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Abstract

Generalized category discovery faces a key
issue: the lack of supervision for new and
unseen data categories. Traditional methods
typically combine supervised pretraining with
self-supervised learning to create models, and
then employ clustering for category identifi-
cation. However, these approaches tend to
become overly tailored to known categories,
failing to fully resolve the core issue. Hence,
we propose to integrate LLMs’ feedback in
an active learning paradigm. Specifically,
our method innovatively employs uncertainty
propagation to select data samples from high-
uncertainty regions, which are then labeled us-
ing LLMs through a comparison-based prompt-
ing scheme. This not only eases the labeling
task but also enhances accuracy in identify-
ing new categories. Additionally, a soft feed-
back propagation mechanism is introduced to
minimize the spread of inaccurate feedback.
Experiments on various datasets demonstrate
our framework’s efficacy and generalizability,
significantly improving baseline models at a
nominal average cost.

1 Introduction

Generalized Category Discovery (GCD) is a cru-
cial task in open-world computing (Lin et al., 2020;
Zhang et al., 2021b), where the goal is to auto-
mate the classification of partially labeled data. It
uniquely challenges systems to not only recognize
predefined categories but also to discover entirely
new categories from a mix of labeled and unlabeled
data (Yang et al., 2021; Zeng et al., 2022). This
task mirrors the dynamic and evolving nature of
real-world data, where new categories frequently
emerge, necessitating models that can adapt and
learn continually.

In traditional GCD methods, the initial step of-
ten involves supervised pretraining on a labeled
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Figure 1: The active learning loop with propagated
LLM feedback for model training.

dataset to establish a foundational understanding
of known categories (Zhong et al., 2021; Vaze et al.,
2022). This is followed by self-supervised learn-
ing on unlabeled data or even contrastive learning,
allowing the model to extract and learn patterns
without explicit category labels (An et al., 2023).
The final stage typically employs clustering tech-
niques, like KMeans (MacQueen et al., 1967), to
group similar data points, aiming to identify cate-
gories. However, this sequential process tends to
imprint a bias towards the initially learned, known
categories, limiting the model’s ability to general-
ize to new, unseen categories (Mou et al., 2022).
This overfitting to familiar data restricts the scope
of GCD, preventing it from fully embracing the
open-world setting it is intended for.

Recently, Large Language Models (LLMs) such
as GPT-4 (OpenAl, 2023), PaLM (Chowdhery
et al., 2023), and LLaMA (Touvron et al., 2023)
have shown extraordinary versatility across a broad
range of NLP tasks, providing good quality super-
vision signals for summarization (Liu et al., 2023),
clustering (Zhang et al., 2023c) etc. Their ability
to understand and generate nuanced language pat-



terns makes them promising for supplementing the
supervision of new categories in GCD. However,
the direct application of LLMs in GCD, which typ-
ically involves processing and clustering thousands
of samples, raises substantial challenges. The in-
tensive computational demands of LLMs could
lead to issues with data privacy, high latency, and
increased costs, which are particularly problematic
in large-scale GCD scenarios.

To circumvent these challenges, integrating
LLMs into an active learning framework presents
a practical and efficient solution. This approach en-
tails selectively using LLMs to provide supervision
signals, especially in cases where the data is most
uncertain or the categories are novel. However,
this integration brings forth new challenges: opti-
mizing the use of LLMs to ensure cost and time
efficiency, and critically, ensuring the reliability of
the feedback provided by LLMs. Effective strate-
gies are needed to mitigate the risk of propagating
incorrect feedback from LLMs.

Addressing these challenges, our approach
Actively Learns from LLMs with Uncertainty
Propagation for GCD, termed as ALUP shown
in Figure 1. We begin by employing an uncer-
tainty propagation strategy, which systematically
identifies data samples in regions of high uncer-
tainty — these are the areas where the model is
least confident and, therefore, where LLM input
could be most beneficial. The selected samples
are then labeled using LLMs through a sophis-
ticated comparison-based prompting technique.
This method leverages the comparative strength
of LLMs, making it easier for them to provide ac-
curate feedback, especially for new and complex
categories. To further enhance our approach, we in-
corporate a soft label propagation mechanism. This
mechanism carefully extends the LLM-generated
feedback to similar, neighboring samples, effec-
tively amplifying the value of each LLM query
while minimizing the risk of propagating errors.
Rigorous testing on diverse datasets has shown
that our method not only significantly improves
upon existing baseline models but also does so
with a nominal increase in cost, offering a scalable,
efficient, and effective solution for the intricate
problem of GCD.

