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ABSTRACT

Multivariate time series forecasting is crucial across various fields and essential for
addressing numerous real-world challenges. However, existing forecasting meth-
ods have significant limitations: while Transformer models are effective, they are
constrained by high computational costs and declining performance in long-term
forecasting; MLP models struggle to capture complex multivariate interactions.
These issues hinder the models’ ability to accurately decompose seasonality and
trends. To tackle these problems, we propose a new method called TIM. Through
a cross-layer architecture, TIM decomposes time series predictions into temporal
features, multivariate interaction features, and residual components. Our all-MLP
model integrates global features with complex multivariate dynamics. By intro-
ducing a linear self-attention mechanism across variables and time steps, TIM en-
hances the learning of feature interactions and accurately captures temporal tran-
sitions between domains. This innovative design leverages linear attention mech-
anisms and cross-layer architecture to more effectively model temporal features
and multivariate interactions. It surpasses traditional Transformer-based methods
by improving predictive accuracy while maintaining linear computational com-
plexity. Experimental results demonstrate that TIM outperforms existing state-of-
the-art methods while ensuring computational efficiency.

1 INTODUCTION

Figure 1: Average MAE performance
of TIM. Model performance is derived
from our reimplemented experimental
results.

.

Long sequence time-series forecasting (LSTF) is essen-
tial across various industries, including weather forecast-
ing (Ahamed & Cheng (2024)), traffic volume predic-
tion (Zhao (2019)), electricity transformer temperature
monitoring (Zhou et al. (2021)), and electric power con-
sumption (Hebrail & Berard (2006)). Transformers, with
their innovative attention mechanisms, have made signif-
icant strides in time series forecasting by capturing com-
plex dependencies and multi-level representations from
sequential data. Despite these advancements, Transform-
ers are often hampered by high computational costs and
performance degradation over longer sequences.

Recent developments in deep learning have introduced
several models designed to enhance time series fore-
casting, including Transformers (Lim et al. (2021); Liu
et al. (2024); Zhang et al. (2024a)), RNNs (Damaševičius
et al. (2024); De et al. (2024)), SSMs (Rangapuram et al.
(2018); Auger-Méthé et al. (2021); Newman et al. (2023);
Orvieto et al. (2023)), and MLPs (Yi et al. (2024); Zhang
et al. (2022); Yeh et al. (2024); Zeng et al. (2023)). While
Transformer-based solutions have achieved notable re-
sults, they often do not significantly outperform linear models when accounting for the computa-
tional overhead associated with their increased parameter volumes. The quadratic complexity of
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Transformers, scaling with the context length, poses significant scalability challenges, especially for
long sequences. Research indicates that linear models can sometimes be more effective and efficient
for time series forecasting (Zeng et al. (2023)).

In developing advanced forecasting architectures, several approaches have been employed, including
series decomposition (Wu et al. (2021); Zhou et al. (2022); Bandara et al. (2020); Hao & Liu (2024))
and channel-independent (CI) versus channel-dependent (CD) methods (Liang et al. (2023); Nie
et al. (2023; 2024)). However, these methods often face limitations due to non-stationarity, evolving
seasonal variations, and uncertainties in trend identification. Data acquisition issues, such as sensor
inaccuracies, further complicate effective time series modelling.

Addressing these issues, we introduce TIM, a groundbreaking approach that enhances long se-
quence time-series forecasting by leveraging a purely Multi-Layer Perceptron (MLP)-based archi-
tecture. Our model innovatively integrates linear attention and cross-layer mechanisms to tackle the
inherent limitations of existing methods. Specifically, TIM features:

• Efficiency and Scalability: TIM achieves competitive forecasting performance with lin-
ear complexity and fewer parameters, significantly improving efficiency compared to tra-
ditional Transformer-based models, which suffer from quadratic complexity.

• Enhanced Multivariate Interaction Modeling: Unlike traditional MLPs, TIM excels
at capturing complex multivariate interactions. Our cross-layer design effectively models
intricate dependencies between multiple variables, addressing the limitations of existing
MLP approaches in handling multivariate data.

• Interpretability and Robustness: TIM incorporates mechanisms that enhance inter-
pretability while providing robust performance across real-world time series data. By inte-
grating independent feature processing with correlated channel interactions, TIM not only
improves prediction accuracy but also offers insights into how different features and inter-
actions contribute to the forecasting results.

Our approach demonstrates superior forecasting accuracy and computational efficiency compared
to current state-of-the-art methods, offering a robust and scalable solution for complex time series
forecasting tasks.

