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Abstract

Federated learning (FL) is a machine learning paradigm that allows multiple FL
participants (FL-PTs) to collaborate on training models without sharing private
data. Due to data heterogeneity, negative transfer may occur in the FL training
process. This necessitates FL-PT selection based on their data complementarity.
In cross-silo FL, organizations that engage in business activities are key sources
of FL-PTs. The resulting FL ecosystem has two features: (i) self-interest, and (ii)
competition among FL-PTs. This requires the desirable FL-PT selection strategy
to simultaneously mitigate the problems of free riders and conflicts of interest
among competitors. To this end, we propose an optimal FL collaboration formation
strategy -FedEgoists- which ensures that: (1) a FL-PT can benefit from FL if
and only if it benefits the FL ecosystem, and (2) a FL-PT will not contribute to
its competitors or their supporters. It provides an efficient clustering solution to
group FL-PTs into coalitions, ensuring that within each coalition, FL-PTs share
the same interest. We theoretically prove that the FL-PT coalitions formed are
optimal since no coalitions can collaborate together to improve the utility of any
of their members. Extensive experiments on widely adopted benchmark datasets
demonstrate the effectiveness of FedEgoists compared to nine state-of-the-art
baseline methods, and its ability to establish efficient collaborative networks in
cross-silos FL with FL-PTs that engage in business activities.

1 Introduction

Federated learning (FL) is a promising paradigm of distributed machine learning (ML) as it does
not require sharing raw data between FL participants (FL-PTs), thereby upholding the privacy
considerations [10, 12, 54, 55, 56]. In the popular Federated Averaging (FedAvg) framework,
multiple FL-PTs train a shared model locally with their own datasets, and upload their local model
updates to a central server (CS), which then aggregates these model updates and distributes the
resulting global model to each FL-PT [32]. There are two types of FL [20]. In cross-device FL,
FL-PTs are end-user devices such as smartphones or IoT devices, and CS is the final owner of the
trained model. In cross-silo FL, FL-PTs are companies or organizations in private or public sectors
and are the final owners/users of the trained model, while the CS has the authority to coordinate the
FL training process.
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A FL Manager

√Ensures the absence of the free riders;

√Avoids the conflict of interest;

√Optimal collaboration among independent coalitions.

Every company is selfish;

There exists competitions between companies.

Every company is self-interest;
There exists competitions between companies.

√Ensures the absence of the free riders;

√Avoids the conflict of interest;

√Optimal coalition formation with the two constraints 
above.

A FL Manager

Figure 1: An overview of the main motivation and results of this paper.

We consider in this paper the scenario of cross-silo FL where organizations in the business sector
that engage in business activities are key sources of FL-PTs [16]. The business sector is part of the
private sector made up by companies and includes business that operate for profit; it is a key driver of
technological innovation. The application of FL in the business sector has been studied in diverse
domains, including digital banking, ridesharing, recommender systems, and Electric Vehicle charging
services [28, 29, 39, 47, 53]. Regional banks have different user groups from their respective regions
and are independent [54], while the banks in the same region can compete for users [31]. Recently, a
FL platform, MELLODDY, has been developed for drug discovery, including multiple companies
from business sectors [35]. Generally, competition exists when there are multiple organizations that
are in the same market area and hope to unlock the power of FL [16, 45].

From a FL-PT’s perspective, the scenario under study has two features: (i) self-interest and (ii)
competition among FL-PTs. In business sectors, individuals are self-interested. This magnifies the
free-riding problem where some FL-PTs benefit from the contributions of others without making
any contribution to the FL ecosystem [20, 22]. Competition signifies that there is a potential conflict
of interest between some two FL-PTs. Thus, two principles can simultaneously be used to meet
the individual’s needs: (1) a FL-PT can benefit from the FL ecosystem if and only if it can benefit
the FL ecosystem, and (2) a FL-PT will not contribute to its competitors as well as the allies of its
competitors [42]. The first principle is proposed and formulated in this paper for the first time, while
the second principle has previously been considered for other scenarios [42]. From a FL manager’s
perspective, its priority is to regulate the FL ecosystem to meet the requirements of its customers (i.e.,
FL-PTs).

This paper studies cross-silo FL in business sectors where there are typically a limited number of
FL-PTs (e.g., 2 to 100) [16, 27]. We consider both self-interest and competition for the first time
in literature, although it has been well recognized that the free riding problem can be especially
serious when self-interested FL-PTs engage in business competition [17, 41]. Since competition
and self-interest are considered, all FL-PTs are partitioned into disjoint groups/coalitions, each with
the common interest. The competition and benefit relationships among FL-PTs can be described as
graphs. We use theoretical tools from graph theory and propose an efficient solution FedEgoists that
can well satisfy the two principles above. Meanwhile, FedEgoists can help FL-PTs achieve
the best possible ML model performances, i.e., subject to the two principles, the coalitions that
FedEgoists finds are optimal in the sense that one coalition cannot increase the utility of any of its
members by collaborating with any other coalitions. Extensive experiments over real-world datasets
have demonstrated the effectiveness of the proposed solution compared to nine baseline methods, and
its ability to establish efficient collaborative networks in cross-silo FL with FL-PTs that engage in
business activities. The main motivation and results of this paper are illustrated in Figure 1.

2 Related Work

The existing FL works consider the following three lines of works separately and don’t address the
self-interest and competition features simultaneously.
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Competition. Collaboration between competing companies is an important research area in business
studies [3, 11]. Recently, there has been a growing interest in the study of competition in cross-silo
FL where a key application area is the business sector. There are two cases. In the first case, all
FL-PTs are assumed to offer the same service in the same market area and compete against each
other. Several works attempt to reduce the potential side effect after FL-PTs join a fully competitive
FL ecosystem. Wu and Yu [50] aim to maintain a negligible change in market share [51, 52] and
analyze the achievability of this objective. Tsoy and Konstantinov [45] and Huang et al. [16] study
the profitability of FL-PTs, but are taken under different assumptions on the source of extra profit
brought by FL. Specifically, Tsoy and Konstantinov [45] assume that: (i) each consumer allocates a
fixed budget to multiple services from different markets, and (ii) if a FL-PT owns a better model, the
consumer will thus allocate more of its budget to consume its service due to the improved service
quality. Huang et al. [16] consider duopoly business competition and assume that, if the model-related
service can be improved by FL, customers will have a willingness to pay more and FL-PTs thus have
opportunities to increase their profits. In the second case, not all FL-PTs compete against each other,
like one assumption in this paper, where some FL-PTs come from different market areas. Tan et al.
[42] study how to avoid the conflicts of interest among FL-PTs for the first time and give a heuristic
to realize Principle 2. However, Tan et al. [42] don’t consider the self-interest feature of cross-silo FL
in the business sector and cannot guarantee the optimal collaboration among independent coalitions
without competition. The collaboration relationships among FL-PTs result in a collaboration graph
Gu. In their heuristic, FL-PTs are considered one by one and Gu is thus constructed gradually to
guarantee that for each FL-PT, there is no path that can be reachable to or from its competitors. In
this paper, we apply the concepts of cliques and strongly connected components in graph theory to
satisfy the self-interest and competition features and further optimize the proposed algorithm.

Free-riding. Karimireddy et al. [22] show that a naive scheme can lead to catastrophic levels of free-
riding where the benefits of data sharing are completely eroded. By contract theory, they introduce
accuracy shaping based mechanisms to prevent free-riding.

Coalitions. A coalition is a cooperative relationship formed among different individuals due to
certain interests. Each agent is only concerned with the contributions of other agents within the
same coalition [1]. Prior studies mainly focus on alleviating the side effect of data heterogeneity by
allocating proper collaborators with data complementarity to each FL-PT. Donahue and Kleinberg
[9] provide an analytical understanding of what partition of FL-PTs leads to a core-stable coalition
structure for mean estimation and linear regression. Cui et al. [5] propose a heuristic algorithm to
compute the core-stable coalition structure for general learning tasks. To some extent, the CS can
dictate the collaboration relationships among FL-PTs only if doing so can better address the concerns
of FL-PTs such as fairness and performance [6, 13, 59, 60]. Chaudhury et al. [4] treat all FL-PTs as
a grand coalition and optimize a common model such that there is no other coalition S of FL-PTs
that could significantly benefit more by training a model only using the data of S. Sattler et al. [37]
propose a novel federated multi-task learning framework where the geometric properties of the FL
loss surface is leveraged to group FL-PTs into clusters with jointly trainable data distributions. Ding
and Wang [7] partition a total of n FL-PTs into K groups, where K ≪ n and the FL-PTs with similar
contributors are assigned to the same group. Then, a common model is returned to each group of
FL-PTs such that the performance of using K models for n FL-PTs is a good approximation to the
the performance of learning n personalized models for n FL-PTs respectively. However, the above
works don’t consider the adversarial relationships among FL-PTs.

3 Model and Assumptions

3.1 Relationship Graphs

There is a set of FL-PTs denoted by V = {v1, v2, · · · , vn}. Each FL-PT vi is uniquely equipped
with its own local dataset Di. A benefit graph Gb is deployed to describe the potential collaboration
advantages between any two FL-PTs. Together with the competing relationships represented by Gc
among different FL-PTs, we pave the way for the formation of the contribution graph Gu. The benefit
graph Gb is a weighted directed graph with an edge set Eb (i.e., Gb = (V, Eb)) and is used to evaluate
the data complementarity between FL-PTs. It is defined as follows. For any two FL-PTs vj and vi, if
vi can benefit from vj’s data, then there is a directed edge from vj to vi (i.e., (vj , vi) ∈ Eb) and the
weight of this edge is wj,i > 0 where a larger value of wj,i signifies a larger benefit to vi brought by
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vj . In contrast, if vi cannot benefit from the data of vj , then (vj , vi) /∈ Eb and wj,i = 0. The benefit
graph can be computed by the hypernetwork technique like [5, 33, 42]. The competing graph Gc is
an undirected graph with an edge set Ec, i.e., Gc = (V, Ec). For any two FL-PTs vi and vj , if they
compete against each other, then there is an undirected edge between vi to vj (i.e., (vi, vj) ∈ Ec).
If they are independent of each other, then (vi, vj) /∈ Ec. The CS is assumed to be trustable. In
the real world, the CS may represent an impartial and authoritative third-party (e.g., the industry
association) [5]. Then, FL-PTs can report their competitive relationships to the third-party in person
and confidentiality agreements can be signed between the third-party and FL-PTs. Each FL-PT vi
will report its competitors to CS, as it hopes that CS will correctly utilize this information to prevent
its competitors from benefiting from its data. Thus, CS has the knowledge of Gc. Although vi may
benefit from vj’s data(wj,i > 0), CS has the authority to determine whether vi can actually utilize
vj’s local model update information (i.e., indirectly use vj’s data) in the FL training process or not.
Let X = (xj,i) be a n× n matrix where xj,i ∈ {0, 1}: for two different FL-PTs vi and vj , xj,i is set
to one if vj will contribute to vi (i.e., vi will utilize vj ’s local model update information) in the FL
training process and xj,i is set to zero otherwise. X defines a directed graph Gu = (V, Eu), called
the data usage graph: (vj , vi) ∈ Eu if and only if j ̸= i, xj,i = 1; then, vj is said to be a collaborator
or contributor of vi.

