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Abstract

Text-to-image diffusion generative models can generate high quality images at the
cost of tedious prompt engineering. Controllability can be improved by introducing
layout conditioning, however existing methods lack layout editing ability and fine-
grained control over object attributes. The concept of multi-layer generation holds
great potential to address these limitations, however generating image instances
concurrently to scene composition limits control over fine-grained object attributes,
relative positioning in 3D space and scene manipulation abilities. In this work, we
propose a novel multi-stage generation paradigm that is designed for fine-grained
control, flexibility and interactivity. To ensure control over instance attributes, we
devise a novel training paradigm to adapt a diffusion model to generate isolated
scene components as RGBA images with transparency information. To build
complex images, we employ these pre-generated instances and introduce a multi-
layer composite generation process that smoothly assembles components in realistic
scenes. Our experiments show that our RGBA diffusion model is capable of
generating diverse and high quality instances with precise control over object
attributes. Through multi-layer composition, we demonstrate that our approach
allows to build and manipulate images from highly complex prompts with fine-
grained control over object appearance and location, granting a higher degree of
control than competing methods.

1 Introduction

The development of text-to-image generative diffusion models has allowed the generation of high-
quality synthetic images guided by textual prompts. However, achieving desired image quality and
properties inherently requires tedious and meticulous prompt engineering [35]. As image content
is solely described using a textual description, prompt content has to be carefully crafted, notably
taking into account the models’ struggles to understand subtleties of language (e.g. counting, object
attributes, negation or spatial relationships) [16]. Additionally, minor prompt modifications can
lead to substantial modifications of generated image content, further increasing prompt crafting
tediousness.

An intuitive way of improving controllability of generated content is by providing alternative image
descriptors, e.g. using image layouts which describe the location of specific objects in an image
as bounding boxes. Several approaches have been proposed to inject layout information in the
generative process. Training based methods [24, 54] adapt or introduce new model weights to
introduce object coordinates as conditioning, while [8, 51] leverage cross-attention manipulation

∗Work done while at Huawei Noah’s Ark Lab

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



and inference time optimisation. While substantially increasing control over image structure, these
solutions still generate all components as a single denoised image. This limits the user’s ability to
finely control object attributes, and layout adjustments requires re-generation with limited content
preservation guarantees. These issues can potentially be addressed with image editing techniques.
This, however, can require expensive data construction and training [4], while the displacement or
resizing of objects (essential for layout manipulation) remains a very challenging type of edit that few
have explored [9, 31]. This challenge can be attributed to the fact that objects and backgrounds have
to be regenerated, while at the same time ensuring appearance preservation with the original image.

The emerging layer-based generation paradigm [38, 49, 40] has shown promise in addressing these
limitations. The idea is to represent images as multi-layer stacks, where different image components
are generated on separate layers. This has two key benefits: 1) instances can be generated more
precisely as separate images with individual prompts, 2) separating image components simplifies
image manipulation tasks, as only the relevant layers will be modified. Nonetheless, layer-based
methods typically suffer from the fact that layers are not fully generated, as they are collapsed to a
single image in the later stages of a diffusion process. Generating all components jointly can affect
the ability to achieve fine-grained control of layers attributes, control their relative positioning in
3D space (as layers are collapse with no hierarchical structure), ensure a smooth composition of all
image component, and achieve layout manipulation abilities with strong content preservation (as
layers and composite image influence each other).

In this work, we seek to address current limitations through a multi-stage generation process that
is designed for fine-grained control, flexibility and interactivity. We propose to build complex
scenes by first generating individual instances as RGBA images, then iteratively integrating them
in a multi-layer composite image according to a specific layout. The ability to generate individual
instances allows to finely control instance appearance and attributes (e.g. colours, patterns and pose),
while their layered composition allows to easily control and modify positioning, scale and ordering.
In particular, our two-stage approach provides intrinsic layout and attribute manipulation abilities
with strong content preservation. To achieve our goal, we firstly train a diffusion model capable
of generating RGBA images, i.e. images with alpha transparency information. Directly generating
isolated instances, c.f. generating and extracting them with a segmentation model, ensures better
transparency masks and more fine-grained control of instance attributes. Our RGBA generator is
obtained by fine-tuning a latent diffusion model (LDM) using RGBA instance data from the recently
released MuLAn dataset [47]. In order to incorporate transparency information in the generative
process, we devise a transparency-aware training procedure for both VAE and diffusion model. In
contrast with the contemporary transparent generation method of [57], which implicitly encodes
transparency information in the null space of the VAE to carry out standard LDM fine-tuning, we
explicitly integrate transparency in our generation and training process. Our VAE is trained so as to
disentangle RGB and alpha channels, ensuring colour and detail preservation in RGB reconstruction.
Our LDM is then fine-tuned with a novel training paradigm leveraging our disentangled latent space,
that allows a conditional sampling-driven inference where alpha and RGB latents are sequentially
denoised with mutual conditioning. Finally, we leverage our RGBA generator to build composite
images with fine-grained control over object attributes and scene layout. We build multi-instance
scenes via a multi-layer noise blending solution, where each instance is associated to a specific image
layer. Crucially, each instance is integrated in the scene one layer at a time, yielding increasingly
complex image layers so as to ensure scene coherence and accurate relative positioning. This contrasts
with pre-existing multi-layer works which assemble all instances at once [38, 49], and is uniquely
afforded by our RGBA generation process. By manipulating latent representations in early stages of
the denoising process, we are able to achieve high degrees of precision and control, while at the same
time generating smooth and realistic scenes. An overview of our complete methodological process is
shown in Fig. 1.

