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Abstract

This paper presents a novel task of extracting001
Latin fragments from mixed-language histori-002
cal documents with varied layouts. We bench-003
mark and evaluate the performance of large004
foundation models against a multimodal dataset005
of 753 annotated pages. The results demon-006
strate that reliable Latin detection with contem-007
porary LLMs is achievable. Our study provides008
the first comprehensive analysis of these mod-009
els’ capabilities and limitations for this task1.010

1 Introduction011

Accurate language identification at a granular level012

within historical documents is a key component013

to the study of the early modern period at scale.014

Latin, as the primary written language of Western015

Europe for more than a millennium, has a unique016

position, gradually ceding to vernaculars at varying017

paces across regions and genres (Marjanen et al.,018

2025). Throughout this transition, Latin fragments019

frequently appeared within predominantly vernacu-020

lar texts, in quotations, specialist terminology, and021

instances of code-switching. Automated extraction022

of diverse Latin uses in context from historical cor-023

pora is crucial to studying language evolution, the024

interplay between classical and modern thought,025

and the dissemination of ideas (Sprugnoli et al.,026

2024; Gorovaia et al., 2024; Perrone et al., 2021;027

Burns et al., 2021). However, this task poses chal-028

lenges due to wide variations in Latin usage, scripts,029

complex page layouts, and inconsistent print and030

scan quality in historical book databases.031

This study focuses on detecting instances of032

Latin within the Eighteenth Century Collection On-033

line (ECCO) (Tolonen et al., 2022) corpus using034

both book page images and the corresponding OCR035

text. The lack of an existing dataset specifically036

1The dataset is in the supplementary materials. Both the
dataset and code will be published upon acceptance.

designed for multimodal and code-mixed Latin de- 037

tection motivated us to create an annotated dataset 038

for this purpose. Our dataset contains 753 pages 039

sampled from historical documents, validated by 040

specialists in 18th-century publishing culture to rep- 041

resent diverse use cases. While we focus on Latin 042

due to its aforementioned importance for historical 043

study, our fully benchmarked, manually annotated 044

scenario provides a solid template for extending 045

the method to other languages as well. 046

Given the complex nature of the task and factors 047

ranging from OCR noise to varied print layouts, 048

we explore the capabilities of modern Large Lan- 049

guage Models (LLMs), including multimodal mod- 050

els (MLLMs) for this task. The way these models 051

handle contextual information, recognize patterns 052

in noisy data, and integrate textual cues with visual 053

layout information has been found to help in disam- 054

biguating text in historical documents (Luo et al., 055

2024; Boros et al., 2024; Kanerva et al., 2025; Xie 056

et al., 2025). 057

Our investigation exploits the new dataset to 058

test a number of state-of-the-art models and ap- 059

proaches, and finds that reliable Latin detection 060

in such challenging historical material is achiev- 061

able. The benchmarking of different model archi- 062

tectures provides insight into their strengths and 063

weaknesses when faced with the complexities in- 064

herent in the data. This work establishes a strong 065

baseline for a novel NLP task and at the same time 066

highlights the need for modality-aware approaches 067

and robust evaluation frameworks in historical text 068

analysis. 069

The main contributions of this article are: 070

• Defining the task of Latin detection in histor- 071

ical documents, an understudied multimodal 072

case of language detection. 073

• Creating an expert-annotated dataset from 074

18th-century books, capturing diverse and 075

challenging examples of Latin usage. 076
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• Developing an evaluation framework for this077