Finally, we introduce some concepts in graph theory. Let G = (V, E) denote an arbitrary graph
whose node set is V and whose edge set is E. For any subset S ⊆ V , an (induced) subgraph G (S) of
the graph G is such that (i) the node set of G (S) is V̂ and (ii) the edge set of G (S) consists of all of
the edges in E that have both endpoints in S. A subgraph G (S) is said to be a strongly connected
component of G if we have (i) G (S) is strongly connected, i.e., there is a path in each direction
between any two nodes and (ii) G (S) is maximal in the sense that no additional edges or nodes from
G can be included in the subgraph without breaking the property of being strongly connected. The
collection of strongly connected components forms a partition of the nodes of G. A simple path is a
path in a graph which does not have repeating nodes.

3.2 Collaboration Principles

The FL-PTs in the scenario under study have two features: (i) self-interest and (ii) competition among
FL-PTs. Accordingly, there are two collaboration principles introduced below.

3.2.1 Absence of free riders

While establishing collaboration relationships among FL-PTs, the following principle is used to
guarantee the non-existence of free rider.
Principle 1. For any FL-PT vi ∈ V , there exists a FL-PT vj ∈ V that benefits vi if and only if there
exists at least one FL-PT vk that can benefit from vi.

In this paper, all Fl-PTs are assumed to be self-interested and there exists competition among
some FL-PTs. Let π denote a partition of FL-PTs V into K mutually disjoint groups where π =
{S1,S2, · · · ,SK} satisfies: (i) Si ⊆ V , (ii) ∪Kk=1Sk = V and (iii) Si ∩ Sj = ∅, ∀i, j ∈ {1, 2, ...,K}.
For any Sk ∈ π, the collaboration relationships among the FL-PTs of Sk are established according to
the subgraph Gb(Sk) , i.e., for any vi, vj ∈ Sk, vj is a contributor of vi if and only if there exists an
edge (vj , vi) in the graph Gb(Sk). Each FL-PT vi ∈ Sk is only concerned with the contributions of
other FL-PTs within the same Sk.
Definition 1 (Coalitions). A partition π = {S1,S2, · · · ,SK} is said to be a set of coalitions if we
have for any Sk ∈ π with |Sk| ⩾ 2 and vi ∈ Sk that∑

vj∈Sk−{vi}
wi,j > 0 and

∑
vj∈Sk−{vi}

wj,i > 0 (1)

In a coalition Sk with |Sk| ⩾ 2, each FL-PT vi ∈ Sk can both benefit and benefit from other members
in Sk − {vi}. Thus, in a set π of coalitions, Principle 1 will be realized since Eq. (1) is satisfied. If
|Sk| = 1, the single FL-PT of Sk neither benefit nor benefit from any other FL-PT.

3.2.2 Avoiding conflict of interest

To avoid conflict of interest, a FL-PT will not contribute to its competitors (i.e., its enemies) and
any FL-PTs that help its competitors (i.e., the friends of its enemies). Also, it doesn’t hope to see
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others help the supporters/friends of its competitors (in)directly. For any FL-PT vi, let As denote the
supporter alliance of vi defined as: Ai = {vk ∈ V | vk is reachable to vi in the data usage graph Gu}.
Let us consider any two competing FL-PTs vj and vi where (vj , vi) ∈ Ec. To avoid conflict of interest,
vj will not contribute to any member of Ai. Like [42], this is defined as the following principle by
which it is strictly guaranteed that no FL-PTs will contribute to its competitors (in)directly.
Principle 2. For any two competing FL-PTs vi and vj , vj is unreachable to vi in the data usage
graph Gu.

3.3 Problem Description

Now, we propose a proper problem formulation such that the resulting solution can well satisfy
the FL-PTs’ needs and help them achieve the best possible ML model performances. All FL-PTs
are divided into a set π of coalitions. For the FL-PTs of of a coalition Sk ∈ π, their collaboration
relationships are established according to the subgraph Gb(Sk). The utility u(Sk) of a coalition
Sk is defined as the sum of the edge weights of Gb(Sk). Formally, let Eb(Sk) denotes the edge
set of Gb(Sk); then, u(Sk) =

∑
(vj ,vi)∈Eb(Sk)

wj,i; given a FL-PT vi ∈ Sk, its utility is defined
as ui(Sk) =

∑
(vj ,vi)∈Eb(Sk)

wj,i where vi is fixed; here, the utility of a coalition is the sum of
the utilities of all its members, i.e., u(Sk) =

∑
vi∈Sk

ui(Sk). For two coalitions Sk and S ′k with
Sk ⊊ S ′k, Gb(Sk) is a subgraph of Gb (S ′k); then the utility of vi in a larger coalition S ′k is no smaller
than its utility in a smaller coalition Sk, i.e., ui(Sk) ⩽ ui (S ′k).
In this paper, our final problem is to find a partition π of FL-PTs such that

• Principles 1 and 2 are satisfied.
• Subject to Principles 1 and 2, no coalitions of π (i.e., no subset π′ of π) can collaborate together

and be merged into a larger coalition with a higher utility; in other words, after merging these
coalitions into a larger one, no FL-PTs in these coalitions π′ increase their utilities under the larger
coalition. Formally, let

Π =

{
π′ ⊆ π |

∑
Sk∈π′

u(Sk) < u

( ⋃
Sk∈π′

Sk

)
, Principles 1 and 2 are satisfied by

⋃
Sk∈π′

Sk

}
.

Then, Π satisfies:

Π = ∅. (2)

4 Solution

Now, we give an algorithm that satisfies Principles 1 and 2 and Eq. (2). It is presented as Algorithm
1 and its main idea is as follows. Firstly, we find a partition π̂ = {Ŝ1, Ŝ2, · · · , ŜH} of all FL-PTs
V such that the FL-PTs of each subset Ŝh ∈ π̂ are independent of each other. Secondly, Ŝh ∈ π̂

is further partitioned into several subsets/coalitions, denoted as SCCh = {Ŝh,1, Ŝh,2, · · · , Ŝh,yh
}

such that for all l ∈ [1, yh], Gb(Ŝh,l) is a strongly connected component of Gb(Ŝh). Thirdly, for any
coalitions of

⋃H
h=1 SCCh, we merge these coalitions into a larger one if doing so achieves a higher

coalition utility without violating Principles 1 and 2.

Below, we detail Algorithm 1. Firstly, we define G−c = (V, E−
c ) as the inverse of the competing

graph Gc, i.e., any two nodes of G−c are adjacent if and only if they are not adjacent in Gc; if there
is an edge between two nodes in G−c , then these two nodes are said to be independent of each other
(line 2). In graph theory, a clique of an arbitrary undirected graph G = (V, E) is a subset of nodes
S ⊆ V in which any two nodes of S are connected by an edge in the subgraph G(S); a maximal
clique is a clique such that if it is extended by adding any other node, the resulting larger subgraph is
not complete. We search for all maximal cliques within G−c , which form a partition π̂ of all FL-PTs
V . Any two FL-PTs in a subset Ŝk ∈ π̂ are independent of each other. In line 3, the cliques of G−c
can be found by the classic Bron–Kerbosch algorithm [44].

Secondly, for each Ŝh ∈ π̂, we process the subgraph Gb(Ŝh) of the benefit graph. All strongly
connected components of Gb(Ŝh) are founded by the classic Tarjan algorithm [43]. The node sets of
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Algorithm 1: Conflict-free Coalitions without Free Riders
Input: The benefit graph Gb, the competing graph Gc
Output: The set π of coalitions

1 π ← ∅; // Record the set of coalitions found by this algorithm.
2 Construct the inverse of Gc, denoted as G−c ;

3 Find all maximal cliques of G−c , denoted as π̂ =
{
Ŝ1, · · · , ŜH

}
, by the Bron–Kerbosch

algorithm;
4 for h← 1 to H do
5 Find all strongly connected components of Gb

(
Ŝh
)

by the Tarjan algorithm; // The node

sets of the components of Gb

(
Ŝh

)
are denoted as SCCh =

{
Ŝh,1, · · · , Ŝh,yh

}
.

6 Let π = {v̂1, v̂2, · · · , v̂Y } =
⋃H

h=1 SCCh where Y =
∑H

h=1 yh;
7 Construct by Definition 2 a directed graph Zb and an undirected graph Zc whose node sets are

π; // v̂y is a node in Zb and Zc but also represents a subset of V.
/* Below, the node v̂l of Zb with |v̂l| = 1 is processed. */

8 Let y ← Y + 1; // y is the index of the new node v̂y to be constructed.
9 (π,Zb,Zc, y)←MergeCycle(π,Zb,Zc, y), presented as Algorithm 2;

10 (π,Zb,Zc, y)←MergePath(π,Zb,Zc, y), presented as Algorithm 4;
/* Below, the edge (v̂l, v̂l′) of Zb with |v̂l| ⩾ 2 and |v̂l′ | ⩾ 2 is processed. */

11 (π,Zb,Zc, y)←MergeNeighbors(π,Zb,Zc, y), presented as Algorithm 5;

(a) {SCCh}2h=1 where H = 2. (b) π

Figure 2: Illustration of Algorithm 1.

all these components constitute a partition of Ŝh, denoted as SCCh (lines 4-5). Thirdly, we also use v̂y
to denote a set Ŝh,yh

⊆ V and let π =
⋃H

h=1 SCCh = {v̂1, v̂2, · · · , v̂Y } where Y =
∑H

h=1 yh ≤ n
and ∪Yy=1v̂y = V (line 6); then we construct by Definition 2 two new graphs Zb and Zc whose node
sets are π (line 7).
Definition 2. In the graph Zb, there is a directed edge from v̂l to v̂l′ if and only if there exist two
nodes vi ∈ v̂l and vj ∈ v̂l′ such that (vi, vj) is a directed edge in the benefit graph Gb. In the graph
Zc, there is an undirected edge between v̂l and v̂l′ if and only if there exist two nodes vi ∈ v̂l and
vj ∈ v̂l′ such that (vi, vj) is an undirected edge in the competing graph Gc. For any two coalitions
v̂l and v̂l′ of π, v̂l is said to benefit (resp. benefit from) v̂l′ if there is a directed edge (v̂l, v̂l′) (resp.
(v̂l′ , v̂l)) in the graph Zb; v̂l and v̂l′ are said to be competitive if there is an undirected edge (v̂l, v̂l′)
in the graph Zc and independent of each other otherwise.

