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Abstract

Effective prompt engineering remains a challenging task for many applications.
We introduce Weak-to-Strong Transfer (WST), a automatic prompt engineering
framework where a small “Teacher” model generates instructions that enhance
the performance of a much larger “Student” model. Unlike prior work, WST
requires only a weak teacher, making it efficient and broadly applicable in settings
where large models are closed-source or difficult to fine-tune. Using reinforcement
learning, the Teacher Model’s instructions are iteratively improved based on the
Student Model’s outcomes, yielding substantial gains across reasoning (MATH-
500, GSMSK) and alignment (HH-RLHF) benchmarks—98% on MATH-500 and
134% on HH-RLHF—and surpassing baselines such as GPT-40-mini and Llama-
70B. These results demonstrate that small models can reliably scaffold larger
ones, unlocking latent capabilities while avoiding misleading prompts that stronger
teachers may introduce, establishing WST as a scalable solution for efficient and
safe LLM prompt refinement.

1 Introduction

Large Language Models (LLMs) have been increasingly applied to complex tasks. Due to the high
cost of fine-tuning and the prevalence of closed-source models, prompt engineering remains critical
for improving performance and ensuring safety alignment (Sahoo et al.| 2024). Nonetheless, because
LLMs are highly sensitive to the wording and phrasing of prompts, it remains an open challenge to
optimally structure prompts.

We introduce an efficient automatic prompt refinement pipeline, Weak-to-Strong Transfer (WST),
which leverages the (surprising) ability of small models to scaffold larger models through automatic
prompt generation. Across a series of experiments, we demonstrate that a model as small as 0.5B
parameters can significantly enhance the performance of much larger models (e.g., 8B) on complex
tasks such as mathematical reasoning and safety alignment. Our approach produces higher-quality
instructions than several competitive baselines, including Llama 70B and GPT-40-mini.

We consider a setting where a local model, denoted as M, provides instructions to a remote model,
M, in response to a given query q. For clarity throughout the paper, we refer to local model M; as
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the "Teacher Model" and the remote model M5 as the "Student Model", reflecting their instructional
relationship. The Student Model incorporates the instructions from the teacher model and generates
the final response to ¢. In contrast to prior work on automatic prompt engineering (e.g., Batorski
et al.[(2025)); Pryzant et al.| (2023)), we require the Teacher Model to be significantly smaller than the
Student Model.

This weak-to-strong design offers unique advantages: (i) substantial efficiency gains, since improving
a large model requires only modifying the small model’s weights; and (ii) practical applicability, as
many real-world scenarios involve proprietary models where training a comparably large Teacher
Model is infeasible. Thus, our pipeline can be readily adapted to diverse applications.

Importantly, the task of generating useful instructions is non-trivial for the Teacher Model due to its
limited capacity relative to the Student Model. If the Teacher Model were stronger than the Student
Model, one could simply substitute the Teacher Model’s output for the Student Model’s. However,
because the Teacher Model typically performs worse in isolation, its challenge is to provide helpful
instructions without introducing misleading information. This is fundamentally different from the
original task of responding to ¢ directly. Our experiments show that many models, regardless of size,
can produce misleading instructions that degrade another model’s performance. In contrast, our WST
method not only mitigates this risk but also consistently improves downstream performance.

The WST pipeline employs reinforcement learning to automatically improve the Teacher Model’s
instructions based on the Student Model’s performance. Given a query ¢ (e.g., a math problem), the
Teacher Model generates instructions my. The pair (g, m1) is then passed to the Student Model,
which outputs a final response mo. This response is evaluated using a predefined metric to obtain a
reward 7, which is subsequently used to update the Teacher Model’s weights.

We evaluate WST on both reasoning and alignment tasks. For reasoning, we use the MATH-500 and
GSMBS8K benchmarks; for alignment, we use the HH-RLHF dataset. Our results demonstrate that
WST significantly outperforms natural baselines.

Contributions. Our work makes the following contributions:

* We introduce Weak-to-Strong Transfer (WST), a novel post-training framework that em-
powers smaller models to autonomously compose prompts that enhance the performance of
much larger models—without requiring access to their weights. Across benchmarks, WST
yields consistent gains: a 98 % improvement on MATH-500, 45% on GSMSK, and 134 %
on HH-RLHF.

* We show that after applying WST, small models can effectively scaffold larger models: the
larger models achieve higher accuracy and improved alignment when guided by prompts
generated from the smaller models, even when the larger models substantially outperform
them in isolation.

* We find that without WST, stronger Teacher Models can produce misleading instructions
that hinder the performance of Student Models, underscoring the necessity of WST in
scaffolding better Student Model performance.

2 Method

Pipeline. Let M denote the space of possible generations and Q the space of queries. Given a
query g € Q (e.g., a math problem or user request), we first prompt the Teacher Model to generate a
set of instructions m; € M intended to improve the Student Model’s performance on g. For example,
in a safety alignment task, the Teacher Model might consist of constraints specifying what content
should not be generated. The pair (g, m1 ) is then passed to the Student Model, which produces the
final output ms € M. We define a reward function g : M — IR and obtain a reward r = g(my).
Finally, we use GRPO (Guo et al.,|2025) to update the Teacher Model based on r.