task, considering challenges from both textual078

and visual modalities.079

• Conducting a systematic comparison of con-080

temporary LLMs to assess their efficacy for081

this task.082

• Delivering a practical Latin detection pipeline,083

demonstrating its readiness for downstream084

applications in historical research.085

2 Problem Definition086

We define the task of Latin language detection in087

historical documents as a two-stage classification088

and extraction problem, where the input consists of089

a scanned page image and/or its OCR transcription.090

The task is to automatically detect whether any091

segments in the text are written in Latin, and if so,092

to extract text of those specific segments.093

Formally, given a document page D, let ID de-094

note its image and TD denote its OCR’d text. A095

system must perform the following two subtasks:096

• Task 1 (Page-level Latin Detection): Predict097

a binary label yD ∈ {0, 1}, where yD = 1098

indicates that the page contains at least one099

segment in Latin, and yD = 0 otherwise.100

• Task 2 (Latin Segment Extraction): If101

yD = 1, extract a list of text spans SD =102

[s1, s2, . . . , sn], where each si ∈ TD is a con-103

tiguous Latin segment string.104

The reason for specifying the task in two stages105

is mainly due to evaluation. As our final aim is to106

evaluate how well Latin is identified at a high level107

of granularity across different layouts, we measure108

task 2 in terms of per-page precision and recall.109

However, this type of measurement does not ade-110

quately cater to cases where Latin is not present111

on a page. Thus, task 1 has been designed to give112

us this more general information on e.g., whether113

the models are excessive in detecting Latin where114

there is none. Requiring segment-level output as115

strings rather than image regions aligns better with116

tasks most MLLMs are trained on, and enables sim-117

pler performance comparisons between the input118

modalities. More details on the metrics used will119

be given in section 5.120

3 Related work121

Latin in NLP Given its historical importance,122

Latin has attracted considerable attention within123

the NLP community (e.g., Sprugnoli et al., 2024; 124

Schulz and Keller, 2016; Sprugnoli et al., 2022; 125

Gorovaia et al., 2024; Perrone et al., 2021; Burns 126

et al., 2021), though much of this research has 127

centered on small, clean corpora of ancient literary 128

texts. While some recent studies have ventured into 129

Early Modern mixed-language documents (Stüssi 130

and Ströbel, 2024; Volk et al., 2024), these also pre- 131

dominantly rely on manually curated and annotated 132

data. In contrast, our work focuses on the foun- 133

dational task of Latin discovery: detecting Latin 134

within extensive, unedited, and noisy digitized col- 135

lections like ECCO (Tolonen et al., 2022). This 136

computational approach aims to detect Latin in a 137

vast corpora, while the identified fragments can sub- 138

sequently be analyzed using a range of established 139

NLP tools developed for classical languages (John- 140

son et al., 2021; Burns, 2023; Straka and Straková, 141

2020; Kupari et al., 2024). 142

Code-mixed Language Detection From a 143

methodology perspective, identifying Latin seg- 144

ments within British publications is a code-mixed 145

language detection task (Aguilar et al., 2020). 146

While extensive research in this area has focused on 147

contemporary informal texts (Barman et al., 2014; 148

Zhang et al., 2018), its application to historical doc- 149

uments, with challenges like archaic syntax, lexi- 150

con, and spelling, has been less explored (Schulz 151

and Keller, 2016; Volk et al., 2022). Detecting 152

classical languages in these complex historical con- 153

texts has traditionally involved rule-based systems 154

and supervised machine learning approaches, no- 155

tably Conditional Random Fields (CRFs) (Schulz 156

and Keller, 2016; Sterner and Teufel, 2023; Volk 157

et al., 2022). Alongside these, robust statistical 158

tools like Lingua (Stahl, 2021) offer effective gen- 159

eral language identification with support for mixed 160

language. Given the recognized potential of mod- 161

ern LLMs to navigate linguistic nuances and noisy 162

data, our work investigates their capacity to en- 163

hance detection performance. 164

LLMs for Historical Documents Recent LLMs, 165

particularly Multimodal variants (MLLMs), have 166

shown considerable potential in historical docu- 167

ment analysis, demonstrating top performance in 168

tasks like OCR, named entity recognition, and 169

general document understanding from historical 170

sources (Bai et al., 2025; Luo et al., 2024; Boros 171

et al., 2024; Kanerva et al., 2025; Backer and Hy- 172

man, 2025; Xie et al., 2025), and in assessing gen- 173

eral historical knowledge (Hauser et al., 2024). De- 174
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spite these advancements, a significant gap per-175

sists for more specialized, complex applications.176

Specifically, there is a notable lack of dedicated177

benchmarks and systematic exploration for the fine-178

grained, page-level multimodal detection and ex-179

traction of embedded secondary languages (e.g.,180

Latin) (Aguilar et al., 2020; Guzmán et al., 2017).181

This task is demanding due to noisy scans from his-182

torical archives, diachronic language context, and183

orthographic variation (Volk et al., 2022). Our work184

contributes to this underexplored area by introduc-185

ing a systematic evaluation methodology designed186

to be scalable also to other languages.187

4 Dataset188

4.1 Sampling and Annotations189

Our approach to dataset construction began with a190

targeted sampling strategy to identify pages with191

a high likelihood of containing Latin text. We192

queried the Reception Reader database (Rosson193

et al., 2023), which indexed text reuses across the194

ECCO corpus using noise-resistant detection meth-195

ods. From this, we randomly selected 800 reuse196

instances where one book was cataloged as Latin197

and the other as non-Latin. To ensure broad repre-198

sentation and reflect the diversity of the ECCO col-199

lection (approximately 200,000 books), each sam-200

pled page was drawn from a different book, cover-201

ing varied publication dates and topics. However,202

ECCO’s language metadata is book-level, meaning203

that “Latin” books often contain significant non-204

Latin text like English introductions. Also, the205

reuse offsets only mark the textual overlap without206

specifying the language of the text segment.207

These pages were then manually annotated. An-208

notators were tasked with drawing bounding boxes209

around all Latin fragments on the page images (see210

example in Figure 1). These visual annotations211

could later be reliably mapped to text offsets (loca-212

tions within a string) using ECCO’s OCR positional213

data for ground truth text extraction. Our annota-214

tion guidelines stated marking all instances of Latin215

text semantically used as Latin. This included sin-216

gle Latin words if presented with explanations in217

a dictionary, as well as Latin found in headlines,218

editorial annotations, or footnotes. Conversely, to219

ensure clarity and consistency, in-line Roman/Latin220

names (of people, places, plants) and jargon were221

not specifically annotated as Latin but were treated222

as part of the surrounding language, as well as ab-223

breviations, such as ’etc’.224

The annotation environment was Label Stu- 225

dio (Tkachenko et al., 2020-2025). The primary 226

annotation was performed by three scholars famil- 227

iar with Latin. Following this, an expert in histor- 228

ical texts meticulously reviewed and validated all 229

annotations to ensure accuracy and consistency. 230

4.2 Dataset Characteristics 231

In total, 753 pages were annotated, with 623 identi- 232

fied as containing Latin. An expected finding dur- 233

ing annotation was the frequent presence of other 234

languages, such as French, German, and Greek, 235

highlighting the dataset’s challenging multilingual 236

nature beyond simple Latin-English code-mixing. 237

To contextualize model performance and to bet- 238

ter understand the dataset’s composition, we di- 239

vided the sample pages into language integration 240

categories. Each category represents a specific way 241

in which Latin is used in 18th-century British books 242

and how it relates to English-language text. De- 243

pending on their content, pages containing Latin 244

text were assigned to one or multiple categories, 245

with some frequently appearing together (e.g., 246

bilingual editions and footnotes), while others are 247

mostly exclusive (e.g., full Latin). By categorizing 248

our evaluation dataset in this way, we can assess 249

the performance of our Latin detection approach 250

within different contexts of language integration. 251

The following list defines the categories used: 252

1. Full Latin: Pages entirely written in Latin, 253

without any other language present. 254

2. Bilingual Editions (Latin / English): Pages 255

that contain both the original Latin text and 256

its English translation. 257

3. Direct quotations in Latin: Pages where Latin 258

phrases or sentences are quoted verbatim 259

within an otherwise English text. 260

4. Independent Latin sections: Pages with origi- 261

nal Latin text by the author, accompanied by 262

English text on the same page. 263

5. Code Switching: Pages where the text alter- 264

nates between Latin and English within the 265

span, often for stylistic or rhetorical purposes. 266

6. Dictionaries: Pages with entries that define 267

individual Latin words, often with translations 268

or explanations in another language. 269

7. Footnotes: Pages with annotations or foot- 270

notes that provide explanations of Latin words 271

or phrases used in the main text. 272

Table 1 shows the frequency of each annotation 273

category within our dataset. Figures 3 and 4 in 274

3



Category Count
1. Full Latin 134
2. Bilingual Editions 65
3. Direct quotes 258
4. Independent Latin sections 169
5. Code-switching 109
6. Dictionaries 19
7. Footnotes 69

Table 1: Frequencies of annotation categories.