In line 9, Algorithm 2 is called where there is a while-loop. In Algorithm 2, we check whether the
loop condition in line 1 is satisfied or not; this loop condition will be called the cycle condition
subsequently. As illustrated by v̂2 and v̂5 in Figure 2(a), if "yes", let X = {v̂yi}θi=1 denote the nodes
of this cycle. The following operations are taken to update the graph Zb and Zc: (i) the nodes of X
are merged into a new node v̂y where all the edges in the graph Zb that point to (resp. point from) the
nodes of X change to point to (resp. point from) v̂y, and (ii) the nodes of X in Zb also exist in the
graph Zc; such nodes in Zc are still merged into a new node v̂y, and all the edges in the graph Zc

whose endpoints are the nodes of X change to become the edges whose endpoints are v̂y . The above
operations will be used as a routine and are given in Algorithm 3.

In line 10, Algorithm 4 is called where there are two while-loops. In Algorithm 4, we check whether
the loop condition in the outer while loop is satisfied (line 1); this loop condition will be called the
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Algorithm 2: MergeCycle(π,Zb, Zc, y)

1 while there is a node v̂yi
of Zb with |v̂yi

| = 1 such that (i) there is a cycle (v̂y1
, v̂y2

, · · · , v̂yθ
,

v̂y1
) in the graph Zb that contains v̂yi

and (ii) the nodes v̂y1
, · · · , v̂yθ

of this cycle are
independent of each other do
// the cycle condition.

2 (v̂y, π,Zb,Zc, y)←Merge(X , π,Zb,Zc, y), presented as Algorithm 3, where
X = {v̂yl

}θl=1;
3 Return (π,Zb,Zc, y);

Algorithm 3: Merge(X , π, Zb, Zc, y)

1 v̂y ←
⋃

v̂j∈X v̂j , y ← y + 1, π ← π −X , and π ← π ∪ {v̂y};
2 Add v̂y into Zb as a new node, and all the edges in the graph Zb that point to (resp. point from)

the nodes of X change to point to (resp. point from) v̂y;
3 Add v̂y into Zc as a new node, and all the edges in the graph Zc whose endpoints are the nodes

of X change to become the edges whose endpoints are v̂y;
4 Remove the nodes of X from both Zb and Zc;
5 Return (v̂y, π,Zb,Zc, y);

Algorithm 4: MergePath(π,Zb, Zc, y)

1 while there is a node v̂yi
of Zb with |v̂yi

| = 1 such that (i) there is a simple path
(v̂y1

, · · · , v̂yi
, · · · , v̂yθ

) with v̂y1
⩾ 2 and v̂yθ

⩾ 2 and (ii) the nodes v̂y1
, · · · , v̂yθ

of this
simple path are independent of each other do
// the path condition.

2 (v̂y, π,Zb,Zc, y)←Merge(X , π,Zb,Zc, y) where X = {v̂yl
}θl=1;

3 (π,Zb,Zc, y)←MergeCycle(π,Zb,Zc, y), presented as Algorithm 2;
4 Return (π,Zb,Zc, y);

Algorithm 5: MergeNeighbors(π,Zb, Zc, y)

1 while there is an edge (v̂l, v̂l′) of Zb with |v̂l| ⩾ 2 and |v̂l′ | ⩾ 2 such that v̂l and v̂l′ are
independent of each other do
// the node condition.

2 (v̂y, π,Zb,Zc, y)←Merge(X , π,Zb,Zc, y) where X = {v̂l, v̂l′};
3 (π,Zb,Zc, y)←MergeCycle(π,Zb,Zc, y), presented as Algorithm 2;
4 (π,Zb,Zc, y)←MergePath(π,Zb,Zc, y), presented as Algorithm 4;
5 Return (Zb,Zc, y);

path condition. If "yes", let X = {v̂yi
}θi=1 denote the nodes of the simple path. Then, Algorithm

3 is called with the current X as its input. Afterwards, Algorithm 2 is called here to remove that
type of cycles defined in line 1 of Algorithm 2. In line 11, Algorithm 5 is called where there are
three while-loops. We check whether the loop condition in the outer while loop is satisfied (line 1);
this loop condition is called the node condition. As illustrated by v̂1 and v̂4 in Figure 2(a), if "yes",
let X = {v̂l} ∪ {v̂l′}; then, Algorithm 3 is called with X as its input. Afterwards, Algorithms 2
and 4 are called here to guarantee that those types of cycles and simple paths in the cycle and path
conditions don’t exist in the graph Zb.

The time complexity of algorithm 1 depends on the Bron-Kerbosch algorithm in line 3 and isO(3n/3)
[44]; please see Appendix A.1 for a detailed analysis. In line 1 of Algorithm 2 or 4, any two coalitions
v̂yl

and v̂yl′ are independent (of each other); in line 1 of Algorithm 5, the two coalitions v̂l and v̂l′
are independent. Any two members from such two coalitions respectively will be independent by
Definition 2. In each coalition, all its members are independent. Thus, all members of the merged
v̂y are independent of each other. For any coalition v̂y, the collaboration relationships among its
members are established according to the subgraph Gb(v̂y); thus, we have two conclusions. Firstly,
Principle 2 is realized since for the data usage graph Gu, paths may exist only between two nodes
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in a coalition. Secondly, after the merge operation in line 2 of Algorithm 2 or 4, for any v̂yl
with

|v̂yl
| = 1, it can benefit from its direct predecessor and benefit its direct successor in the cycle or the

simple path, satisfying Eq. (1). As a result, we have the following proposition whose detailed proof
can be found in Appendix A.2.

Proposition 1. Upon completion of Algorithm 1, Principles 1 and 2 are realized.

Upon completion of Algorithm 1, the cycle condition, the path condition, and the node condition
are not satisfied. Then, we have the following two conclusions: (i) when the cycle condition isn’t
satisfied, we have for any coalition v̂yi

with |v̂yi
| = 1 that it can be merged with other coalitions

without violating Principles 1 and 2 if and only if the path condition is satisfied in the graphs Zb

and Zc; and (ii) When both the cycle condition and the path condition aren’t satisfied, we have for
any coalition v̂l with |v̂l| ⩾ 2 that it can be merged with other coalitions without violating Principles
1 and 2 if and only if the node condition is satisfied in the graphs Zb and Zc. The proofs of the
above two conclusions are given in Appendix A.3. With these two conclusions, we further have the
following proposition.

Proposition 2. Upon completion of Algorithm 1, Eq. (2) holds.

5 Evaluation

5.1 Experimental Setup

Datasets & data heterogeneity. We conduct experiments on the CIFAR-10 and CIFAR-100 datasets
with different data heterogeneity settings [23]. Also, we use a real-world dataset eICU [36] to illustrate
the practicality of FedEgoists. Both the CIFAR-10 and CIFAR-100 datasets contain 60,000 color
images for image classification tasks but have different levels of complexity. CIFAR-10 images
have 10 classes with 6,000 images per class, while CIFAR-100 is more complex and has 100 classes
with only 600 images per class. We simulate the data heterogeneity by two typical approaches: (i)
pathological distribution [5, 32, 42, 61], where each FL-PT is randomly allocated 2 classes of images
for CIFAR-10 and 20 classes of images for CIFAR-100, and (ii) Dirichlet distribution [41, 57, 62],
where a distribution vector qc ∈ Rn is drawn from the distribution Dirn(β) for each class c and
FL-PT vi is allocated a qc,i proportion of data samples of class c; smaller β value results in higher
data heterogeneity, and we set β = 0.5. Above, we use standard datasets and randomly divide each
dataset into different parts that are used as the local data of different FL-PTs. We also use a real-world
dataset that contains data directly from multiple different FL-PTs. Specifically, eICU is a dataset
collecting EHRs from many hospitals across the United States admitted to the intensive care unit
(ICU). The task is to predict mortality during hospitalization. More details on the way of processing
these datasets are given in Appendix B.1.

Comparison baselines. FedAvg [32] is widely recognized as a vanilla FL algorithm. Multiple
representative personalized FL (PFL) methods are used as baselines for comparison [41]. FedProx
[25] and SCAFFOLD [21] represent two typical approaches that make the aggregated model at the
CS close to the global optima and are two benchmarks in [24]. In other baseline methods, different
personalized models are trained for individual FL-PTs. pFedHN [38] and pFedMe [40] represent two
approaches based on hypernetworks and meta-learning respectively. FedDisco [58] and pFedGraph
[57] are two approaches based on data complementarity, which are proposed recently. FedOra[48] is
a method that assesses whether a FL-PT’s generalization performance can benefit from knowledge
transferred from others and maximizes it. The last baseline is Local where each FL-PT simply takes
local ML training without collaboration. These traditional FL approaches cannot address the issues of
both self-interest and competition. Thus, we use the operations in lines 1-4 of Algorithm 1 to generate
a set of coalitions, denoted as ∪Hh=1SCCh where SCCh = {Ŝh,1, · · · , Ŝh,yh

}. If |Ŝh,1| ⩾ 2, Ŝh,1
represents a group of independent FL-PTs that can collaborate together following Principles 1 and
2. the above nine FL approaches are applied to each group of such FL-PTs to generate the baseline
results.

Finally, like [5, 26, 42], the hypernetwork technique in [33] is used to compute the benefit graph Gb
and a hypernetwork is constructed by a multilayer perceptron (MLP). The specific way of generating
Gb is introduced in Appendix B.2. The used network structures are introduced in Appendix B.3.
There are n = 10 FL-PTs in the CIFAR-10, CIFAR-100 and eICU experiments.