2 RELATED WORK

2.1 PROBLEM STATEMENT

In the context of multivariate time series analysis, let X = {x(c)
1 , . . . , x

(c)
L }Ff=1 denote a collection

of F feature channels, where each channel c comprises an independent sequence of L observations
within a look-back window. The channel index f will be omitted in subsequent discussions for
simplicity. The objective of the forecasting task is to predict the future values of the time series
over the next pred len time steps, denoted as X̂L+1:L+P , based on the historical data X1:L, where
pred len is abbreviated as P . This prediction is achieved through a forecasting function F (·), which
is instantiated as an MLP-based model in this study. Our primary goal is to mitigate the high com-
putational cost and performance degradation associated with long-term data and to enhance model
prediction capabilities through multivariable feature interaction and long-term series distribution
migration modelling. This approach seeks to improve the forecasting outcome X ′, specifically by
minimizing the error between the predicted values X ′ (i.e., F (X1:L) and the true future values
X̂L+1:L+P . Traditionally, time series data are usually subjected to batch normalization before being
input into prediction models. However, recent research has highlighted the efficacy of utilizing a
reversible instance normalization (RevIN: Kim et al. (2022)) in addressing the challenges posed by
distribution shifts in time-series forecasting problems.

2.2 TEMPORAL MODELING FOR LSTF

In the realm of Long Short-Term Forecasting (LSTF) tasks, Transformer-based and MLP-based
models have emerged as the preeminent backbones due to their exceptional temporal modelling ca-
pabilities. Deviating from the Vanilla Transformer (Ashish (2017)), recent research has advanced
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the field significantly. Notably, Informer (Zhou et al. (2021)) introduced an innovative strategy
whereby timestamps are encoded as supplementary positional encodings through the deployment of
learnable embedding layers. This advancement, along with subsequent works such as Autoformer
(Wu et al. (2021)) and FEDformer (Zhou et al. (2022)), has firmly established these foundational
architectures as widely acknowledged solutions for addressing LSTF challenges. Subsequent en-
deavours have introduced iTransformer, a variant that ingeniously applies the attention mechanism
and feed-forward network on inverted dimensions. This innovation not only diversifies the Trans-
former family but also propels its performance to new heights, further demonstrating the potential
and adaptability of Transformer-based models in handling complex tasks. Furthermore, the MLPs
(Oreshkin et al. (2019); Challu et al. (2023)) achieve favourable performance in both forecasting
performance and efficiency for LSTF tasks. Previous research has demonstrated that MLPs can
achieve the same top level of performance as Transformers in long-term sequential forecasting tasks
using trend season decomposition methods (Zeng et al. (2023)). Recent research on TimeMixer
(Wang et al. (2024)) has elegantly capitalized on disentangled multiscale series, leveraging them
effectively in both the past extraction and future prediction phases. This approach has demonstrated
remarkable achievements, consistently attaining state-of-the-art performances across both long-term
and short-term forecasting tasks, while also exhibiting favourable run-time efficiency, underscoring
its practical significance and efficiency in real-world applications.

Traditional sequential models, such as Recurrent Neural Networks (RNNs), frequently encounter is-
sues of gradient vanishing or gradient explosion when dealing with long time series, rendering them
challenged in capturing long-range dependencies. The Attention mechanism, by directly computing
the relevance between any two positions within the sequence, can mitigate this problem to some
extent, enabling the model to process long sequence data more effectively. By incorporating the
Attention mechanism, the model is able to dynamically allocate more importance or “focus” on the
most relevant parts of the input sequence, regardless of their positions within the sequence. The fol-
lowing equation can formulate the classic attention mechanism, particularly within the framework
of self-attention or transformer-based models, Q typically represents the “Query”, K denotes the
“Key”, and V stands for the “Value”. we ignore the normalization term for simplicity.

Attention(Q,K, V ) = softmax(QKT )V (1)

In classical attention mechanisms, both spatial and temporal complexities scale with O(n2), where n
represents the sequence length. Consequently, as n increases significantly, the computational burden
on Transformer models becomes prohibitively high. Recently, extensive research has focused on
addressing this issue by reducing the computational cost of Transformer models. These efforts
include various techniques such as Sparse Attention (Wu et al. (2020); Zhang et al. (2024b)), and
quantization. Additionally, modifications to the attention architecture have been explored to reduce
its complexity to O(n log(n)) or even O(n), thereby improving the scalability and efficiency of
Transformer models for processing longer sequences.

2.3 LINEAR ATTENTION

The Attention mechanism of equation 1 can be rewritten in the following way:

Attention(Q,K, V )i =

∑n
j=1 exp (q

⊤
i kj)vj∑n

j=1 exp (q
⊤
i kj)

=

∑n
j=1 sim(qi, kj)vj∑n
j=1 sim(qi, kj)

(2)

Previous research (Wang et al. (2018)) had pointed out that if we use sim(qi, kj) = ϕ(qi)
⊤φ(kj)

to simplify the calculation of attention, then the complexity problem of attention mechanism should
be mitigated. ϕ(x), φ(x) are defined as ϕ(x) = φ(x) = elu(x) + 1, where elu(x) denotes the
Exponential Linear Unit (as introduced by Clevert (2015)). The additional “+1” term ensures that
the similarity term remains positive. From the perspective of the result, equation 2 expresses that
the core logic of the attention mechanism lies in focusing on everything and the key points. It can be
seen from the weighted sum expression of the Attention formula that the self-attention mechanism
can help to model the entire time series and automatically help the model focus on the local feature.