We provide a thorough evaluation of our RGBA generator’s capabilities, showing that we are able
to generate highly diverse objects and precisely control their attributes and style, outperforming
alternative solutions. In addition, our scene composition experiments show that we consistently
outperform state of the art layout controlled methods, while highlighting our unique ability to
generate and manipulate complex scenes with strongly overlapping objects. In summary, our main
contributions are the following:
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• We propose a multi-layer generation framework designed for fine-grained controllable
generation that grants user control over instance appearance and location, with intrinsic
scene manipulation capabilities.

• We introduce a novel fine-tuning paradigm for pre-trained diffusion models to generate indi-
vidual objects as RGBA images with transparency information. We propose a disentangled
training strategy that relies on mutual conditioning of RGB and alpha channel latents.

• We develop a multi-layer scene compositing strategy based on noise blending that allows to
build and manipulate complex scenes from multiple instance images. By combining RGBA
generation with scene compositing, we are able to generate images with accurate attribute
assignment and relative object positions.

2 Related Work

Text-to-image and transparent generation. GLIDE [32] first proposed text-to-image generation
with diffusion models by adopting classifier-free guidance through text. While GLIDE trains the
text encoder jointly with the diffusion prior using paired image and text data, Imagen [43] employs
a frozen large language model as the text encoder. More recently, Latent Diffusion Models (LDM)
trained in latent space have increased in popularity, given their lower computational requirements[41].
Stable Diffusion incorporates an adversarial objective to learn the latent representation and enhance
the authenticity of generated images and introduces cross-attention for text conditioning. While
the U-Net [42] architecture was originally the most popular for latent diffusion models, recent
works are converging towards the use of Diffusion Transformers (DiT) [36], which operate on latent
patches. For example, Pixart-α [6] has demonstrated remarkable image generation capabilities,
while reducing the computational requirements to 10.8% of Stable Diffusion-v1.5’s training time.
Leveraging these models to generate instances with transparency information has been rarely explored.
Text2Layer [60] generates foreground and background images separately, defining foreground as the
ensemble of all salient objects and predicting the foreground alpha mask separately from RGB pixels.
Developed concurrently, LayerDiff [18] generates image components as separate images, providing
the transparency masks as input. This technique tends to generate partial instances, as occluded areas
are not generated. Also contemporary, LayerDiffusion generates transparent images by encoding
transparency in the null space of the pre-trained VAE, allowing to fine-tune a diffusion model using
standard techniques. While able to generate high quality instances, this implicit transparent modelling
can lead to inconsistent results, without guarantees that transparency will be achieved. In contrast, our
explicit disentangled latent space allows for more control and guarantees transparent images outputs.

Image editing and scene controllability The increasing popularity of diffusion models has high-
lighted the limitations of working solely with text based control. We identify two main areas of
research seeking to increase generative controllability: image editing and layout controlled genera-
tion. Image editing can be achieved by fine-tuning on dedicated dataset [4], constrained sampling
with CLIP [39] losses [20, 21, 45, 17, 50], mask guided inpainting [30, 59, 11, 52, 7], training-free
cross attention manipulation [12, 34, 5, 48], and inference-time optimisation [9]. Despite achieving
impressive results for replacement and local modification tasks, image editing often struggles with
more complex manipulations such as moving, rescaling and removing, especially on non isolated
instances. By modifying pre-generated content, editing methods additionally have limited layout
control capabilities. Alternatively, precise layout control during generation has been explored by
introducing additional conditioning. GLIGEN [24], ReCo [54] and Boxdiff [51] achieve image
generation from layouts given as bounding boxes specified by the user. ControlNet [58] allows to
incorporate several forms of image based conditioning, such as sketches, depth maps, or canny edges.
These techniques afford high generative controllability, but lack layout editing capability. Composite
[2] and layer-based generation techniques [38, 49, 40] offer a promising avenue, where individual
scene components are associated with unique prompts and assembled in a scene with bounding boxes
or instance specific masks, leveraging the diffusion model’s intrinsic priors to build coherent scenes.
However, generating scenes and all individual components jointly requires compromising between
instance quality, attribute accuracy and scene coherence, reducing flexibility and control. We build
from layered approaches, and use multi-layer paradigms to iteratively integrate pre-generated RGBA
instances in increasingly complex images, affording us precise control over layout, instance attributes
and allowing us to focus on scene composition quality solely during the composition step.
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Figure 1: Overview of key components of our proposed methodology.

3 Methods

3.1 Preliminaries

Diffusion models. Diffusion models learn to reverse a forward diffusion process, where images are
iteratively converted to near isotropic Gaussian noise over T timesteps as yt =

√
(1− βt)yt−1+βtϵ,

where ϵ ∼ N (0, I) and β describes a noise schedule. Diffusion models are trained to reverse the
process by learning to predict the noise ϵθ that was added at a specific timestep:

L = Ey,ϵ,t = ∥ϵ− ϵθ(yt, t, C)∥ (1)

Where C is a conditioning variable, typically a text prompt embedding. Starting from isotropic
Gaussian noise yT at inference time, diffusion models generate images through the reverse iterative
denoising process, where y0 is the final denoised output. At a given timestep t of this backwards
diffusion process, the pre-trained model predicts the noise ϵθ that updates current noisy image yt to
move on to the next timestep t− 1. In this work, we consider latent diffusion models (LDMs), where
the diffusion process is carried out in the latent space of a Variational AutoEncoder (VAE) [41].

Alternatively, the pre-trained model can be leveraged to convert an image x0 to Gaussian noise by
iteratively adding predicted noise ϵθ(xt, t) according to the same noise schedule [44]. This inversion
process provides an estimation of the input noise xT that allows to obtain x0 via the backwards
diffusion process. This technique is particularly relevant to image editing tasks and noise blending
methods like ours. To differentiate between both processes, we use yt to refer to generated latents
and xt to refer to inverted latents in the remainder of this paper.

