the authors’
reasoning, it should be the maximum possible depth, which is q. Furthermore, the term

⌊
1
2λ

⌋
is an

upper bound on the maximum number of leaves the optimal solution can have. Such solution has at
most a depth of

⌊
1
2λ

⌋
− 1. Indeed, the maximum depth of a DT T with |T | leaves is |T | − 1, this

corresponds to a DT that only splits one node at each depth (for example, always splitting the right
child node).
Lemma 10. A branch l can be chosen for Expansion only if there exists a DT T such that:{

l ∈ T \ L
−λS (T ) +

∑
l′∈LH (l′) +

∑
l′∈T\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

Where L = {l′ ∈ L : H (l′) ≥ −λ+ P [l′ (X) = 1]}.
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Proof. Let π̃ be the Selection policy, i.e. for any unit-state l:

π̃ (l) =

{
a If l has never been visited
Argmaxa∈A(l)Q (l, a) Otherwise.

For the current Selection policy π̃, a branch l is chosen for Expansion only if l ∈ T π̃ , thus let us
analyse the properties of T π̃ .

By the definition of π̃, T π̃ maximisingR (T ):

∀DT T : R (T ) ≤ R
(
T π̃

)
=⇒ R (T ∗) ≤ R

(
T π̃

)
=⇒ R∗ (T ∗) ≤ R

(
T π̃

)
=⇒ −λS (T ∗) +H (T ∗) ≤ R

(
T π̃

)

On the other hand we have:

R
(
T π̃

)
=

∑
l∈T π̃

R (l)

Let L = {l ∈ L : H (l) ≥ −λ+ P [l (X) = 1]}. For any l ∈ L we have R (l) = H (l) and for any
l ∈ T \ L we haveR (l) = −λ+ P [l (X) = 1]. Therefore we deduce that:

−λS
(
T π̃

)
+

∑
l′∈L

H (l′) +
∑

l′∈T π̃\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

The first condition for a branch l to be considered for Expansion is l ∈ T π̃ . For the second condition,
l cannot be in L, because all branches in L are complete and satisfy a = Argmaxa∈A(l)Q∗ (l, a).
Indeed this is due to the following:

Q∗ (l, a) = H (l) ≥ −λ+ P [l (X) = 1] ≥ Q∗ (l, a) ∀a ∈ A (l)

where the last inequality comes from Proposition 4. Now we deduce that the second condition for l
to be considered for Expansion is l ∈ T \ L.

Theorem 6 (Problem-dependent complexity of BRANCHES). Let Γ (q, C, λ) denote the total num-
ber of branch evaluations performed by BRANCHES for an instance of the classification problem
with q ≥ 2 features, 0 < λ ≤ 1 the penalty parameter, and C ≥ 2 the number of categories per
feature. Then, Γ (q, C, λ) satisfies the following bound:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
S (T ∗)− 1 +

1−H (T ∗)

λ

⌋
, q

}

Proof. Let l be a branch. According to Lemma 10, for l to be considered for Expansion, there has
to exist a DT T such that:{

l ∈ T \ L
−λS (T ) +

∑
l′∈LH (l′) +

∑
l′∈T\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

where L = {l′ ∈ T : H (l′) ≥ −λ+ P [l′ (X) = 1]}. Suppose l is such a branch, then we have:

−λS (T ) +
∑
l′∈L

H (l′)︸ ︷︷ ︸
≤P[l′(X)=1]

+
∑

l′∈T\L

{
− λ+ P [l′ (X) = 1]

}
≥ −λS (T ∗) +H (T ∗)

=⇒ −λ
{
S (T ) + |T \ L|

}
+

∑
l′∈T

P [l′ (X) = 1] ≥ −λS (T ∗) +H (T ∗)
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Since l ∈ T \ L, then |T \ L| ≥ 1 and we get:

−λ
{
S (T ) + 1

}
+ 1 ≥ −λS (T ∗) +H (T ∗)

=⇒ S (T ) ≤ S (T ∗)− 1 +
1−H (T ∗)

λ

=⇒ S (l) ≤ S (T ∗)− 1 +
1−H (T ∗)

λ

Let C =
{
l branch : S (l) ≤ S (T ∗) − 1 + 1−H(T∗)

λ

}
. Then the number of branches that are

expanded is upper bounded by |C|.
We recall that we rather seek to upper bound the number of branches that are evaluated, i.e. for
which we calculate H (l). These evaluations happen during the Expansion step of BRANCHES.
When a branch l is expanded, we evaluate all of its children. There are q − S (l) features left to
use for splitting l, and for each split, C children branches are created. Thus, there are (q − S (l))C
children of l, hence (q − S (l))C evaluations happen during the expansion of l. Let us now upper
bound Γ (q, C, λ).

For each branch l ∈ C:

• We choose S (l) ∈

{
0, . . . ,min

{⌊
S (T ∗)− 1 + 1−H(T∗)

λ

⌋
, q

}}
. The minimum comes

from the fact that l ∈ C and S (l) ≤ q.

• For each h = S (l), we construct l by choosing h features among the total q features, there
are

(
q
h

)
such choices.

• For each choice among the
(
q
h

)
choices, for each feature among the h features, there are C

choices of values, therefore there are Ch
(
q
h

)
branches with depth h.

• For each branch of depth h, when it is expanded, (q − h)C evaluations occur.

With these considerations, we deduce that:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
S (T ∗)− 1 +

1−H (T ∗)

λ

⌋
, q

}

Corollary 7 (Problem-independent complexity of BRANCHES). Let Γ (q, λ, C) be defined as in
Theorem 6, then it satisfies:

Γ (q, C, λ) ≤
κ∑

h=0

(q − h)Ch+1

(
q

h

)
; κ = min

{⌊
1

Kλ

⌋
− 1, q

}

Proof. To make the bound problem-independent, let us upper bound κ and make it independent of
T ∗. We know that:

Hλ (T
∗) = −λS (T ∗) +H (T ∗) ≥ Hλ (Ω) = H (Ω) = P [Y = k∗ (Ω)] ≥ 1

K

=⇒ S (T ∗)− 1 +
1−H (T ∗)

λ
≤ K − 1

Kλ
− 1

Which concludes the proof.
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Figure 1: Optimal DT depicting the class variable that satisfies Y = 1 if and only if X(1) = 1 or
X(1) = 3 on the space X = {1, 2, 3}.