In summary, our contributions are threefold:

* We developed an innovative active learning

framework integrating LLMs feedback for
GCD, addressing the challenge of limited su-
pervision for new data categories.

* We combined uncertainty-region based
data selection and comparison-based LLMs
prompting, significantly enhancing GCD
accuracy and efficiency with soft propagation.

* Experiments demonstrated marked improve-
ments over traditional GCD methods across
diverse datasets, affirming the framework’s
effectiveness and resource efficiency.

2 Related Work

2.1 Generalized Category Discovery

Unsupervised Approaches: The realm of GCD
has been fundamentally shaped by unsupervised
methods, focusing on learning cluster-friendly rep-
resentations. These early approaches (Xie et al.,
2016; Yang et al., 2017; Padmasundari and Ban-
galore, 2018; Caron et al., 2018; Hadifar et al.,
2019) laid the groundwork by leveraging unsuper-
vised clustering algorithms to categorize samples
based on inherent similarities. Recent advance-
ments, particularly with the emergence of LLMs,
have brought a paradigm shift. The integration of
LLMs in unsupervised GCD (De Raedt et al., 2023;
Zhang et al., 2023d; Viswanathan et al., 2023) rep-
resents a novel direction, pushing the boundaries
of category identification beyond traditional clus-
tering techniques.

Semi-Supervised Approaches: In contrast,
semi-supervised GCD approaches blend limited
labeled data with possibly larger unlabeled data
to enhance category discovery (Hsu et al., 2018,
2019; Han et al., 2019). Methods like CDAC+ (Lin
et al., 2020) utilize labeled data to guide clustering,
creating a synergy between supervised knowledge
and unsupervised discovery. The two-stage
scheme, involving base model pretraining and
iterative optimization (Zhang et al., 2021a,b; Wei
et al., 2022; Zhang et al., 2023a; Zhou et al.,
2023; Mou et al., 2023), has been a popular
approach. It benefits from pseudo label signals
generated by the pretrained model, although it
often struggles with the quality of pseudo labels
and sample representations. Efforts to refine
learning objectives, such as contrastive learning
(Mou et al., 2022; Zhang et al., 2022a), aim to



directly learn discriminative representations for
new categories. However, the challenge remains
in effectively decoupling pseudo label generation
from representation learning, a gap our work
addresses by introducing LLMs into the GCD.

2.2 Active Learning in the Era of LLMs

Traditional Active Learning (AL): AL has tra-
ditionally been a solution to the data scarcity prob-
lem in NLP (Ren et al., 2022; Zhang et al., 2022b),
focusing on identifying and annotating informative
samples. Various acquisition strategies have been
employed, including uncertainty-based (Wang and
Shang, 2014; Schroder et al., 2022; Yu et al., 2023),
diversity-based (Sener and Savarese, 2018; Gissin
and Shalev-Shwartz, 2019; Citovsky et al., 2021),
and hybrid methods (Liu et al., 2018; Zhan et al.,
2022). While effective, these methods still rely on
expensive human expertise for annotation.

LLMs as a Game-Changer in AL: With the
advent of LLMs, a new frontier in AL has been
explored. LLMs are now being considered as
cost-effective alternatives to human experts (Zhang
et al., 2023d; Cheng et al., 2023; Zhang et al.,
2023b; Margatina et al., 2023). For instance, Xiao
et al. (2023) demonstrated the use of LLMs as
active annotators, harnessing their ability to dis-
till task-specific knowledge interactively. In our
work, we further this exploration by applying AL
with LLMs to GCD. Our unique contribution not
only lies in the implementation of an uncertainty-
driven propagation strategy to maximize the utility
of LLMs in a cost-effective manner, but also in the
design of a soft feedback propagation scheme to
minimize he spread of inaccurate feedback.