RGBA representation. An RGBA instance image is modelled as a four channel image I ∈ Rw,h,4,
where the additional Alpha channel describes the level of transparency of RGB pixels. The alpha
channel takes values in [0, 1], where 0 correspond to full transparency. Transparent pixels for which
we do not have RGB information are set to black (RGB = (0, 0, 0)).

3.2 RGBA Instance Generation

A simple method for creating instances with transparency involves using a text-to-image model to
generate an initial image, then applying image matting techniques [55] to extract the transparency
alpha mask. This reliance on automated matting can yield inaccurate masks, particularly when
dealing with complex object structures and image backgrounds. In addition, this approach reduces
controllability, as object attributes can bleed in the background content rather than the instance itself

4



[16]. Alternatively, we propose to natively generate RGBA instances using a generative diffusion
model. To this end, we developed a transparency aware training procedure for a pre-trained LDM
that focuses on the interaction between RGB and alpha channels. This section will first introduce our
training dataset, then detail our fine-tuning approach for the LDM’s VAE and diffusion model.

Training data. We employed 87989 instances from the MuLAn dataset [47], a novel dataset
consisting of automatically generated RGBA decompositions with a diverse array of scenes, styles
and object categories, and 15791 instances extracted from a variety of image matting datasets with
high quality masks. More details about the datasets are provided in Appendix A.1.

RGBA VAE. We train our RGBA VAE following the training procedure of [41], comprising a
L1 reconstruction loss Lrecon(I,D(E(I))), a perceptual loss LLPIPS(I,D(E(I))), a discriminator
based adversarial loss Ladv(D(E(I)))), and a Kullback Liebler (KL) loss between the estimated
latent distribution and a normal distribution N (x : 0, 1). However, we make key modelling and
training adjustments in order to accommodate for the new alpha transparency information.

Firstly, the additional channel is simply taken into account by replacing and retraining the input and
output layers of the model. Secondly, we observed that learning a joint RGBA latent space leads
to entanglement of RGB and alpha channels, affecting generation capability of diffusion models
trained in this latent space. We address this challenge by disentangling representations in the latent
space: our VAE predicts two separate distributions N (x : µRGB ,ΣRGB) and N (x : µα,Σα), each
associated with a separate KL loss. While we do not explicitly model the separate distributions to
encode RGB and alpha channels respectively, it is a natural disentanglement of the data.

Lastly, the VAE in [41] is trained with very small KL regularisation (e.g. a weight factor of wKL =
10−6 on the KL loss), so as to focus on reconstruction quality. In our setting, we observed that this
deviation from standard VAE training was harmful to generative ability, yielding dark and highly
contrasted images. In contrast, training our VAE with large regularisation (wKL = 1) noticeably
improved image quality, while at the same time enforcing disentanglement more strongly (see
Appendix A.3 for visual comparisons). The perceptual loss is also computed separately for RGB and
alpha channels and the two components LLPIPS(IRGB ,D(E(I))RGB) and LLPIPS(Iα,D(E(I))α)
are then averaged.

RGBA Diffusion Model. In the second stage, we fine-tune the LDM on our instances datasets. Our
VAE fine-tuning keeps the dimension of the original LDM latent space (4 channels and 64 × 64
spatial dimension), allowing us to directly fine-tune without architecture adaptation. However, in our
case, the latent space also encodes information on the transparency layer. When sampling from our
model, we seek to exploit the mutual dependency between RGB and alpha channels. In particular,
given noised latents yRGB

t and yαt for RGB and alpha channels respectively at timestep t, information
contained in yRGB

t−1 could be employed to inform the update from yαt to yαt−1 and vice-versa. In order
to train the network to leverage this conditional information, we modify the training procedure of
the LDM. Given yRGB

0 and yα0 , we sample two different Gaussian noise vectors ϵRGB and ϵα and
use them to compute yRGB

t , yRGB
t−1 ,yαt , yαt−1 with the forward process of the diffusion model and

t randomly sampled in [0, T ], with T number of training steps. Our network is trained to predict
(ϵRGB , ϵα) jointly given one of the following as input: (yRGB

t , yαt ), (y
RGB
t , yαt−1), or (yRGB

t−1 , yαt ).

This training procedure unlocks the ability to perform conditional sampling. Given (yRGB
t , yαt ),

we can alternate between updating the alpha component yαt−1 and then use (yRGB
t , yαt−1) to update

the RGB component, obtaining (yRGB
t−1 , yαt−1). Alternatively, we can update the RGB component

first and use it to condition the alpha update, but observed that the former approach worked best in
practice. When sampling from diffusion models, it is common to use fewer sampling steps than at
training time for faster image generation [53]. Therefore, in order to make our training regime more
flexible and applicable to a variety of sampling strategies, we additionally use pairs (yRGB

t , yαk ), and
(yRGB

k , yαt ) as conditioning input in the second half of training iterations, with k randomly sampled
in [0, t− 1].

3.3 Multi-Layer Noise Blending for Scene Composition

We consider that we have an image layout available, and generated K instances {Ik,Mk} using
our RGBA generator, where Ik refers to RGB values and Mk is the transparency alpha mask. We
represent a layout as a collection of bounding boxes, where each box is associated with a specific
instance: L = {[cxk, cyk, wk, hk], for k ∈ 1, · · · ,K}. We design our scene composition approach
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as a multi-layer noise blending process, where instances are sequentially integrated in intermediate
layered representations. As a result, we concurrently generate K + 1 images (sorted as background,
and K composite images with increasing number of instances). While more costly, we observed that
generating layered images affords more flexibility, better control over relative positions of instances
and yields more natural compositions. An algorithmic overview is provided in Appendix B.

