
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE SURPRISING SOUPABILITY OF DOCUMENTS
IN STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate whether hidden states from Structured State Space Models (SSMs)
can be merged post hoc to support downstream reasoning. Inspired by model
souping, we propose a strategy where documents are encoded independently and
their representations are pooled, via simple operations like averaging, into a single
context state. This approach, which we call document souping, enables modu-
lar encoding and reuse without reprocessing the full input for each query. We
demonstrate that finetuned Mamba2 models with souped representations achieve
competitive or superior performance across multi-hop QA, sparse retrieval, and
long-document reasoning tasks compared to the standard monolithic encoding ap-
proach. For example, on the RACE and QuALITY benchmarks for long document
question answering, our method substantially outperforms a traditional concatena-
tion approach. Crucially, this modular design scales to hundreds of documents—we
test up to 256—while delivering substantial savings in inference cost, unlocking
new possibilities for large-scale corpus reasoning.

1 INTRODUCTION

Many real-world NLP tasks, such as multi-document question answering, scientific summarization,
and legal analysis, require reasoning over entire corpora rather than individual long documents. These
tasks demand flexible integration of information distributed across sources, as well as the ability to
dynamically update, prune, or recombine input subsets. Yet today’s language models remain poorly
suited for this kind of modular document reasoning.

Transformer-based models (Vaswani et al., 2017), despite their success, face prohibitive O(L2)
attention costs that make full corpus encoding expensive and inflexible. Structured State Space
Models (SSMs) offer a promising alternative: architectures like Mamba (Gu & Dao, 2024) and
Mamba2 (Dao & Gu, 2024) process sequences in linear time, compressing them into fixed-length
hidden states. The linear recurrence central to these models provides the core intuition for our work:
we hypothesize that linear operations on these states, such as averaging, will produce meaningful
composite representations. This architectural feature is key, as we later show empirically that it makes
SSMs uniquely suited for our proposed merging technique, an approach that proves ineffective in
standard Transformers. However, even these efficient architectures are typically deployed using a
monolithic encoding strategy: concatenating all documents into a single sequence before processing.
This approach inherits a critical weakness: any modification to the corpus, even changing a single
document, requires re-encoding the entire input from scratch and prevents the reuse of document
representations. This re-encoding requirement becomes prohibitive at scale—processing hundreds or
thousands of documents repeatedly for each query.

This brittleness suggests a fundamental mismatch: we need modular, reusable representations, yet
current approaches force monolithic, use-once encoding. In this work, we propose a solution inspired
by model souping (Wortsman et al., 2022), a technique that merges finetuned model checkpoints by
averaging their parameters. We ask: if SSMs encode individual documents into fixed-length hidden
states, can those representations be merged post hoc while still supporting downstream tasks? We
call this property soupability: the ability of independently encoded document representations to be
pooled together while preserving the information needed for multi-document reasoning.

We operationalize this idea as corpus encoding via state souping, illustrated in Figure 1. The
approach is straightforward: each document is independently encoded by a shared SSM to produce

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Computation Graphs for
Corpus Encoding. Top: In tra-
ditional concatenation-based encod-
ing, all documents {d1, . . . , dk}, the
query q, and answer a are flattened
into a single input sequence and pro-
cessed end-to-end by an SSM. This
requires joint re-encoding for every
change to the input. Bottom: In
our proposed state souping approach,
each document di is encoded inde-
pendently by a shared SSM, pro-
ducing per document hidden states
{h1, . . . , hk} which are pooled into
a single representation hsoup (e.g., via
sum or average). This pooled state is
then used, alongside the query q, to
drive downstream prediction. The de-
sign supports parallel encoding, mod-
ular reuse, and post hoc corpus com-
position.

per-document hidden states. These are then pooled using simple commutative operators (e.g., average)
into a single representation that conditions the decoder alongside the query. The key advantage
is modularity: documents can be encoded once, cached, and later combined in arbitrary subsets,
enabling efficient corpus updates and dynamic retrieval without re-encoding.

We use Mamba2 as our representative SSM because its core ingredients are shared across modern
SSM families, including S4 (Gu et al., 2022) and S5 (Smith et al., 2023) variants. Moreover, it is the
only large-scale SSM without a hybrid architecture. Our approach depends on the linear recurrent
scan that produces encoder hidden states, not on details unique to Mamba2. The properties that
enable souping, namely independent encoding, linear aggregation, and conditioning on a pooled state,
should therefore carry over to other SSM architectures with comparable state representations.

We find that Mamba2 encodes representations with strong soupability. With full encoder-decoder
finetuning, our souping-based architecture supports multi-hop QA, sparse retrieval, and long document
understanding, often matching or surpassing traditional joint encoding approaches. This design
unlocks a new inference workflow where corpora can be encoded once, cached, and reassembled
dynamically, enabling scalable, retrieval-based reasoning without repeated full sequence processing.

Contributions. We systematically investigate the soupability of document representations in SSMs
using Mamba2-2.7B (Dao & Gu, 2024) and Mamba2-8B (Waleffe et al., 2024). Our contributions
are: (1) We introduce document souping, a mechanism for merging per-document hidden states. (2)
We demonstrate that finetuned Mamba2 models with souped representations can support multi-hop
reasoning on HotpotQA (Yang et al., 2018), with performance comparable to joint encoding. (3) We
analyze soupability across diverse tasks, including long document QA (RACE (Lai et al., 2017) and
QuALITY (Pang et al., 2022)) and sparse retrieval. (4) We compare pooling strategies and show that
soupability is robust to operator choice. (5) We show that this modular souping approach is uniquely
suited to SSMs, as an analogous technique fails in standard Transformer architectures.

2 METHODS

We investigate when document representations from Structured State Space Models (SSMs) can
be merged post hoc, using simple commutative operations like averaging or summation, while still
preserving the information needed for downstream tasks. We refer to this property as soupability.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 BACKGROUND AND NOTATION

Structured State-Space Models (SSMs) are a class of sequence models that compress long inputs
into fixed-size hidden representations through linear recurrence mechanisms. Unlike attention-
based models, SSMs offer subquadratic compute and memory scaling, making them well-suited for
long-context settings.

We denote the encoder component of an SSM as a function SSMθ, which maps a document d to a
sequence of layer-wise hidden states {h(1), . . . , h(L)}. Each h(l) ∈ Rd summarizes the input up to
layer l, and L denotes the total number of layers. This encoder is applied to the entire input sequence
jointly, and the resulting states are passed to a decoder for generation or prediction.

In this work, we leverage the layerwise structure of SSMs to explore whether documents can be
encoded independently and later recombined in a modular fashion. Our central question is whether
these hidden states, computed separately per document, can be pooled into a single representation
suitable for downstream reasoning. Given their foundation in linear recurrence, we hypothesize that a
linear combination of these states could form a meaningful composite representation. We refer to this
approach as corpus encoding via state souping.

2.2 CORPUS ENCODING VIA STATE SOUPING

Our proposed corpus encoding strategy is illustrated in Figure 1 and formalized in Appendix A.3.
Given a set of documents {d1, . . . , dk} and a query q, each document is passed independently through
a shared SSM encoder, yielding a set of hidden states {h(l)

1 , . . . , h
(l)
k } at each layer l. These are

then combined using a commutative pooling operator, typically elementwise average, sum, or max,
resulting in a single pooled state h

(l)
soup for each layer.

We optionally explore unit normalization, applied either before pooling (to each h
(l)
i ) or after pooling

(to h
(l)
soup):

h̃
(l)
i =

h
(l)
i

∥h(l)
i ∥

, h(l)
soup = normalize

(
k∑

i=1

h̃
(l)
i

)
.

Once pooled, these hidden states {h(1)
soup, . . . , h

(L)
soup} are injected into the decoder alongside the query

q. The decoder produces the answer ŷ conditioned on the souped representation:

ŷ = SSMθ

(
q
∣∣∣ {h(l)

soup}Ll=1

)
.

This design enables efficient parallel encoding, modular document reuse, and flexible corpus reconfig-
uration at inference time. Because the encoder processes each document in isolation, representations
can be cached and reused across multiple queries, dramatically reducing redundant computation.