Figure 1: An example of an annotated Latin fragment.

the Appendix A show category examples. This275

form of page-level annotation reduces the need for276

costly instance-level labeling, which is particularly277

challenging for Latin due to expertise requirements278

and high annotation volume. Moreover, it supports279

context-rich evaluation aligned with the page-level280

structural nature of our detection task inputs.281

5 Evaluation Setting282

5.1 OCR Post-Correction and Normalization283

Evaluating models on the ECCO corpus is com-284

plicated by significant OCR quality discrepancies:285

modern models with vision capabilities often pro-286

duce cleaner text than ECCO’s original OCR, while287

text-based models may or may not replicate the288

noise in their input. Such differences make di-289

rect string-based comparisons problematic and dis-290

tort evaluation. To ensure meaningful assessment291

across all model types, we post-correct both the292

ground-truth Latin segments and the full input page293

texts. This OCR post-correction is performed using294

the OpenAI o1 model (Jaech et al., 2024) with a295

specialized prompt from (Kanerva et al., 2025).296

Even after the post-correction, residual noise 297

and other variation still remain in the data. Thus, 298

for token-based evaluation, we apply a more tradi- 299

tional rule-based pre-processing pipeline to both 300

predicted and reference strings. This determin- 301

istic pipeline, informed by our extensive experi- 302

ence with OCR data and domain-specific knowl- 303

edge, targets common superficial textual variations. 304

The pipeline includes Unicode normalization, lig- 305

ature replacement, lowercasing, digit removal, de- 306

hyphenation, and punctuation stripping. Subse- 307

quent to these cleaning operations, the strings are 308

tokenized into word-level units. More details of 309

the processing steps could be found in the Ap- 310

pendix B.1. 311

5.2 Metrics 312

The goal of Task 1 is to detect whether a page has 313

Latin on it. We measure this by reporting precision, 314

recall, and F1-score in percentage. To evaluate 315

the Latin segment extraction performance in Task 316

2, we calculate precision, recall, and F1 score in 317

percentage based on token-level matches between 318

model predictions and ground truth. A fuzzy match- 319

ing mechanism is applied to pair predicted and 320

reference tokens one by one. A match is consid- 321

ered valid if the token-level edit-distance is not 322

larger than a threshold proportion θ compared to 323

the ground-truth token length, which serves as a 324

tunable hyperparameter. This approach accounts 325

for minor lexical variations and OCR-induced dis- 326

tortions in single tokens, offering a more flexible 327

and robust evaluation compared with exact token 328

matching The pseudocode of the fuzzy matching 329

algorithm is shown in the Appendix B.2. Overall 330

metrics are averaged across the full evaluation set. 331

6 Method 332

Our evaluation investigates the application of gen- 333

eral instruction-following LLMs, particularly mul- 334

timodal variants, for Latin segment extraction 335

from historical documents. We propose a unified, 336

prompt-based pipeline designed to be both practi- 337

cal for real-world deployment and robust for sys- 338

tematically and fairly evaluating the capabilities of 339

diverse LLMs on this task. 340

Unified Prompting Strategy We employ a sin- 341

gle, high-level instructive prompt designed to elicit 342

responses that inherently address both sub-tasks 343

within a unified and simply formatted output. This 344

approach simplifies interaction with the models and 345
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the subsequent processing of their outputs, thereby346