We consider the latent representation xk
0 of instance image Ik, and compute its noisy representation

xk
t at all diffusion timesteps t ∈ [1, T ] using DDIM inversion [44]. To generate our layered composite

image, we first initialise our K +1 images with the same noise vector yT . Inspired from compositing
[2] and layered [38] image generation methods, we combine noisy image representations for the first
n timesteps of the diffusion denoising process. After carrying out the denoising update at time t, and
before moving on to the next time step, we sequentially update noisy images as follows:

ykt = yk−1
t · (1−mk) + xk

t ·mk for k ∈ [1,K] (2)

where mk is the instance alpha mask Mk downsampled to the latent space and y0t is the background
image generated concurrently. Equation 2 builds layered images by iteratively injecting new instances
in the noisy images at the desired locations. Carrying this process only at the first n generative
timesteps enables to precisely control scene composition and instance appearance, while at the same
time allowing for a smooth and realistic composition. The smaller n is, the more freedom is given to
the generative model to adapt scene content. We further detail two optional additional mechanisms.

Background blending. In the noise blending procedure described above, the background is generated
independently from the rest of the image. That can reduce blending quality as generated background
elements can be incompatible with instance locations. We propose to address this limitation by
introducing background blending. We inject appearance information from the composite image to the
background as:

y0t = y0t ·m∗ +
1

2
(y0t + yKt ) · (1−m∗) (3)

where m∗ is the union of all instances alpha masks. The background area of the composite image gets
adjusted throughout the generation timesteps to accommodate instances neighbourhood. Equation 3
has two benefits: 1) it ensures stronger consistency between the background layer and final composite
image, and 2) allows the background image to be generated with stronger awareness of instances.
This blending process can be carried out for the first b steps of the composition process.

Increasing cross-layer consistency. In situation where intermediate layers are needed, and n is small,
consistency can be enforced on the composite image by applying Eq. 2 to yK for ns subsequent
timesteps: yKt = yKt · (1−mk) + yk−1

t ·mk for k ∈ [1,K − 1].

Scene editing. Our design intrinsically allows scene manipulation and editing easily. Once instances
are pre-generated, scene content can easily altered locally by replacing instances, or modifying
instance location by providing new bounding boxes. The modified image can easily be generated
following our scene composition process with a fixed seed, without any additional constraints.

4 Experiments

4.1 RGBA generation

Our RGBA generator is fine-tuned from a pre-trained PixArt-α model [6]. As baselines, we compare
quantitatively and qualitatively to Stable Diffusion 1.5 (SD-1.5) and PixArt-α, adding ‘on a black
background’ to the captions to replicate instance generation. We additionally compare to both models
combined with the Matte Anything (MA) matting algorithm [55], our reimplementation of Text2Layer
[60], and LayerDiffusion [57]. In all approaches we used 100 steps. Our RGBA generator leverages
the conditional sampling approach described in Sec. 3.2.

In Fig. 2 and 3 we show qualitative examples of instances obtained with our RGBA generator. Fig.
2 shows that we are able to generate instances across different styles and to follow fine-grained
attributes in prompts. Fig. 3 provides visual comparisons to our transparent baselines. We can
observe that our approach is able to generate realistic instances following the instructions given.
Text2Layer shows lower image quality and excessive transparency, while LayerDiffusion struggles to
follow prompt details, such as image style. Combining SD with Matting allows to achieve reasonable
segmentation of the instances generated, while when applied to PixArt-α it can sometimes struggle
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Figure 2: Our model can generalise to different styles and to follow detailed instructions. Top row: ‘a
cartoon style frog’, ‘a digital artwork of an anime-style character with long, flowing white hair
and large and expressive purple eyes in a white attire’, ‘a stylised character with a traditional
Asian hat, with a red and green pattern’, ‘a man with a contemplative expression and a neatly
trimmed beard’, Bottom row: ‘a woman with a classic, vintage style, curly hair, red lipstick,
fair skin in a dark attire’, ‘a bird mid-flight with brown and white feathers and orange head’, ‘a
hand-painted ceramic vase in blue and yellow colours and with a floral pattern’, ’a woman with
short, blonde hair, vivid green eyes, in a white blouse, with a gold necklace featuring a pendant
with a gemstone’.

(a) PixArt-α (b) Pixart-α +
MA

(c) SD-v1.5 (d) SD-v1.5 +
MA

(e) Text2Layer (f) LayerDiffu-
sion

(g) Ours

Figure 3: Instances generated with the captions: ‘a majestic brown bear with dark brown fur, its head
slightly tilted to the left and its mouth slightly open’, ‘an Impressionist portrait of a woman’, ‘a
portrait of a young man, depicted in a blend of blue and red tones’.

to correctly identify and segment the main object of the image, especially when dealing with artwork
content. On top of attributes bleeding in the background, this highlights how unreliable matting can
be for instance generation purposes.

We quantitatively evaluate the quality of the generated instances with the Kernel Inception Distance
(KID) [3], a metric that was proposed to reduce the bias of the Fréchet Inception Distance, especially
when evaluated on a low number of samples. We compute it using features from the last convolutional
layer of the Inception v3 model and considering only the RGB channels of the generated images. In
order to evaluate the alpha mask generated by the RGBA generator, following [60], we employ masks
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Table 1: Quantitative evaluation of our
RGBA generator. We measure KID for
instance generation quality, IoU (Jac-
card) between the alpha masks and
ICON segmentation, and CLIP Score
for the caption/image similarity. †: our
reimplementation, best results are high-
lighted in bold.