To support training of this architecture, gradients must propagate through multiple independent docu-
ment encoders. Without memory optimizations, this would require storing intermediate activations
for all k documents, leading to memory growth linear in k. To address this, we apply activation
checkpointing at the document level: forward activations are recomputed during the backward pass,
enabling constant memory usage regardless of corpus size. This allows us to scale finetuning to wide
or deep document sets efficiently.

2.3 EVALUATION DIMENSIONS

To characterize when corpus encoding via state souping is effective, we organize our analysis around
two dimensions: model capacity and corpus structure.

Model capacity concerns the architectural and training properties that affect soupability. We ask:
Are pretrained SSMs inherently soupable, or must they be finetuned to interpret pooled states? Does
soupability improve with model size or hidden state dimensionality? And how well do models
generalize across soup sizes, for example, when asked to merge more documents at test time than
during training?

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Method Test on 2 gold + (n−2) distractors

2 5 10

Pretrained 8B (No Finetuned)

Concat 15.4 / 26.3 8.5 / 20.2 5.0 / 15.7
Soup w/ Average 8.7 / 12.7 2.6 / 5.0 1.7 / 3.6

Decoder-Only Finetuned 8B

Soup w/ Average 51.8 / 66.4 38.8 / 51.7 28.0 / 39.4

Encoder-Decoder Finetuned 8B

Full Finetuned - Average Pooling With & Without Norms

Soup w/ Average 55.8 / 69.8 47.8 / 61.3 38.7 / 50.9
Average + Norm Before 35.9 / 47.8 47.8 / 60.9 38.1 / 50.2
Average + Norm After 50.4 / 65.2 42.3 / 55.6 33.4 / 44.9
Average + Norm Before & After 6.9 / 10.7 42.2 / 54.7 33.8 / 45.6

Full Finetuned - Summation Pooling With & Without Norms

Soup w/ Sum 55.1 / 69.4 44.2 / 57.4 25.0 / 36.0
Sum + Norm Before 8.8 / 13.6 8.1 / 13.0 4.6 / 9.4
Sum + Norm After 51.9 / 66.1 43.6 / 56.6 34.7 / 46.2
Sum + Norm Before & After 10.2 / 16.3 40.3 / 52.9 33.2 / 44.8

Full Finetuned - Max Pooling Without Norms

Soup w/ Max 52.3 / 65.6 39.1 / 51.6 28.9 / 40.5

Table 1: HotpotQA performance (Exact
Match / F1) for Mamba2-8B models trained
on 5 documents (2 gold + 3 distractors) and
evaluated on n documents, each with 2 gold
and (n−2) distractors. We compare pre-
trained models, decoder-only finetuning, and
encoder-decoder finetuning across different
pooling strategies (average, sum, max), with
optional normalization applied before and/or
after aggregation. Underlined entries indi-
cate evaluations where the number of test-
time documents matches the training con-
figuration. We observe that decoder-only
finetuning improves performance by learn-
ing to interpret fixed souped states, and full
encoder-decoder finetuning yields the best
results by also learning to produce merge-
able representations. Across all configura-
tions, simple averaging without normaliza-
tion emerges as the most stable and effective
aggregation method.

Corpus structure examines how input organization affects pooling success. We study whether long,
contiguous documents can be segmented and recomposed via souping, or whether this method is
better suited to independently authored texts. We also test whether souped representations preserve
the dependencies needed for multi-hop reasoning, where answering a query requires synthesizing
information from multiple documents.

Together, these questions guide our exploration of soupability as a flexible and scalable alternative to
serial encoding for corpus-level reasoning in state space models.

3 EXPERIMENTS

We conduct a comprehensive set of experiments to evaluate document souping across a range of tasks
and settings. This section outlines our experimental design, detailing the datasets, baselines, and
implementation specifics used in our analysis.

3.1 TASKS AND DATASETS

We evaluate state souping across a range of long-context reasoning tasks that test different dimensions
of soupability: single-hop vs. multi-hop inference, monolithic vs. multi-document structure, and
sparse signal detection in distractor-heavy inputs.

Multi-Doc QA We study multi-document question answering in two distinct regimes. For single-
hop QA, we use the QA subset of the RULER dataset (Hsieh et al., 2024), which augments SQuAD-
style (Rajpurkar et al., 2016) questions for long-context evaluation. Each question is answerable
from a single gold document placed within a large set of distractors, allowing us to isolate how well
the model can identify and preserve localized information in souped representations. For multi-hop
QA, we turn to HotpotQA (Yang et al., 2018), a benchmark requiring compositional reasoning across
multiple Wikipedia paragraphs. Each question demands integration of evidence from at least two
documents, providing a direct test of whether souped hidden states preserve the relational structure
needed for multi-hop reasoning.

Long Doc QA We also evaluate on long-document QA tasks, where inputs are single extended
narratives rather than disjoint documents. In this setting, we train on the RACE dataset (Lai et al.,
2017), which consists of relatively short educational passages, and test on both RACE and the
validation portion of QuALITY (Pang et al., 2022), which features much longer and more complex

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: HotpotQA results for Mamba2-8B evaluated on 2 gold documents plus (n−2) distractors.
We compare concat-based and soup-based training across a range of finetuning configurations: QA-
only (no documents), 2-gold only, and 2-gold + distractors. Each model is evaluated at multiple soup
sizes, and underlined entries mark evaluations that match the training number of documents.

Method
Test on 2 gold + (n−2) distractors

n = 0† 2 3 4 5 6 7 8 9 10

Pretrained, no finetune

Concat 2.4 / 4.7 15.4 / 26.3 11.1 / 22.5 9.7 / 21.6 8.5 / 20.2 7.2 / 18.9 6.4 / 17.1 5.5 / 16.5 6.0 / 17.1 5.0 / 15.7

Soup w/ Average – 8.7 / 12.7 5.3 / 8.3 3.7 / 6.4 2.6 / 5.0 2.2 / 4.5 2.3 / 4.5 2.0 / 4.0 1.7 / 3.9 1.7 / 3.6

Full Finetuned on n = 0 gold+ 0 distractors (QA-only)

Concat 18.8 / 27.4 52.2 / 67.4 48.0 / 62.3 44.9 / 58.5 42.0 / 55.1 38.5 / 51.5 36.6 / 49.5 36.3 / 48.8 34.8 / 46.9 33.0 / 45.0

Full Finetuned on n = 2 gold+ 0 distractors documents

Concat – 56.0 / 70.3 51.3 / 65.1 46.2 / 59.8 43.6 / 57.3 40.1 / 53.5 37.6 / 50.5 36.2 / 48.1 34.4 / 46.4 34.4 / 45.8

Soup w/ Average – 57.1 / 70.9 51.1 / 64.4 46.7 / 59.7 43.0 / 56.0 39.2 / 52.1 36.2 / 48.5 34.2 / 46.0 32.2 / 44.0 30.6 / 42.2

Full Finetuned on n = 2 gold+ 3 distractors documents

Concat – 57.1 / 71.3 54.4 / 68.3 51.9 / 66.3 49.0 / 63.1 47.9 / 61.5 45.5 / 59.0 44.4 / 57.8 42.9 / 55.4 41.4 / 54.1

Soup w/ Average – 55.8 / 69.8 53.0 / 66.5 50.0 / 63.6 47.8 / 61.3 45.3 / 58.7 43.9 / 56.6 40.9 / 53.6 39.5 / 52.2 38.7 / 50.9

Full Finetuned on n = 2 gold+ 5 distractors documents

Concat – 54.6 / 69.4 52.6 / 67.1 50.8 / 64.4 49.1 / 63.1 47.8 / 61.4 45.1 / 58.7 44.3 / 57.3 42.4 / 55.8 41.6 / 54.3

Soup w/ Average – 55.5 / 69.4 52.2 / 66.0 50.3 / 63.9 48.1 / 61.5 46.2 / 59.5 45.0 / 57.6 43.2 / 55.8 41.8 / 54.2 40.3 / 52.8

Full Finetuned on n = 2 gold+ 8 distractors documents

Concat – 55.0 / 69.5 52.1 / 66.7 48.9 / 63.5 48.0 / 62.5 46.9 / 60.8 45.2 / 59.0 43.2 / 57.6 42.0 / 56.0 42.5 / 56.0

Soup w/ Average – 54.8 / 68.7 52.6 / 65.9 50.1 / 63.5 47.7 / 60.8 45.8 / 58.5 44.7 / 57.0 43.5 / 55.8 41.6 / 53.7 40.8 / 52.9
† n = 0 corresponds to a no-context setting where the model receives only the query (i.e., 0 gold documents and 0 distractors).

narratives. This setup allows us to assess whether document segmentation and aggregation via
souping generalizes from short-form to long-form content. Our findings support earlier observations
from the QuALITY paper that models trained on RACE can transfer effectively.