8



Table 1: Accuracy comparisons (MTA) under different α on CIFAR10.
α LOCAL FEDAVG FEDPROX SCAFFOLD PFEDME PFEDHN FEDDISCO PFEDGRAPH FEDORA FEDEGOISTS

0.05 PAT 80.47±2.06 36.86±3.00 36.62±6.17 36.61±6.18 48.66±6.38 66.53±2.00 36.61±6.18 52.04±8.66 69.73±1.62 81.35±0.30
0.05 Dir 61.59±0.53 44.98±1.91 46.94±2.12 46.76±2.92 44.64±2.61 55.61±0.45 46.74±2.99 46.56±2.55 55.28±0.75 63.06±0.64
0.1 PAT 80.47±2.06 49.40±5.50 48.19±5.17 48.18±5.16 56.56±1.66 66.61±1.62 48.19±5.17 55.35±4.51 68.65±2.02 80.73±1.35
0.1 Dir 61.59±0.53 46.77±1.96 48.71±1.97 48.61±2.02 46.65±2.74 54.21±0.83 48.56±1.99 49.10±3.19 55.97±0.22 62.74±1.09
0.2 PAT 80.47±2.06 63.67±2.10 57.26±1.48 57.24±2.34 79.27±1.35 76.08±2.20 57.25±2.15 60.27±2.33 72.74±1.91 81.30±1.46
0.2 Dir 61.59±0.53 55.69±1.90 53.79±1.07 54.16±0.79 53.64±0.79 61.31±0.56 54.08±1.43 53.85±1.07 55.67±0.96 66.62±1.23
0.3 PAT 80.47±2.06 57.95±2.37 59.82±4.88 59.83±4.87 63.09±3.26 65.11±2.4 59.82±4.88 62.12±4.51 71.51±2.40 81.37±1.41
0.3 Dir 61.59±0.53 50.48±0.87 49.99±1.15 50.09±1.29 49.33±1.94 53.21±0.49 50.17±1.29 50.66±1.59 55.9±1.01 63.39±0.89
0.4 PAT 80.47±2.06 58.47±5.87 63.28±4.54 63.27±4.54 66.36±3.88 67.51±3.04 63.28±4.55 63.30±4.61 72.89±1.67 82.54±0.30
0.4 Dir 61.59±0.53 50.14±2.2 51.20±2.16 51.23±2.09 51.00±0.94 53.04±0.80 51.14±2.09 51.14±2.16 57.26±0.32 62.81±0.88

Table 2: Accuracy comparisons(MTA) under different α on CIFAR100.
α LOCAL FEDAVG FEDPROX SCAFFOLD PFEDME PFEDHN FEDDISCO PFEDGRAPH FEDORA FEDEGOISTS

0.05 PAT 46.24±1.38 34.52±8.65 35.42±1.36 35.47±1.36 35.78±1.72 29.98±1.07 35.42±3.58 36.60±1.15 41.91±0.49 47.00±1.81
0.05 Dir 30.31±0.48 15.33±5.35 19.81±6.54 19.73±6.50 18.71±1.41 18.12±0.92 19.76±6.56 19.76±6.50 27.06±0.26 27.59±1.52
0.1 PAT 46.24±1.38 40.01±0.89 42.57±0.44 42.73±0.44 34.40±4.67 30.17±0.47 42.56±0.45 42.78±0.46 42.63±1.04 46.28±1.05
0.1 Dir 30.31±0.48 20.25±4.93 18.86±5.07 18.80±5.03 20.51±0.98 17.45±0.55 18.87±5.05 18.88±4.95 27.50±0.21 32.01±1.66
0.2 PAT 46.24±1.38 29.68±4.12 28.60±4.56 28.55±4.34 29.90±1.85 28.38±0.71 29.05±4.11 30.51±4.03 41.63±1.65 50.21±2.24
0.2 Dir 30.31±0.48 19.24±1.13 20.10±0.35 20.00±0.48 19.89±0.36 23.11±0.79 19.93±0.38 20.17±0.35 27.24±0.36 32.86±1.53
0.3 PAT 46.24±1.38 40.24±0.55 42.42±0.42 42.57±0.30 44.34±2.16 29.63±0.23 42.42±0.41 42.48±0.48 41.72±1.98 46.38±1.83
0.3 Dir 30.31±0.48 25.56±0.32 27.37±0.17 27.27±0.24 25.28±2.55 17.21±0.17 27.37±0.17 26.18±1.69 27.43±0.20 34.30±0.44
0.4 PAT 46.24±1.38 40.52±0.27 41.63±1.03 41.71±1.05 44.38±1.94 30.18±0.28 41.73±1.03 41.66±1.10 42.94±0.25 48.16±1.61
0.4 Dir 30.31±0.48 24.73±0.97 27.37±0.40 27.31±0.26 26.72±1.89 17.08±0.35 27.37±0.40 27.17±0.42 27.24±0.23 34.15±0.96

5.2 Benchmark Experiments: CIFAR-10 & CIFAR-100

We conduct experiments on CIFAR-10 and CIFAR-100 with competing graphs that are generated
randomly. To simulate competition, the probability of two FL-PTs competing against each other
is set to α, thus generating a random competing graph Gc [42], which constrains the collaboration
between some FL-PTs; here, the probability that two FL-PTs are independent of each other is 1-α.
The value of α determines the intensity of competition among FL-PTs and a larger value reflects a
higher level of competing intensity among FL-PTs.

Firstly, we verify the effect of the competition intensity on the effectiveness of the proposed solution
where we vary the value of α that takes different values in {0.05, 0.1, 0.2, 0.3, 0.4} and conducted
the corresponding experiments. Given a specific value of α, we conducted five trials to show the
average performance. For the l-th trial, a particular competing graph Gc,l is randomly generated with
the given α; then, the experiments for the baseline and proposed approaches are run; the performance
of the proposed approach is denoted as rα,l,p while the performance of the l-th baseline approach
is denoted as rα,l,i, i ∈ {1, 2, · · · , 9}. Given the value of α, we show the average performance
of the five trials (i.e.,

∑5
l=1

rα,l,p

5 and
∑5

l=1
rα,l,i

5 , i ∈ {1, 2, · · · , 9}). The model performance is
measured by the mean test accuracy (MTA), and the experimental results are presented in Tables 1–2
in the form of mean±std; here, PAT and Dir represent the pathological and Dirichlet distributions
respectively. It is observed from Tables 1–2 that on average, FedEgoists achieves a significant
performance improvement when compared with all the baseline approaches. In Appendix B.4.1, we
also illustrate the collaboration relationships among the ten FL-PTs. It is shown that FedEgoists can
facilitate the collaboration among FL-PTs and thus achieves a better performance.

Secondly, we define a metric to evaluate the worst-case performance across the five trials. In each trial,
the nine baseline approaches perform differently. We find an integer l∗ such that under the l∗-th trial,
the baseline approaches achieve the best performance, i.e. l∗ = argmaxl∈[1,5]

(
maxi∈[1,9] rα,l,i

)
where maxi∈[1,9] rα,l,i is the best performance of all the nine baseline approaches in the l-th trial. In
the trial that is the most advantageous to the baseline approaches, maxi∈[1,9] rα,l∗,i − rα,l∗,p is the
performance improvement (or difference) of the best baseline approach to the proposed approach,
which may be negative if the proposed approach achieves a better performance. Upon identifying
l∗, we then detail the performance outcomes of both the proposed and baseline models during
the l∗-th trial. For various values of α, ranging from 0.05 to 0.4, we calculate the performance
difference, maxi∈[1,9] rα,l∗,i − rα,l∗,p. The results for these computations, under each specified α,
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Table 3: The worst-case performance of the proposed approach compared with the baseline ap-
proaches.

0.05 0.1 0.2 0.3 0.4
PAT Dir PAT Dir PAT Dir PAT Dir PAT Dir

CIFAR10 0.011000 -0.002903 0.022900 -0.000624 0.025800 -0.0006030 0.028800 -0.005725 -0.002399 -0.000100
CIFAR100 -0.000999 0.076002 0.011400 -0.000008 -0.000636 -0.0009356 -0.000020 -0.032153 -0.000699 -0.027078

Table 4: eICU
AUC LOCAL FEDAVG FEDPROX SCAFFOLD pFEDME pFEDHN FEDDISCO pFEDGRAPH FEDORA FedEgoists
v0 53.64±22.12 63.52±22.40 80.42±9.85 80.24±9.92 52.30±19.79 41.94±19.14 60.48±13.07 80.42±9.85 90.36±2.26 66.36±19.28
v1 67.94±6.88 62.55±16.49 57.03±16.62 57.21±16.68 46.00±34.96 76.61±14.77 63.76±14.97 59.62±7.49 81.52±16.91 81.58±6.65
v2 37.33±17.74 76.48±12.70 60.13±6.77 60.38±6.64 36.48±27.59 79.62±16.18 92.70±4.60 57.32±8.17 47.56±9.62 66.04±33.21
v3 79.88±21.16 67.04±26.74 78.74±15.66 78.87±15.44 45.79±32.04 55.35±26.55 80.38±18.24 78.69±7.48 75.12±7.85 84.40±5.76
v4 52.48±11.61 73.46±15.58 73.63±9.74 75.75±11.07 57.07±23.12 48.75±22.68 70.15±9.96 49.61±5.31 48.95±6.80 75.84±11.26
v5 39.45±9.06 57.09±7.46 61.94±9.13 61.70±9.12 55.15±24.92 52.55±25.12 53.03±9.73 89.37±7.71 77.72±8.24 68.41±5.60
v6 68.00±32.62 77.61±5.87 79.62±7.62 78.74±7.81 57.23±32.51 42.01±16.65 82.26±6.41 98.80±0.76 98.55±1.18 56.86±7.52
v7 73.36±7.08 71.80±9.52 73.55±10.48 73.59±10.17 56.60±7.56 51.21±5.01 68.45±10.98 76.82±11.07 75.53±5.94 77.97±14.94
v8 36.24±22.56 73.55±2.70 77.47±3.80 77.43±3.66 61.22±10.49 46.71±16.08 65.05±3.41 69.16±3.12 72.26±12.01 90.60±10.57
v9 71.70±10.64 63.14±9.42 63.82±9.32 63.79±9.36 42.97±12.63 45.42±17.42 63.24±10.63 60.76±10.12 58.55±7.62 79.88±8.29
Avg 58.01 68.62 70.66 70.77 51.08 54.02 69.95 72.06 72.61 74.79

are systematically presented in Table 3, which shows that in the worst case, the proposed FedEgoists
has a performance very close to the best performance of all the baseline approaches.