C THE DRAWBACKS OF BINARY ENCODING

Table 2 and Table 3 show that the optimal DT is always achieved significantly faster when we
consider the Ordinal Encoding1. Interestingly, BRANCHES is the only method that can be directly
applied with Ordinal Encoding, which makes it even more practical and broadly applicable than the
state of the art. The central question of this section is: Why does Ordinal Encoding provide such
great leaps in efficiency compared to Binary Encoding?

To answer this question, let us consider the following simple binary classification problem. Suppose
there is only one feature X(1) with 3 categories, i.e. the space of features is X = {1, 2, 3}, and
that the class Y satisfies Y = 1 if and only if X(1) = 1 or X(1) = 3. The optimal solution in this
case consists of only one split, which is to split the root Ω with respect to feature X(1), as shown in
Fig. 1. In this setting, BRANCHES only needs one iteration to terminate. Indeed, on its first iteration,
it expands Ω, estimates Q (Ω, a) and Q (Ω, a) where a is the split action with respect to X(1). In
this case, BRANCHES can already deduce that:

Q∗ (Ω, a) = Q (Ω, a) = −λ+ P [Ω (X) = 1]︸ ︷︷ ︸
=1

> P [Ω (X) = 1, k∗ (Ω) = Y ] = Q∗ (Ω, a)

and therefore that Ω is complete and a = Argmaxa′∈A(Ω)Q∗ (Ω, a′).

Let us consider a Binary encoding ofX , this yields a new feature spaceX ′ = {0, 1}×{0, 1}×{0, 1}
where the new features X ′(1), X ′(2), X ′(3) express the existence of a category or the other:

∀i ∈ {1, 2, 3} : X ′(i) = 1{X(1) = i}

Fig. 2 depicts the new optimal Decision Tree on X ′. Now BRANCHES cannot deduce this solution
from the first iteration, because the first iteration only explores branches of size 1 and the optimal
DT includes also branches of sizes 2 and 3. Moreover, Binary encoding introduces unnecessary
branches that make the search space larger than necessary, thereby wasting some of the search time.
To see this, consider the branch:

l′ = 1{X ′(1) = 1} ∧ 1{X ′(2) = 1}

This branch exists in the new lattice of branches constructed on X ′ and it could be explored at some
point by the search algorithm. However, this would be a waste of time because l′ does not describe
a possible subset of X . Indeed, translating l′ to its corresponding branch on X yields:

l = 1{X(1) = 1} ∧ 1{X(1) = 2}

which always valuates to 0 for any datum X ∈ X . As a consequence, l can never be part of the
optimal solution, in fact, it can never be part of any Decision Tree on X , l is not even a proper
branch as it uses the same feature in two different clauses. Therefore exploring l′ while solving the
DT optimisation on X ′ is a waste of time.

1Except for kr-vs-kp, this is because this dataset is already in binary form.
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Figure 2: The new optimal Decision Tree on the full new feature space X ′.

Figure 3: The new optimal Decision Tree on the reduced new feature space X ′.

The Binary Encoding we considered in the last paragraph keeps all the categories of X(1). In
general, a more clever Binary Encoding is used based on the following:

X ′(1) = 0 and X ′(2) = 0 ⇐⇒ X ′(3) = 1

This allows us to drop the last feature from X ′, yielding a smaller new feature space X ′ = {0, 1} ×
{0, 1} where the features X ′(1), X ′(2) are the same as before. The new optimal solution is depicted
in Fig. 3 and it only includes two splits instead of three, unlike in the previous Binary Encoding, thus
allowing the search to be more efficient but still less efficient than when operating on the original
feature space X . Moreover, the issue of unnecessary branches still holds here, the branch l′ =
1{X ′(1) = 1}∧1{X ′(2) = 1} is still present in this setting. The computational inefficiency induced
by Binary Encoding can be evaluated by the number of these introduced unnecessary branches.
Theorem 11 provides this number for the case where all features have and equal number categories.
Theorem 11. Consider a classification problem where all features share the same number of cat-
egories C, i.e. X = {1, . . . , C}q . Suppose we perform a Binary Encoding on X where the last
category of each feature is dropped, this yields the new feature space X ′ = {0, 1}q(C−1). We define
an unnecessary branch l on X ′ as a branch that valuates to 0 for any input vector X ∈ X :

∀X ∈ X : l (X) = 0

Then the number of these unnecessary branches that Binary Encoding introduces is equal to:

U (q, C) = 3(C−1)q − [2 (C − 1) + 1]
q
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Figure 4: The number of unnecessary branches introduced by Binary Encoding.

Proof. The proof of this Theorem proceeds by counting the total number of branches possible on
X ′ and subtracting the total number of branches that are not unnecessary.

Let us start with the total number of branches on X ′. Any branch on X ′ has the form:

l =

w∧
v=1

1{X ′(iv) = zv}

Where X ′(iv) are the features on the space X ′, w ∈ {0, . . . , (C − 1) q}, iv ∈
{1, . . . , (C − 1) q}, zv ∈ {0, 1}. We note that w = 0 corresponds to l = Ω by defini-
tion.

• There (C − 1) q possibilities for choosing w.

• For each possible value w, there are
(
(C−1)q

w

)
possible combinations {i1, . . . , iw}.

• For each combination {i1, . . . , iw}, there are 2w possible assignments (z1, . . . , zw)

Therefore the total number of branches on X ′ is:

A (q, C) =

(C−1)q∑
w=0

(
(C − 1) q

w

)
2w = 3(C−1)q (10)

Let us now count the number of non-unnecessary branches. To do this, we consider a slightly
different notation of the features on X ′.

∀i ∈ {1, . . . , q},∀j ∈ {1, . . . , C − 1} : X ′(i,j) = 1{X(i) = j}

A branch l =
∧w

v=1 1{X ′(iv,jv) = zv} is not unnecessary if and only if w ∈ {0, . . . , q}, iv ∈
{1, . . . , q}, jv ∈ {1, . . . , C − 1}, zv ∈ {0, 1}.

• For each possibility value w ∈ {1, . . . , q}, there are
(
q
w

)
possible combinations

{i1, . . . , iw}.