Sparse Retrieval Finally, we evaluate sparse retrieval using the NIAH multikey-2 subset of the
RULER dataset. In this setting, each document line contains a unique identifier paired with a
corresponding value, and the model is tasked with memorizing all such mappings. At inference time,
it receives a query specifying one of the identifiers and must output the correct value. The full input
includes many such mappings, requiring the model to store a dense set of key-value pairs and retrieve
the correct one after aggregation. This task challenges the model’s ability to preserve fine-grained,
instance-specific information across multiple independently encoded documents.

3.2 EXPERIMENTAL SETUP

Training Configurations All experiments use Mamba2-8B, as we observe that it consistently
achieves stronger performance than the 2.7B model (see App. B for comparison), particularly in
settings requiring multi-hop reasoning or generalization across segment length. We finetune our
models using the AdamW optimizer with a cosine decay learning rate schedule. The 2.7B Mamba2
model is trained with a learning rate of 5× 10−5, while the 8B Mamba2 model uses 1× 10−5. For
most experiments, we train for a single epoch. The only exception is the single-hop QA task, which,
due to its smaller dataset size, is trained for three epochs to ensure convergence. For distributed
training, we employ DeepSpeed ZeRO-2, which enables efficient extraction of the complete hidden
states required for our souping mechanism. All other hyperparameters—including AdamW betas,
gradient clipping values, warm-up details, and random seeds—along with specifics on the compute
resources are detailed in Appendix A.4.

Evaluation Metrics We evaluate model performance using standard metrics for both extractive
and multiple-choice question answering. For extractive QA tasks such as HotpotQA and RULER,
we report exact match (EM), which measures the percentage of predictions that exactly match any

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: EM (%) on the NIAH task for Mamba-2 8B models finetuned on 25K examples with either
4K (left) or 8K (right) sequence length. Models are evaluated across varying numbers of document
segments and sequence lengths. Bold indicates the best score in each column. Gray cells mark results
outperforming the respective concat-finetuned baseline (85.8 / 24.25 for 4K, 81.65 / 35.55 for 8K).

Finetuned on 4K sequence length

Method Train
Segments

Test
Segments

Test Seq. Length

4k 8k

Concat 1 1 85.8 24.25

Soup
w/ Average 2

2 87.0 38.45
4 79.75 32.05
8 45.7 16.3

16 2.3 0.8
32 0.0 0.0

4

2 88.6 40.7
4 86.8 38.7
8 76.55 29.3

16 29.05 11.45
32 0.9 0.5

8

2 81.4 34.25
4 84.9 36.85
8 83.6 36.45

16 71.45 28.9
32 15.75 9.25

Finetuned on 8K sequence length

Method Train
Segments

Test
Segments

Test Seq. Length

4k 8k

Concat 1 1 81.65 35.55

Soup
w/ Average 2

2 89.8 48.4
4 79.45 38.15
8 41.15 15.45

16 3.2 1.45
32 0.05 0.0

4

2 88.5 46.55
4 86.5 43.85
8 75.65 34.6

16 23.8 11.5
32 0.4 0.55

8

2 87.6 45.3
4 88.2 45.85
8 85.25 43.9

16 64.95 32.25
32 9.7 7.9

ground-truth answer span, and F1 score, which reflects the token-level overlap between the predicted
and reference answers. For multiple-choice QA tasks, including RACE and QuALITY, we use
multiple-choice accuracy as the evaluation metric. In this setting, the model outputs a distribution
over the four answer options (A, B, C, D), and we compute the log-probability of each choice. The
predicted answer corresponds to the option with the highest score, and accuracy is measured as the
proportion of correctly selected answers.

3.3 BASELINES AND REFERENCE SETTING

We compare souping against several SSM baselines that represent different levels of supervision
and context integration. First, we include a pretrained baseline: an off-the-shelf Mamba2 model
used without any task-specific finetuning, which serves as a lower bound since the model has not
been adapted to the QA tasks. Next, we consider a QA-only finetuning baseline trained only on
(q, a) pairs without access to any document context during training. Although this configuration does
not support long-context integration, it shows how much performance is attributable to the context.
Finally, we evaluate a concat-based finetuning baseline, where the model is trained end-to-end on full
input sequences, i.e., (d1, . . . , dk, q, a), concatenated into a single flat input. This setting provides
strong supervision by exposing the model to all relevant documents in a joint context window and
serves as our primary reference point when assessing the performance of souping-based alternatives.
Our aim is to demonstrate that, with appropriate finetuning, souping-based models can outperform
context-free baselines and approach the performance of the concat-based reference model.

Justifying the Focus on SSMs vs. Transformers A natural question is whether document souping
can be extended to Transformer architectures for the sake of comparison. However, a direct application
is conceptually challenging, as Transformers do not compress inputs into a fixed-size hidden state
in the same manner as SSMs. The closest analogue to an SSM’s state is the key-value (KV) cache.
Crucially though, the KV cache’s size is proportional to the input sequence length, making the
aggregation of caches from documents of varying lengths non-trivial. To investigate empirically, we
designed an experiment to test a cache souping approach. To address the size mismatch, all documents
were padded to a uniform length before being encoded independently. We implemented a cache
souping variant for LLaMA 3 8B on HotpotQA, averaging the KV caches from ten documents (see
Appendix A.5.1 for full experimental details). The experiment confirmed this approach is ineffective
for Transformers: while standard finetuning on concatenated documents achieved 48.50 EM and
62.81 F1, cache souping yielded only 0.53 EM and 8.18 F1 given the same amount of data. This
significant performance degradation supports our hypothesis that the fixed-size, recurrent state of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Multiple-choice QA accuracy (%) for Mamba-2 8B finetuned on 25K RACE examples. Test
is performed on RACE (5K) and QuALITY (2K) using answer selection based on maximum choice
probability. Bolded values denote the highest score in each test. Gray cells indicate cases where
soup-based finetuning outperforms concat-based finetuning.

Method Train Segments Test Segments on RACE (5K) Test Segments on Quality (2K)

0 1 2 4 8 16 0 1 2 4 8 16

Concat (QA-only) 0 26.54 – – – – – 26.08 – – – – –
Concat (With Context) 1 – 56.01 – – – – – 32.69 – – – –
Soup w/ Average 2 – – 63.62 59.43 56.49 52.30 – – 47.46 47.27 45.16 43.10

4 – – 66.02 63.54 60.58 57.31 – – 51.15 50.05 48.08 45.69
8 – – 62.29 59.28 55.74 53.77 – – 46.31 45.69 44.20 43.29

SSMs is a critical architectural feature for this style of modular recombination. Consequently, we
focus our main experiments on SSM baselines.

4 RESULTS

4.1 FINDING 1: SSM FINETUNING UNLOCKS DOCUMENT SOUPABILITY

Finetuning is crucial for unlocking soupability in pretrained SSMs. We systematically evaluate
three training strategies on HotpotQA, with results presented in Table 1. Our findings demonstrate
a clear progression in performance as more components of the model are adapted to the task of
interpreting souped states. First, we test an out-of-the-box approach by merging hidden states from a
pretrained Mamba2 model without any finetuning. As shown in the top rows of Table 1, this yields
poor performance (e.g., 2.6 EM on 5 documents), confirming that the model cannot interpret pooled
representations naively. Second, we evaluate a decoder-only finetuning strategy. This results in a
substantial performance gain (38.8 EM on 5 documents), demonstrating that the decoder can learn to
interpret the fixed representations produced by an unadapted encoder. Third, full encoder-decoder
finetuning trains both components jointly. This approach consistently achieves the strongest results
(47.8 EM on 5 documents), outperforming the decoder-only method. This indicates that optimal
performance is achieved when the encoder is also trained to produce more effectively mergeable
states. These findings confirm that SSMs can be trained end-to-end to support powerful, modular
reasoning through state pooling.