KID ↓ IoU ↑ CLIP Score ↑
SD-v1.5 0.0839 N.A. 18.33
PixArt-α 0.0447 N.A. 18.10

SD-v1.5 + MA 0.0711 0.649 18.40
PixArt-α + MA 0.0558 0.811 18.03

Text2Layer † 0.0500 0.326 18.21
LayerDiffusion 0.0772 0.320 18.39

Ours 0.0150 0.892 18.49
Ablation experiments

No paired training 0.0181 0.814 18.41
No conditional sampling 0.0152 0.887 18.49

(a) Standard train-
ing

(b) Standard sam-
pling

(c) Ours

Figure 4: Our proposed training and sampling approaches
(c) improve results obtained with standard training (a) and
standard sampling (b).

obtained with ICON with PVT backbone [61] as ground truth, and compute the Intersection-Over-
Union (IOU) with the predicted alpha masks. Lastly, to evaluate the correlation between the captions
and the content of the generated instances, we employ the CLIP Score [13], which computes the
cosine similarity between image and text features using the CLIP model (ViT-B/16 variant) [39]. The
results obtained are shown in Table 1. We can see that our approach obtains the best results for all the
metrics, with KID of 0.0150, IoU of 0.892 and CLIP score of 18.49. PixArt-α has the second-best
KID of 0.0447. However, the result is worsened when applying MA. Pixart + MA also has the second
best IoU of 0.8111. SD-v1.5 has KID of 0.0839, result which is improved to 0.0711 by adding MA.
The same model also achieves IoU of 0.649. Text2Layer has KID of 0.0500 and IoU of 0.326, while
LayerDiffusion obtains KID of 0.0772 and IoU of 0.320. The latter’s lower performance could be
attributed to unreliable transparent generation, as instances can be generated without transparency
due to the modelling strategy, affecting average performance. With regards to CLIP scores, they are
relatively close to each other, with SD-v1.5 + MA obtaining the second-best score of 18.40.

Ablation studies. In order to explore the impact of our novel training procedure, we train two RGBA
LDMs 1) without our conditioned training procedure (i.e. predicting noise ϵ without conditioning
from different timesteps) and 2) without our conditional sampling inference where RGB and alpha
are mutually conditioned for generation. Performance of these models is reported in Table 1, bottom
rows. We can see that the largest gains in performance are obtained with our novel training procedure,
while conditional generation results in more subtle improvement. As shown in Fig. 4, our conditional
sampling allows to correct small details and critical areas of the alpha masks.

4.2 Scene Compositing results

Generation details. We build composite scenes in three steps: 1) RGBA instance generation, 2)
layout building: we draw one bounding box per generated instance and rescale instances accordingly,
3) noise blending of generated instances according to a global prompt. We keep parameters consistent
across all scene compositions unless specified otherwise: guidance scale 2.5 (RGBA) and 4.5
(Blending), guidance rescale 0.25, noise blending steps n = 30, background blending b = 20 steps
and consistency regularisation ns = 10 steps. Both instances and composite image are generated
over 50 steps. We use the Pixart-α model for compositing.

Baselines. We compare our approach to state of the art scene composition methods focusing on layout
control and interactivity. Our first baseline is Pixart-α [6] to provide intuition into the complexity of
requested prompts and limitation of relying solely on text controls. Next, we compare to GLIGEN
[24], which learns additional cross attention layer to integrate bounding boxes and bounding box text
descriptors as generation conditioning. Finally, we compare our approach to multi-layer methods
MultiDiffusion [2] and contemporary approach Instance Diffusion [49] for completeness. Similarly
to ours, these approaches rely on noise blending techniques to build composite scenes. Besides our
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Layout Pixart-α GLIGEN MultiDiffusion Inst. Diffusion Ours

(a) A blue apple next to a yellow tea mug with a smiley face on a kitchen table.

(b) A white dog lying on a purple couch next to a yellow cushion with a flower pattern, with a swan painting
in the back.

(c) a blue and yellow car in front of a red bus covered with a white flower pattern on the road with a white
airplane with orange stripes in the sky.

(d) A red fox in front of a golden unicorn and a blonde woman in a long green dress walking away in a
meadow.

Figure 5: Visual examples of scene composition results. RGBA instances are highlighted in bold.

RGBA instance pre-generation, a crucial difference, in contrast to our multi-layer approach, is the
use of noise averaging for overlapping objects. All methods use the same global prompt, GLIGEN
and Instance diffusion leverage our bounding box layout and RGBA instance prompts as descriptors,
while MultiDiffusion uses our instances alpha masks and captions as well.

Due to the inherently interactive nature of our and competing approach (layout design, instance
ordering), we provide visual results in Fig. 5, comparing all methods across different scene com-
positions. For a fair comparison, we generate competing methods with multiple seeds and select
the best result. We provide results for simple scenes with unusual attributes (a) and complex scenes
with overlapping objects (b,c,d) (Additional results and ablations are available in Appendix E.2
and F.2). While GLIGEN is capable of accurately reproducing the desired layout, it often fails to
assign the right attributes to objects (e.g. blue apple, orange plane, swan painting) and struggles with
highly overlapping objects (fox and unicorn). In contrast, Multidiffusion is more accurate in terms
of attribute assignments, but struggles to handle overlapping objects. This can be attributed to the
noise averaging process, which fails to integrate a notion of instance ordering like our multi-layer
approach. Instance diffusion achieves performance closest to ours, but still struggles with complex
patterns, attributes and relative positioning (swan painting behind the couch, white bus with a red
flower pattern, woman walking away). With our RGBA instance generation and multi-layer noise
blending, we are able to accurately assign object attributes and follow the required layout, while
successfully building smooth and realistic scenes.