contributing to the overall ease of application.347

This unified prompt asks the LLM to extract348

all Latin segments to a list, including single Latin349

words, without further instruction. The distinc-350

tion in our experiments lies solely in the input pro-351

vided to this consistent prompt, where the specific352

prompts are shown in the Appendix C:353

• Text-only input: The LLM receives the OCR-354

extracted and post-corrected text, appended to355

the prompt.356

• Image-only input: The LLM receives the357

page image, with the prompt guiding it to358

identify Latin script based on visual signal.359

• Multimodal input: The LLM receives both360

the scanned page image and the post-corrected361

OCR-extracted text, allowing it to leverage362

both visual and textual information for the363

task.364

Structured Output and Postprocessing The365

LLMs are instructed to output their predictions as a366

list of Latin segments, which directly corresponds367

to the output requirement for Task 2. The presence368

of a non-empty list implicitly indicates the pres-369

ence of Latin script on the page (Task 1, yD = 1),370

while an empty list indicates its absence (yD = 0).371

Model-Agnostic Compatibility Because the372

method does not rely on any model-specific ar-373

chitecture or training, it can be directly applied to a374

wide range of general-purpose foundation language375

models. This makes the approach particularly suit-376

able for scalable deployment across large historical377

corpora with variable OCR quality and image-text378

alignment conditions.379

7 Experiments380

7.1 Experiment Setup381

Model Selection To explore how modern382

instruction-tuned language models handle the new383

task of Latin segment detection and extraction in384

noisy multimodal historical documents, we bench-385

mark a representative suite of LLMs across modali-386

ties, scales, and architectures. The model selection387

follows three guiding principles: (i) in the absence388

of dedicated multimodal benchmarks for historical389

language understanding in documents, we refer to390

leaderboard performance on DocVQA (Tito et al.,391

2021) and comprehensive open evaluations such as392

OpenCompass (Contributors, 2023) and MMMU393

(Yue et al., 2024); (ii) we prioritize lightweight to 394

medium-scale models (7B-32B) to better reflect re- 395

alistic research use cases in historical academic and 396

low-resource scenarios. Specifically, the most no- 397

table selected models include (additionally, we eval- 398

uate further models detailed in the Appendix E.2): 399

• Qwen2.5-VL series (32B, 7B) (Bai et al., 400

2025): flagship open-source multimodal 401

LLMs with strong document understanding 402

and fine-grained visual grounding. We in- 403

clude both 32B and 7B variants, and ab- 404

late visual inputs via text-only configurations 405

(Qwen2.5-32B/14B/7B). 406

• InternVL3 series (14B, 9B, 8B) (Zhu et al., 407

2025): notable academic multimodal LLMs 408

with a two-stage visual encoder adding trans- 409

former design. We ablate the visual inputs 410

in the 9B model via testing its pure language 411

counterpart Internlm3-8B-Instruct. 412

• Mistral-Small-3.1-24B-Instruct (Mistral AI, 413

2025): an efficient model using Mixture-of- 414

Experts (MoE). Notably, for its strong text 415

performance and reasoning capabilities sup- 416

ports an extended 128k token context window. 417

• DeepSeek-R1-Distill variants (Qwen-32B, 418

Qwen-14B, Llama-8B) (DeepSeek-AI, 2025): 419

pure-text distilled models focused on reason- 420

ing, probing extraction capability with think- 421

ing capability but without visual cues. 422

Baseline We employ Lingua (Stahl, 2021), a 423

statistical language identifier based on character 424

n-gram modeling, and the only off-the-shelf tool 425

we found that supports token-level Latin detection 426

in mixed-language text. While not designed for 427

noisy OCR, it offers a useful traditional baseline 428

to contextualize the difficulty of our task and the 429

potential advantages and drawbacks of LLM-based 430

approaches. More configuration of the baseline is 431

in Appendix D. 432

Implementation Details All LLMs are deployed 433

on a unified inference backend using the vLLM 434

framework (version 0.8.5) with server mode to 435

simulate realistic client-side usage. Inference is 436

performed on a 4×A100 (40GB) GPU node, with 437

no data parallelism and a batch size of 1 for all 438

cases, resulting in an average of 16 GPU hours per 439

model. We use each model’s default generation 440

parameters without further tuning. For the Mistral 441

model, we specifically load the Mistral-Small-3.1- 442

24B-Instruct-2503 version checkpoint. The edit- 443
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distance threshold θ is set to 0.2 based on empirical444