In our work, we harness the merits of the linear attention mechanism to explicitly model the multi-
variable interaction across the entire time series of individual variables, as well as the evolving
features within cross-sectional multi-variable data. This approach endows our model with several
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advantageous characteristics, including reduced computational complexity, minimized storage re-
quirements, the capability to model the global time series, localized feature attention, and the profi-
ciency to handle multi-variable relationships. We will delve deeper into the intricate architecture of
our model in the subsequent method section.

2.4 FEATURE FUSION

To leverage linear attention effectively in capturing both the multi-variable interactions across the
entire time series of individual variables and the evolving features within cross-sectional multi-
variable data, our approach aims to extract meaningful global information from the time series
and accurately represent the intricate multi-variable relationships. This process is non-trivial and
frequently necessitates intricate manual feature engineering or an exhaustive search procedure. Pre-
vious work Wang et al. (2017) introduces a novel cross-network that is more efficient in learning
certain bounded-degree feature interactions when it keeps the benefits of MLPs without extra com-
plexity. This enables our model to comprehensively analyze and understand the dynamics within
and across variables over time.

3 TIM

3.1 GENERAL ARCHITECTURE

According to Li et al. (2023), our model, like many others, consists of three key components: RevIN,
a reversible normalization layer; an MLP; and a linear projection layer that generates the final predic-
tion results. In our proposed architecture, MLP is used to extract time series features. In subsequent
modules, we will employ a decomposition method to enable our model to learn from multivari-
ate interaction features, temporal characteristics of the time series, and decomposed components,
respectively. The full architecture of TIM can be found in Figure 2.

Figure 2: Overall TIM Architecture. TIM consists of three key components: Feat Fusion, which
extracts multivariate interaction features; Time Fusion, which models temporal shifts across time
points; and a residual modelling component for temporal, multivariable, or noise effects. The outputs
of these modules—XFeat, XTime, and XRes—are combined to produce the final forecast, which is
then passed through a linear projection layer and inverse-transformed via RevIN to scale it back to
the target domain for the prediction horizon.

3.2 FUSION ARCHITECTURE IN TIM

In the current state-of-the-art approaches for Long Sequence Time Forecasting (LSTF), many works
have leveraged decomposition methods to enhance model performance. However, no existing re-
search has yet explored decomposing long time series into univariate time series and single time
snapshots. In the Deep Cross Network (DCN) paper, the authors employed a highly efficient and
indirect method to achieve explicit feature crossing. This technique lays the foundation for our inno-
vative approach to decompose long time series into univariate time series and single time snapshots,
while simultaneously capturing both multivariate interaction features and temporal characteristics.

In previous research efforts, a significant body of work Bandara et al. (2020); Hao & Liu (2024);
Wu et al. (2021); Zeng et al. (2023) has utilized seasonal and trend decomposition techniques to
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enhance model performance in long-term time series analysis. These methods decompose data into
distinct seasonal components s(t) and trend components f(t), while managing acceptable levels
of noise, thus improving overall predictive capabilities. Although these decomposition techniques
have proven effective for both MLP-based and Transformer-based models in Long Sequence Time
Forecasting (LSTF) tasks, we contend their general applicability is limited.

In the context of long temporal sequences, the complexity of the data can lead to extreme imbalances
between trend or seasonal components and the residual (noise) component. When the magnitude of
one component becomes comparable to that of the residual, traditional decomposition methods, such
as moving averages, may inadvertently capture noise as part of the trend or seasonal components.
This issue is particularly pronounced when dealing with rapidly changing components, as these
methods struggle to adapt to such volatile elements.

To address these challenges, we propose a novel approach that decomposes the model into three main
components. The first component, processed through the Feat Fusion module, extracts multivariate
interaction features from the time series. The second component models the explicit temporal shifts
of multivariate features at individual time points using single time snapshots, which are then pro-
cessed by the Time Fusion module to capture temporal shift characteristics across time nodes. The
primary difference between the Time Fusion and Feat Fusion modules lies in their input and output
dimensions due to matrix transfer, although they share the same underlying structure. The features
X are compared with those obtained from X Feat and X Time, and the residuals are treated as
potential seasonal, trend, or noise components. These residuals are modelled via a network struc-
ture analogous to the Time Fusion module, resulting in XRes. The final output is computed as
Y = XFeat + XTime + XRes, which is then passed through a linear projection layer to produce
the time series forecast for the prediction horizon. Finally, the output is inverse-transformed via the
RevIN layer to scale it back to the target domain.

3.3 LINEAR ATTENTION GATED UNIT FOR FEATURE EXTRACTION

In this section, we will provide a detailed analysis of the Time Fusion, Feat Fusion, and Res Fusion
modules used for extracting time series features. The primary distinction among these three modules
lies in their input-output architecture, while they all share the same feature extraction algorithm.
Both Time Fusion and Res Fusion have identical input and output dimensions, with their input-
output dimensions given by∈ RF×H . The input-output dimensions of Feat Fusion ∈ RF×H

Algorithm 1 Fusion Architecture for Time Fusion, Feat Fusion and Res Fusion
Require: Input X0 ∈ RF×H . Number of Layers N . Sigmoid function denoted as σ. Concatenate

function denoted as cat. Linear layer mappings from the dimension 2*dim to dim, denoted as
combine and gate.