Finally, we also conduct experiments to show the effect of data heterogeneity and the related results
can be found in Appendix B.4.2.

5.3 Real-world Collaboration Example: eICU

Following the setting in [5, 42], there are ten hospitals in total, with {vi}4i=0 as large hospitals and
{vi}9i=5 as small hospitals. Due to the extreme imbalance of data labels, where over 90% are negative
labels, we use the AUC scores to evaluate the performance of the trained model. Suppose there are
more than one large hospital located in the same city while small hospitals are dispersed in different
rural areas with lower population densities; competition mainly occurs among large hospitals. We
posit that competitive relationships exist between the following pairs of FL-PTs: (v1, v4), (v2, v3),
and (v2, v4). Table 4 presents our experimental results. In Appendix B.5, we also illustrate the
collaboration relationships among the 10 FL-PTs. In the naive baseline methods, the formed coalitions
are {v0, v3, v4}, {v1, v2} and {v5, v6, · · · , v9}. In the proposed method, larger coalitions are formed
so that their members can benefit from more FL-PTs in the same coalition; the formed coalitions are
{v0, v3, v4, · · · , v9} and {v1, v2}. Thus, FedEgoists can facilitate the collaboration among FL-PTs.
In Table 4, it is observed that FedEgoists achieves a better performance on the whole.

In addition to CIFAR-10, CIFAR-100 and eICU, we also conduct experiments on the synthetic data
like [42] and the related settings and results are presented in Appendix B.6.

6 Conclusions

In this paper, we consider cross-silos FL where organizations in the business sector that engage in
business activities are key sources of FL-PTs. The resulting FL ecosystem has two features: (i)
self-interest and (ii) competition among FL-PTs. Correspondingly, two principles are proposed to
build a sustainable FL ecosystem: (1) a FL-PT can benefit from the FL ecosystem if and only if it
can benefit the FL ecosystem, and (2) a FL-PT will not contribute to its competitors as well as the
supporters of its competitors. The Fl ecosystem needs to be tailored to realize these principles. In this
paper, we propose an efficient solution that can well realize the two principles above. In the meantime,
for any two coalitions without competition that can collaborate together, one coalition cannot increase
its utility by collaborating with the other coalition. Extensive experiments over real-world datasets
have demonstrated the effectiveness of the proposed solution compared to nine baseline methods, and
its ability to establish efficient collaborative networks in cross-silos FL with FL-PTs that engage in
business activities.
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A Theoretical Analysis

A.1 The Time Complexity of Algorithm 1

Now, we analyze the time complexity of Algorithm 1. Firstly, the construction of Gc in line 2 involves
two nested for loops, resulting in a complexity of O(n2). In line 3, the Bron-Kerbosch algorithm is
used, which has a time complexity of O(3n/3) [44]. In lines 4-5, there is a for-loop; each iteration,
the Tarjan’s algorithm is executed on Gb(Ŝh) with a time complexity of O(mh + eh) [43], where mh

is the number of nodes in Gb(Ŝh) and eh denotes the number of its edges; thus, the aggregate time
complexity is O(n+ |Eb|). The time complexity of forming a union of sets π in line 6 is O(Y ). The
construction of Zb and Zc in line 7 involves two nested loops to check the existence of edges between
different node sets; at each iteration, the time complexity is O(|v̂y||v̂y′ |) where y, y′ ∈ [1, Y ]; the
total time complexity in line 7 is O(Y 2n2) where |v̂y| ⩽ n.

Initially, there are Y elements in the set π = {v̂1, v̂2, · · · , v̂Y } where Y ⩽ n. π is the node sets of
Zb and Zc. In lines 9, 10 and 11 of Algorithm 1, Algorithms 2, 4 and 5 are sequentially called. In
each of Algorithms 2, 4 and 5, there is at least one while loop and the loop conditions are about the
features of a cycle, a simple path or two neighboring nodes in the graph Zb. At each iteration of these
while loops, at least two nodes will be merged into a new node v̂y with multiple nodes of π removed.
So, there are a total of at most Y − 1 iterations in all these while loops and we always have |π| ⩽ n;
afterwards, Algorithm 1 ends.

In Algorithms 2, 4 and 5, Algorithm 3 is called. The time complexity of line 1 in Algorithm 3
is O(|X |). In lines 2-4, Zb and Zc are reconstructed and the complexity is O(d|X |), where d is
the maximum of the in-degrees and out-degrees of all nodes of X in the graphs Zb and Zc and is
upperly bounded by |π|, which is no larger than n. To sum up, the total complexity of Algorithm 3 is
O(n|X |) ⩽ O(n2).

In Algorithm 2, there is a while loop. In line 1, all cycles can be found by the Johnson’s algorithm [19],
which is implemented in a Python library and has a time complexity of O ((|π|+ E(Zb))(c+ 1)) ⩽
O ((n+ E(Zb))(c+ 1)) where E(Zb) denotes the number of edges in the graph Zb and c denotes
an upper bound of the total number of cycles discovered. For each cycle, we check whether
any two of its nodes are competitive, which has a time complexity O(|π|2) ⩽ O(n2); in the
meantime, we check whether there is a node v̂yi in this cycle with |v̂yi | = 1, which has a time
complexity O(|π|) ⩽ O(n). So, the time complexity of checking the cycle condition in line 1 is
O ((n+ E(Zb))(c+ 1)) + O(cn2) = O

(
(n2 + E(Zb))(c+ 1)

)
. At each iteration of the while

loop (line 2), Algorithm 3 is called and the time complexity of Algorithm 3 is O(n2). The number
of iterations is upperly bounded by n. Thus, the complexity of Algorithm 2 is no larger than
O
(
n(n2 + E(Zb))(c+ 1)

)
= O(f1(n,E(Zb), c)) where

f1(n,E(Zb), c) = n(n2 + E(Zb))(c+ 1). (3)

In Algorithm 4, there is an outer while loop. In line 1, for any two nodes v̂y1
and v̂yθ

, we check
whether they are such that |v̂y1

| ⩾ 2 and |v̂yθ
| ⩾ 2, which has time complexity of O(|π|2) ⩽ O(n2).

For each pair of v̂y1
and v̂yθ

with |v̂y1
| ⩾ 2 and |v̂yθ

| ⩾ 2, we can use the modified DFS algorithm
to find all the simple paths from v̂y1 to v̂yθ

[8]. This algorithm is implemented in a Python library
and has a time complexity of O((|π|+ E(Zb))τ) ⩽ O((n+ E(Zb))τ) where τ denotes an upper
bound of the total number of simple paths between two nodes. For each path, we check whether
any two of its nodes are competitive, which has a time complexity O(|π|2) ⩽ O(n2); in the
meantime, we check whether there is a node v̂yi

in this path with |v̂yi
| = 1, which has a time

complexity O(|π|) ⩽ O(n). So, the time complexity of checking the path condition in line 1 is
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O((n+ E(Zb))τ) +O(τn2) = O
(
(n2 + E(Zb))τ

)
= O(f2(n,E(Zb), τ)) where

f2(n,E(Zb), τ) = (n2 + E(Zb))τ. (4)

At each iteration of the while loop, the operations in lines 2-3 are executed. In line 2, Algorithm 3
is called and the time complexity of Algorithm 3 is O(n2). In line 3, Algorithm 2 is called with a
time complexity O (f1(n,E(Zb), c)). The number of iterations is upperly bounded by n. Thus, the
complexity of Algorithm 4 is O (n(f1(n,E(Zb), c) + f2(n,E(Zb), τ))).

In Algorithm 5, the time complexity of checking the node condition in line 1 has a time complexity
of O(E(Zb)). At each iteration, the operations in lines 2-4 are executed. In lines 2-4, Algorithms 3,
2 and 4 are called sequentially. As analyzed above, these operations have a time complexity no larger
than O (n(f1(n,E(Zb), c) + f2(n,E(Zb), τ))). The number of iterations is upperly bounded by n.
Thus, the complexity of Algorithm 5 is no larger than O

(
n2(f1(n,E(Zb), c) + f2(n,E(Zb), τ))

)
.

To sum up, since a complete graph of n nodes has a total of n(n−1) that is an upper bound of E(Zb),
where π is the node set of Zb and |π| ⩽ n. Further, we have

f1(n,E(Zb), c) ⩽ n3(c+ 1) (5)

f2(n,E(Zb), τ) = n3τ. (6)

The worst-case time complexity of the operations in lines 9-11 depends on Algorithm 5 and is no
larger than

O
(
n2(f1(n,E(Zb), c) + f2(n,E(Zb), τ))

)
≤ O

(
n5(τ + c+ 1)

)
. (7)

Finally, if c and τ can be upperly bounded by constants, then the time complexity of Algorithm 1
depends on the Bron-Kerbosch algorithm in line 3 and is O(3n/3). We note that this paper studies
cross-silo FL in business sectors where there are typically a limited number of FL-PTs (e.g., 2 to 100)
[16, 27, 49].

A.2 Proof of Proposition 1

A graph G is said to be strongly connected if it contains a directed path from vi to vj and a directed
path from vj to vi for every pair of nodes vi and vj of G. Specially, a graph that contains only a single
node is said to be strongly connected trivially.
Lemma 1. Principle 1 is realized when Eq. (1) is satisfied.

Proof. Only the FL-PTs in the same coalition may collaborate. For any FL-PT vi ∈ V , there exists a
coalition Sk ∈ π such that vi ∈ Sk. When |Sk| = 1, the only FL-PT vi neither receives nor provides
benefits to any other FL-PT, thereby satisfying Principle 1 trivially. When |Sk| ⩾ 2, vi engages in a
reciprocal exchange of benefits with the other members of Sk − {vi}, which is guaranteed by Eq. (1).
Thus, vi both contributes to and benefits from other members and Principle 1 is satisfied. ■

Lemma 2. Upon completion of lines 1-6 of Algorithm 1, we have for any v̂l ∈ π with |v̂l| ⩾ 2 that
(i) all FL-PTs of the coalition v̂l are independent of each other and (ii) Eq. (1) holds for any FL-PT
vi ∈ v̂l.

Proof. At line 3, we obtain all maximal cliques of the inverse of Gc, denoted as π̂ =
{
Ŝ1, · · · , ŜH

}
.