Reward. In our experiments, we allow the Student Model to generate multiple outputs for each
query in order to stabilize the reward estimate. Specifically, given a query ¢; and instructions mj, we



sample K generations from the Student Model: m&', m#2, ... miK. The reward is then defined as

1 )
ri =2 > 9(mi) = si, (1)

where g(mi¥) is the reward assigned to the k-th generation for query ¢;, and s; is a baseline score
that we describe below. In practice, s; represents the baseline performance of the Student Model.
We establish the baseline by averaging the rewards of 10 independent generations from the Student
Model in isolation.

Thus, 7; > 0if and only if the Student Model’s performance improves after incorporating instructions
my. Averaging across multiple generations reduces variance in the reward signal and provides a more
reliable comparison against the baseline.

3 Experiments
We evaluate the performance of our approach on two tasks: reasoning and alignment.

Reasoning. We use MATH-500 and GSMSK to evaluate our method on reasoning-intensive tasks.
The evaluation metric is average accuracy:

1 K

Acc(g;) = 174 1[m%" contains the correct solution],
k=1

where g; denotes the i-th problem in the dataset and m&* the k-th generation from the Student Model
in response to ¢;. We set K = 10 in all reasoning experiments.

Alignment. For alignment, we use the HH-RLHF dataset. We adopt a multi-objective setup
following prior work (e.g.,|Yang et al.| (2024)); Zhong et al.|(2024)). Each generation is separately
evaluated for helpfulness and harmlessness using two LLM-based reward models, yielding a reward
vector 7 = [r(1), (2], We convert this to a scalar reward using a weighted sum:r = w - 7, with
w = [w®, w?], 2521 w) =1, w) > 0. The weights w capture user-specific preferences;
for example, a user may emphasize harmlessness over helpfulness by adjusting w. The evaluation
metric is then

K
1
WeightedReward(g;) = )7d Z W - Tig,
k=1

where 7, is the reward vector for the k-th generation of the Student Model on query
g;- Following Yang et al| (2024), we use gpt2-large-harmless-reward-model and
gpt2-large-helpful-reward-model as the LLM judges. In our main experiments, we set
w = [0.5,0.5] and K = 1. Additional experiments with varying weights are reported in the
appendix.

Models. We first select the Teacher Model and the Student Model models to vali-
date the weak-to-strong ability using WST. Specifically, For the Teacher Model, we
use Qwen2.5-Math-1.5B-Instruct (reasoning) and Qwen2.5-0.5B-Instruct (alignment).
For the Student Model, we use Qwen2.5-Math-7B-Instruct on reasoning task and
Qwen2.5-7B-Instruct on alignment task. @ We additionally selected Gemma-7B-it and
Llama-3-8B-Instruct as the Student Model to identify the cross-faimily transferability.

Baselines. We compare our method against four natural baselines: (i) Direct Prompting where
the Student Model is prompted with chain-of-thought reasoning and few-shot demonstrations; (ii)
Original Models where the Teacher Model is used directly (without training) to provide instructions;
(iii)) GPT-40-mini and (iv) Llama-3.3-70B-Instruct where GPT-40-mini and Llama-3.3-70B-Instruct
are used without training to scaffold the Teacher Model models.
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Figure 1: Experiment Results

Results We present our experimental results in Figure [T} Overall, our method outperforms all
baselines on both reasoning and alignment tasks, with the sole exception of Qwen2.5-Math-7B-
Instruct on GSMS8K. Several findings are particularly noteworthy.

First, WST enables a weaker model to enhance the performance of a strictly stronger model. On
both reasoning and alignment tasks, the Qwen2.5-7B models achieve higher performance than Direct
Prompting once augmented with WST-generated instructions. Since our pipeline begins with strictly
weaker models as the Teacher Model—Qwen2.5-1.5B and Qwen2.5-0.5B—this result demonstrates
that WST allows small models to unlock latent capabilities within much larger models. Importantly,
this improvement does not occur when the base Qwen2.5-1.5B and Qwen2.5-0.5B are used directly
without training.

Second, the task of generating effective instructions is fundamentally different from solving the
task directly. Simply using a strong model to provide instructions does not guarantee improved
performance. In fact, it can sometimes degrade performance: for example, GPT-40’s instructions
lead to slightly worse results on both GSM8K and HH-RLHF.



4 Conclusions

We propose a novel post-training pipeline that enables small models to efficiently enhance the
performance of larger models on both reasoning and alignment tasks through automatic prompt
engineering. Our experiments demonstrate that this approach not only surpasses strong baselines
but also outperforms widely used open-source and proprietary models that are more than 100 times
larger, highlighting the effectiveness and scalability of our Weak-to-Strong Transfer framework.
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A Additional Experiments and Results

A.1 Alignment Experiments with Varying Weights

We further assess model performance under increased weights for the helpfulness rewards, specifically
at 0.7 and 0.9. The results are reported in Figure[2] As shown, WST consistently outperforms the
baseline methods.

A.2 Pareto Curve

We evaluate the extent to which WST enhances the Student Model’s performance across both
dimensions simultaneously. In line with prior studies, we visualize the results using the Pareto
frontier in Figure[3] The results demonstrate that WST facilitates concurrent improvements along
both dimensions.
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Figure 2: Experiment Results
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