3 Methodology

3.1 Problem Formulation

In this work, we study the GCD formulated as
follows: Assuming we have a set of known cat-
egories C; and a set of unknown categories C,,
where {C; N C,} = @ and |C| + |C,| = K. Here
K is the total number of categories in dataset. Un-
der the semi-supervised GCD setting, given a set
of labeled data D; = {(=;,y;)|y; € Cr}L,, and a
set of unlabeled data D, = {x; }gzl where the cat-
egory of each x; belongs to {C, U C,}, the task is
to learn a representation extractor M to identify all

unknown categories from D,, and perform accurate
clustering to classify each sample in {D; U D, }
into its corresponding category.

3.2 Approach Overview

General GCD models, denoted as M, usually first
extract representations Z = {z;} y:?zluDul for each
data sample z; and then perform K-means to lo-
cate cluster centers {p;}X | for doing GCD. For
our proposed ALUP framework, it builds upon
existing GCD models and effectively incorporate
LLM feedbacks in active learning scheme.

Figure 2 depicts an overview of the proposed
ALUP framework for GCD. It encompasses three
key designs: Uncertainty Propagation for sam-
ple selection, Comparison-based Prompting for
soliciting LLM’s feedack, and Soft Feedback Prop-
agation for wisely spreading the feedack. In what
follows, we will detail these designs separately.

3.3 Uncertainty Propagation (UP)

Within the ALUP framework, we design uncer-
tainty propagation to select the most informative
unlabeled samples that are representative for high
uncertainty regions. Note that given a general GCD
model M, we can extract representations z; for
each x; in the dataset and perform K-means to
locate cluster centers {g, }5X_ . To estimate the
model predictive uncertainty, following Xie et al.
(2016), we use the Student’s ¢-distribution to com-
pute the probability of assigning the sample z; to
each cluster k:

a+1

G = (L +[lzi — gyl /o)~ 2
ik =
DL+ lzi — /o)™ 2

where « represents the freedom of the Student’s
t-distribution. After obtaining the model predictive
probabilities, we employ the entropy (Lewis and
Gale, 1994) to measure the uncertainty for each
sample x;:

K
u(w) = = qikloggi. )
k=1

Here, a higher u(x;) can indicate a higher likeli-
hood of the model M incorrectly assigning x; to a
wrong cluster. However, directly adopting this indi-
vidual uncertainty score for selecting samples can
lead to suboptimal outcomes as it can be sensitive
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Figure 2: The overall ALUP framework. It consists three main designs: Uncertainty Propagation for region-based
sample selection, Comparison-based Prompting for soliciting more accurate LLM’s feedack, and Soft Feedback
Propagation for wisely spreading the feedack to boost both efficiency and effectiveness.

to outliers (Karamcheti et al., 2021). To address
this issue, following Yu et al. (2023), we further
measure the similarities between each sample and
its neighbors and propagate the individual uncer-
tainty score to neigbors. Specifically, for each data
point x;, we first find its k-nearest neighbors based
on the Euclidean distance as:

top—k
where Z* denotes the representations of unlabeled
samples and N (x;) represents the set of nearest
neighbors of z;. Then, we calculate the similarities

between z; and its neighbors based on the radial
basis function (RBF) (Scholkopf et al., 1997):

sim(zi, zj) = exp(—pllzi — zj3), (@)

where z; € N(z;) and p is a hyper-parameter
that regulates the extent of uncertainty propaga-
tion. After measuring the similarities, we refine
the uncertainty score of sample z; as:

ij eEN(x;) Sim(zi7zj)'u(mj)

(&)
After several rounds of uncertainty score propa-
gation, we obtain the final uncertainty score u(x;).
Based on which, we greedily select one sample z:!
from each cluster ¢; to form the sample set Q:

z] = argmax (u(z;)). (6)
; €c;

We emphasize that a sample will exhibit higher
propagated uncertainty only when it and its neigh-
boring samples both possess high uncertainty lev-
els. Hence, we are selecting samples from uncer-
tain regions. By actively obtaining feedback from
LLMs for such samples in Q, we can significantly
improve the model performance in GCD.