4.2 FINDING 2: AVERAGING DOCUMENT REPRESENTATIONS IMPROVES SOUPABILITY

We evaluate several strategies for aggregating per-layer hidden states, including elementwise average,
sum, and maximum, with optional unit normalization. The results, detailed in Table 1, demonstrate
that no-norm averaging is consistently the most effective and stable approach. This method achieves
a top score of 47.8 EM and 61.3 F1 on 5 documents. We hypothesize that this stability stems
from the ability to aggregate information across documents while inherently keeping the magnitude
of the resulting state vector from growing with the number of inputs. In contrast, other methods
are less robust, particularly as the number of documents grows. For example, summation without
normalization degrades sharply from 44.2 EM on 5 documents to just 25.0 EM on 10 documents.
We attribute this to the unbounded growth in activation magnitude. While applying normalization
after summation mitigates this collapse, recovering the score to 34.7 EM, it still underperforms the
simple averaging result of 38.7 EM on 10 documents. Interestingly, normalization prior to summation
performs poorly, likely because it destroys relative magnitude differences across documents that are
helpful when using sum. Given these findings, we conclude that averaging without normalization
offers the best trade-off between simplicity, stability, and generalization. We therefore adopt it as our
default pooling strategy for all subsequent experiments.

4.3 FINDING 3: DOCUMENT SOUPING IS SCALABLE AND GENERALIZES TO WIDE CONTEXTS

Our analysis reveals two key principles that govern how document souping generalizes across different
context sizes, demonstrated consistently across a range of diverse tasks (Tables 2, 3, 4, and 5). First,
performance is usually maximized when the inference-time soup size aligns with the training

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: EM / F1 scores on RULER QA_1 for Mamba2-8B trained and evaluated on 4k sequence
length. Gray cells indicate performance exceeding the concat-finetuned test results (EM 54.81 /
F1 71.90), and bold marks the highest test result of the task. Training on more segments improves
generalization to higher evaluation segment counts.

Method Train Test Segments
Segments 1 2 5 10 20

Concat 1 54.81 / 71.90 – – – –

Soup w/ Average 2 – 58.38 / 74.05 34.89 / 49.04 13.19 / 23.40 12.36 / 22.45
5 – 58.38 / 73.89 57.28 / 72.09 35.71 / 50.80 14.97 / 26.25
10 – 21.02 / 31.41 13.87 / 22.36 52.75 / 68.68 43.82 / 58.99
20 – 28.71 / 41.44 28.85 / 42.93 45.60 / 61.78 44.37 / 60.85

configuration. This trend is clearly visible in our long-document QA results (Table 4). For instance,
on the QuALITY benchmark, a model trained on 4 document segments achieves 50.05% accuracy
when tested on 4 segments, and as the number of test segments increases to 8 and 16, it gradually
declines to 48.08% and 45.69%, respectively. Second, models finetuned on a greater number of
segments exhibit more robust generalization. This is demonstrated in our Needle-in-a-Haystack
experiments (Table 3). A model trained on only 2 segments with 4k sequence length fails completely
when tested on 16 segments with the same sequence length (2.3 EM), while a model trained on 8
segments maintains a strong EM score of 71.45% when tested on 16. This shows that exposing the
model to wider contexts during finetuning is key for robust generalization. To stress-test the limits
of this generalization, we conducted scalability experiments up to 256 documents (Appendix B.1,
Table 8). The findings are twofold: a model trained on 64 documents fails to extrapolate to 256, with
its score collapsing from 39.75 to 0.10 EM. However, by continuing to finetune this checkpoint on
128 documents, the model becomes robust at these wider contexts, achieving a strong 37.25 EM
on 256 documents. This result proves that our method is not limited by an architectural bottleneck
but can be effectively adapted to handle vast contexts. This capability is particularly relevant for
applications like retrieval-augmented generation (RAG), where a retriever provides a variable but
bounded number of documents (e.g., 20-100) for synthesis. Our results show that document souping
provides a practical and highly scalable paradigm for this task. By aligning the finetuning strategy
with the expected operational parameters of the RAG system, our method enables robust reasoning
over large, dynamic document sets.

4.4 FINDING 4: SOUPING AMPLIFIES CACHING BENEFITS FOR EFFICIENT INFERENCE

Document souping dramatically improves inference efficiency by enabling a modular caching strategy.
Our latency benchmarks, presented in Table 6, demonstrate the substantial speedups achieved by this
approach, which excludes the one-time, offline cost of encoding documents. While gains are modest
for short sequences, the benefit grows significantly with context length. For a 32k token document, for
example, loading the cached state and processing the query takes only 65.8 ms, compared to the 963.2
ms required for the standard concatenation method. This speedup is amplified by the modularity
of our approach. Because each document’s state is cached independently, any arbitrary subset of
documents can be composed on-the-fly at inference time without re-computation. This provides a
crucial advantage over monolithic caching schemes, where changing even a single document in a
retrieved set would require reprocessing the entire context. This flexibility is particularly powerful for
retrieval-augmented generation (RAG) systems, where different queries retrieve unique combinations
of documents, making our method a highly efficient solution for dynamic, large-scale reasoning.

5 RELATED WORK

Long-Context Sequence Modeling. Transformers (Vaswani et al., 2017) remain the dominant
architecture for modeling long-range dependencies, but theirO(L2) attention cost andO(L) memory
growth in the KV cache hinder scalability. Many works explore architectural modifications to
overcome this, including sparse attention (Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020),
linearized attention (Katharopoulos et al., 2020), and chunked processing with memory compression
(Dai et al., 2019; Wu et al., 2022; Xiao et al., 2024). Retrieval-augmented generation methods, such
as RAG (Lewis et al., 2020) offloads long-context memory to external sources.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Doc SeqLen Concat Doc + Ques (ms) Cache States + Ques (ms) Speedup

2048 60.7 59.7 1.0×
4096 164.2 62.3 2.6×
8192 235.9 59.5 4.0×
16384 469.7 60.9 7.7×
32768 963.2 65.8 14.6×

Table 6: Inference latency with
cached states. Souping amplifies
caching by allowing any subset of
documents to be dynamically com-
posed without re-computation. The
initial encoding cost is excluded.

Structured State Space Models (SSMs) offer an alternative path with fundamentally different scaling
characteristics. Models like S4 (Gu et al., 2021; 2022) introduced linear-time computation via
structured recurrences. Mamba (Gu & Dao, 2024) builds on this with input-dependent gating, while
Mamba2 (Dao & Gu, 2024) unifies SSMs and attention through structured state space duality, yielding
substantial speedups on long sequences with strong downstream performance. Recent work further
demonstrates the utility of Mamba-based models for dense and retrieval-augmented tasks, including
dense passage ranking (Zhang et al., 2024) and long-document retrieval in RAG (Cao et al., 2025).

Model and Task Souping. Model souping refers to merging parameters across finetuned check-
points to improve robustness and generalization without retraining (Wortsman et al., 2022; Tang et al.,
2024). Recent work has explored souping internal representations rather than weights. State Soup
(Pióro et al., 2024) linearly combines task-specific hidden states for skill transfer. In contrast, our
method focuses on merging hidden states from disjoint document chunks, enabling compositional
reasoning across distributed corpora through simple aggregation strategies.

Parallel and Distributed Ingestion. Efficient ingestion of long contexts has been addressed
through sparse or structured attention mechanisms (Child et al., 2019; Zaheer et al., 2020), memory
compression across chunks (Dai et al., 2019; Wu et al., 2022), and retrieval-based pipelines (Lewis
et al., 2020). For SSMs, constant-memory recurrence and linear compute make them naturally suited
to chunk-wise streaming. However, to our knowledge, no prior work has explicitly studied post-hoc
merging of hidden states across chunks for joint reasoning.