• For each combination {i1, . . . , iw}, there are (C − 1)
w possible assignments (j1, . . . , jw).

• For each assignment (j1, . . . , jw), there are 2w possible assignments (z1, . . . , zw).

The total number of branches that are not unnecessary is therefore:

B (q, C) =

q∑
w=0

(
q

w

)
2w (C − 1)

w
= [2 (C − 1) + 1]

q (11)
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Figure 5: Optimal Decision Tree for monk1-l, it has 7 splits.
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Figure 6: Optimal Decision Tree for monk1-f, it has 17 splits.

From Eq. (10) and Eq. (11) we deduce that the total number of unnecessary branches is:

U (q, C) = A (q, C)− B (q, C) = 3(C−1)q − [2 (C − 1) + 1]
q

There is a subtlety here. We define l on X ′, which means that it involves clauses defined with
the features of X ′, and yet the definition in Theorem 11 pertains to valuating l on inputs from the
feature space X . There is no mistake or lack of rigour in this definition, we are allowed to do this
because the Binary Encoding is an injective map from X to X ′, thus implicitly, valuating l on an
input X ∈ X is defined as valuating l on the image of X in X ′ with this map.

Fig. 4 draws the number of unnecessary branches, derived in Theorem 11, as a contour function of
q and C in Logarithmic scale. It shows how immense this number becomes as q and C increase.
We should note that, not all of these unnecessary branches, that Binary Encoding introduces, will
be explored by BRANCHES, in fact many of them (depending on the problem) will not be due to
the algorithm’s pruning capacity. Nevertheless, there are so many that they will inevitably hinder
the search efficiency as it is clearly demonstrated in Table 2. This inefficiency is most apparent on
the mushroom dataset. All algorithms that solve for sparsity hit a timeout (after 5 minutes) when
applied to the binary encoded version of the data. In contrast, when applied to the Ordinal Encoding
of mushroom, BRANCHES achieves an extremely fast optimal convergence in only 0.17s and 6
iterations.

The introduction of unnecessary branches is not the only drawback of Binary Encoding. To perform
Binary Encoding, we also have to decide which category to drop from each feature, however dif-
ferent choices lead to different feature spaces with different optimal Decision Trees. Furthermore,
these different solutions do not necessarily share similar complexities, and these choices can lead
to problems with vastly different levels of challenge. A pertinent example of this is the contrast
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between monk1-l and monk1-f. While all algorithms that solve for sparsity achieve optimal conver-
gence for monk1-l, only GOSDT, STreeD and BRANCHES find the optimal solution for monk1-f.
This is because monk1-l yields an optimal DT with 7 splits only while monk1-f yields an optimal
solution with 17 splits, which is significantly more challenging to find. These optimal Decision
Trees are depicted in Fig. 5 and Fig. 6.

D IMPLEMENTATION DETAILS

The search strategy we introduced in Section 4.2 is an abstract description of BRANCHES. In this
section, we provide concrete elements for the implementation of the algorithm, along with micro-
optimisation techniques that substantially improve its computational efficiency.

D.1 BRANCH OBJECTS

For each branch l =
∧S(l)

v=1 1{X(iv) = jv}, we define an object with the following elements:

• id_branch: l is identified with the unique string ”(i1, j1)(i1, j2) . . . (iS(l), jS(l))”. We
recall that this string is unique because we impose the condition i1 < i2 < . . . < iS(l). We
store each encountered branch in a memo dictionary using its identifier.

• attributes_categories: Dictionary containing the number of categories per un-
used feature in l. We recall that the set of unused features is the set of split actions.

• bit_vector: Vector of the indices of the data contained in l. This vector allows quick
access to the data in l.

• children: Dictionary containing the children of l, i.e. the set Ch (l, i) for all each unused
feature i in l. Initialised with an empty dictionary.

• attribute_opt: The current optimal action a∗ = Argmaxa∈A(l)Q (l, a). If a∗ = a,
then we set attribute_opt to None.

• terminal: Boolean describing whether l is terminal or not, we say that l is terminal if
the set of permissible actions at l only includes the terminal action, i.e. A (l) = a.

• complete: Boolean describing whether l is complete or not.
• value: The estimatedR (l).
• value_terminal: The value of the terminal action at l.

Q∗ (l, a) = H (l) = P [l (X) = 1, k∗ (l) = Y ] =
nk∗(l) (l)

n

• value_greedy: Value of the current best action to take according the estimatesQ (l, a):

value_greedy = Argmaxa∈A(l)Q (l, a) = Q (l,attribute_opt)

• freq: Proportion of examples in l:

freq = P [l (X) = 1] =
n (l)

n
=

1

n

n∑
m=1

l (Xm)

• pred: Majority class at l:

pred = k∗ (l) = Argmax1≤k≤Knk (l) = Argmax1≤k≤Knk (l)

• queue: Heap queue containing (-value, value_complete, attribute, children)
tuples. For each unused feature (split action) attribute: value is the estimate:

value = Q (l,attribute) = −λ+
∑

l′∈Ch(l,attribute)

R (l′)

On the other hand, value_complete is the sum of the estimated values R (l′) of the
children l′ ∈ Ch (l,attribute) that are complete. By definition, the complete chil-
dren l′ satisfy R (l′) = R∗ (l′), we store the sum of their values in value_complete,
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which serves to efficiently update Q (l,attribute) during the Backpropagation step.
children is a dictionary containing the incomplete children, it is from this dictionary
that we choose the next branch to visit during the Selection step. During Backpropaga-
tion, If an incomplete branch l′ in children becomes complete, it is discarded from
children. We note that these tuples are stored in the heap queue queue, thus the first
element of queue is always the tuple with the highest value, i.e. queue[0][2] is
the split action maximising Q (l, a). We do not need to sort all actions by their values,
but rather to just keep track of the action with the highest value. As a result, l becomes
complete if and only if one of the following holds:

– The terminal action is the current best action:

Q (l, a) = Argmaxa∈A(l)Q (l, a)

This happens if:
−queue[0][0] ≤ value_terminal

– The tuple containing l and the current best split action is complete. This happens if the
dictionary of incomplete children (that result from taking the current best split action
in l) queue[0][3] is empty.

queue is initialised with an empty queue.