Ensure: Output XL ∈ RF×H

1: Initialize Xi = X0

2: for i = 1 to N do
3: Compute y = WiXi + b1 {y ∈ RF×H}
4: Compute residual res = W̃i(Xi − y) + b2 {res ∈ RF×H}
5: Concatenate xcat = cat(y, res) {xcat ∈ RF×2H}
6: Apply ELU activation xelu = ELU(xcat) + 1
7: Gate and combine xout = combine(xelu) · σ(gate(xelu))
8: Update X1 = X0 · xout {x1 ∈ RF×H}
9: Apply Dropout X1 = Dropout(X1)

10: Update Xi = Xi +X1 {xi ∈ RF×H}
11: end for
12: return Xi

Time Fusion, Feat Fusion and Res Fusion share the same architecture described in Algorithm 1.
The design objective of the Time-Fusion module lies in leveraging the concept of linear attention
to facilitate the model’s capability to learn features from temporal sequences, as evidenced through
a series of mathematical derivations. In the context of linear attention mechanisms, weights are
typically derived by computing the similarity between Query and Key vectors. However, in this par-
ticular implementation, the weights are obtained through an element-wise multiplication operation
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with the initial input X0. The proposed approach enables our model to achieve linear self-attention
and progressively transfers the temporal sequences from the latent space of the source domain into
the state space of the target domain. In the absence of residual connections, the algorithm can be
succinctly expressed by the following equation, where ◦ is the Hadamard Product (point-wise mul-
tiplication) and D stands for the dropout layer:

XN = X0 +

N∑
i=1

D(X0 ◦ (ELU(WiXi−1 + bi) + 1)) (3)

Dropout can be seen as an implicit gating mechanism that randomly discards a part of neurons,
similar to the suppression of irrelevant information in the attention mechanism. Although it does
not explicitly use gating operations, it is similar in effect to the attention weight distribution in the
attention mechanism. To make the model more sensitive to state changes, we added and designed
a residual structure to help the model better capture temporal state transitions. In Algorithm 1, the
dimensions leveraged within the Time fusion and Res fusion modules are preserved consistently.
However, within the Feat fusion module, a crucial transformation occurs before the module’s input,
where matrices undergo a transposition. Consequently, within the Feat fusion module, the residual
structure operates along the feature dimension, F, effectively expanding the dimensionality from H×
F to H×2F . Despite this reconfiguration, the self-attention mechanism within the module remains
efficacious, now engaging in the learning process across multivariate features at each temporal node,
facilitating an intricate understanding of the interdependencies within the feature space.

3.4 OVERALL-ARCHITECTURE OF TIM

Having delved into the intricacies of each module within our novel feature/time/resolution decom-
position paradigm in the preceding section, we now present a concise summary of our model’s
overall workflow encapsulated in Algorithm 2. This summary provides a holistic view of how the
individual components collaborate to perform their designated functions, offering a comprehensive
understanding of our novel operational framework.

Algorithm 2 TIM Overall Architecture
Require: Input lookback time series Xinput ∈ RL×F ; input Length L ; predicted length P; variates

number F ; hidden dimension H;
Ensure: Y ∈ RP∗F

X ← Normalization(X)
X ← Transpose(Xinput) {X ∈ RF×L}
X ← Time Encoder(X) {X ∈ RF×H}
Xtime ← Time Fusion(X)
Xfeat ← Transpose(Feat Fusion(Transpose(X)))
Xres = Res Fusion(X −Xfeat −Xtime)
Y = Xres +Xfeat +Xtime {Y ∈ RF×H}
OUTPUT ← Proj(Y ) {OUTPUT ∈ RF×P }
OUTPUT ← Transpose(OUTPUT )
Prediction← De−Normalization(OUTPUT )
return Prediction ∈ RP×F

4 EXPERIMENTS

4.1 DATASET DESCRIPTION

We have conducted experiments on eight rigorously established benchmarks: the ETT datasets,
which encompass four distinct subsets—ETTh1, ETTh2, ETTm1, and ETTm2—alongside Weather,
Solar-Energy, Electricity, and Traffic datasets following Zhou et al. (2021); Zeng et al. (2023); He-
brail & Berard (2006); Zhao et al. (2019). These benchmarks serve as robust platforms for evaluating
the performance and efficacy of our forecasting models in the long-term horizon.
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4.2 MAIN RESULT

In our experimental setup for model evaluation, we have standardized the parameters across all
models to ensure a fair comparison on a uniform platform. Specifically, we have fixed the input
dimension to 96 and varied the prediction horizon for time series forecasting, encompassing lengths
of [96, 192, 336, 720]. This approach allows for a comprehensive assessment of model perfor-
mance under different forecasting scenarios. To measure various variables on a consistent scale,
we compute the Mean Squared Error (MSE) and Mean Absolute Error (MAE) on the normalized
data provided by Revin (Kim et al. (2021)). Additional details regarding the experimental settings,
encompassing training specifics and hyperparameters, are furnished in the Appendix. The experi-
ments were implemented using PyTorch (Paszke et al. (2019)) and executed on a single NVIDIA
4090 GPU with 24GB of memory.