evidence, discussed further in the Appendix E.3.445

7.2 Main Results and Comparisons446

The main experimental results are shown in Table 2.447

The traditional Lingua language identifier proves to448

be a surprisingly strong baseline. In the page-level449

detection task (Task 1), Lingua achieves a strong F1450

score of 92.89. In the more challenging segment451

extraction task (Task 2), it still attains 76.74 F1452

using simple token-level identification.453

Only the largest instruction-tuned foundation454

models such as Qwen2.5-VL-32B and DeepSeek-455

R1-Distill-32B consistently outperform Lingua456

across both tasks. Qwen in particular demonstrates457

strong document-oriented OCR capabilities, ex-458

celling even in vision-only settings. Interestingly,459

the DeepSeek-R1-Distilled version of Qwen does460

worse than plain Qwen on Task 1, but better on461

Task 2. Looking in more details at the numbers,462

the distilled version seems to be simply optimis-463

ing for recall at the cost of precision on the page-464

level metric, while then being more accurate in465

the actual segment extraction. Smaller models,466

like InternVL3-14B, can still improve over Lin-467

gua when vision is used to guide text modeling, but468

fail in vision-only configurations, illustrating that469

OCR robustness is not easy to achieve.470

Performance tends to improve with model scale,471

especially within the same model family. Larger472

models have been shown to more effectively mem-473

orize and generalize low-resource language phe-474

nomena, consistent with neural scaling laws (Gor-475

don et al., 2021; Kaplan et al., 2020). However,476

size alone does not guarantee strong performance.477

Some smaller models illustrate that fusion archi-478

tecture and fine-tuning strategy can outweigh raw479

scale. Both Qwen2.5-VL-7B and InternVL3-8B480

share the Qwen2.5-7B language backbone, yet481

Qwen2.5-VL-7B’s distinct native dynamic image482

resolution support and instruction-tuning on multi-483

lingual document-centric corpora gain advantages.484

A direct comparison between Qwen2.5-7B and485

InternLM3-8B reveals that Qwen’s textual pretrain-486

ing data composition and cross-lingual instruction487

tuning confer superior robustness to OCR noise488

and low-resource Latin patterns, beyond what can489

be achieved by architecture scale alone.490

Across all model families, multimodal variants491

(I+T) consistently outperform their unimodal coun-492

terparts under the same model size. This is es-493

pecially evident in the InternVL3 series, where494

I-only models fall well below their I+T variants on 495

both tasks. This highlights the value of aligning 496

visual features with textual reasoning. However, 497

text-only models can still perform competitively, 498

particularly those with fine-grained OCR-style pre- 499

training, such as Qwen2.5. Additionally, most mod- 500

els cannot extract Latin solely from images, where 501

only Qwen2.5-VL-32B matches its text-only per- 502

formance, further highlighting historical document 503

OCR challenges and our dataset contributions on 504

dealing with OCR texts and annotations. 505

7.3 Performance by Category 506

Figure 2 shows the results on the five top models 507

considering the coverage of different input modal- 508

ities, over different page categories, which were 509

specified in Section 4.2. As can be seen from the 510

left-hand side of the figure, for pages with only a 511

single type, there is a large disparity between cat- 512

egory difficulty: models yield almost perfect per- 513

formance for full-Latin and bilingual pages while 514

struggling with code-switching and to a lesser de- 515

gree with dictionaries. The difference between 516

modalities is also evident: image and combined 517

inputs remain robust across categories, while text- 518

only models demonstrate more variety. In partic- 519

ular, text-based Qwen fails in code-switch detec- 520

tion: it does not find any correct Latin text at all 521

in 5 pages out of 9 in this category, showing its 522

shortcomings in nuanced detail extraction. Since 523

footnotes almost never exist in isolation, we are 524

unable to directly report performance relating to 525

them. In addition, considering multi-label cases, 526

the performance metrics should be dominated by 527

the performance on the longer text category. For 528

example, the performance on independent Latin 529

sections plus dictionaries is better than dictionaries 530

alone. However, when looking at the performance 531

of footnotes in conjunction with other short text 532

types such as code-switching and quotations, we 533

can still clearly find that the performance of foot- 534

notes is even worse than that of code-switching. 535

7.4 Behavior on Non-Latin pages 536

To gain further insight into model behavior, we 537

analyze performance on pages devoid of Latin. 538

For Task 1, we report the recall of the negative 539

class. For Task 2, we report false positive token 540

rates (Table 3). It is evident from these analyses 541

that all models over-detect Latin as compared to 542

our ground-truth. The best performance is demon- 543

strated by Qwen2.5 with text-only input, which 544
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MODEL DETAILS PAGE-LEVEL (TASK 1) TOKEN-LEVEL (TASK 2)
Model Variant Size Mode F1 Precision Recall F1 Precision Recall

Lingua - - T 92.89 86.85 99.84 76.74 76.64 80.01

Qwen2.5

VL 32B I+T 94.09 88.97 99.84 84.15 86.21 84.25
VL 32B I 94.22 89.45 99.52 78.86 81.31 78.97
- 32B T 97.68 97.29 98.07 80.53 84.60 79.46

- 14B T 91.54 88.46 94.86 70.12 74.6 72.04

VL 7B I+T 89.93 83.87 96.95 73.23 77.1 76.05
VL 7B I 92.86 88.04 98.23 71.16 74.38 73.36
- 7B T 88.37 83.33 94.05 52.43 53.5 64.17

InternVL3

- 14B I+T 91.5 84.68 99.52 80.09 81.28 82.3
- 14B I 87.37 82.95 92.28 44.48 46.45 46.89

- 9B I+T 84.69 82.37 87.14 59.88 59.33 68.09
- 9B I 70.82 79.28 63.99 25.28 25.91 29.61

- 8B I+T 89.5 83.36 96.62 65.76 61.35 81.79
- 8B I 86.67 83.68 89.87 48.58 45.91 59.2

Internlm3 - 8B T 82.33 83.01 81.67 47.49 52.3 51.32

Mistral-Small-3.1
- 24B I+T 92.73 88.47 97.43 79.89 79.4 82.93
- 24B I 89.82 85.16 95.02 66.14 65.39 69.81
- 24B T 88.47 83.26 94.37 72.97 72.61 78.79

DeepSeek-R1-Distill
Qwen2.5 32B T 94.05 89.42 99.2 81.87 84.37 82.96
Qwen2.5 14B T 91.69 85.12 99.36 77.98 81.62 78.82
Llama-3.1 8B T 89.74 84.01 96.3 66.59 73.06 68.38

Table 2: Experimental results on selected LLMs, compared with Lingua baseline. “I” indicates image input, “T”
indicates text input, and “I + T” refers to the combination of both modalities.

Figure 2: Result on different category labels for 5 top-performing models: median of the token-level F1-score for
each page. The number of instances for each label is shown in parentheses. We filter out the subsets with fewer than
3 cases to ensure the statistical validity of the subset results.

correctly refrains from outputting Latin on 87%545

of the non-Latin pages, with a low proportion of546

Latin token output on misclassified pages. This547

could suggest that it benefits from a stronger sensi-548

tivity to linguistic context, enabling more cautious549

predictions in ambiguous cases.550

The statistical baseline Lingua does remarkably551

worse in this evaluation, misidentifying Latin on552

over 70% of non-Latin pages. This is primarily be-553

cause the ngram-based model struggles with deeper 554

linguistic nuances and context, and outputs false 555

positive tokens on most pages. Since our goal is to 556

process a collection of 200K books, a large number 557

of false positives would pose a significant problem. 558

In general, the number of Latin tokens identified 559

on non-Latin pages remains small, pointing to the 560

possibility of using further filtering or thresholding 561

approaches in downstream tasks. 562
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MODEL DETAILS PAGE TOKEN

Model Variant Size Mode Neg. Recall FP Rate

Lingua - - T 28.24 2.65

Qwen2.5
VL 32B I+T 41.22 3.41
VL 32B I 44.27 1.94
- 32B T 87.02 0.53

DeepSeek Qwen2.5 32B T 44.27 4.84

Table 3: Analysis on non-Latin pages: Negative Class
Recall (in pages) and False Positive Rate (percentage of
tokens falsely identified as Latin on the whole page).