D.2 THE ALGORITHM

In this section, we go over BRANCHES’ search strategy, introduced in Section 4.2, and we outline it
from an implementation perspective. We initialise the root Ω, then we apply the search steps at each
iteration as follows:

• Selection: Initialise the current branch l = Ω and the path list to path = [l]. While l
is incomplete and l.children is not empty, i.e. l has been expanded. Consider the tuple:

(-value, value_complete, attribute, children) = l.queue[0]

As we have seen in Appendix D.1, attribute is the optimal split action with re-
spect to the current estimates Q (l, a) and children is the subset of incomplete chil-
dren in Ch (l,attribute). Therefore, we choose the next branch l from the dictionary
children. This choice can be arbitrary or according to some scheduling policy2. Choos-
ing the branch l in children with lowest l.value_greedy is our practical choice. The
reasoning behind it is to quickly prune non-promising regions of the search space. Append
l to path.

• Expansion: Let l be the Selected branch. If l.complete, we go to the
Backpropagation step. Otherwise, for each (unused) feature-category (i, j) ∈
l.attributes_categories let lij = l ∧ 1{X(i) = j} be the child branch of l that
corresponds to feature i taking the value j. Our objective is to calculate R (lij). We first
check whether lij .id_branch is in the memo, if it is, then we can directly accessR (lij).
Otherwise, we need to initialiseR (lij) according to Eq. (8). To do this efficiently, consider
a fixed feature i and let us go over its categories j ∈ {1, . . . , Ci} one by one. For li1, we
first extract the data in l using l.bit_vector:

Dl = {Xm ∈ D : l (Xm) = 1} = D[l.bit_vector]

Since li1 (X) = 1 =⇒ l (X) = 1, we can extract the data in li1 directly from the smaller
set Dl instead of D:

Dli1 = {Xm ∈ D : li1 (Xm) = 1} = {Xm ∈ Dl : li1 (Xm) = 1}

The indices of the data in Dli1 form the vector li1.bit_vector. Now we can initialise
R (li1) with Eq. (8) using Dli1 . For li2, if li2.id_branch is not in the memo, then to
initialiseR (li2), instead of extracting Dli2 from Dl via:

Dli2 = {Xm ∈ Dl : li2 (Xm) = 1}
2The term scheduling policy is employed by Hu et al. (2019) in a similar context.
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We rather use the fact that li1 and li2 are mutually exclusive, in the sense that:

∀X ∈ X : li2 (X) = 1 =⇒ li1 (X) = 0

Which means that we can extractDli2 from the smaller setDl \Dli1 instead ofDl and then
initialise R (li2). We repeat this process for all categories j ∈ {1, . . . , Ci} and then we
do the same thing for the remaining unused features in l.attributes_categories.
These micro-optimisations we perform allow for substantial computational efficiency.

• Backpropagation: For j = length (path)− 1, . . . , 1 let parent = path[j-1] and
child = path[j], then we pop the heap queue parent.queue:

(-value, value_complete, attribute, children) = parent.queue.pop()

During the Selection step, attributewas the action taken at the branch parent to tran-
sition to the branch child. Now during Backpropagation, we need to update the estimates
Q (parent, attribute) and R (parent), hence why we pop the corresponding tu-
ple from parent.queue, and once we update its values, we push the tuple back in the
heap queue. This rearranges the tuples so that the tuple with highest value will be at
parent.queue[0].
If child.complete then we add its value to value_complete:

value_complete← value_complete + child.value

and we pop child from the dictionary of incomplete children
children.pop(child). Now parent.queue[0] is the tuple corresponding
to the best split action:

(-value, value_complete, attribute, children) = parent.queue[0]

Therefore, the value of parent is equal to the maximum between the value of taking this
best split action and the value of taking the terminal action:

R (parent) = max
{
Q (parent, a) ,Q (parent,attribute)

}
Which, in our implementation translates into:

parent.value← max
{
parent.value_terminal,value

}
IfR (parent) = Q (parent, a), then a = Argmaxa∈A(parent)Q (parent, a), and
since we know that Q∗ (parent, a) = Q (parent, a) (according to Eq. (4)), then we
deduce that parent is complete and R∗ (parent) = Q∗ (parent, a). Therefore we
update:

parent.complete← True

This is not the only condition that makes parent complete. Indeed, parent can also be
complete if (parent, attribute) is complete, which happens when the dictionary
children is empty.
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E PSEUDOCODE

Algorithm 1 BRANCHES

1: Input: Dataset D = {(Xm, Ym)}nm=1, penalty parameter λ ≥ 0.
2: memo← {} ▷ Initialise an empty memo
3: INITIALISE(Ω,D)
4: while not Ω.complete do
5: (l,path)← SELECT()
6: if l.complete then
7: BACKPROPAGATE(path)
8: else
9: EXPAND(l,D)

10: BACKPROPAGATE(path)
11: end if
12: end while
13: return INFER()
14: procedure SELECT()
15: l← Ω
16: path← [l]
17: while l.expanded and (not l.complete) do
18: (Q (l, i) , return complete, i, children incomplete)← l.queue[0]
19: l← children incomplete [0]
20: path.append (l)
21: end while
22: return (l,path)
23: end procedure
24: procedure EXPAND(l,D)
25: l.expanded← True
26: for i ∈ A (l) \ {a} do
27: SPLIT(l, i,D)
28: R (l)← max

{
Q (l, a) , l.queue [0] [0]

}
▷ This update comes from Eq. (6)