Scene manipulation results. Finally, we evaluate our method’s potential for scene manipulation. To
optimise cross scene consistency, we set b = 0 (remove background blending) and set a common
generation seed across all versions of the same scene. The manipulations we consider here are:
attribute modification, instance replacement, and layout adjustment. We note that the first two tasks
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Figure 6: Visual examples of scene manipulations compared to Instance Diffusion. Our layer-based
approach allows to replace instances or modify their positions.

require RGBA generation of new instances. We highlight that we do not introduce any new explicit
scene preservation or image editing technology in this experiment, therefore evaluating our method’s
potential for scene manipulation and controllability. We compare our results to contemporary method
Instance Diffusion, which has been highlighted to possess similar editing capabilities [49]. Results
are reported in Fig. 6, showing that we are able to control and modify image content easily while
maintaining strong consistency across different versions of the scene, without explicitly enforcing
content preservation. This highlights the strong potential of multi-layer approaches to facilitate
the development of image editing methods. We can see that we achieve substantially stronger
scene preservation compared to instance diffusion, which can generate entirely different images and
instances when modifications are too strong.

5 Conclusion

In this work, we introduced a novel multi-layer strategy to scene composition, that focuses on
interactivity and fine-grained control. To achieve this, we proposed a new training paradigm that
adapts diffusion models to generate transparent images, through channel disentanglement and condi-
tional sampling. To build composite scenes from RGBA instances, we further present a multi-layer
compositing strategy that concurrently generates increasingly complex scenes through cross-layer
noise blending. Extensive experiments show that we are able to generate diverse, fine-grained RGBA
instances, and assemble them in complex scenes, achieving precise control and high flexibility over
scene structure. One key limitation of our approach is the independent generation of instances, in-
creasing the challenge of assembling them in a coherent scene. Future work will explore conditioned
RGBA generation to intrinsically generate coherent scenes, as well as RGBA editing methods to
further improve fine-grained control over scene content.
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A RGBA training details and more experiments

A.1 Datasets

The MuLAn [47] dataset consists of RGBA decompositions for over 44,000 RGB images from
the LAION and COCO datasets. Developed through a training-free pipeline, MuLAn decomposes
monocular RGB images into a series of RGBA layers, comprising of background and isolated
instances. Our training RGBA images are instances that were automatically extracted from natural
images, making this noisy but diverse dataset an excellent solution for a first fine-tuning step. In order
to assemble the matting dataset, we employed data from AIM-500 [23], HIM-2k [46], Interactive
Human Matting [10], RWP-636 [56], PPM-100 [19], AM-2k [22].

A.2 Training details

Images were resized with bilinear interpolation then centre cropped to obtain a 512 × 512 image.
We observed that this particular transformation normally preserved the majority of the content of
the instances. The VAE was trained for a total of 23 epochs (with each epoch comprising of 42908
steps performed with a batch size of 2) employing the Adam optimiser with starting learning rate of
4.5e−6, β1 = 0.5 and β2 = 0.9. The discriminator adversarial loss was introduced after 50k steps
with a weight of 0.5.

For the LDM fine-tuning we followed a similar pre-processing, but additionally performing horizontal
flipping with p = 0.5. To train the model for classifier-free guidance, we dropped the caption
conditioning with p = 0.1. We first perform a first stage of fine-tuning on MuLAn for 200k iterations
and a second stage employing 50% of the data from MuLAn and 50% from the dataset obtained
combining different matting datasets for 80k steps. This is because MuLAn is larger and offers a
wider variety of subjects, while the matting dataset, primarily comprising humans and animals, offers
finer, human-annotated alpha masks. In particular, we employed the AdamW optimiser [28] with a
starting learning rate of 1e−5 and cosine scheduler. and trained in mixed precision with a batch size
of 12. The VAE and LDM were initialised with the weights from PixArt-α, while the text encoder
(4.3B Flan-T5-XXL large language model) was kept frozen.

To maximise model expressiveness, detailed captions were automatically generated for instances
using the Llava-NeXt model [26] with the following instruction: "Write a detailed caption of image.".
Since the captioning model operates only in the RGB space, transparent pixels were included in the
captions as descriptions of black backgrounds. We employed Phi-3 [1] to remove all such references
by using the following instruction "You are a talented ghostwriter given a text remove any mentions
of the a black background while keeping the text as close as possible to the original.".

Resizing and cropping training data can cause the generative model to also produce truncated
instances. To limit this behaviour, inspired by [37], we store crop coordinates, indicating the pixels
cropped from the top-left corner along the height ctop and width cleft. These coordinates are then
mapped with a sinusoidal embedding, similar to timesteps embeddings [6], which is followed by
a two-layer MLP featuring SiLU activations. At inference time, we set (ctop, cleft) = (0, 0). In
addition, we employed Offset Noise, which improves the contrast in images created by the model
[33]. At inference time, we observed improvements employing timestep trailing [25], classifier-free
guidance [14] with the rescaling proposed by [25]. In particular, we observed the best results with
guidance scale 2.5 and rescaling parameter 0.25 as shown in Sec. F.1.

For Text2Layer, we trained the CaT2I-AE autoencoder and U-Net LDM following [60] on the MuLAn
dataset, as the data used in [60] is not available. When sampling from PixArt-α and our model,
we employed DPM-Solver [29], while for SD and Text2Layer we employed PNDM [27], default
recommended parameters were used for LayerDiffusion.

A.3 VAE Ablation

In Fig. 7, we visualise the impact of different training paradigms for our RGBA VAE on generated
samples. We visualise images generated with a diffusion model fine-tuned on different VAE latent
spaces. We can see that failing to disentangle the alpha and RGB channels (with a joint KL loss, or
low regularisation weight) yields poor quality images with high contrast.
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(a) (b) (c)

Figure 7: Images generated with our LDM fine-tuned in the latent space of VAEs that were trained
with a single KL loss with weight 10e− 6 (a), 2 separate KL losses each with weight 10e− 6 (b),
and 2 KL losses with weight 1 (c).