7.5 Qualitative Evaluation and Error Analysis563

Our qualitative evaluation and error analysis are in-564

formed by the ECCO dataset’s characteristics and565

ambiguities in defining Latin. These factors compli-566

cated annotation, influenced model predictions, and567

set practical limits on achievable evaluation scores.568

For examples and example-oriented descriptions of569

the issues outlined here, see Appendix E.1.570

First, poor image quality in ECCO, along with571

complex page layouts, such as multi-column text,572

footnotes, marginalia, and varied fonts or spacing573

(see Figures 3 and 4, Appendix A), often led to in-574

accurate OCR and fragmented transcriptions, ham-575

pering reliable annotation, adding noise to even the576

OCR-post-corrected page texts.577

The error analysis of Latin-containing segments578

shows lower performance in categories like code-579

switching, dictionaries, and footnotes. This is580

caused by both the brevity of Latin snippets in581

these contexts and the fact that they are more likely582

to be affected by severe OCR errors, the latter of-583

ten due to complex layouts and challenging font584

types or sizes on poor-quality scans. Figure 6 in585

Appendix E.1 shows an example of how OCR er-586

rors can lead to discrepancies between our ground587

truth and predictions.588

Content-wise, an interesting definitional mis-589

match is observed, both decreasing precision as590

well as increasing false positive rates. In our591

ground-truth annotation guidelines, we specified592

that Roman named entities, common anglicized593

Latin phrases (e.g. “e.g.”, “etc.”, etc.) and jargon594

within otherwise English text were not to be consid-595

ered Latin. However, these are frequently identified596

by the models as Latin (for an example, see Fig-597

ure 7 in Appendix E.1). In terms of performance,598

these discrepancies often account for the full differ-599

ence between ground truth and prediction, meaning600

that with a slight change in definitions, the model601

performance would be even stronger.602

PROMPT CONFIG PAGE TOKEN

Non-Latin Abbrev F P R F P R

94.09 88.97 99.84 84.15 86.21 84.25

✓ 93.37 87.82 99.68 84.28 85.34 85.42

✓ ✓ 93.01 87.31 99.52 84.26 85.74 84.89

Table 4: Prompt modification experiments.

7.6 Prompt Modification Experiments 603

To assess the impact of prompt fine-tuning, we con- 604

duct a study on the best model (Qwen2.5-VL-32B) 605

by (i) explicitly instructing it to output an empty 606

list when no Latin is detected (Non-Latin column) 607

and (ii) adding explicit instructions to not extract 608

common Latin abbreviations found in other lan- 609

guages (Abbrev column). As shown in Table 4, 610

these modifications yield only marginal changes, 611

indicating small gains in some cases compensated 612

by losses in others. This is particularly interesting 613

concerning the abbreviations, as it means that the 614

model has a strong innate definition of what it con- 615

siders Latin, which cannot be easily overcome by 616

prompting. 617

8 Conclusion 618

This paper presented a novel task and a dataset 619

for Latin extraction from early-modern book pages. 620

We systematically evaluated diverse foundational 621

models and found that this task can be solved with 622

excellent performance, without fine-tuning. How- 623

ever, such performance can be achieved only with 624

bigger models (32B parameters). 625

Our results show that 94% F1 performance on 626

page-level detection can be achieved with only im- 627

age input. This has practical implications since a 628

visual model can be used even in collections that 629

have no OCR, or whose OCR is not of sufficient 630

quality. In this case, OCR or post-OCR correction 631

can be performed only on pages preselected by a 632

visual model, which would save computation cost. 633

We also found that semantic analysis is crucial 634

to distinguish actual Latin phrases from usages of 635

Latin words in English text. Thus we argue for the 636

usage of large foundation models, or a pipeline of 637

visual and textual models, rather than pure statisti- 638

cal methods. 639

Further steps will include processing the whole 640

ECCO collection and publishing a complete dataset 641

of Latin fragments in the ECCO books. We also 642

plan to expand our results to other Early-modern 643

collections, such as the French BNF collection. 644

8



Limitations645

All our work is performed on a single collec-646

tion. Results from this single corpus (18th-century647

British ECCO texts) should be interpreted with cau-648

tion, as potential corpus-specific biases may affect649

broader generalizability, highlighting the impor-650

tance of future cross-corpus studies. Since Latin651

has been widely used across Europe, it would be652

interesting to validate our methods on other col-653

lections, e.g., the main texts written in Romance654

languages, such as French.655

A drawback for per-category evaluation in the656

current dataset is the lack of per-segment type anno-657

tations, which leads to a shortage of instance-level658

performance analysis. These will be implemented659

in the next version of the dataset.660

The current work does not utilize a separate val-661

idation set, a decision necessitated by the consid-662

erable difficulty and cost of annotating the histor-663

ical data. Consequently, model selection was per-664

formed without an independent dataset for opti-665

mization before final testing, instead referring to666

the results from previous work. Incorporating a val-667

idation set is an important consideration for future668

extensions of this research.669

All reported results are from single experimental670

runs in each model’s default configuration. This671

approach was a necessary compromise due to the672

significant computational costs and GPU resource673

constraints associated with evaluating the diverse674

range of large-scale models investigated. Future675

work could explore the impact of running variabil-676

ity by conducting multiple trials and tuning seeds,677

temperatures, and other hyperparameters.678

It would also be interesting to compare the off-679

the-shelf LLMs with some models trained or fine-680

tuned specifically for the Latin extraction task.681

However, given the surprising performance of682

general-purpose LLMs on this task, the practical683

usefulness of such experiments is questionable.684

Ethics Statement685

The underlying literary works from which our686

dataset is derived, sourced from 18th-century texts687

within the Eighteenth Century Collections Online688

(ECCO), are in the public domain. The compila-689

tion and sharing of our dataset, which comprises690

annotated excerpts and portions of page images691

from this collection, are conducted for research692

purposes under the permissions granted. We are693

committed to ensuring that the creation and dissem-694

ination of this dataset adhere to relevant copyright 695

considerations and ethical guidelines. 696

We used ChatGPT and Gemini for grammar and 697

spell-checking and stylistic polishing of the draft 698

of this manuscript. All suggestions were critically 699

reviewed and edited by the authors to ensure factual 700

accuracy and originality. 701
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A Dataset Illustrations947

Figures 3 and 4 show examples of Latin text cate-948

gories. Both figures feature independent Latin text949

in the main text box at the top of the pages and950

footnotes at the bottom. Figure 3 is a bilingual951

edition of a Latin text, with an English translation952

directly below the Latin text at the top of the page.953

The footnotes in Figure 4 also include instances of954

code-switching and direct quotations of Latin text.955

Figure 3: An example page with Latin fragments.