The nodes of Ŝh are independent of each other. At line 5, all the strongly connected components of
Gb
(
Ŝh
)

are computed, and the node sets of the components of Gb
(
Ŝh
)

are denoted as SCCh ={
Ŝh,1, · · · , Ŝh,yh

}
where Ŝh =

⋃yh

l=1 Ŝh,l. Thus, the FL-PTs of each Ŝh,l are still independent of

each other. In line 6, π = {v̂1, v̂2, · · · , v̂Y } =
H⋃

h=1

SCCh where Y =
∑H

h=1 yh. Thus, the first point

of Lemma 2 holds. The subgraph Gb(v̂l) is strongly connected. If |v̂l| ⩾ 2, we have for any node
vi ∈ v̂l that there are nodes of v̂l that can be reachable to and from vi. Thus, the second point of
Lemma 2 holds. ■

In lines 7-11, some coalitions of {v̂1, v̂2, · · · , v̂Y } may be merged as a larger coalition by Algorithm
3, which occurs in lines 9, 10 and 11 of Algorithm 1 where Algorithms 2, 4 and 5 are called,
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respectively; Algorithm 2 is also called in Algorithm 4; Algorithms 2 and 4 are called sequentially
in Algorithm 5. The merge operation occurs (i.e., Algorithm 3 is executed) if the cycle condition,
the path condition and the node condition are satisfied in Algorithms 2, 4 and 5 respectively. Upon
each completion of Algorithm 3, π is updated: some coalitions will be merged into a new coalition
v̂y that is further added to π, and then be removed from π. Like Lemma 2, we still have the following
conclusion.

Lemma 3. At the beginning of each execution of Algorithm 3, suppose we have for any v̂l ∈ π with
|v̂l| ⩾ 2 that (i) all FL-PTs of the coalition v̂l are independent of each other and (ii) Eq. (1) holds for
any FL-PT vi ∈ v̂l. Then, upon each completion of Algorithm 3, we still have for any v̂l ∈ π with
|v̂l| ⩾ 2 that (i) all FL-PTs of the coalition v̂l are independent of each other and (ii) Eq. (1) holds for
any FL-PT vi ∈ v̂l.

Proof. Algorithm 3 is called if the cycle condition, the path condition and the node condition are
satisfied in Algorithms 2, 4 and 5 respectively.

In line 1 of Algorithms 2 or 4, any two coalitions v̂yl
and v̂yl′ are independent of each other; by

Definition 2, any two members from v̂yl
and v̂yl′ respectively are independent of each other. In the

meantime, for any v̂yl
∈ π, any two members of v̂yl

are independent of each other. Thus, upon
completion of the merge operation in line 2 of Algorithms 2 or 4, v̂y1

, v̂y2
, · · · , v̂yθ

are merged into a
new coalition v̂y , and all FL-PTs of v̂y are independent of each other. This completes the proof of the
first point of Lemma 3 when it comes to Algorithms 2 and 4.

Similarly, in line 1 of Algorithm 5, any two members from v̂l and v̂l′ respectively are independent of
each other. In the meantime, for any v̂yl

∈ π, any two members of v̂yl
are independent of each other.

Thus, upon completion of the merge operation in line 2 of Algorithm 5, v̂l and v̂l′ are merged into a
new coalition v̂y , and all FL-PTs of v̂y are independent of each other. This completes the proof of the
first point of Lemma 3 when it comes to Algorithm 5.

The collaboration relationships among the members of v̂y are established exactly according to the
subgraph Gb(v̂y). In line 1 of Algorithms 2 or 4, for any l ∈ [1, θ], if |v̂yl

| ⩾ 2, the members of v̂yl

already satisfy Eq. (1). Let us consider any two nodes v̂l and v̂l′ in the graph Zb. By Definition 2, if
there is an edge from v̂l to v̂l′ in the graph Zb, then there is a node of v̂l′ that benefits from a node of
v̂l in the benefit graph Gb. If |v̂yl

| = 1, the single node in v̂yl
will benefit its direct successor in the

cycle (resp. the simple path) and benefit from its direct predecessor in this cycle (resp. the simple
path); thus the node of v̂yl

also satisfies Eq. (1). This completes the proof of the second point of
Lemma 3 when it comes to Algorithms 2 and 4. In line 1 of Algorithm 5, since |v̂l| ⩾ 2 and |v̂l′ | ⩾ 2,
the members of v̂l and v̂l′ already satisfy Eq. (1). This completes the proof of the second point of
Lemma 3 when it comes to Algorithm 5. ■

Finally, by Lemma 2, we have the following conclusion holds upon completion of lines 1-6 of
Algorithm 1: for any v̂l ∈ π with |v̂l| ⩾ 2, (i) all FL-PTs of the coalition v̂l are independent of
each other and (ii) Eq. (1) holds for any FL-PT vi ∈ v̂l. Afterwards, Algorithm 3 may be executed
multiple times by the call by Algorithms 2, 4 and 5; upon each completion of Algorithm 3, π is
updated such that some of its coalitions are removed from π and merged into a larger one that is
added to π. By Lemma 3, upon completion of Algorithm 1, the conclusion above still holds. Since
Eq. (1) holds, Principle 1 is realized by Lemma 1. For any v̂l ∈ π, the collaboration relationships
among the members of a coalition v̂l are established exactly according to the subgraph Gb(v̂l). Each
FL-PT vi of a coalition only collaborate with other FL-PTs within the same coalition, The data usage
graph Gu in fact consists of multiple separated subgraphs Gb(v̂l), i.e., Gu = {Gb(v̂l) | v̂l ∈ π}. In the
graph Gu, paths may exist only between two FL-PTs of the same coalition, and any two FL-PTs in
the same coalition are independent of each other. Thus, Principle 2 is realized.

A.3 Proof of Proposition 2

After finishing the operations in line 9 of Algorithm 1, the loop condition in line 1 of Algorithm
2 (i.e., the cycle condition) is not satisfied. The execution in line 10 of Algorithm 1 starts. Before
executing the first iteration of the while loop of Algorithm 4, if the loop condition (i.e., the path
condition) is not satisfied, then Algorithm 4 ends with both the cycle condition and the path condition
violated. If Algorithm 4 ends after executing several iterations, then the cycle condition (line 3) and
the path condition (line 1) are both violated.
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Subject to Principles 1 and 2, no coalitions of π (i.e., no subset π′ of π) can collaborate together and
be merged into a larger coalition with a higher utility; in other words, after merging these coalitions
into a larger one, no FL-PTs in these coalitions π′ increase their utilities under the larger coalition.
Formally, like what we define in Section 3.3, let

Π =

π′ ⊆ π |
∑

v̂yi∈π′

u(v̂yi
) < u

 ⋃
v̂yi∈π′

v̂yi

 , Principles 1 and 2 are satisfied by
⋃

v̂yi∈π′

v̂yi

 .

Given a graph Zb where the cycle and path conditions are not satisfied, we have the following
conclusion.

Lemma 4. Suppose the graph Zb is a graph without any such cycle that (i) the nodes of this cycle
are all independent of each other and (ii) there exists a node v̂k in this cycle with |v̂k| = 1. Let us
consider an arbitrary node v̂yi

of Zb with |v̂yi
| = 1; each node v̂yi

also represents a coalition; then,
we have

• The coalition v̂yi
can benefit or benefit from other coalitions by being merged with them without

violating Principles 1 and 2 (i.e., there exists a non-empty π′ ∈ Π such that v̂yi ∈ π′) if and only
if there exists a path (v̂y1 , · · · , v̂yi , · · · , v̂yθ

) in the graph Zb with v̂y1 ⩾ 2 and v̂yθ
⩾ 2 and the

nodes of this path are independent of each other.

Proof. Firstly, we prove the "only if" direction by contradiction. For a coalition v̂yi that contains only
one FL-PT/node, it can collaborate with other coalitions without violating Principle 1 only if there
are two other coalitions v̂yi−1 and v̂yi+1 that can both benefit and benefit from it; by Definition 2,
in the case that v̂yi−1

and v̂yi+1
denote the same coalition, there is a cycle in the graph Zb between

v̂yi
and v̂yi−1

where v̂yi−1
= v̂yi+1

. Suppose there are some coalitions that can collaborate with
v̂yi

without violating Principles 1 and 2 (i.e., there exists a non-empty π′ ∈ Π such that v̂yi
∈ π′);

correspondingly, in the graphZb, there will be a path of the form (v̂y1
, · · · , v̂yi−1

, v̂yi
, v̂yi+1

, · · · , v̂yθ
)

in which a coalition will benefit its successor; the nodes of this path are also independent of each
other according to the graph Zc in order to be able to collaborate together without violating Principle
2. Then, this path is simple and not a cycle (i.e., v̂y1

̸= v̂yθ
); otherwise, it is a cycle that has two

nodes that compete against each other. In this path, all intermediate nodes can both benefit and benefit
from other nodes. Each of v̂y1 and v̂yθ

also represents a coalition and should contain at least two
nodes of V; then, each node in v̂y1 and v̂yθ

already satisfies Eq. (1), thus maintaining Principle 1.
Otherwise, if |v̂y1 | = 1, then the single node of v̂y1 cannot benefit from others; if |v̂yθ

| = 1, then the
single node of v̂yθ

cannot benefit others. These two cases violate Principle 1. This completes the
proof of the "only if" direction.