29: end for
30: ifR (l) = Q (l, a) then ▷ In this caseR∗ (l) = Q∗ (l, a) = H (l)
31: l.complete← True ▷R∗ (l) is known
32: l.terminal← True ▷ Label l terminal if the optimal action at l is π∗ (l) = a
33: end if
34: end procedure
35: procedure BACKPROPAGATE(path)
36: N ← length (path)
37: for t = N − 2 to 0 do
38: l← path [t]
39: (Q (l, i) , return complete, i, children incomplete)← l.queue.pop ()
40: Q (l, i)← return complete ▷ InitialiseQ (l, i)
41: for l′ ∈ children incomplete do
42: Q (l, i)← Q (l, i) +R (l′)
43: if l′.complete then ▷ Check if l′ is complete now
44: children incomplete.discard (l′) ▷ Delete l′ from children incomplete
45: end if
46: end for
47: l.queue.push ((Q (l, i) , return complete, i, children incomplete))
48: (Q (l, i∗) , return complete, i∗, children incomplete)← l.queue [0] [0]
49: R (l)← Q (l, i∗)
50: if (R (l) = Q (l, a)) or (children incomplete is empty) then
51: l.complete← True
52: l.terminal← True ▷ Label l terminal if the optimal action at l is π∗ (l) = a
53: end if
54: end for
55: end procedure
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56: procedure INITIALISE(l,D)
57: l.expanded← False ▷ Label l as not expanded yet
58: l.children← dict () ▷ Initialise the dictionary of children
59: l.queue← queue ([]) ▷ Initialise the priority queue of l
60: Q (l, a)← H (l) ▷H (l) is calculated with D
61: if A (l) = {a} then
62: l.terminal← True ▷ Label l as terminal if it cannot be split
63: l.complete← True ▷R∗ (l) is known
64: R (l)← Q (l, a) ▷ In this caseR∗ (l) = Q∗ (l, a) = H (l)
65: else
66: l.terminal← False
67: InitialiseR (l) according to Eq. (6) and Eq. (7)
68: ifR (l) = Q (l, a) then
69: l.complete← True ▷R∗ (l) is known,R∗ (l) = Q∗ (l, a) = H (l)
70: l.terminal← True ▷ Label l terminal if the optimal action at l is π∗ (l) = a
71: else
72: l.complete← False ▷R∗ (l) is still unknown
73: end if
74: end if
75: memo.add(l) ▷ Add the initialised branch to the memo
76: end procedure
77: procedure SPLIT(l, i,D)
78: l.children[i]← [] ▷ Initialise the list of children that stem taking split action i in l
79: Q (l, i)← −λ ▷ Initialise the Upper Bound Q (l, i)
80: return complete← −λ ▷ Initialise the return due to complete children
81: children incomplete← [] ▷ Initialise the list of incomplete children
82: for j ∈ {1, . . . , Ci} do
83: lij ← l ∧ 1{X(i) = j}
84: if lij /∈ memo then ▷ Only initialise the branches that are not in the memo
85: INITIALISE(lij ,D)
86: end if
87: l.children[i].append (lij)
88: Q (l, i)← Q (l, i) +R (lij) ▷ Update the Upper Bound Q (l, i)
89: if lij .complete then
90: return complete← return complete +R (lij)
91: else
92: children incomplete.append (lij)
93: end if
94: end for
95: l.queue.push ((Q (l, i) , return complete, i, children incomplete))
96: end procedure
97: procedure INFER()
98: T ← []
99: Q← queue ()
100: Q.put (Ω)
101: while Q is not empty do
102: l← Q.pop ()
103: if l.terminal then
104: T.append (l)
105: else
106: (Q (l, i) , return complete, i, children incomplete)← l.queue[0]
107: for l′ ∈ l.children [i] do
108: Q.put (l′)
109: end for
110: end if
111: end while
112: return T
113: end procedure
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Table 5: Number of examples n, number of features q, number of classes K and penalty parameter
λ for the different datasets used in our experiments.

Dataset n q K λ

monk1-l 124 11 2 0.01
monk1-f 124 11 2 0.001
monk1-o 124 6 2 0.01
monk2-l 169 11 2 0.001
monk2-f 169 11 2 0.001
monk2-o 169 6 2 0.001
monk3-l 122 11 2 0.001
monk3-f 122 11 2 0.001
monk3-o 122 6 2 0.001

tic-tac-toe 958 18 2 0.005
tic-tac-toe-o 958 9 2 0.005

car-eval 1728 15 4 0.005
car-eval-o 1728 6 4 0.005

nursery 12960 19 5 0.01
nursery-o 12960 8 4 0.01

mushroom 8124 95 2 0.01
mushroom-o 8124 22 2 0.01

kr-vs-kp 3196 37 2 0.01
kr-vs-kp-o 3196 36 2 0.01

zoo 101 20 7 0.001
zoo-o 101 16 7 0.001

lymph 148 18 4 0.01
lymph-o 148 41 4 0.01
balance 576 16 2 0.01

balance-o 576 4 2 0.01

F EXPERIMENTAL DETAILS

Table 5 describes the properties and the setup for each one of our experiments.

F.1 CROSSVALIDATION RESULTS

In this section, we perform a 5 fold crossvalidation comparing BRANCHES with the other algorithms
in terms of the training and test accuracies, train and test objectives, and number of splits of the
proposed solutions.

Table 6 and Table 9 show that the methods that solve for sparsity display similar performance (when
they terminate) on almost all the experiments, which reinforces the exactitude of their implemen-
tations being faithful to their theoretical optimality guarantee. There are however few cases where
there is a discrepancy between their test accuracies, even when they terminate. This is the case for
monk3-f and zoo for example. The three algorithms BRANCHES, GOSDT and STreeD find the same
DT solutions during the crossvalidation training, the difference in test accuracies is due to different
predicted classes in branches (leaves) that contain no training example, but contain some test ex-
amples. In these branches, the choice of the predicted class is arbitrary, which explain the noticed
discrepancy.

The second remark from these results is that BRANCHES is robust to memory issues unlike GOSDT
and MurTree. Moreover, we notice that STreeD, in Table 9, does not have an anytime property as
it only suggests a DT solution if it terminates. All the other methods on the other hand suggested
solutions even when they did not terminate.

Table 7 is the most prone to overfitting, it yields 100% training accuracy on all experiments, yet due
to the overly complicated DT solutions it suggests, it scores poorly in the other metrics. This is not
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Table 6: 5 folds cross-validation train/test results for BRANCHES and GOSDT. acc refers to Accu-
racy, obj refers to the objective Hλ (T ), splits refers to the number of splits S (T ). The kernel dies
for GOSDT on mushroom and lymph due to high memory consumption.