RNN-Inspired State Mixing. Recurrent models have long supported state-passing across time steps,
and early works explored implicit mixing of information through recurrent transitions (Grossberg,
2013). Our approach differs in that it investigates explicit aggregation of intermediate hidden states
produced in parallel, rather than temporal chaining of recurrent updates.

Key/Value Cache Merging. Recent works explored compressing text by adaptive merging KV
caches (Wang et al., 2024), and cache eviction policies (Zhang et al., 2023). While related in spirit,
these approaches focus on attention-based caches, whereas our work targets SSM hidden states.

Token Merging in Vision Transformers. In the vision domain, token merging has been studied as
a means of compressing long sequences. TCFormer (Zeng et al., 2022) clusters tokens across space
for progressive downsampling. Other work merges tokens dynamically based on content (Bolya et al.,
2022; Kim et al., 2024), or selects value/key pairs to retain or evict during inference (Wan et al.,
2024). These ideas echo our motivation to aggregate compact, composable representations, though in
our case applied to document states within state space models.

6 CONCLUSION

We present document souping, a method for merging hidden states across independently encoded
documents in structured state space models (SSMs). By aggregating layer-wise representations
through simple commutative operations, souping enables modular, parallel ingestion of long-context
inputs while supporting accurate downstream inference. Our experiments demonstrate that Mamba2
models trained with souping are capable of multi-hop reasoning, sparse retrieval, and generalization
across document and segment scales, often matching or outperforming traditional concat-based
finetuning. Overall, our findings highlight state souping as a lightweight and effective strategy for
long-context reasoning in SSMs, and we hope it provides a foundation for broader adoption and
further exploration.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Weili Cao, Jianyou Wang, Youze Zheng, Longtian Bao, Qirui Zheng, Taylor Berg-Kirkpatrick,
Ramamohan Paturi, and Leon Bergen. Efficient full-context retrieval for long documents, 2025.
URL https://openreview.net/forum?id=NJUzUq2OIi.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdi-
nov. Transformer-XL: Attentive language models beyond a fixed-length context. In Anna
Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 2978–2988, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https:
//aclanthology.org/P19-1285/.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, 2024.

S. Grossberg. Recurrent neural networks. Scholarpedia, 8(2):1888, 2013. doi: 10.4249/scholarpedia.
1888. revision #138057.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling (COLM), 2024.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christo-
pher Ré. Combining recurrent, convolutional, and continuous-time models with the lin-
ear state space layer. In Advances in Neural Information Processing Systems (NeurIPS),
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/7a7c016d7e8d344cc2f3a6f53b5efdc6-Abstract.html.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations (ICLR), 2022.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
fast autoregressive transformers with linear attention. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging
the gap between token pruning and token merging. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 1383–1392, 2024.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
(eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pp. 785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

10

https://openreview.net/forum?id=NJUzUq2OIi
https://aclanthology.org/P19-1285/
https://aclanthology.org/P19-1285/
https://proceedings.neurips.cc/paper_files/paper/2021/hash/7a7c016d7e8d344cc2f3a6f53b5efdc6-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/7a7c016d7e8d344cc2f3a6f53b5efdc6-Abstract.html
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://aclanthology.org/D17-1082/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel Bowman. QuALITY:
Question answering with long input texts, yes! In Marine Carpuat, Marie-Catherine de Marn-
effe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 5336–5358, Seattle, United States, July 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.naacl-main.391. URL https://aclanthology.org/2022.
naacl-main.391/.

Maciej Pióro, Maciej Wołczyk, Razvan Pascanu, Johannes von Oswald, and João Sacramento. State
soup: In-context skill learning, retrieval and mixing, 2024. URL https://arxiv.org/abs/
2406.08423.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1264. URL https://aclanthology.org/D16-1264/.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models
via weight-ensembling mixture of experts. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing
Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative inference
of large language models. arXiv preprint arXiv:2406.13035, 2024.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 23965–23998. PMLR, 17–
23 Jul 2022. URL https://proceedings.mlr.press/v162/wortsman22a.html.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing
transformers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=TrjbxzRcnf-.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

11

https://aclanthology.org/2022.naacl-main.391/
https://aclanthology.org/2022.naacl-main.391/
https://arxiv.org/abs/2406.08423
https://arxiv.org/abs/2406.08423
https://aclanthology.org/D16-1264/
https://openreview.net/forum?id=Ai8Hw3AXqks
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v162/wortsman22a.html
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=NG7sS51zVF


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–2380,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: transformers
for longer sequences. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Wang Zeng, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo, Wanli Ouyang, and Xiaogang Wang. Not
all tokens are equal: Human-centric visual analysis via token clustering transformer. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11101–11111, 2022.

Hanqi Zhang, Chong Chen, Lang Mei, Qi Liu, and Jiaxin Mao. Mamba retriever: Utilizing mamba for
effective and efficient dense retrieval. In Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, pp. 4268–4272, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

12

https://aclanthology.org/D18-1259/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 DATA FORMATTING

To support both standard fine-tuning and our proposed souping method, we define two input formats:

• Concat-data: the input x is formed by linearly concatenating k documents, the question q,
the answer a, and an end-of-sequence token ⟨eos⟩:

x = d1 ⊕ d2 ⊕ · · · ⊕ dk ⊕ q ⊕ a ⊕ ⟨eos⟩.
This aligns with conventional LM fine-tuning, where the model attends jointly over the
entire sequence.

• Souping-data: identical to concat-data, except that after each document di we insert a
special separator token ⟨DOC_SEP⟩. Formally,
x = d1 ⊕ ⟨DOC_SEP⟩ ⊕ d2 ⊕ ⟨DOC_SEP⟩ ⊕ · · · ⊕ dk ⊕ ⟨DOC_SEP⟩ ⊕ q⊕ a⊕ ⟨eos⟩.
During preprocessing, we split on ⟨DOC_SEP⟩ to isolate each document chunk for parallel
encoding.

Notation. We use ⊕ to denote string concatenation, ⟨eos⟩ to mark end-of-sequence, and
⟨DOC_SEP⟩ to separate documents. Algorithm 1 summarizes the procedure for constructing
x under both modes.

Algorithm 1 Input Formatting for Concat- vs. Souping-data

Require: Documents {d1, . . . , dk}, question q, answer a, flag soup ∈ {true, false}
Ensure: Formatted input x

1: x← empty string
2: for i = 1 to k do
3: if soup then
4: x← x⊕ di ⊕ ⟨DOC_SEP⟩
5: else
6: x← x⊕ di ⊕ " "
7: end if
8: end for
9: x← x⊕ q ⊕ " "⊕ a⊕ ⟨eos⟩

A.2 SOUPING RECIPE

A.2.1 WITHOUT ACTIVATION CHECKPOINTING

Given a souping-data sequence x, we split at each ⟨DOC_SEP⟩, producing k + 1 segments:
{s1, . . . , sk, sk+1},

where si = di for i ≤ k and sk+1 contains (q, a, ⟨eos⟩). We then form:

1. Doc-batch formation. Stack the k context segments {s1, . . . , sk} along the batch dimension,
yielding a tensor of shape (B × k, T,D), where B is the original mini-batch size, T is the
(left-padded) segment length, and D is embedding dimension.

2. Parallel encoding. Pass the Doc-batch through the encoder in parallel to obtain per-
document hidden states {hi}B×k

i=1 for each batch element.
3. Aggregation. Merge documents {hi} for each sequence of the mini-batch via the chosen

souping strategy (average, sum, or max) to produce a single souped state {hsoup_j}Bj=1 per
batch element.

4. QA-batch processing. Take the QA segment sk+1, right-pad it to length T to form a
QA-batch of shape (B, T,D). We feed the QA-batch along with hsoup injected at every
layer—through the decoder. The souped state remains constant until decoding begins.

5. Loss computation. Map decoder outputs back to token positions, convert to logits, and
compute cross-entropy loss over the answer tokens.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2.2 WITH ACTIVATION CHECKPOINTING

To support training with more documents and larger model sizes without running out of memory,
we employ document-level activation checkpointing. Unlike the parallel encoding scheme in Sec-
tion A.2.1, which processes all context documents of a mini-batch simultaneously, we encode one
document per mini-batch at a time under checkpointing.