For the smaller-scale datasets, such as ETT and Exchange, we have adopted a consistent set of
hyperparameters to facilitate a rigorous comparison. Specifically, we have set the number of hidden
layers (d model) to 4, the number of encoder layers (e layers) to 2, the dropout rate to 0.25, and
the learning rate to 1e-3. These configurations have been chosen to balance model complexity and
computational efficiency, aiming to achieve optimal performance on the specified datasets.

By adhering to these standardized parameters and experimental protocols, we aim to provide a robust
and unbiased evaluation of the different models under investigation, enabling a more meaningful
comparison of their strengths and limitations within the context of time series forecasting.

We select 7 SOTA baseline studies. We are focusing on both MLP-based and Transformer-based
methods. We added DLinear (Zeng et al. (2023)), RLinear (Li et al. (2023)), TSMixer (Ekambaram
et al. (2023)) and TimeMixer (Wang et al. (2024)). We also added PatchTST (Nie et al. (2023)) and
iTransformer (Liu et al. (2024)).

Results of the main experiments can be found in Table 1,3. The optimal outcomes are empha-
sized in bold red font, while the second-best results are underscored in blue, facilitating a precise
comparison of the performance levels achieved. Experimental studies have demonstrated that our
model surpasses existing state-of-the-art (SOTA) methods, achieving SOTA performance in complex
long-term time series forecasting tasks and multivariate prediction using a simple MLP model. We
attribute these remarkable experimental results to our innovatively proposed time series decompo-
sition framework, which concurrently addresses time series dynamics and multivariate interaction
modelling. The hierarchical incorporation of a linear self-attention mechanism assists the model
in capturing both temporal characteristics and multivariate interaction features, contributing to its
outstanding performance.

Table 1: Multivariate forecasting results with prediction lengths in {96, 192, 336, 720} for eight
benchmark datasets and fixed lookback length 96. Results are averaged from all prediction lengths.
Avg means further averaged by subsets. Full results are listed in Table 3

.
Models TIM DLinear PatchTST FreTS RLinear TSMixer TimeMixer iTransFormer TimesNet
(Mean) Ours 2023 2023 2024 2023 2023 2024 2024 2023

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

ETTh1 0.434 0.433 0.452 0.447 0.440 0.442 0.464 0.447 0.443 0.431 0.456 0.446 0.465 0.450 0.448 0.443 0.531 0.491

ETTh2 0.377 0.402 0.526 0.498 0.379 0.405 0.448 0.457 0.385 0.407 0.396 0.414 0.368 0.398 0.382 0.407 0.429 0.434

ETTm1 0.382 0.397 0.404 0.408 0.444 0.457 0.432 0.438 0.409 0.400 0.401 0.406 0.403 0.411 0.404 0.406 0.620 0.580

ETTm2 0.272 0.318 0.337 0.388 0.281 0.328 0.284 0.328 0.287 0.328 0.290 0.332 0.298 0.338 0.291 0.334 0.333 0.351

electricity 0.172 0.268 0.210 0.296 0.223 0.2327 0.206 0.294 0.215 0.293 0.183 0.282 0.179 0.278 0.175 0.270 0.313 0.384

solar AL 0.244 0.271 0.327 0.397 0.244 0.349 0.268 0.322 0.356 0.350 0.257 0.292 0.268 0.298 0.239 0.280 0.197 0.244
traffic 0.469 0.292 0.626 0.386 0.500 0.287 0.556 0.365 0.624 0.375 0.510 0.348 0.506 0.335 0.462 0.307 0.640 0.348

weather 0.241 0.270 0.266 0.318 0.248 0.275 0.249 0.278 0.269 0.288 0.246 0.276 0.261 0.284 0.252 0.277 0.273 0.291

1st count 5 4 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1
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4.3 ABLATION STUDY

To verify the effectiveness of each TIM component, we conducted a detailed ablation study on the
proposed feature/time/resolution decomposition paradigm. The results of the ablation experiments
are presented in Table 2. The prefix “wo” (now as a subscript) indicates “without,” signifying the
exclusion of specific model components during evaluation. The best results are highlighted in bold
red, while the second-best performance is underlined in blue, providing a clear comparison of the
relative effectiveness of different model configurations.

The ablation study results demonstrate that each component is essential. Notably, the Time and Res
modules share the same architecture but differ in their operational sequence and input matrices in the
ablation experiments, namely Timewo and Reswo. Specifically, in Timewo, the model learns temporal
transitions across transposed multivariate time slices, whereas in Reswo, it processes univariate time
series as tokens to capture multivariate relationships.