Dataset GOSDT BRANCHES
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monk1-l 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8
monk1-f 1± 0 0.986± 0.002 0.750± 0.108 0.736± 0.108 14± 2.3 1± 0 0.986± 0.002 0.764± 0.168 0.750± 0.166 14± 2.3
monk2-l 1± 0 0.971± 0.002 0.812± 0.152 0.783± 0.149 28.8± 2.4 1± 0 0.971± 0.002 0.847± 0.107 0.818± 0.105 28.8± 2.4
monk2-f 1± 0 0.948± 0.001 0.521± 0.065 0.469± 0.065 51.8± 1.3 1± 0 0.948± 0.001 0.503± 0.042 0.451± 0.042 51.8± 1.3
monk3-l 1± 0 0.984± 0.001 0.796± 0.084 0.780± 0.085 16.2± 1.1 1± 0 0.984± 0.001 0.812± 0.076 0.796± 0.075 16.2± 1.1
monk3-f 1± 0 0.986± 0.002 0.869± 0.041 0.855± 0.039 13.8± 1.9 1± 0 0.986± 0.002 0.760± 0.132 0.747± 0.132 13.8± 1.9

tic-tac-toe 0.961± 0.006 0.864± 0.005 0.790± 0.104 0.693± 0.105 19.4± 1 0.961± 0.006 0.864± 0.005 0.790± 0.103 0.693± 0.103 19.4± 1
car-eval 0.885± 0.005 0.817± 0.006 0.647± 0.081 0.579± 0.079 13.6± 1.8 0.885± 0.005 0.817± 0.006 0.647± 0.081 0.579± 0.079 13.6± 1.8
nursery 0.830± 0.016 0.776± 0.015 0.758± 0.039 0.704± 0.042 5.4± 0.5 0.878± 0.019 0.794± 0.004 0.652± 0.100 0.568± 0.108 8.4± 1.7

mushroom 0.974± 0.011 0.944± 0.011 0.837± 0.141 0.807± 0.141 3± 0
kr-vs-kp 0.835± 0.039 0.809± 0.035 0.774± 0.076 0.748± 0.074 2.6± 0.5 0.944± 0.011 0.902± 0.011 0.929± 0.043 0.887± 0.043 4.2± 0.4

zoo 1± 0 0.993± 0.001 0.940± 0.058 0.933± 0.058 7.4± 0.8 1± 0 0.993± 0.001 0.960± 0.058 0.953± 0.058 7.4± 0.8
lymph 0.885± 0.026 0.819± 0.013 0.776± 0.054 0.710± 0.059 6.6± 1.3

balance 0.817± 0.022 0.745± 0.009 0.373± 0.163 0.301± 0.174 7.2± 1.7 0.817± 0.022 0.745± 0.009 0.373± 0.163 0.301± 0.174 7.2± 1.7

Table 7: 5 folds cross-validation train/test results for BRANCHES and DL8.5. acc refers to Accuracy,
obj refers to the objectiveHλ (T ), splits refers to the number of splits S (T ).

Dataset DL8.5 BRANCHES
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monk1-l 1± 0 0.404± 0.020 0.629± 0.064 0.033± 0.051 59.6± 1.9 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8
monk1-f 1± 0 0.939± 0.002 0.589± 0.047 0.528± 0.046 60.6± 1.9 1± 0 0.986± 0.002 0.764± 0.168 0.750± 0.166 14± 2.3
monk2-l 1± 0 0.900± 0.003 0.416± 0.155 0.316± 0.152 100± 3.2 1± 0 0.971± 0.002 0.847± 0.107 0.818± 0.105 28.8± 2.4
monk2-f 1± 0 0.914± 0.006 0.591± 0.116 0.505± 0.112 86± 6 1± 0 0.948± 0.001 0.503± 0.042 0.451± 0.042 51.8± 1.3
monk3-l 1± 0 0.955± 0.003 0.434± 0.116 0.388± 0.115 45.2± 3.2 1± 0 0.984± 0.001 0.812± 0.076 0.796± 0.075 16.2± 1.1
monk3-f 1± 0 0.943± 0.002 0.729± 0.042 0.673± 0.041 56.8± 2 1± 0 0.986± 0.002 0.760± 0.132 0.747± 0.132 13.8± 1.9

tic-tac-toe 1± 0 −0.562± 0.08 0.446± 0.142 −1.116± 0.14 312± 17 0.961± 0.006 0.864± 0.005 0.790± 0.103 0.693± 0.103 19.4± 1
car-eval 1± 0 −2.042± 0.2 0.307± 0.206 −2.735± 0.14 608.4± 41 0.885± 0.005 0.817± 0.006 0.647± 0.081 0.579± 0.079 13.6± 1.8
nursery 1± 0 −90.2± 2.9 0.063± 0.125 −91.143± 2.84 9120± 290 0.878± 0.019 0.794± 0.004 0.652± 0.100 0.568± 0.108 8.4± 1.7

mushroom 1± 0 0.336± 0.091 0.947± 0.074 0.283± 0.077 66.4± 9 0.974± 0.011 0.944± 0.011 0.837± 0.141 0.807± 0.141 3± 0
kr-vs-kp 1± 0 −8.25± 0.87 0.663± 0.07 −8.585± 0.81 924.8± 87 0.944± 0.011 0.902± 0.011 0.929± 0.043 0.887± 0.043 4.2± 0.4

zoo 1± 0 0.984± 0 0.940± 0.02 0.925± 0.02 15.8± 0.4 1± 0 0.993± 0.001 0.960± 0.058 0.953± 0.058 7.4± 0.8
lymph 1± 0 0.364± 0.014 0.722± 0.044 0.086± 0.042 63.6± 1.356 0.885± 0.026 0.819± 0.013 0.776± 0.054 0.710± 0.059 6.6± 1.3

balance 1± 0 −1.52± 0.195 0.646± 0.032 −1.87± 0.172 251± 19 0.817± 0.022 0.745± 0.009 0.373± 0.163 0.301± 0.174 7.2± 1.7

surprising due to the lack of regularisation parameter and the high maximum depth of 20 that we set
for a fair comparison.

CART never achieved optimality, in terms of the training objectiveHλ. Furthermore, it is interesting
to note that, even on experiments where BRANCHES did not terminate, and thus did not necessarily
find the optimal DT within the allocated 5 minutes of time, it still found better solutions (in terms
of the training Hλ) than CART. However, solutions with higher training Hλ do not always induce
higher test accuracies as evident from monk3-f, tic-tac-toe, car-eval, nursery and kr-vs-kp. On the
other hand, they always produce significantly less complex, and thus more interpretable, DTs, which
we recall is a major motivation behind employing Decision Tree models. We believe it is very likely
that, with large training datasets, the objective metric Hλ is a good indicator of high out-of-sample
accuracy and sparsity (number of splits).