Specifically, we iterate over the k context segments for each batch and perform a forward pass
for a single document per step, using PyTorch’s gradient checkpointing to trade off compute for
memory. During backpropagation, each document’s encoder activations are recomputed on-the-fly.
This significantly reduces peak memory usage, enabling us to scale to more documents (higher k),
longer input sequences, and larger model weights.

While this sequential encoding incurs additional compute overhead, it offers a practical trade-off to
unlock training regimes otherwise inaccessible due to memory constraints. If sufficient GPU memory
is available (e.g., large HBM capacity), the overhead of activation checkpointing can be amortized
by increasing the batch size—sometimes even resulting in faster end-to-end training than without
checkpointing, due to improved throughput and parallelism.

A.3 PSEUDO-CODE

Algorithm 2 describes the inference-time procedure for corpus encoding via document souping. Each
document di is processed independently by a shared SSM encoder to produce a set of per-layer
hidden states {h(1)

i , . . . , h
(L)
i }. Optionally, each hidden state can be normalized (e.g., to unit norm)

before being appended to a layer-specific collection. After all documents are encoded, hidden
states are aggregated across documents at each layer using a commutative pooling operation such as
averaging, summation, or max. The resulting pooled states {h(1)

soup, . . . , h
(L)
soup} form a compact, merged

representation of the document set, which is then used to condition the decoder when answering a
query q. The document encoding can be performed offline and cached in advance, enabling efficient
reuse across queries.

Algorithm 2 Corpus Encoding via Document Souping (Inference Only)

Require: Document set {d1, . . . , dk}, query q
Ensure: Predicted answer ŷ

1: Initialize empty list of layerwise states {H(l)}Ll=1
2: for each document di do
3: Compute hidden states: {h(1)

i , . . . , h
(L)
i } ← SSMθ(di)

4: for l = 1 to L do
5: Optionally normalize: h̃(l)

i ← h
(l)
i /∥h(l)

i ∥
6: Append h̃

(l)
i to H(l)

7: end for
8: end for
9: for l = 1 to L do

10: Pool document states: h(l)
soup ← pool(H(l))

11: Optionally normalize: h(l)
soup ← h

(l)
soup/∥h(l)

soup∥
12: end for
13: Predict: ŷ ← SSMθ

(
q | {h(l)

soup}Ll=1

)

A.4 IMPLEMENTATION AND TRAINING DETAILS

This section provides a comprehensive overview of the hyperparameters, software, and hardware
used in our experiments.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: HotpotQA results for Mamba-2 2.7B with 2 gold documents and n− 2 distractors. Cells
show EM / F1. Underline marks models tested on the same docs they are trained on.

Model
Evaluation: 2 gold + (n−2) distractors

n = 0† 2 3 4 5 6 7 8 9 10

Pretrained, no finetune

Concat 3.3 / 7.8 8.4 / 22.7 5.8 / 18.6 5.2 / 17.1 3.5 / 14.0 3.2 / 12.9 2.8 / 11.8 2.2 / 11.6 2.2 / 11.0 2.3 / 10.4

Finetuned on n = 0 gold+ 0 distractors (QA-only)

Concat 12.7 / 19.4 40.9 / 54.2 36.7 / 49.1 32.4 / 44.7 30.4 / 41.8 28.0 / 39.2 26.2 / 36.9 25.4 / 35.5 23.6 / 33.7 22.3 / 32.2

Finetuned on n = 2 gold+ 0 distractors documents

Concat – 50.8 / 65.2 46.0 / 59.2 41.7 / 54.5 37.7 / 49.7 35.9 / 47.5 33.8 / 44.6 30.1 / 40.9 28.4 / 38.4 26.6 / 36.9

Soup w/ Average – 47.4 / 61.0 39.9 / 52.7 33.0 / 45.5 28.8 / 40.4 25.5 / 36.8 23.8 / 34.2 21.9 / 31.8 19.7 / 29.2 19.0 / 28.2

Finetuned on n = 2 gold+ 3 distractors documents

Concat – 48.8 / 63.5 46.3 / 60.2 43.1 / 56.8 42.3 / 55.2 40.6 / 53.6 37.1 / 49.6 35.3 / 48.0 35.2 / 47.6 33.7 / 45.6

Soup w/ Average – 49.1 / 62.9 44.8 / 58.3 41.5 / 54.4 38.4 / 51.0 35.7 / 48.2 33.7 / 45.5 32.7 / 43.8 30.1 / 41.3 28.6 / 39.3

Finetuned on n = 2 gold+ 5 distractors documents

Concat – 50.4 / 64.4 47.0 / 60.9 42.7 / 56.4 41.8 / 55.0 40.1 / 52.8 38.1 / 50.3 37.1 / 49.4 36.9 / 48.8 34.8 / 46.7

Soup w/ Average – 48.8 / 63.0 44.2 / 57.8 40.3 / 53.5 37.7 / 50.5 36.0 / 48.2 33.6 / 45.6 32.0 / 43.7 30.1 / 41.2 28.5 / 39.5

Finetuned on n = 2 gold+ 8 distractors documents

Concat – 49.7 / 63.7 45.2 / 58.8 43.6 / 56.7 41.7 / 54.1 40.0 / 53.1 36.8 / 48.8 36.4 / 48.4 35.3 / 47.4 33.9 / 45.7

Soup w/ Average – 49.5 / 63.2 45.8 / 58.8 42.6 / 55.1 39.2 / 51.2 37.6 / 48.9 36.1 / 47.1 34.4 / 45.1 32.5 / 43.2 31.2 / 41.6
† n = 0 corresponds to a no-context setting where the model receives only the query (i.e., 0 gold documents and 0 distractors).

A.4.1 TRAINING HYPERPARAMETERS AND COMPUTE RESOURCES

To ensure reproducibility, all experiments were conducted with the random seed fixed to 42 and
PyTorch’s deterministic mode enabled (deterministic=True). Our optimization strategy is
based on the setup from prior work on Mamba. The specific hyperparameters are as follows:

• Optimizer: AdamW

• AdamW Betas: We use β1 = 0.9 and β2 = 0.95.

• Learning Rate Schedule: A cosine decay schedule was used with a linear warm-up for the
first 10% of training steps.

• Gradient Clipping: Gradients were clipped at a maximum norm of 1.0.

• Gradient Accumulation: We used 120 accumulation steps for most configurations. For the
Mamba2-2.7B model on HotpotQA, this was set to 128 steps.

Experiments were conducted on clusters equipped with NVIDIA H100 and H200 GPUs.

A.5 DECODING HYPERPARAMETERS

We optimized decoding strategies for both CONCAT and SOUP /W AVERAGE using a subset of Hot-
potQA comprising 30K training examples and 3K validation examples, each containing 5 documents
(2 gold, 3 distractors). A grid search was performed over temperature {0.3, 0.5, 0.7, 0.9}, top-p
{0.5, 0.7, 0.9, 0.95}, and top-k {5, 10, 20, 30, 40}.
SOUP achieved best validation performance with temperature = 0.3, top-p = 0.5, and top-k = 20,
while CONCAT performed optimally with temperature = 0.5, top-p = 0.95, and top-k = 30. All
subsequent experiments adopted these respective configurations for each method.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5.1 TRANSFORMER CACHE SOUPING EXPERIMENTAL SETUP

To test the viability of extending our souping method to Transformer architectures, we conducted
a comparative experiment using LLaMA3-8B Instruct. We finetuned the model for one epoch on
10,000 examples from the HotpotQA dataset, where each example consisted of two gold documents
and eight distractor documents. We compared two distinct fine-tuning methodologies:

• Normal Fine-tuning (Baseline): The model was fine-tuned on the simple concatenation of
all 10 documents and the question. We used a learning rate of 1× 10−5 for this setup.

• KV Cache Souping Fine-tuning: To handle variable-length inputs, all documents were
left-padded to match the longest document in the batch. Each document was then processed
independently to generate its key-value (KV) cache. The resulting caches were averaged
to create a single, souped KV cache, which was then used alongside the question for
downstream reasoning. A learning rate of 1× 10−6 was used for this approach.