Within the Feat module, each temporal token embeds multiple variables, encapsulating potential
delayed events and distinct physical measurements. However, this approach may face challenges
in capturing variate-specific representations, potentially leading to ineffective attention maps as the
model prematurely learns complex latent spaces.

Table 2: Ablation Study
TIM Ours Timewo Reswo Featwo

pred len mse mae mse mae mse mae mse mae

E
T

T
h1

96 0.367 0.391 0.379 0.398 0.379 0.397 0.378 0.396
192 0.424 0.425 0.438 0.428 0.436 0.427 0.433 0.426
336 0.472 0.446 0.493 0.459 0.481 0.449 0.482 0.451
720 0.471 0.469 0.497 0.477 0.494 0.478 0.492 0.476

AVG 0.436 0.435 0.452 0.440 0.448 0.438 0.446 0.437

E
T

T
h2

96 0.289 0.342 0.291 0.343 0.292 0.344 0.292 0.344
192 0.374 0.393 0.377 0.394 0.375 0.394 0.377 0.394
336 0.419 0.430 0.418 0.431 0.417 0.430 0.417 0.430
720 0.427 0.444 0.431 0.446 0.432 0.447 0.430 0.446

AVG 0.377 0.402 0.379 0.404 0.379 0.404 0.379 0.403

E
T

T
m

1 96 0.315 0.357 0.320 0.360 0.318 0.357 0.327 0.365
192 0.361 0.383 0.366 0.385 0.361 0.381 0.364 0.384
336 0.386 0.402 0.412 0.411 0.397 0.405 0.401 0.408
720 0.469 0.446 0.495 0.452 0.456 0.441 0.454 0.442

AVG 0.382 0.397 0.398 0.402 0.383 0.396 0.387 0.400

E
T

T
m

2 96 0.172 0.253 0.176 0.259 0.170 0.254 0.175 0.258
192 0.233 0.294 0.234 0.297 0.238 0.298 0.238 0.299
336 0.292 0.333 0.295 0.337 0.299 0.338 0.301 0.339
720 0.391 0.392 0.400 0.398 0.395 0.395 0.398 0.396

AVG 0.272 0.318 0.276 0.323 0.276 0.321 0.278 0.323

el
ec

tr
ic

ity

96 0.144 0.241 0.156 0.255 0.152 0.253 0.169 0.269
192 0.164 0.259 0.174 0.271 0.170 0.269 0.181 0.275
336 0.173 0.271 0.190 0.289 0.186 0.287 0.197 0.290
720 0.205 0.301 0.219 0.312 0.213 0.311 0.234 0.320

AVG 0.172 0.268 0.185 0.282 0.180 0.280 0.195 0.288

tr
af

fic

96 0.447 0.277 0.473 0.313 0.474 0.306 0.492 0.311
192 0.458 0.287 0.474 0.317 0.482 0.316 0.506 0.326
336 0.471 0.292 0.482 0.317 0.492 0.320 0.519 0.332
720 0.503 0.310 0.520 0.344 0.538 0.342 0.554 0.343

AVG 0.469 0.292 0.487 0.323 0.497 0.321 0.518 0.330

Conversely, in the Time module, the time points of individual series are embedded into variate
tokens, facilitating the capture of multivariate correlations. This design enables the Reswo configu-
ration to achieve performance that is second only to the full TIM model, demonstrating its effective-
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ness in enhancing multivariate analysis capabilities. Previous studies have suggested that tailoring
model architectures specifically for datasets can lead to overfitting issues Li et al. (2024). However,
our ablation experiments demonstrate that, across the majority of benchmarks, our TIM model, as a
unified entity, exhibits optimal performance, thereby validating the efficacy of our novel decompo-
sition framework. This underscores the indivisibility of its components, each contributing uniquely
and synergistically to the overall performance.

4.4 MODEL EFFICIENCY

We undertake a comparative analysis of the operational memory consumption and execution time
against the most recent state-of-the-art models during the training phase. Our findings consistently
reveal that TIM exhibits remarkable efficiency advantages, both in terms of GPU memory utilization
and running time, showcasing its favourable performance characteristics. Figure 3 shows that the
horizontal axis of the chart employs Mean Squared Error (MSE) as its metric, while the vertical
axis represents the logarithmically transformed number of model parameters. Despite having a
comparable number of model parameters to other state-of-the-art approaches (SOTAs), the model
significantly outperforms them in predictive performance. In this chart, each model is distinguished
based on its prediction length (pred len), and the size of the points represents their Float Operations
Per Second (FLOPs), which is a measure of computational performance. Furthermore, TIM stands
out as a purely Multi-Layer Perceptron (MLP) architecture that successfully balances efficiency
and performance. Unlike transformer-based models, which often require substantial computational
resources and memory, TIM demonstrates remarkable proficiency in managing these demands with
a more streamlined and efficient design.