F.2 DEPENDENCE ON λ

Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 show the dependence of the objectiveHλ, accuracy, number
of splits S (T ), execution times and number of iterations respectively on λ.

• We did not report Hλ for DL8.5 because it is significantly lower than Hλ of the other
algorithms.

• MurTree is missing in some comparisons because it causes the kernel to die due to high
memory consumption.

• The missing data points with regard to STreeD are due to its non-anytime behaviour, it does
not suggest a DT solution for those λ values after the 5 minutes time limit.

Overall, BRANCHES exhibits the best frontier, in terms of Hλ, with GOSDT the most competi-
tive method. The execution times frontier of BRANCHES is also better GOSDT’s, albeit GOSDT
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Table 8: 5 folds cross-validation train/test results for BRANCHES and MurTree. acc refers to Accu-
racy, obj refers to the objective Hλ (T ), splits refers to the number of splits S (T ). The kernel dies
for MurTree on kr-vs-kp and lymph.

Dataset MurTree BRANCHES
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monk1-l 1± 0 0.870± 0.013 0.820± 0.182 0.690± 0.170 13± 1.3 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8
monk1-f 1± 0 0.972± 0.002 0.629± 0.127 0.602± 0.126 27.8± 2 1± 0 0.986± 0.002 0.764± 0.168 0.750± 0.166 14± 2.3
monk2-l 1± 0 0.970± 0.003 0.800± 0.156 0.770± 0.154 30± 2.6 1± 0 0.971± 0.002 0.847± 0.107 0.818± 0.105 28.8± 2.4
monk2-f 1± 0 0.944± 0.002 0.568± 0.041 0.512± 0.040 56.4± 2.2 1± 0 0.948± 0.001 0.503± 0.042 0.451± 0.042 51.8± 1.3
monk3-l 1± 0 0.975± 0.005 0.708± 0.170 0.683± 0.167 25± 4.5 1± 0 0.984± 0.001 0.812± 0.076 0.796± 0.075 16.2± 1.1
monk3-f 1± 0 0.976± 0.002 0.778± 0.079 0.754± 0.078 24.2± 2 1± 0 0.986± 0.002 0.760± 0.132 0.747± 0.132 13.8± 1.9

tic-tac-toe 0.961± 0.006 0.864± 0.005 0.790± 0.104 0.693± 0.105 19.4± 1 0.961± 0.006 0.864± 0.005 0.790± 0.103 0.693± 0.103 19.4± 1
car-eval 0.888± 0.010 0.817± 0.006 0.647± 0.081 0.576± 0.074 14.2± 2.5 0.885± 0.005 0.817± 0.006 0.647± 0.081 0.579± 0.079 13.6± 1.8
nursery 0.878± 0.019 0.794± 0.004 0.652± 0.100 0.568± 0.108 8.4± 1.7 0.878± 0.019 0.794± 0.004 0.652± 0.100 0.568± 0.108 8.4± 1.7

mushroom 0.992± 0.001 0.950± 0.006 0.831± 0.172 0.789± 0.168 4.2± 0.7 0.974± 0.011 0.944± 0.011 0.837± 0.141 0.807± 0.141 3± 0
kr-vs-kp 0.944± 0.011 0.902± 0.011 0.929± 0.043 0.887± 0.043 4.2± 0.4

zoo 1± 0 0.990± 0.001 0.930± 0.068 0.920± 0.067 10.2± 1 1± 0 0.993± 0.001 0.960± 0.058 0.953± 0.058 7.4± 0.8
lymph 0.885± 0.026 0.819± 0.013 0.776± 0.054 0.710± 0.059 6.6± 1.3

balance 0.821± 0.021 0.745± 0.009 0.364± 0.176 0.288± 0.191 7.6± 1.8 0.817± 0.022 0.745± 0.009 0.373± 0.163 0.301± 0.174 7.2± 1.7

Table 9: 5 folds cross-validation train/test results for BRANCHES and STreeD. acc refers to Accu-
racy, obj refers to the objective Hλ (T ), splits refers to the number of splits S (T ). STreeD reaches
timeout and does not suggest a solution for car-eval, nursery, lymph and balance.

Dataset STreeD BRANCHES
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monk1-l 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8
monk1-f 1± 0 0.986± 0.002 0.772± 0.177 0.758± 0.176 14± 2.3 1± 0 0.986± 0.002 0.764± 0.168 0.750± 0.166 14± 2.3
monk2-l 1± 0 0.971± 0.002 0.799± 0.099 0.771± 0.096 28.8± 2.4 1± 0 0.971± 0.002 0.847± 0.107 0.818± 0.105 28.8± 2.4
monk2-f 1± 0 0.948± 0.001 0.515± 0.057 0.464± 0.057 51.8± 1.3 1± 0 0.948± 0.001 0.503± 0.042 0.451± 0.042 51.8± 1.3
monk3-l 1± 0 0.984± 0.001 0.812± 0.076 0.796± 0.075 16.2± 1 1± 0 0.984± 0.001 0.812± 0.076 0.796± 0.075 16.2± 1.1
monk3-f 1± 0 0.986± 0.002 0.835± 0.115 0.822± 0.114 13.8± 1.9 1± 0 0.986± 0.002 0.760± 0.132 0.747± 0.132 13.8± 1.9

tic-tac-toe 0.961± 0.006 0.864± 0.005 0.802± 0.107 0.705± 0.108 19.4± 1 0.961± 0.006 0.864± 0.005 0.790± 0.103 0.693± 0.103 19.4± 1
car-eval 0.885± 0.005 0.817± 0.006 0.647± 0.081 0.579± 0.079 13.6± 1.8
nursery 0.878± 0.019 0.794± 0.004 0.652± 0.100 0.568± 0.108 8.4± 1.7

mushroom 0.990± 0.003 0.950± 0.006 0.830± 0.172 0.790± 0.169 4± 0.6 0.974± 0.011 0.944± 0.011 0.837± 0.141 0.807± 0.141 3± 0
kr-vs-kp 0.944± 0.011 0.902± 0.011 0.929± 0.043 0.887± 0.043 4.2± 0.4

zoo 1± 0 0.993± 0.001 0.940± 0.058 0.933± 0.058 7.4± 0.8 1± 0 0.993± 0.001 0.960± 0.058 0.953± 0.058 7.4± 0.8
lymph 0.885± 0.026 0.819± 0.013 0.776± 0.054 0.710± 0.059 6.6± 1.3

balance 0.817± 0.022 0.745± 0.009 0.373± 0.163 0.301± 0.174 7.2± 1.7

outperforms BRANCHES on a few: care-eval and balance. In terms of the number of iterations,
BRANCHES clearly outperforms GOSDT on all experiments showing better computational effi-
ciency and validating our computational complexity analysis of Section 5.