A.4 Further Experiments

When fine-tuning the VAE, we also experimented with increasing the latent channels from four
to eight in order to enhance the expressiveness of the latent space. However, we observed that
while this modification improves the VAE reconstruction capabilities, it makes fine-tuning the LDM
significantly more challenging and costly. Therefore, we decided to preserve the original latent
dimension and encode both RGB and transparency information with our disentangled approach.

For the LDM, we experimented with parameter-efficient fine-tuning techniques such as LoRA [15],
but observing an excessive decrease in image quality, we finally opted for full fine-tuning of the
network.

B Noise Blending Algorithm

To aid reader comprehension, we provide an algorithmic description of our multi-layer noise blending
in Algorithm 1.

C Broader and Societal Impact

Our work contributes positively to several domains. Artists, designers, and content creators can
benefit from more precise control over their generated images, enhancing creativity and productivity.
Additionally, the technology can be used in educational tools to help students and professionals learn
about design, art, and computer graphics. Improved text-to-image generation can also make graphic
design more accessible to individuals without extensive training in the field.

However, as with any generative model, there is a risk that the technology could be used to create
disinformation, generate fake profiles, or produce harmful content. There is also a risk that generated
images could be used to infringe on personal privacy, particularly if the model is misused to create
realistic but fake images of individuals. Furthermore, the generated images could be used in ways
that compromise security, such as creating counterfeit documents or misleading imagery for fraud.

To mitigate these risks, we propose several safeguarding measures. Releasing the model in a controlled
manner can ensure that only verified and responsible users have access to it. Conducting thorough
audits to ensure that the model does not perpetuate or amplify existing biases is also important.
Maintaining transparency about the capabilities and limitations of the model, and establishing
accountability protocols for its use, will help manage its impact. Providing resources and guidelines
for ethical use, along with training for users on the potential societal impacts of the technology,
can further promote responsible usage. Finally, developing features that can detect and prevent the
creation of malicious content, such as watermarking techniques and usage restrictions, will enhance
security measures.
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Algorithm 1: Multi-layer scene composition
Inputs: K pre-generated RGBA instances {Ik,Mk},
A bounding box based scene layout L = {[cxk, cyk, wk, hk], for k ∈ 1, · · · ,K},
A latent diffusion model (VAE E , diffusion model D)
T generation timesteps,
Random noise η ∈ N (0, I)
Number of blending timesteps n,
background blending timesteps b,
cross-layer consistency timesteps ns

Output: K + 1 multi-layer images (background, K images with increasing number of instances)

Generation set-up
Rescale {Ik,Mk} according to [cxk, cyk, wk, hk]
x0
k ← E(Ik)

mk ← Downsample Mk to latent space dimension
Compute xk

t at all diffusion timesteps t ∈ [1, T ] using DDIM inversion
Initialise all images with same Gaussian noise: ykT ← η

Composite scene generation
For t = T to 0: ▷ Loop over timesteps

ϵθ(y
k
t , t)← D(ykt , t) ▷ Predict noise update with diffusion model

ykt−1 ← Update according to noise scheduler and ϵθ(y
k
t , t)

If t ≥ b: ▷ Background blending optional step
y0t−1 ← y0t−1 ·m∗ + 1

2 (y
0
t−1 + yKt−1) · (1−m∗)

If t ≥ n: ▷ Scene composition
For k = 0 to K:

ykt−1 ← yk−1
t−1 · (1−mk) + xk

t−1 ·mk

Elif t ≥ n+ ns: ▷ cross-layer consistency optional step
For k = 0 to K:

yKt−1 ← yKt−1 · (1−mk) + yk−1
t−1 ·mk

D Limitations

RGBA generation. Our RGBA generator is trained on a relatively small dataset, and doesn’t
leverage training data with intrinsic transparency information. We would expect substantial image
quality improvement by increasing training data volume and quality. As our approach requires full
fine-tuning of the diffusion model (including the VAE), interaction with pre-trained diffusion models
is more challenging, as models operate in different latent spaces. Finally, our mutual conditioning
sampling increases computation complexity at inference time. As our model was trained to handle
different sampling strategies, we leave it up to the user to determine whether the fine-grained
improvements observed are needed for generation tasks.

Scene compositing. By combining image inversion and multi-layer composition, we achieve much
greater flexibility and control at the cost of increased computational and framework complexity. Future
work will seek to simplify and automatise the generation pipeline, notably through automated instance
prompt and layout generation. Generating instances independently can make scene composition
challenging and require prompt engineering to obtain the right instance. Combining RGBA generation
with techniques like ControlNet, or conditioning RGBA generation with background images has the
potential to address these limitations.
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E Additional Visual results

E.1 RGBA Samples

In Fig. 8 we present additional examples of generated RGBA instances. Our model is able to
successfully cover a broad range of subjects, including realistic portraits, stylised figures, inanimate
objects, and fantasy characters.

E.2 Scene Composition Results

In Fig. 9, we provide additional examples of scene compositions, highlighting our model’s ability to
successfully build complex scenes with fine-grained attributes and instance ordering. Limitations
of competing methods are observed here as well, with multi-diffusion struggling with overlapping
instances and relative positioning (couch image, flower vase image) and GLIGEN struggling to assign
the right attributes to instances (turtle image, marble table in couch image). Contemporary method
Instance Diffusion shows similar performance to ours here, as attributes and patterns are simpler.