Figure 3: Parameters vs Model performance (MSE). We reported the experiment This figure
presents the experimental results for our models across various prediction lengths (pred len) on the
ETTh1 dataset. Notably, our all-MLP TIM has achieved SOTA performance while possessing a
significantly smaller number of parameters compared to transformer-based models. The horizontal
axis represents the logarithmic scale of model parameters (MB), and the vertical axis indicates the
model performance measured by Mean Squared Error (MSE). For clarity in presentation, we applied
a square root transformation to the model’s parameter size, expressed in megabytes (MB).

9
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5 CONCLUSION AND FUTURE WORK

In this paper, we introduced TIM, a model that achieves state-of-the-art performance in long-term
time series forecasting while maintaining low computational complexity and resource efficiency.
Our novel feature/time/resolution decomposition paradigm enables effective modelling of multi-
variate interactions with minimal computational overhead, making the model particularly suitable
for scenarios with limited resources.

While TIM demonstrates strong performance across various benchmarks, particularly due to its
low-complexity design, further improvements can be made to capture more complex multivariate
relationships. Future work will focus on refining the model’s ability to handle these intricate inter-
actions, without compromising its efficiency. By doing so, we aim to enhance both the predictive
power and the practical applicability of the model in diverse real-world settings.
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A APPENDIX

A.1 EXPERIMENT SETTING

To ensure a fair comparison across all models on a uniform platform (the time-series-library), we
have standardized the parameters. Specifically, we have fixed the input dimension at 96 and varied
the prediction horizon for time series forecasting, with lengths including 96, 192, 336, and 720. The
batch size was set to 32, the learning rate to 1e-3, the model dimension (d model) to 512, and the
dropout rate to 0.1.
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A.2 MAIN RESULT

Table 3: Multivariate forecasting results with prediction lengths in {96, 192, 336, 720} for eight
benchmark datasets and fixed lookback length 96. Our proposed model TIM has achieved state-
of-the-art (SOTA) performance on 25 tasks when evaluated using the Mean Squared Error (MSE)
metric and on 21 tasks when assessed based on the Mean Absolute Error (MAE) metric. TIM
exhibits robust performance across diverse benchmarks, which is particularly attributed to its low
complexity and cross layer design. However, further enhancements can be implemented to capture
better intricate multivariate relationships, especially in datasets with numerous variables and long
time series.

Models TIM DLinear PatchTST FreTS RLinear TSMixer TimeMixer iTransFormer TimesNet
Ours 2023 2023 2024 2023 2023 2024 2024 2023

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

E
T

T
h1

96 0.367 0.391 0.386 0.399 0.383 0.402 0.400 0.409 0.385 0.393 0.384 0.403 0.408 0.413 0.384 0.403 0.408 0.426
192 0.424 0.425 0.434 0.428 0.435 0.431 0.455 0.440 0.436 0.422 0.444 0.435 0.457 0.442 0.434 0.431 0.496 0.475
336 0.472 0.446 0.482 0.460 0.470 0.452 0.496 0.460 0.476 0.442 0.491 0.460 0.505 0.467 0.482 0.457 0.512 0.484
720 0.471 0.469 0.504 0.502 0.479 0.476 0.506 0.481 0.478 0.467 0.505 0.485 0.492 0.478 0.491 0.482 0.708 0.580

AVG 0.434 0.433 0.452 0.447 0.440 0.442 0.464 0.447 0.443 0.431 0.456 0.446 0.465 0.450 0.448 0.443 0.531 0.491

E
T

T
h2

96 0.289 0.342 0.329 0.384 0.292 0.344 0.298 0.348 0.290 0.340 0.304 0.353 0.293 0.342 0.302 0.352 0.343 0.378
192 0.374 0.393 0.435 0.448 0.373 0.395 0.382 0.399 0.378 0.395 0.402 0.409 0.375 0.394 0.379 0.399 0.449 0.432
336 0.419 0.430 0.563 0.526 0.417 0.431 0.426 0.436 0.430 0.439 0.444 0.445 0.398 0.424 0.418 0.430 0.468 0.459
720 0.427 0.444 0.775 0.634 0.434 0.450 0.448 0.457 0.442 0.453 0.436 0.450 0.406 0.432 0.427 0.447 0.457 0.467

AVG 0.377 0.402 0.526 0.498 0.379 0.405 0.448 0.457 0.385 0.407 0.396 0.414 0.368 0.398 0.382 0.407 0.429 0.434

E
T

T
m

1 96 0.315 0.357 0.345 0.371 0.377 0.424 0.358 0.394 0.350 0.368 0.321 0.361 0.333 0.368 0.337 0.371 0.429 0.454
192 0.361 0.383 0.383 0.394 0.417 0.439 0.399 0.411 0.388 0.386 0.370 0.388 0.376 0.393 0.376 0.388 0.593 0.572
336 0.386 0.402 0.414 0.414 0.465 0.466 0.433 0.439 0.419 0.406 0.415 0.414 0.408 0.418 0.423 0.414 0.679 0.601
720 0.469 0.446 0.474 0.453 0.517 0.501 0.538 0.509 0.480 0.440 0.497 0.461 0.493 0.464 0.480 0.449 0.780 0.692