F.3 CHOOSING λ

The λ values, in Table 5, were chosen through experimentation to yield well behaved DTs in terms of
accuracy and sparsity. A principled approach to choosing adequate λ values is to estimate suitable
metrics through crossvalidation and choosing λ accordingly. Fig. 12, Fig. 13, Fig. 14, Fig. 15,
Fig. 16, Fig. 17, Fig. 18, Fig. 19, Fig. 20, , Fig. 21, Fig. 22, and Fig. 23 show quartile plots of the
different metrics of interest induced by the 5 fold crossvalidation, these figures can be employed to
choose adequate λ values.
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Table 10: 5 folds cross-validation train/test results for BRANCHES and CART. acc refers to Accu-
racy, obj refers to the objectiveHλ (T ), splits refers to the number of splits S (T ).

Dataset CART BRANCHES
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monk1-l 0.982± 0.027 0.890± 0.043 0.740± 0.153 0.648± 0.151 9.2± 3.1 1± 0 0.936± 0.008 0.844± 0.196 0.780± 0.188 6.4± 0.8
monk1-f 1± 0 0.978± 0.006 0.676± 0.109 0.654± 0.108 22.2± 6.4 1± 0 0.986± 0.002 0.764± 0.168 0.750± 0.166 14± 2.3
monk2-l 1± 0 0.952± 0.005 0.645± 0.103 0.597± 0.102 47.8± 5.1 1± 0 0.971± 0.002 0.847± 0.107 0.818± 0.105 28.8± 2.4
monk2-f 1± 0 0.931± 0.005 0.450± 0.089 0.381± 0.089 69.2± 5 1± 0 0.948± 0.001 0.503± 0.042 0.451± 0.042 51.8± 1.3
monk3-l 1± 0 0.981± 0.002 0.787± 0.055 0.768± 0.056 19.2± 1.8 1± 0 0.984± 0.001 0.812± 0.076 0.796± 0.075 16.2± 1.1
monk3-f 1± 0 0.983± 0.003 0.844± 0.093 0.827± 0.091 16.6± 3.5 1± 0 0.986± 0.002 0.760± 0.132 0.747± 0.132 13.8± 1.9

tic-tac-toe 0.960± 0.009 0.843± 0.008 0.846± 0.093 0.729± 0.083 23.4± 2.5 0.961± 0.006 0.864± 0.005 0.790± 0.103 0.693± 0.103 19.4± 1
car-eval 0.896± 0.006 0.800± 0.015 0.686± 0.083 0.590± 0.085 19.2± 3.5 0.885± 0.005 0.817± 0.006 0.647± 0.081 0.579± 0.079 13.6± 1.8
nursery 0.883± 0.015 0.783± 0.011 0.668± 0.106 0.568± 0.105 10± 0.6 0.878± 0.019 0.794± 0.004 0.652± 0.100 0.568± 0.108 8.4± 1.7

mushroom 0.988± 0.006 0.940± 0.012 0.870± 0.142 0.822± 0.143 4.8± 1.1 0.974± 0.011 0.944± 0.011 0.837± 0.141 0.807± 0.141 3± 0
kr-vs-kp 0.964± 0.006 0.890± 0.018 0.942± 0.046 0.868± 0.029 7.4± 1.7 0.944± 0.011 0.902± 0.011 0.929± 0.043 0.887± 0.043 4.2± 0.4

zoo 1± 0 0.992± 0.001 0.940± 0.049 0.932± 0.048 7.8± 1.1 1± 0 0.993± 0.001 0.960± 0.058 0.953± 0.058 7.4± 0.8
lymph 0.971± 0.012 0.809± 0.017 0.750± 0.018 0.588± 0.015 16.2± 1.9 0.885± 0.026 0.819± 0.013 0.776± 0.054 0.710± 0.059 6.6± 1.3

balance 0.782± 0.022 0.712± 0.011 0.347± 0.109 0.277± 0.120 7± 1.5 0.817± 0.022 0.745± 0.009 0.373± 0.163 0.301± 0.174 7.2± 1.7
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Figure 7: Dependence of the objectiveHλ on λ.
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Figure 8: Dependence of the accuracy on λ.
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Figure 9: Dependence of the number of splits S (T ) on λ.
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Figure 10: Dependence of the execution times on λ.
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Figure 11: Dependence of the number of iterations on λ.
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Figure 12: 5 fold crossvalidation of BRANCHES for the training objectiveHλ.
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Figure 13: 5 fold crossvalidation of BRANCHES for the training objectiveHλ.
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Figure 14: 5 fold crossvalidation of BRANCHES for the test objectiveHλ.
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Figure 15: 5 fold crossvalidation of BRANCHES for the test objectiveHλ.
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Figure 16: 5 fold crossvalidation of BRANCHES for the training accuracy.
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Figure 17: 5 fold crossvalidation of BRANCHES for the training accuracy.
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Figure 18: 5 fold crossvalidation of BRANCHES for the test accuracy.
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Figure 19: 5 fold crossvalidation of BRANCHES for the test accuracy.
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Figure 20: 5 fold crossvalidation of BRANCHES for the number of splits S (T ).
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Figure 21: 5 fold crossvalidation of BRANCHES for the number of splits S (T ).
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Figure 22: 5 fold crossvalidation of BRANCHES for the execution time.
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Figure 23: 5 fold crossvalidation of BRANCHES for the execution time.
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