A.5.2 COMPUTE RESOURCES

Experiments were conducted using a combination of on-premise and cloud nodes, equipped with
high-memory GPUs and multi-core CPUs. All runs used PyTorch 2.6 with CUDA 12.4.

• Node A (On-premise): 8× NVIDIA L40S (48GB) with AMD EPYC 7282 CPU

• Node B (On-premise): 8× NVIDIA H100 (80GB) with Intel Xeon Platinum 8480+ CPU

• Node C (Cloud): On-demand NVIDIA H200 (144GB) with AMD EPYC 9654 CPU

Nodes A and B were used for model development, ablations, and full training runs. Node C enabled
rapid parallel experimentation.

Training time varies with model size, input sequence length, number of documents per example,
and total steps. For instance, fine-tuning an 8B model on HotpotQA (30K examples, 5 documents
per example) requires approximately 3 hours on a single H200 GPU with activation checkpointing
enabled.

Multi-document souping increases memory overhead. The following configurations represent mini-
mum requirements for training on HotpotQA with 5-document inputs and small batch sizes:

• 2.7B model: ≥ 1× 80GB or 2× 48GB GPUs

• 8B model: ≥ 1× 144GB, 2× 80GB, or 4× 48GB GPUs

Training with longer input sequences or larger segments proportionally increases memory demands,
requiring additional GPUs or higher-capacity HBM.

B ADDITIONAL RESULTS AND ANALYSIS

B.1 SCALABILITY OF SOUP SIZES

To further probe the limits of scalability, we conducted experiments up to 256 documents. To stay
consistent with previous results for fair comparison, we evenly splitted the original 8192 sequence
length NIAH tasks into 64, 128, and 256 segments. The full results of this scalability analysis are
presented in Table 8. We first finetuned a Mamba2-8B model on the NIAH dataset using 64 segments
for 25,000 samples. While this model generalized well to nearby segment counts, its performance
dropped sharply when tested on 128 or 256 segments. However, by continuing to finetune this
checkpoint on 128 segments for 8,400 samples, the model’s performance at these higher counts
improved dramatically. Compared to concatenating finetuining baseline’s result 35.55 in Table 3,
the continued checkpoint reaches a score of 39.00 at 128 segments and 37.25 at 256 segments,
outperforming the baseline while maintaining robustness across smaller soup sizes. This two-stage
process demonstrates that while extrapolation is challenging, the model can be effectively trained to
handle very large soup sizes when provided with appropriate data.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Test Segments Finetuned on 64 Segments Continued on 128 Segments

2 28.65 23.65
4 34.40 26.60
8 37.95 27.70
16 40.05 30.25
32 41.65 32.30
64 39.75 37.80
128 15.15 39.00
256 0.10 37.25

Table 8: Scalability results (EM %) on
the NIAH dataset for a Mamba2-8B
model with an 8k sequence length. We
compare a model finetuned on 64 seg-
ments against a model that was sub-
sequently trained further on 128 seg-
ments. Continued training significantly
improves performance on larger soup
sizes, demonstrating the model’s capacity
to adapt to wider contexts.

Figure 2: Exact Match (EM) scores on HotpotQA for Mamba2-8B evaluated across increasing
numbers of input documents. Each line represents a model trained on 5 documents (2 gold + 3
distractors) with a different pooling and normalization configuration. Soup w/ Average consistently
remains robust across all tested document sizes compared to other configurations.

B.2 HOTPOTQA EXTENDED ANALYSIS

B.2.1 MAMBA2-2.7B RESULTS

Table 7 shows HotpotQA results for Mamba2-2.7B across a range of training and evaluation soup
sizes. We observe that performance improves consistently with fine-tuning and scales with the number
of documents seen during training. However, compared to the 8B model (Table 2), the 2.7B model
shows greater sensitivity to soup size mismatch and a more pronounced performance drop at larger
test-time document counts. This supports our finding that larger models generalize more robustly
across soup sizes and better tolerate distribution shift during inference.

B.2.2 MAMBA2-8B RESULTS

Table 9 expands on the main paper’s Table 1 by providing a more detailed view of HotpotQA results
for the Mamba2-8B model trained on 5 documents (2 gold + 3 distractors). At inference time, we
evaluate the same checkpoint across a range of input sizes, including a no-context setting (query-only)
and settings with 2 to 10 documents, where each includes 2 gold documents and n−2 distractors.

The table includes comparisons across several pooling operators (average, sum, max) and normaliza-
tion variants, and includes pretrained, decoder-only, and full encoder-decoder fine-tuning settings.
The results show that while all models degrade slightly as the number of input documents increases,
full encoder-decoder fine-tuning with no-norm averaging consistently yields the best performance
across soup sizes. Overall, these results highlight the robustness of soup-based representations under
increasing input width and reinforce the conclusions drawn in the main text.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 3: F1 scores on HotpotQA for Mamba2-8B using the same experimental setup as Figure 2.

Table 9: HotpotQA performance (Exact Match / F1) for Mamba-2 8B trained on 5 documents (2
gold + 3 distractors) and tested on n documents, with 2 gold and (n− 2) distractors. We compare
pretrained models, decoder-only fine-tuning, and encoder-decoder fine-tuning, under different pooling
operators (Avg, Sum, Max) and normalization settings. Underline marks models tested on the same
docs they are trained on.

Method
Test on 2 gold + (n− 2) distractors

2 3 4 5 6 7 8 9 10

Pretrained 8B (No Finetune)

Concat 15.4 / 26.3 11.1 / 22.5 9.7 / 21.6 8.5 / 20.2 7.2 / 18.9 6.4 / 17.1 5.5 / 16.4 6.0 / 17.1 5.0 / 15.7

Soup w/ Average 8.7 / 12.7 5.3 / 8.3 3.7 / 6.4 2.6 / 5.0 2.2 / 4.5 2.3 / 4.5 2.0 / 4.0 1.7 / 3.9 1.7 / 3.6

Decoder-Only Finetuned 8B

Soup w/ Average 51.8 / 66.4 46.7 / 60.1 42.2 / 55.6 38.8 / 51.7 35.2 / 48.1 33.5 / 46.0 31.4 / 43.7 29.6 / 41.3 28.0 / 39.4

Encoder-Decoder Finetuned 8B

Full Finetuned - Average Pooling With & Without Norms

Soup w/ Average 55.8 / 69.8 53.0 / 66.5 50.0 / 63.6 47.8 / 61.3 45.3 / 58.7 43.9 / 56.6 40.9 / 53.6 39.5 / 52.2 38.7 / 50.9

Average + Norm Before 35.9 / 47.8 50.7 / 63.9 49.7 / 63.0 47.8 / 60.9 45.7 / 58.5 43.3 / 55.9 41.8 / 54.2 39.6 / 51.8 38.1 / 50.2

Average + Norm After 50.4 / 65.2 47.6 / 61.1 45.3 / 58.8 42.3 / 55.6 40.3 / 53.2 38.1 / 50.7 36.2 / 48.8 34.9 / 46.8 33.4 / 44.9

Average + Norm Before & After 6.9 / 10.7 27.7 / 36.8 41.6 / 54.0 42.2 / 54.7 40.5 / 52.8 38.7 / 51.0 36.5 / 48.8 35.2 / 47.5 33.8 / 45.6

Full Finetuned - Summation Pooling With & Without Norms

Soup w/ Sum 55.1 / 69.4 51.4 / 65.3 47.2 / 61.2 44.2 / 57.4 40.3 / 53.3 37.0 / 49.4 34.1 / 46.2 29.2 / 40.9 25.0 / 36.0

Sum + Norm Before 8.8 / 13.6 10.3 / 15.0 9.1 / 13.9 8.1 / 13.0 6.9 / 11.9 6.3 / 11.2 5.8 / 10.6 5.2 / 10.0 4.6 / 9.4

Sum + Norm After 51.9 / 66.1 49.7 / 63.2 46.9 / 60.2 43.6 / 56.6 41.5 / 54.2 39.8 / 52.0 38.4 / 50.7 36.6 / 48.6 34.7 / 46.2