3.4 Comparison-based Prompting (CP)

After selecting the most informative unlabeled sam-
ples based on the UP strategy, we need to query
external LLMs to obtain pseudo category labels for
these samples. However, since the category labels
of newly emerged categories remain unknown, it
is infeasible to request LL.Ms to directly generate
possibly a brand new label for the selected sample.
To overcome this, we design a comparison-based
prompting method from the clustering perspective,
which prompts LLMs to classify a sample by com-
paring it with other samples representing distinct
categories.

Specifically, for each category cluster, we need
to find a representative sample for it. Hence, we
first compute the distances of various samples
within the cluster to its center u;, and then select
the sample closest to p; to represent this cluster.
We denote the close-to-center sample as p;. Given
these close-to-center samples S = {u; } 5 |, we
construct the prompt to query LLMs as:



Cluster [c1]: Sample [p1]; Cluster [c2]: Sample [pe]; ... ;
Cluster [cp]: Sample [1,]. Above is a list of samples repre-
senting distinct categories. Please identify one sample that
shares the same or similar underlying category as the input

sample from the provided list.

Here, p is the number of representative sam-
ples used for the comparison. In our experiments,
for each z! in Q, we empirically incorporate
p = |Q|/2 representative samples that are close to
z] into the prompt. With this design, we can ef-
fectively utilize LLMs to classify the selected sam-
ples into their corresponding categories, denoted as
Q = {z7, yiLLM fil, bypassing the requirement
for explicit labels of unknown categories.

3.5 Soft Feedback Propagation (SFP)

By querying LLMs using the CP method, we can
endow the selected unlabeled samples with their
respective pseudo labels to augment the GCD mod-
els for discerning new categories. However, a per-
formance gap persists between the partially and
fully LLM-augmented GCD models. Given that
the selection of the unlabeled samples is based on
their model predictive uncertainty and neighbor-
ing uncertainty, and samples distributed close to
each other are more likely to share the same cate-
gory, we thus propose a Label Propagation mech-
anism to propagate the pseudo labels generated
by LLMs across their similar neighbors, amplify-
ing the utility of the feedback from LLMs without
any additional cost. Specifically, for each ] in Q,
we refine the model prediction g; of its uncertain
neighbor z; € N (x7) in Equation (1) to propagate

the LLM-generated pseudo label yiLLM :

q; = (1 —sim(z;,2])) - q; + sim(z;, ) -y, (7)

i

prop __ y’L[/LM
Y; 11

where sim(-, -) denotes the similarity function de-

fined in Equation (4). yLLM is an one-hot vector

where the value of position y*“M is set to 1. To

i
interpret the Equation (8), we argue that when the
uncertain neighbor z; € N (z) is assigned to the

same cluster as the LLM-labeled sample z! ac-

cording to the refined g, the pseudo label y LM

)

will be propagated to the x;. Otherwise, the z;

, ifargmax(q;) = y LM

otherwise

)

will reject the pseudo label 3-M

i and remain as
an unlabeled sample.

4 Experiments

4.1 Datasets

We conduct experiments on three popular GCD
datasets: BANKING (Casanueva et al., 2020),
CLINC (Larson et al., 2019), and StackOverflow
(Xu et al., 2015). The detailed statistics are re-
ported in Appendix A.1. In our experiments, we
keep the same train, development, and test splits
as previous work (Liang and Liao, 2023). More
experimental details are provided in the Appendix
A2

4.2 Evaluation Metrics

We use the following metrics adopted in previ-
ous work (Zhang et al., 2022a; Zhou et al., 2023;
De Raedt et al., 2023) to evaluate the GCD per-
formance: Accuracy (ACC) based on Hungarian
algorithm, Adjusted Rand Index (ARI), and Nor-
malized Mutual Information (NMI). The specific
definitions are presented in Appendix A.3. It is
worth noting that ACC is regarded as the primary
metric for evaluation, with higher values indicating
better GCD performance.