Secondly, we prove the "if" direction. If there exists a path (v̂y1 , · · · , v̂yi , · · · , v̂yθ
) in the graph

Zb with |v̂y1 | ⩾ 2 and |v̂yθ
| ⩾ 2 and the nodes of this path are independent of each other, then the

coalitions that these nodes in the paths represent can be merged into a new subset v̂y of nodes of V;
doing so doesn’t violate Principle 2, i.e., the edge set of Gc(v̂y) is empty. As shown above, each node
in v̂y1

and v̂yθ
already satisfies Eq. (1) since any two nodes of Gb(v̂1) or Gb(v̂θ) are connected. Also,

in the graph Zb, any intermediate node can both benefit and benefit from other nodes in this path
without violating Principle 1. Finally, let π′ = {v̂y1

, · · · , v̂yi
, · · · , v̂yθ

}. For any l ∈ [2, θ], there
exists at least one FL-PT vi of v̂yl

that can benefit from some FL-PT in v̂yl
, which is denoted as

vj by Definition 2. Before merging the coalitions of π′, the FL-PT vi of a coalition v̂yl
∈ π′ only

collaborates with the other FL-PTs with the same coalition v̂yl
and the collaboration relationship is

established according to Gb(v̂yl
). Let v̂y =

⋃
v̂yi∈π′ v̂yi

. After merging the coalitions of π′ into a
larger coalition v̂y, FL-PT vi can additionally benefit from FL-PT vj , i.e., ui(v̂yl

) < ui(v̂y); in the
subgraph Gb(v̂y), vi can benefit from all FL-PTs of v̂y such that they point to vi by directed edges.
This completes the proof of the "if" direction. ■

After finishing the operations in line 10 of Algorithm 1, the cycle condition and the path condition
cannot be satisfied. Then, the execution in line 11 of Algorithm 1 starts. Before executing the first
iteration of the while loop of Algorithm 5, if the loop condition (i.e., the node condition) is not
satisfied, then Algorithm 5 ends with the cycle, path and node conditions violated. If Algorithm 5
ends after executing several iterations, then the cycle and path conditions (lines 3-4) and the node
condition (line 1) are violated.
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Subject to Principles 1 and 2, no coalitions of π (i.e., no subset π′ of π) can collaborate together and
be merged into a larger coalition with a higher utility; in other words, after merging these coalitions
into a larger one, no FL-PTs in these coalitions π′ increase their utilities under the larger coalition.
Formally, like what we define in Section 3.3, let

Π =

{
π′ ⊆ π |

∑
v̂l∈π′

u(v̂l) < u

( ⋃
v̂l∈π′

v̂l

)
, Principles 1 and 2 are satisfied by

⋃
v̂l∈π′

v̂l

}
.

Given a graph Zb where the cycle, path and node conditions are not satisfied, we have the following
conclusion.
Lemma 5. Suppose the graph Zb is a graph without any such path that (i) the nodes of this path
are all independent of each other and (ii) this path is either a cycle in which there exists a node v̂y
with |v̂y| = 1, or a simple path of the form (v̂y1

, · · · , v̂yi
, · · · , v̂yθ

) with |v̂yi
| = 1, |v̂y1

| ⩾ 2 and
|v̂yθ
| ⩾ 2. Let us consider an arbitrary node v̂l of Zb with |v̂l| ⩾ 2; each node v̂l also represents a

coalition; then, we have

• The coalition v̂l can benefit or benefit from other coalitions by being merged with them without
violating Principles 1 and 2 (i.e., there exists a non-empty π′ ∈ Π such that v̂l ∈ π′) if and only
if there exists another node v̂l′ with |v̂l′ | ⩾ 2 that connects v̂l by an edge in the graph Zb and
the two nodes v̂l and v̂l′ are independent of each other.

Proof. Firstly, we prove the "if" direction. If there exists another node v̂l′ with |v̂l′ | ⩾ 2 that connects
v̂l by an edge in the graph Zb and the two nodes v̂l and v̂l′ are independent of each other, then the
coalitions that these two nodes in Zb represent can be merged into a new subset v̂y of nodes of V;
doing so doesn’t violate Principle 2 by Definition 2. Each FL-PT in v̂l and v̂l′ already satisfies Eq. (1)
since any two FL-PTs of Gb(v̂l) or Gb(v̂l′) are connected. Thus, any node in the merged set v̂y still
satisfies Principle 1. Finally we have π′ = {v̂l, v̂l′}. This completes the proof of the "if" direction.

Secondly, we prove the "only if" direction. For a coalition v̂yi
that contains only one FL-PT/node, it

can collaborate with other coalitions without violating Principle 1 only if there are two other coalitions
v̂yi−1

and v̂yi+1
that can both benefit and benefit from it. Suppose there are some coalitions that

collaborate with v̂yi
without violating Principles 1 and 2 (i.e., there exists a non-empty π′ ∈ Π such

that v̂l ∈ π′); correspondingly, in the graph Zb, there will be a path of the form (v̂y1
, v̂y2

, · · · , v̂yi
),

(v̂yi , v̂yi+1 , · · · , v̂yθ
), or (v̂y1 , · · · , v̂yi−1 , v̂yi , v̂yi+1 , · · · , v̂yθ

) in which a coalition will benefit its
successor; the nodes of this path are also independent of each other according to the graph Zc in
order to be able to collaborate together without violating Principle 2. Then, by the assumptions in
Lemma 5, this path is a simple path in which there doesn’t a node such that (i) the coalition that it
represents contains only one node of V and (ii) there don’t exist one of its upstream nodes and one of
its downstream nodes whose corresponding coalitions both contain at least two nodes V . This means
that the coalitions that the nodes of this path represent all contain at least nodes. This completes the
proof of the "only if" direction. ■

As shown above, upon completion of Algorithm 1, the cycle, path and node conditions are not
satisfied in the graph Zb. Firstly, by Lemma 4, for arbitrary multiple coalitions in which there is
at least one coalition that contains only one FL-PT, they cannot be merged into a larger coalition
without violating Principles 1 and 2. Secondly, by Lemma 5, for arbitrary multiple coalitions each
of which has at least two FL-PTs, they cannot be merged into a larger coalition without violating
Principles 1 and 2. Thus, Proposition 2 holds.

B More Experimental Details

B.1 Data Processing

CIFAR-10 & CIFAR-100. In both CIFAR-10 and CIFAR-100, there are a total of 50,000 images
for training and 10,000 images for testing. In CIFAR-10, each class has 5000 training images and
1000 testing images. In CIFAR-100, each class has 500 training images and 100 testing images. In
both the CIFAR-10 and CIFAR-100 experiments, we split the data into 10 FL-PTs, and the training
data for each FL-PT is divided into a training set (90%) and a validation set (10%). The label
distribution of CIFAR-10 is illustrated in Figure 3. In Figure 3, the label distribution across different
FL-PTs/FL-PTs indicates that there is a significant variance in the total number of samples per FL-PT,
and the data is imbalanced. Similarly, the label distribution of CIFAR-100 is illustrated in Figure 4.
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Figure 3: Label distribution of CIFAR-10. Colors indicate the labels for each FL-PT/FL-PT.
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Figure 4: Label distribution of CIFAR-100. Colors indicate the labels for each FL-PT/FL-PT.

eICU. We process the eICU dataset following the data pre-processing steps in [18, 30], finally
generating JSON files that include hospital identifiers. We divided the training, validation, and testing
sets in a ratio of 7:1.5:1.5, with each hospital being treated as an independent FL-PT. We chose a
binary classification task using the eICU database, aiming to predict patient mortality within 48 hours
of ICU admission(mort_48h) based on the initial data provided.

B.2 The Hypernetwork Technique for Generating the Benefit Graph Gb

The local model information is mainly leveraged in the calculation of Gb. Specifically, there are n
FL-PTs. Each FL-PT vi has a risk/loss function ℓi: Rn → R+. Given a learned hypothesis h ∈ H,
let the loss vector ℓ(h) = [ℓ1, . . . , ℓn] represent the utility loss of the n FL-PTs under the hypothesis
h. The hypothesis h is considered a Pareto solution if there is no other hypothesis h′ that dominates
h, i.e.,

∄h′ ∈ H, s. t. ∀i : ℓi(h′) ⩽ ℓi(h) and ∃j : ℓj(h′) < ℓj(h). (8)

Let r = (r1, . . . , rn) ∈ Rn denote a preference vector which denotes the weight of the objective local
model loss that is normalized with

∑n
k=1 rk = 1 and rk ≥ 0,∀k ∈ {1, . . . , n}. The hypernetwork

HN takes r as input and outputs a Pareto solution h, i.e.,

h← HN(ϕ, r), (9)

where ϕ denotes the parameters of the hypernetwork [23]. For each FL-PT vi, linear scalarization
can be used. Like [5,30], an optimal preference vector r∗i =

(
r∗i,1, r

∗
i,2, . . . , r

∗
i,n

)
is determined to

generate the hypothesis h∗
i that minimizes the loss with the data D̂i. This is expressed as

h∗
i = HN(ϕ, r∗i ) where r∗i = argminrL̂i(HN(ϕ, r)). (10)
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Figure 5: Illustration of Coalitions under CIFAR-100

For each FL-PT i, the value of r∗i,j is used as an estimate to the weight of vj to vi [5, 26]. {r∗i }ni=1
defines a directed weighted graph, i.e., the benefit graph Gb.

B.3 Architecture Details

The network architectures used in different datasets are introduced below [5, 14, 15, 30, 34, 42].

B.3.1 CIFAR-10 & CIFAR-100

When it comes to a specific dataset, all approaches have the same network structure for each FL-PT
to execute the learning tasks.

Hypernetwork. We construct a hypernetwork that employs a 2-layer hidden MLP to generate the
parameters of the target network.

CIFAR-10. The target network passes through two convolutional layers, each followed by a 2× 2
max pooling layer. Afterward, the data is flattened and further processed through two fully connected
layers, each followed by a LeakyReLU activation function, finally yielding the prediction results.

CIFAR-100. Initially, the input data passes through two convolutional layers, activated by ReLU
and each followed by a 2x2 max pooling layer to reduce spatial dimensions and highlight important
features. After these convolutional and pooling layers, the data is flattened to prepare for dense
processing. Subsequently, it is fed into two fully connected layers, each incorporating a ReLU
activation function to add non-linearity and improve learning capabilities. The output is finally
produced by a linear layer.