B Evaluation Setting Details956

B.1 Preprocessing957

This section details the text preprocessing pipeline958

for evaluation, implemented in Python, to normal-959

ize both ground truth and predicted text strings960

before unigram token extraction. The primary goal961

of this pipeline is to standardize textual representa-962

tions, thereby mitigating the impact of superficial963

variations (e.g., from OCR noise or stylistic differ-964

ences) on downstream metrics calculation. Note,965

Figure 4: An example page with Latin fragments.

that this applies to the evaluation step only, while 966

Latin extracting models take an input text without 967

these steps. 968

For each text string, the following sequential 969

operations are performed: 970

1. Unicode Normalization: Each string un- 971

dergoes Unicode normalization using the 972

normalize with “NFKD” method from 973

Python’s built-in unicodedata module. This 974

step decomposes characters into their canon- 975

ical forms, for example, separating accents 976

from base characters, which helps in standard- 977

izing character representation. 978

2. Ligature Replacement: A predefined set of 979

common ligatures is replaced with their con- 980

stituent characters. Examples of replacements 981

include ‘ff’ to ff, ‘æ’ to ae, and importantly 982

for some historical contexts, ‘&’ to et. 983

3. Lowercasing: All alphabetic characters in the 984

string are converted to lowercase. 985

12



4. Digit Removal: All sequences of digits are986

removed from the string to avoid prediction987

ambiguity on digits, e.g., OCR digits in foot-988

note notations.989

5. De-hyphenation (Word Merging): This step990

addresses common OCR inconsistencies in991

handling end-of-line hyphens from historical992

documents. To ensure textual uniformity for993

subsequent analysis, word segments that were994

hyphenated, typically due to line breaks in the995

original source, are consistently merged into996

single tokens.997

6. Punctuation Stripping: All standard punc-998

tuation marks, as defined by Python’s999

string.punctuation constant, are removed1000

from the string.1001

7. Word Tokenization: After the above clean-1002

ing steps, each processed sequence is tok-1003

enized into a list of individual words using1004

the word_tokenize function from the NLTK1005

library (nltk.tokenize, version 3.9.1).1006

B.2 Fuzzy Matching Algorithm in Token-level1007

Metrics1008

To evaluate segment correspondence, we apply a1009

fuzzy matching algorithm to compare lists of pre-1010

processed ground truth tokens against predicted1011

tokens for each sample. This approach calculates1012

Precision, Recall, and F1-score while being robust1013

to minor textual variations. The core matching1014

logic is outlined in Algorithm 1.1015

The algorithm performs a greedy, one-to-one1016

fuzzy match: each predicted token is compared1017

against available ground truth tokens using a match1018

indicator function (IsFuzzyMatch) based on edit1019

distance and a predefined proportion threshold θ. A1020

match only holds when the edit distance is less than1021

or equal to θ proportion of the length of the ground1022

truth token string. A ground truth token can only1023

be matched once to ensure an accurate count of1024

distinct true positive matches. This fuzzy approach1025

is beneficial as it offers robustness to minor textual1026

variations that may persist even after preprocessing,1027

leading to a more meaningful evaluation of segment1028

correspondence.1029

C LLM Prompt Details1030

This section details the exact prompt templates em-1031

ployed to instruct the LLMs for the task of Latin1032

script detection and extraction. The prompts were1033

adapted based on the input modality being used. In 1034

the templates below, the placeholder {page_text} 1035

indicates where the OCR output corresponding 1036

to the processed page image was dynamically in- 1037

serted. 1038

Image + Text 1039

Identify and extract all 1040

segments written in Latin 1041

(e.g., Classical or Medieval 1042

Latin) from the provided image, 1043

using the accompanying OCR text 1044

as a reference. Include even 1045

single-word segments. Return the 1046

results as a list of strings 1047

in the JSON format: [“text1”, 1048

“text2”, ...]. 1049

OCR Text: {page_text} 1050

Image-only 1051

Identify and extract all segments 1052

written in Latin (e.g., Classical 1053

or Medieval Latin) from the 1054

provided image. Include even 1055

single-word segments. Return the 1056

results as a list of strings 1057

in the JSON format: [“text1”, 1058

“text2”, ...]. 1059

Text-only 1060

Identify and extract all segments 1061

written in Latin (e.g., Classical 1062

or Medieval Latin) from the OCR 1063

text of an image. Include even 1064

single-word segments. Return the 1065

results as a list of strings 1066

in the JSON format: [“text1”, 1067

“text2”, ...]. 1068

OCR Text: {page_text} 1069

D Configuration of Baseline 1070

For comparative language identification, we em- 1071

ployed Lingua (version 2.1.0) (Stahl, 2021) as 1072

a baseline. The LanguageDetector was specifi- 1073

cally configured to operate with a predefined re- 1074

stricted set of eight languages: English, French, 1075

German, Greek, Italian, Spanish, Portuguese, and 1076

Latin. This selection aims to encompass Latin it- 1077

self and a set of the most frequently occurring lan- 1078

guages within our target corpus ECCO (English, 1079
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Algorithm 1 Fuzzy Matching and Token Metrics Output

1: procedure CALCULATEFUZZYMETRICS(GT_Tokens, Pred_Tokens, θ)
2: ▷ Input: GT_Tokens, Pred_Tokens (lists of preprocessed tokens)
3: ▷ θ (edit distance ratio threshold for a match)
4: ▷ Output: Precision, Recall, F1-score
5: TP ← 0
6: matched_gt_indices← ∅
7: for each pred_token in Pred_Tokens do
8: for each gt_token in GT_Tokens (with index gt_idx) do
9: if gt_idx ∈ matched_gt_indices then continue

10: end if
11: if ISFUZZYMATCH(gt_token, pred_token, θ) then
12: TP ← TP + 1
13: Add gt_idx to matched_gt_indices
14: break ▷ Current pred_token matched
15: end if
16: end for
17: end for
18: FP ← length(Pred_Tokens)− TP
19: FN ← length(GT_Tokens)− TP
20: Precision← TP/(TP + FP )
21: Recall← TP/(TP + FN)
22: F1← 2× (Precision×Recall)/(Precision+Recall)
23: return Precision,Recall, F1
24: end procedure