For completeness, we additionally provide experiments with LayerDiffusion [57], aiming to generate
similar scenes. However, the model does not allow to use layout to guide the generation process,
with instances being generated based on background content only. Our experiments, using publicly
available code, have shown that instances tend to be generated in the middle of the image, making
complex composition difficult. Results are provided in Fig. 14.

F Parameter analysis

F.1 RGBA generation: classifier-free guidance parameters

In order to find the best parameters for the classifier-free Guidance Scale (GS) and Guidance Rescaling
(GR), we perform a grid search on validation data, measuring KID to evaluate image quality. As it
can be observed in Fig. 10, we obtain the best result (lowest KID), with GS = 2.5, GR = 0.25

F.2 Scene composition parameters

We provide a visual analysis of the impact of our key noise blending parameters on the generated
image output. In Fig. 11, we visualise different images when modifying n (number of timesteps
where inverted instances noise is injected) and b (number of steps where background noise is blended
with the composite image). We can see that n is the most crucial parameter: when n is too low,
no control over image content is achieved and the scene is solely controlled by the prompt input.
Increasing n increases faithfulness to the original RGBA instance appearance, at the cost of reduced
blending quality. We observed that setting n = 30 yields the smoothest blending, maintaining
instance attributes and positioning while at the same time adjusting appearance to fit the scene
composition better.

Parameter b has a subtler impact, adjusting the generated background image to blend with the scene
layout more accurately. We can see notably in Fig. 11 that the blanket under the cat is adjusted and
looks more realistic when b > 0. However, setting b too high risks introducing instance information
in the background area, strongly affecting the overall generated scene.

Next, we visualise the impact of parameter ns, which enforces consistency between the composite
scene and individual layers’ instance areas in Fig. 12. For this experiment, we visualise intermediate
layers as well, to highlight cross-layer consistency. We can see that setting ns > 0 substantially
improves consistency of instance appearance between individual instance layers and the final compos-
ite scene. While we considered introducing a similar consistency regularisation between individual
layers, we observed reduced composition performance with this kind of strategy.

Finally, in Fig. 13 we visualise our method’s consistency across multiple random seeds compared to
competing methods Multidiffusion [2], GLIGEN [24] and Instance Diffusion [49]. By first generating
instances and compositing them, we achieve strong scene consistency when modifying the random
seed during our blending procedure. In contrast, GLIGEN and Instance Diffusion struggle to maintain
attributes (including object types), while Multidiffusion often struggles with overlapping instances
and their relative positioning.
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Figure 8: Sample RGBA instances. We are able to generate a wide variety of subjects.
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layout Pixart-α GLIGEN MultiDiffusion Inst. Diffusion Ours

(a) a green ball of yarn in front of ginger cat sleeping next a teddy bear wearing overalls sitting on a purple
blanket.

(b) a red leather armchair next to a vase of tulips on top of a round marble coffee table in front of a black
leather couch in a grey carpeted living room.

(c) A white beachball in front of a canoe next to a tortoise on a beach with a red sailboat.

(d) a book with a drawing of a sunflower on the cover in front of a bouquet of red roses in a blue vase.

Figure 9: Additional scene composition results. RGBA instances and their attributes are bolded in
the prompt.

Figure 10: KID obtained with different combination of the guidance scale and guidance rescaling
parameters. Setting GS = 2.5, GR = 0.25, we achieve the best results on validation data.
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n=0 n=10 n=20 n=30 n=40 n=50

(a) Impact of adjusting instance blending parameter n on scene composition. For this experiment, b = 20 and
ns = 0.

b=0 b=10 b=20 b=30 b=40

(b) Impact of adjusting background blending parameter b on scene composition. For this experiment, n = 30
and ns = 10.

Figure 11: Influence of scene composition parameters over generated scene content.

ns = 0, background layer ns = 0, teddy bear layer ns = 0, cat layer ns = 0, final layer

ns = 10, background
layer ns = 10, teddy bear layer ns = 10, cat layer ns = 10, final layer

ns = 20, background
layer ns = 20, teddy bear layer ns = 20, cat layer ns = 20, final layer

Figure 12: Influence of layer consistency parameter ns over all generated layers. For this experiment,
we set n = 30 and b = 20.
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(a) GLIGEN

(b) Multidiffusion

(c) Instance Diffusion

(d) Ours

Figure 13: Impact of changing the random seed on scene composition consistency. Image caption: a
blue and yellow car in front of a red bus on the road with an orange airplane in the sky.
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(a) A blue apple next to a yellow tea mug with a smiley face on a kitchen table.

(b) A white dog lying on a purple couch next to a yellow cushion with a flower pattern, with a swan painting
in the back.

(c) A blue and yellow car in front of a red bus on the road with an orange airplane in the sky.

(d) A red fox in front of a golden unicorn and a blonde woman in a long green dress walking away in a
meadow.

Figure 14: Visual examples of LayerDiffusion scene composition results. RGBA instances are
highlighted in bold. From left to right: Layout image, LayerDiffusion images layer per layer, and our
composite image.

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We present the experiments justifying our claims in the Experiments Section
and in the Appendix
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss methods limitations in the conclusion of the main paper, and in a
dedicated section in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We do not present theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details needed to reproduce our experiments in the Methods,
Experiments sections and Appendix. All datasets used in this work are publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The dataset used is available at the following url:
https://huggingface.co/datasets/mulan-dataset/v1.0. Open sourcing of our code will
depend on internal approval.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: They are discussed in the Experiments Section and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We were not able to perform multiple runs due to compute limitations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the Experiments and Appendix Sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We made sure to follow the Ethics Guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is discussed in a dedicated broader and societal impact section in the
Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Potential safeguards are discussed in the broader and societal impact section in
the Appendix.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the sources of our data and pre-trained models throughout the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No released new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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