B.3.2 eICU

We employ a single-layer MLP hypernetwork, while the target network utilizes a Transformer
classifier [46] with Layer Normalization [2].
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Table 5: Accuracy comparisons under different β of Dirichlet distribution
CIFAR-10 CIFAR-100

β 0.01 0.1 0.5 0.01 0.1 0.5
LOCAL 86.75 ± 0.10 78.58 ± 0.80 58.14 ± 1.73 58.89 ± 1.30 47.23 ± 0.48 30.92 ± 0.25
FEDAVE 85.22 ± 0.74 69.68 ± 3.24 52.25 ± 1.10 50.13 ± 1.74 40.05 ± 2.11 19.85 ± 1.33
FEDPROX 85.85 ± 0.97 70.17 ± 1.50 50.35 ± 1.29 55.25 ± 1.69 42.38 ± 2.04 20.71 ± 0.57
SCAFFOLD 85.48 ± 0.79 70.11 ± 1.50 50.72 ± 0.99 55.37 ± 1.89 42.40 ± 2.12 20.61 ± 0.60
PFEDME 86.07 ± 7.34 70.90 ± 1.69 50.20 ± 0.99 53.67 ± 4.07 45.72 ± 0.89 20.50 ± 0.58
PFEDHN 85.57 ± 1.65 76.95 ± 0.56 57.87 ± 0.78 47.60 ± 0.48 33.73 ± 0.31 23.72 ± 0.91
FEDDISCO 85.52 ± 0.82 70.21 ± 1.60 50.64 ± 1.65 55.25 ± 1.68 42.38 ± 2.02 20.54 ± 0.50
PFEDGRAPH 85.86 ± 0.97 70.60 ± 1.82 50.41 ± 1.29 55.24 ± 1.86 42.56 ± 2.00 20.78 ± 0.57
FEDORA 86.66 ± 0.07 75.22 ± 2.07 55.67 ± 0.96 55.70 ± 0.61 43.72 ± 0.79 26.78 ± 1.06
FEDEGOISTS 86.91 ± 0.07 78.03 ± 1.54 63.18 ± 1.45 58.06 ± 1.19 47.72 ± 3.90 33.47 ± 1.75

B.4 More Experiments on CIFAR-10 & CIFAR-100

B.4.1 Illustrating the Collaboration Relationships in the Benchmark Experiments

Now, we give a representative example to illustrate the collaboration relationships among the 10 FL-
PTs and present more details on the experimental results. The experiments are taken with CIFAR-100
under the Dirichlet distribution setting. The competing relationships exist in the following pairs of
two nodes: (v0, v3),(v1, v9), (v2, v7), (v3, v4),(v3, v7), (v4, v6), (v4, v8), (v5, v7), and (v5, v8). This
is illustrated in Figure 5(a). The final collaboration relationships among FL-PTs are illustrated in
Figure 5: Figure 5(b) illustrates the results for FedEgoists while Figure 5(c) illustrates the results
for the baseline methods. As shown, FedEgoists can facilitate the collaboration among FL-PTs and
thus achieves a better performance.

B.4.2 The Effect of Data Heterogeneity

Data heterogeneity is typically simulated by a pathological or Dirichlet distribution. For example, the
pathological distribution is used in [5, 42]. In this paper, we conducted experiments on pathological
and Dirichlet distributions respectively. In addition, We also verify the effect of the data heterogeneity
level on the effectiveness of the proposed solution. Specifically, let m denote the number of classes.
In Dirichlet distribution, there is a distribution vector qc ∈ Rm is drawn from the Dirichlet distribution
Dirm(β) for each class c and FL-PT vi is allocated a qc,i proportion of data samples of class c;
smaller β value results in higher data heterogeneity. We vary the value of β that takes different values
in {0.01, 0.1, 0.5} and conducted the corresponding experiments. The related experimental results
are presented in Table 5. It is observed that, in some cases of high data heterogeneity, FedEgoists
achieves a performance close to the Local approach; overall, FedEgoists performs the best when it
is compared to the baseline approaches.

B.5 Real-world Collaboration Example

Figure 6(a) illustrates the generated benefit graph Gb. Figure 6(b) illustrates the final set π of coalitions
returned by Algorithm 1 while Figure 6(c) illustrates the final set π of coalitions of the baseline
methods. Still, it is observed that, FedEgoists can facilitate the collaboration among FL-PTs and
thus achieves a better performance.

B.6 Synthetic Data

We present our experimental results with synthetic data across different scenarios with fixed competing
graphs like [42]. There are n = 8 FL-PTs. The synthetic data are generated by x ∼ U [−1.0, 1.0].
The noise ϵ ∼ N [0.0, 0.52] is added to each label. Given the FL-PT vi, the grand truth weights
ui,l = v + ri,l are sampled as v ∼ U [0.0, 1.0] and ri,l ∼ N [0.0, ρ2] where l = 1, 2, 3; ρ2 measures
the data distribution discrepancy among FL-PTs. We set ρ = 0.01, which means that the generated
data are weakly non-iid in terms of sample features and labels. We construct the hypernetwork using a
1-layer MLP for training the Pareto Front of all objectives. The target network consists of a two-layer
linear network. After the first linear layer, a Leaky ReLU activation function is applied.
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Figure 6: Real-world Collaboration Example

Weakly Non-IID setting. The same regression task is learned by all FL-PTs and the synthetic labels
are defined as:

y =
∑3

k=1
uT
i,kx

k + ϵ. (11)

FL-PTs v1, v2, v5 and v6 have 2000 samples whose amount is large, while the other FL-PTs have
100 samples whose amount is small. Thus, there exists quantity skew, i.e., a significant difference
in the sample quantities of FL-PTs. Two large FL-PTs v1 and v2 are independent and competes
with the other two large FL-PTs v5 and v6 that are independent. Each small FL-PT competes one
large FL-PT: (v1, v7), (v2, v8), (v3, v5), and (v4, v6) are edges in the competing graph Gc. Such Gc
leads to a unique clique cover. Under this setting, small FL-PTs benefit large FL-PTs little. The
experiments results (measured by mean squared error (MSE)) are given in Table 6.

Strongly Non-IID setting. We generate conflicting learning tasks by flipping over the labels of some
FL-PTs:

y =
∑3

k=1
uT
i,kx

k + ϵ, i ∈ {1, 2, 3, 4} (12)

y = −
∑3

k=1
uT
i,kx

k + ϵ, i ∈ {5, 6, 7, 8} (13)

Different from the Weakly Non-IID setting, each FL-PT has 2000 samples, implying that there is
no quantity skew. The setting of flipped labels between Eq. (12) and (13) leads to strongly Non-IID
among the eight FL-PTs. We test on a different competing graph where there are two independent
groups of FL-PTs {vi}4i=1 and {vi}8i=5: for i ∈ {1, 5}, the FL-PTs vi and vi+1 are independent and
compete with vi+2 and vi+3 that are independent. Under this setting, all FL-PTs can benefit each
other. The experiments results are given in Table 7.
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Table 6: Experimental results (MSE) with synthetic data under fixed competing graphs: The weakly
non-IID setting

v1 v2 v3 v4 v5 v6 v7 v8

LOCAL 0.32 ± 0.05 0.28 ± 0.00 1.00 ± 0.07 0.69 ± 0.08 0.28 ± 0.02 0.28 ± 0.01 0.72 ± 0.06 0.90 ± 0.11

FEDAVE 0.25 ± 0.01 0.25 ± 0.01 0.79 ± 0.05 0.55 ± 0.05 0.23 ± 0.01 0.23 ± 0.00 0.61 ± 0.04 0.74 ± 0.07

FEDPROX 0.26 ± 0.01 0.27 ± 0.01 0.90 ± 0.10 0.67 ± 0.06 0.26 ± 0.01 0.26 ± 0.01 0.76 ± 0.11 1.02 ± 0.17

SCAFFOLD 0.27 ± 0.01 0.28 ± 0.00 0.90 ± 0.03 0.67 ± 0.06 0.25 ± 0.01 0.26 ± 0.01 0.72 ± 0.09 0.92 ± 0.10

PFEDME 0.28 ± 0.02 0.29 ± 0.03 1.13 ± 0.55 0.86 ± 0.58 0.33 ± 0.13 0.33 ± 0.12 0.74 ± 0.02 0.82 ± 0.04

PFEDHN 0.35 ± 0.07 0.31 ± 0.05 0.91 ± 0.07 0.61 ± 0.06 0.33 ± 0.04 0.31 ± 0.05 0.70 ± 0.09 0.90 ± 0.18

PFEDGRAPH 0.26 ± 0.01 0.27 ± 0.01 0.90 ± 0.04 0.67 ± 0.08 0.26 ± 0.01 0.26 ± 0.00 0.74 ± 0.08 0.99 ± 0.05

FEDEGOISTS 0.23 ± 0.01 0.24 ± 0.00 0.24 ± 0.01 0.22 ± 0.02 0.22 ± 0.00 0.23 ± 0.01 0.25 ± 0.01 0.25 ± 0.02

Table 7: Experimental results (MSE) with synthetic data under fixed competing graphs: The strongly
non-IID setting

v1 v2 v3 v4 v5 v6 v7 v8

LOCAL 0.29 ± 0.03 0.29 ± 0.02 0.26 ± 0.00 0.29 ± 0.04 0.27 ± 0.01 0.27 ± 0.04 0.27 ± 0.02 0.27 ± 0.01

FEDAVE 0.25 ± 0.00 0.25 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.22 ± 0.00 0.23 ± 0.02 0.24 ± 0.02

FEDPROX 0.27 ± 0.02 0.26 ± 0.01 0.26 ± 0.01 0.26 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.25 ± 0.01 0.25 ± 0.01

SCAFFOLD 0.26 ± 0.01 0.26 ± 0.01 0.26 ± 0.01 0.26 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.25 ± 0.01 0.25 ± 0.01

PFEDME 0.36 ± 0.12 0.37 ± 0.12 0.25 ± 0.00 0.25 ± 0.01 0.28 ± 0.02 0.27 ± 0.01 0.27 ± 0.01 0.28 ± 0.01

PFEDHN 0.33 ± 0.05 0.34 ± 0.03 0.32 ± 0.05 0.28 ± 0.03 0.34 ± 0.03 0.29 ± 0.03 0.29 ± 0.05 0.29 ± 0.06

PFEDGRAPH 0.26 ± 0.01 0.27 ± 0.01 0.26 ± 0.02 0.26 ± 0.02 0.24 ± 0.01 0.24 ± 0.01 0.25 ± 0.01 0.25 ± 0.01

FEDEGOISTS 0.24 ± 0.00 0.27 ± 0.05 0.24 ± 0.03 0.22 ± 0.01 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.01 0.22 ± 0.01

B.7 Computer Resources

The system is equipped with an Intel(R) Xeon(R) Gold 6148 CPU operating at 2.40GHz. It utilizes
16 Nvidia Tesla V100 GPUs, each with 32GB of memory. The installed CUDA version is 11.7, and
the graphics driver version is 515.48.07.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As stated in the last part of the abstract and introduction, we clearly summarized
the contribution and scope of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the section 1 Introduction, we discuss in detail for improvement and
limitations of the methods presented in this paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: It can be seen from Section 3 Model and Assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:We provide detailed experimental settings, datasets to achieve reproducibility.
See Section 5 Evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:The code used in the experiments is openly accessible..

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:We have provided detailed experimental settings. See Section 5.1 Experimental
Setup and Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided the standard deviation of the results in the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the B.7, We have provided detailed experimental environment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully adheres to the NeurIPS Code in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work focuses on building a FL ecosystem that can be applied to real-life
business scenarios.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: When comparing with the baseline algorithm, its code was used and this article
was cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new data collection was done.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or conducted research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No research with Human Subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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