4.3 Baselines

We compare with the following SOTA GCD meth-
ods: DTC (Han et al., 2019), CDAC+ (Lin et al.,
2020), DeepAligned (Zhang et al., 2021b), Prob-
NID (Zhou et al., 2023), DCSC (Wei et al,,
2022), MTP-CLNN (Zhang et al., 2022a), US-
NID (Zhang et al., 2023a), and the best-performing
method CsePL (Liang and Liao, 2023). We leave
the details of these baselines in Appendix A.4.

4.4 Main Results

4.4.1 GCD Performance Comparison

Table 1 presents the main GCD results of our pro-
posed ALUP compared to the existing baselines,
where the peak performance is highlighted in bold.
Generally speaking, the proposed ALUP frame-
work consistently outperforms all existing base-
lines across three datasets with large margins. Here,
we analyze the results from the following aspects:

Comparison of different methods in GCD: As
shown in Table 1, it is observed that the ALUP has



BANKING CLINC StackOverflow
KCR | Methods
ACC ARI NMI ACC ARI NMI ACC ARI NMI
DTC 31.75 19.09 5559 5690 4192 7935 2954 17.51 29.96
CDAC+ 48.00 33.74 6639 6624 50.02 84.68 51.61 3099 46.16
DeepAligned 49.08 37.62 7050 74.07 64.63 88.97 5450 3796 50.86
25% ProbNID 55.75 4425 7437 7156 6325 8921 54.10 38.10 53.70
DCSC 60.15 49.75 78.18 79.89 72.68 91.70 - - -
MTP-CLNN 65.06 5291 80.04 8326 7620 93.17 7470 5480 73.35
USNID 65.85 56.53 8194 83.12 7795 94.17 7576 6545 7491
CsePL 71.06 60.36 83.32 86.16 79.65 94.07 7947 6492 74.88
ALUP 74.61 62.64 84.06 88.40 8244 9484 82.20 6454 76.58
DTC 49.85 37.05 6946 6439 5044 83.01 5292 37.38 49.80
CDAC+ 48.55 3497 6730 68.01 5487 86.00 51.79 30.88 46.21
DeepAligned 59.38 4795 76.67 80.70 72.56 91.59 7452 57.62 68.28
50% ProbNID 63.02 5042 7795 82.62 7527 9272 7320 6246 7454
DCSC 68.30 5694 81.19 84.57 78.82 9375 - - -
MTP-CLNN  70.97 60.17 83.42 86.18 80.17 9430 8036 6224 76.66
USNID 7327 63.77 8505 8722 8287 9545 8206 71.63 78.77
CsePL 76.94 66.66 8565 88.66 83.14 9509 8568 71.99 80.28
ALUP 79.45 68.78 86.79 90.53 84.84 9597 86.70 73.85 81.45

Table 1: Main performance results on the generalized category discovery across three public datasets. KCR denotes

the known category rate.

a significant improvement compared with existing
top-performing baselines, i.e., CsePL and USNID.
For example, the proposed ALUP surpasses pre-
vious SOTA CsePL by margins of 2.51% in ACC,
2.12% in ARI, and 1.14% in NMI on BANKING-
50%. Moreover, it is noteworthy that performance
gains are more pronounced when a larger number
of categories remain unknown. For example, the
ACC performance of our ALUP improves 3.55%
on BANKING-25%. It proves that the ALUP can
acquire effective supervision signals from LLMs
to enhance the model performance of discovering
new categories.

Comparison of different datasets: We evalu-
ate the performance of the proposed ALUP on
different datasets, including the single-domain,
fine-grained BANKING dataset and the multi-
domain CLINC dataset. From Table 1, we can no-
tice that all existing methods exhibit significantly
lower performance on the BANKING dataset com-
pared to the CLINC dataset, indicating that the
single-domain fine-grained scenario is more chal-
lenging for GCD. However, the ALUP achieves
a more significant improvement of 1%~3% on
BANKING-50% compared with the CsePL, while
only 0.8%~2% on CLINC-50%. This observation
further strengthens the benefits of our ALUP in pro-

BANKING
KCR | Methods
ACC ARI NMI
ALUP 74.61 62.64 84.06
259 | - w/o UP 7341 6130 8342
-w/o SFP 7273 60.97 83.68
-wHP 70.24 59.08 82.32
ALUP 79.45 68.78 86.79
s0% | - w/o UP 78.64 67.16 86.05
-w/o SFP 77.66 67.04 86.43
-wHP 75.60 6433 84.72

Table 2: Ablation results on BANKING dataset.

viding effective supervision signals to cope with
the challenges in fine-grained category discovery.