French, German, and Greek), while also including1080

languages present in ECCO that share orthographic1081

or lexical similarities with Latin (Italian, Spanish,1082

and Portuguese). Including these similar languages1083

was intended to create a more global and robust test1084

scenario for accurate Latin identification in ECCO.1085

In our pipeline, Lingua’s function to de-1086

tect multiple languages within a given text1087

(detect_multiple_languages_of method) was1088

utilized on each page’s OCR output. From the re-1089

sulting language segments identified by Lingua,1090

only those substrings classified as Latin were sub-1091

sequently extracted for our analysis and evaluation.1092

E Additional Results1093

E.1 Qualitative Results1094

More qualitative results are shown as examples1095

to illustrate the best model’s performance and the1096

error modes.1097

Figure 6 shows an example of a mismatch caused1098

by significant OCR noise caused by poor original1099

image quality. Here, the post-corrected OCR of our1100

ground truth differs so much from the OCR visual1101

or multimodal models produced during the predic-1102

tion process that not even our edit-distance based 1103

fuzzy ground truth matching can recover what is 1104

essentially a full match. This kind of error espe- 1105

cially affects pages in the footnotes, code switching 1106

and dictionary categories, since the Latin texts in 1107

these categories tend to be printed in harder to de- 1108

tect fonts and layouts, which are additionally more 1109

likely to be affected by bad scan quality. 1110

Figure 7 shows an example of a definitional mis- 1111

match between our annotations and the predictions. 1112

Although there is no Latin text on the page, the 1113

prediction contains the Roman names appearing in 1114

the page text. 1115

Figure 8 shows an example of a page where the 1116

prediction contains hallucinations. The model took 1117

part of the text and translated it into Latin in the 1118

prediction, without being prompted to do so. 1119

E.2 Other LLMs 1120

To further contextualize the performance of con- 1121

temporary foundation models on our challenging 1122

Latin discovery task, we evaluated additional mod- 1123

els beyond those in the main comparison (Table 2). 1124

This section presents results for variants from the 1125

Pixtral and Phi-4 families. Specifically, we exam- 1126
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ined Pixtral-12B (Agrawal et al., 2024), an effi-1127

cient Mixture-of-Experts (MoE) model, and mod-1128

els from the Phi-4 family (Abdin et al., 2024), in-1129

cluding Phi-4-Multimodal-Instruct (5.6B param-1130

eters) noted for its smaller footprint and a larger1131

text-only Phi-4 (14B parameters) variant. The re-1132

sults are detailed in Table 5.1133

The results in Table 5 reveal varied performance.1134

Notably, some smaller multimodal models, such1135

as Phi-4-Multimodal-Instruct (5.6B) particularly in1136

image-only (I) mode, struggled significantly with1137

the fine-grained token-level extraction task, achiev-1138

ing an F1 score as low as 2.48. Similarly, Pixtral-1139

12B showed a substantial performance drop in its1140

image-only configuration for token-level results.1141

This suggests that factors like smaller parameter1142

counts or training data less attuned to the nuances1143

of documents and noisy OCR may limit the out-1144

of-the-box effectiveness of certain general-purpose1145

models for this specialized task. In contrast, the1146

text-only Phi-4 variant performed more compe-1147

tently, underscoring that model architecture with1148

different input modalities and training focus are1149

critical. These observations highlight the challeng-1150

ing nature of our proposed task.1151

E.3 Fuzzy Matching Threshold1152

The fuzzy matching threshold, θ (representing the1153

maximum allowed normalized edit distance rela-1154

tive to ground truth token length), was empirically1155

set to 0.2 for all main experiments. This choice1156

aligns with a common heuristic of tolerating ap-1157

proximately “1 error in 5 characters,” suitable for1158

OCR-derived text, and is supported by our sensitiv-1159

ity analysis in Figures 5. It consistently shows that1160

while F1 scores generally increase with θ, the most1161

substantial and steepest F1 score improvements for1162

the majority of evaluated models are concentrated1163

in the range leading up to θ ≈ 0.2, effectively1164

compensating for common, fine-grained textual1165

variations attributable to OCR noise. Although1166

metrics may continue to rise beyond this point for1167

some configurations on our dataset, we maintain1168

θ = 0.2 as a principled trade-off. A higher uni-1169

versal threshold could risk over-tolerating more1170

substantial prediction errors beyond typical OCR1171

noise, potentially prioritizing the matching of token1172

quantity or approximate form over precise content1173

fidelity. This could also obscure true output qual-1174

ity differences, especially when comparing models1175

with varying input noise levels (e.g., image-only1176

versus OCR-input systems).1177
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MODEL DETAILS PAGE-LEVEL (TASK 1) TOKEN-LEVEL (TASK 2)
Model Variant Size Mode F1 Precision Recall F1 Precision Recall

Lingua - - T 92.89 86.85 99.84 76.74 76.64 80.01

Pixtral - 12B
I+T 89.46 84.65 94.86 69.70 71.48 74.13

I 74.77 79.28 70.74 31.33 32.43 33.16

Phi-4
Multimodal 5.6B I+T 76.46 85.04 69.45 39.53 42.43 46.02
Multimodal 5.6B I 40.84 86.91 26.69 2.48 4.13 2.78

- 14B T 91.64 86.24 97.75 70.14 74.17 75.12

Table 5: Experimental results for additional evaluated LLMs.

Figure 5: Token F1 scores on different θ value.
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Figure 6: An example page with Latin fragments, together with our ground truth and prediction for that page.
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Figure 7: An example page without Latin fragments, together with our ground truth and prediction for that page.
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Figure 8: An example page without Latin fragments, together with our ground truth and hallucinated prediction for
that page.
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