AVG 0.382 0.397 0.404 0.408 0.444 0.457 0.432 0.438 0.409 0.400 0.401 0.406 0.403 0.411 0.404 0.406 0.620 0.580

E
T

T
m

2 96 0.172 0.253 0.186 0.282 0.176 0.261 0.180 0.262 0.182 0.265 0.183 0.267 0.183 0.267 0.184 0.268 0.188 0.268
192 0.233 0.294 0.270 0.347 0.242 0.305 0.247 0.306 0.247 0.306 0.249 0.309 0.260 0.318 0.252 0.312 0.288 0.324
336 0.292 0.333 0.362 0.414 0.303 0.344 0.304 0.342 0.309 0.344 0.310 0.347 0.309 0.346 0.317 0.352 0.343 0.360
720 0.391 0.392 0.527 0.507 0.402 0.402 0.406 0.402 0.408 0.400 0.417 0.407 0.438 0.420 0.411 0.405 0.512 0.450

AVG 0.272 0.318 0.337 0.388 0.281 0.328 0.284 0.328 0.287 0.328 0.290 0.332 0.298 0.338 0.291 0.334 0.333 0.351

el
ec

tr
ic

ity

96 0.144 0.241 0.195 0.277 0.206 0.309 0.184 0.271 0.198 0.274 0.156 0.258 0.153 0.253 0.146 0.244 0.351 0.405
192 0.164 0.259 0.194 0.280 0.214 0.321 0.188 0.277 0.198 0.277 0.174 0.274 0.169 0.270 0.162 0.256 0.293 0.375
336 0.173 0.271 0.208 0.297 0.218 0.325 0.203 0.294 0.212 0.293 0.187 0.288 0.184 0.285 0.180 0.274 0.290 0.373
720 0.205 0.301 0.243 0.330 0.254 0.352 0.248 0.335 0.254 0.326 0.216 0.309 0.209 0.305 0.213 0.305 0.317 0.383

AVG 0.172 0.268 0.210 0.296 0.223 0.2327 0.206 0.294 0.215 0.293 0.183 0.282 0.179 0.278 0.175 0.270 0.313 0.384

so
la

r
A

L 96 0.213 0.241 0.285 0.372 0.223 0.328 0.250 0.308 0.305 0.329 0.214 0.264 0.234 0.279 0.203 0.256 0.189 0.257
192 0.234 0.266 0.316 0.393 0.246 0.353 0.268 0.328 0.344 0.348 0.257 0.292 0.277 0.306 0.233 0.271 0.193 0.234
336 0.261 0.287 0.352 0.413 0.260 0.365 0.285 0.336 0.386 0.364 0.280 0.307 0.284 0.307 0.266 0.304 0.200 0.238
720 0.267 0.289 0.355 0.411 0.246 0.350 0.269 0.315 0.389 0.358 0.278 0.304 0.278 0.300 0.254 0.286 0.207 0.248

AVG 0.244 0.271 0.327 0.397 0.244 0.349 0.268 0.322 0.356 0.350 0.257 0.292 0.268 0.298 0.239 0.280 0.197 0.244

tr
af

fic

96 0.447 0.277 0.650 0.398 0.475 0.277 0.542 0.357 0.646 0.386 0.487 0.338 0.472 0.316 0.427 0.299 0.593 0.333
192 0.458 0.287 0.599 0.371 0.489 0.278 0.537 0.358 0.599 0.362 0.496 0.338 0.494 0.328 0.451 0.302 0.631 0.349
336 0.471 0.292 0.607 0.375 0.500 0.291 0.553 0.363 0.607 0.366 0.514 0.349 0.518 0.347 0.464 0.304 0.664 0.353
720 0.503 0.310 0.648 0.398 0.535 0.302 0.590 0.380 0.645 0.385 0.541 0.368 0.540 0.350 0.506 0.324 0.673 0.359

AVG 0.469 0.292 0.626 0.386 0.500 0.287 0.556 0.365 0.624 0.375 0.510 0.348 0.506 0.335 0.462 0.307 0.640 0.348

w
ea

th
er

96 0.155 0.200 0.196 0.255 0.165 0.211 0.167 0.213 0.193 0.232 0.159 0.208 0.160 0.207 0.168 0.211 0.194 0.233
192 0.204 0.246 0.238 0.297 0.212 0.253 0.241 0.272 0.236 0.268 0.214 0.254 0.226 0.265 0.214 0.254 0.240 0.270
336 0.262 0.289 0.283 0.333 0.268 0.292 0.269 0.295 0.288 0.304 0.273 0.294 0.286 0.307 0.273 0.296 0.292 0.307
720 0.345 0.344 0.348 0.385 0.346 0.344 0.346 0.346 0.359 0.350 0.349 0.348 0.372 0.358 0.351 0.347 0.364 0.353

AVG 0.241 0.270 0.266 0.318 0.248 0.275 0.249 0.278 0.269 0.288 0.246 0.276 0.261 0.284 0.252 0.277 0.273 0.291
1st count 25 21 0 0 2 5 0 0 0 6 0 0 3 3 5 1 5 4
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