Sum + Norm Before & After 10.2 / 16.3 32.0 / 42.7 40.3 / 53.1 40.3 / 52.9 38.4 / 50.9 37.3 / 49.8 35.8 / 48.2 34.6 / 46.6 33.2 / 44.8

Full Finetuned - Max Pooling Without Norms

Soup w/ Max 52.3 / 65.6 46.4 / 59.6 42.4 / 55.1 39.1 / 51.6 36.6 / 48.6 34.1 / 46.1 32.6 / 44.6 31.1 / 42.4 28.9 / 40.5

To visualize these trends, Figure 2 and Figure 3 plot EM and F1 scores, respectively, across different
input sizes. These plots confirm that while pretrained and decoder-only models degrade rapidly,
full finetuning with average pooling remains more robust. The visualizations emphasize how dif-
ferent configurations respond to increasing distractor load, further illustrating the stability of soup
representations under input variation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Accuracy on EM (%) on the NIAH task for Mamba2-2.7B models trained with 4K (left)
and 8K (right) sequence lengths for 25K examples. Bold indicates the best result in each column.
Gray cells indicate accuracy exceeding the Concat-finetuned baseline (84.4 / 36.1 for 4K, 78.3 / 43.05
for 8K).

Finetuned on 4K Sequence Length

Method Train
Segments

Test
Segments

Test Seq. Length
4k 8k

Concat 1 1 84.4 36.1

Soup w/ Avg.

2 84.4 33.9
4 71.7 35.5

2 8 26.2 12.9
16 0.3 0.3
32 0.0 0.0
2 84.7 35.1
4 86.5 49.2

4 8 72.1 39.2
16 25.2 13.1
32 0.2 0.4
2 76.0 29.6
4 82.8 39.9

8 8 81.4 43.9
16 66.5 32.7
32 20.2 9.9
2 60.2 16.4
4 77.1 30.6

16 8 83.5 40.5
16 82.4 45.3
32 70.2 35.8

Finetuned on 8K Sequence Length

Method Train
Segments

Test
Segments

Test Seq. Length
4k 8k

Concat 1 1 78.3 43.05

Soup w/ Avg.

2 84.4 59.2
4 71.6 47.8

2 8 28.5 15.1
16 0.2 0.3
32 0.0 0.0
2 86.2 49.2
4 82.5 59.3

4 8 64.7 42.5
16 13.5 10.0
32 0.1 0.2
2 84.7 44.3
4 85.3 59.2

8 8 80.7 57.1
16 60.3 41.0
32 9.7 7.5
2 77.7 40.6
4 86.6 54.6

16 8 86.2 60.3
16 81.0 59.0
32 58.7 42.1

B.3 NEEDLE IN A HAYSTACK

Table 10 shows NIAH accuracy for Mamba2-2.7B Finetuned on either 4k or 8k sequence lengths
using 25K examples. Results are shown across a grid of train/test segment combinations. Models
trained with more segments generalize better to larger soup sizes during inference, with improvements
especially pronounced at higher segment counts. In contrast, models trained on just 2 segments
degrade sharply when evaluated on 8, 16, or 32 segments, highlighting the importance of training
with sufficient segments for robust generalization in soup-based Finetuned models.

Table 11 reports NIAH accuracy for Mamba2-8B trained with only 7K examples at either 4k or
8k sequence length. Despite the reduced supervision and limited training (1 epoch), the 8B model
achieves strong results and continues to exhibit the same trends as in higher-resource settings: soup-
finetuned models outperform concat-finetuned baselines, and training with more segments improves
generalization to higher test-time segment counts. In contrast, we found that the Mamba2-2.7B
model did not converge reliably under this low-data setup. These results suggest that soupability and
generalization benefits persist even in lower-resource regimes, but larger models are more robust to
limited training data.

B.4 RULER QA_1

We trained for 3 epochs and tested Mamba2-2.7B on the QA_1 subset of RULER, where each input
includes 20 documents, only one of which contains the answer. This single-hop task tests the model’s
ability to isolate relevant information under extreme distraction. As shown in Table 12, Soup w/
Average trained on 2 segments slightly outperforms the concat baseline. While the margin is
small and not statistically significant, this result demonstrates the potential of state souping even in
sparse-relevance QA settings.

However, training on larger segment counts leads to worse performance, especially on smaller
test-time soup sizes. Unlike multi-hop settings like HotpotQA, where broader exposure improves
generalization, over-fragmentation in sparse single-hop tasks appears to dilute the signal.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Evaluation accuracy (%) on NIAH task for 8B Mamba models Finetuned on 4k (left) or
8k (right) sequence length with 7K examples. Gray means Soup-finetuned results are better than
respective Concat-finetuned results (72.55 / 14.2 for 4k, 66.55 / 18.7 for 8k). Bold represents the best
in each column.

Finetuned on 4K sequence length

Method Train
Segments

Test
Segments

Test Seq. Length

4k 8k

Concat 1 1 72.55 14.2

Soup w/ Avg. 2
2 80.4 30.2
4 70.55 23.7
8 38.0 10.65

4
2 79.4 27.7
4 75.4 25.35
8 58.6 18.5

8
2 72.2 23.2
4 73.5 24.55
8 68.8 22.35

Finetuned on 8K sequence length

Method Train
Segments

Test
Segments

Test Seq. Length

4k 8k

Concat 1 1 66.55 18.7

Soup w/ Avg. 2
2 74.15 31.0
4 57.75 21.55
8 18.85 7.5

4
2 75.55 31.0
4 69.7 27.95
8 48.8 17.85

8
2 75.3 27.8
4 73.0 27.35
8 67.1 25.05

Table 12: EM / F1 scores on RULER QA_1 for Mamba2-2.7B trained and evaluated on 4k sequence
length. Gray cells indicate performance exceeding the concat-finetuned test results (EM 48.4 / F1
64.8), and bold marks the highest test result of the task. Training on more segments improves
generalization to higher evaluation segment counts until train with 20 segments. All experiments are
run for 3 epochs due to limited data.

Method Train Test Segments
Segments 1 2 5 10 20

Concat 1 48.4 / 64.8 – – – –

Soup w/ Average 2 – 49.7 / 66.5 33.9 / 47.4 16.5 / 28.0 11.4 / 22.3
5 – 46.2 / 60.4 44.0 / 59.1 26.5 / 39.3 17.3 / 29.4
10 – 16.8 / 27.0 11.1 / 18.3 42.2 / 56.5 34.6 / 47.4
20 – 19.4 / 30.4 15.2 / 25.4 24.9 / 37.2 24.6 / 38.4

C USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were utilized to assist in the preparation of this manuscript in two
capacities. First, LLMs served as a writing aid for copy-editing and for improving the clarity and
readability of the text. The authors drafted all original content and retained full editorial control,
evaluating all suggestions to ensure they aligned with our intended meaning. Second, LLMs were
used to support the literature discovery process. The authors provided seed papers on relevant topics
and leveraged the models to find additional related work. All papers suggested by the LLMs were
subsequently vetted by the authors for relevance before inclusion.

20


	Introduction
	Methods
	Background and Notation
	Corpus Encoding via State Souping
	Evaluation Dimensions

	Experiments
	Tasks and Datasets
	Experimental Setup
	Baselines and Reference Setting

	Results
	Finding 1: SSM Finetuning Unlocks Document Soupability
	Finding 2: Averaging Document Representations Improves Soupability
	Finding 3: Document Souping is Scalable and Generalizes to Wide Contexts
	Finding 4: Souping Amplifies Caching Benefits for Efficient Inference

	Related Work
	Conclusion
	Implementation Details
	Data Formatting
	Souping Recipe
	Without Activation Checkpointing
	With Activation Checkpointing

	Pseudo-code
	Implementation and Training Details
	Training Hyperparameters and Compute Resources

	Decoding Hyperparameters
	Transformer Cache Souping Experimental Setup
	Compute Resources


	Additional Results and Analysis
	Scalability of Soup Sizes
	HotPotQA Extended Analysis
	Mamba2-2.7B Results
	Mamba2-8B Results

	Needle in a Haystack
	Ruler QA_1

	Use of Large Language Models