4.5 In-depth Analyses

In this subsection, we conduct further detailed anal-
yses to explore the impact of each key component
within the proposed ALUP framework.

4.5.1 Effect of Uncertainty Propagation

Table 2 presents the experimental results of remov-
ing the Uncertainty Propagation in Equation (5)
from the ALUP on the BANKING dataset. We can
observe that the GCD performance of the ALUP
substantially diminishes across various known cat-
egory ratios. Especially, the ACC of the ALUP
decreases by 1.20% while the ARI and NMI drop



1.34% and 0.64% on BANKING-25% respectively.
This observation indicates that the Uncertainty
Propagation can accurately identify the most infor-
mative samples for querying LLMs to enhance the
GCD model performance, which notably avoids
selecting outliers with high model uncertainty but
are less beneficial for the model learning.

4.5.2 Effect of Soft Feedback Propagation

We also explore the contribution of the Soft Feed-
back Propagation by comparing the model perfor-
mance when omitting the feedback propagation
from LLMs Equation (8) with the standard ALUP.
As presented in Table 2, we find that the model
performance significantly decreases without propa-
gating the feedback from LLMs, with ACC drops
by 1.88%, ARI by 1.67%, and NMI by 0.38%. Nev-
ertheless, ALUP w/o SFP still slightly outperforms
the best-performing baseline CsePL. We argue the
reasons for this observation lie in: (1) Acquiring
supervision signals from LLMs for the informa-
tive samples is beneficial for improving the model
performance in discovering new categories. (2)
The Soft Feedback Propagation strategy can effec-
tively filter out and propagate the accurate super-
vision signals from LLMs, amplifying the utility
of LLM’s feedback while concurrently minimizing
the risk of propagating errors.

Compared to the Soft Feedback Propagation,
we also investigate the Hard Propagation (ALUP
w HP) in the ALUP, which directly extends the
LLMs’ feedback to the neighboring samples with-
out any control. As presented in Table 2, we can
observe that the model performance significantly
decreases with Hard Propagation, falling below
even that of the CsePL. This is probably due to
the propagation of inaccurate supervision signals
from LLMs,which introduces considerable noise
into the model learning.

4.5.3 Number of Propagated Neighbors

To delve deeper into the effectiveness of the Un-
certainty Propagation within the proposed ALUP,
we further conduct experiments on the BANKING
dataset to explore how varying the number of prop-
agated neighbors for selecting unlabeled samples
influences model performance. Figure 3 presents
the performance curves corresponding to various
numbers of propagated neighbors. When increas-
ing the number of propagated neighbors in Equa-
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Figure 3: Effect of the number of propagated neighbors.

BANKING

KCR | p
ACC ARl NMI
19 7370 6140 83.58
5sq, | 38 7461 6264  84.06
57 7201 60.86 83.04
77 7136 59.58 82.64
19 7844 6746 86.25
soq, | 38 7945 68.78  86.79
57 7756 66.04 8593
77 7666 6523 85.59

Table 3: Effect of the number of representative samples
in Comparison-based Pompting.

tion (3), there is a gradual improvement in the
performance of the proposed ALUP, culminating
in peak performance with 25 propagated neigh-
bors. However, when the number of propagated
neighbors exceeds 25, there is a decline in model
performance. This decrease can be attributed to the
inclusion of less uncertain samples, which poten-
tially introduces significant noise into the process
of unlabeled sample selection.

4.5.4 Effect of Representative Samples

To evaluate the effectiveness of the Comparison-
based Prompting method, we also analyze how the
model performance varies with different numbers
of representation samples p incorporated into the
prompt for querying LLMs. We conduct experi-
ments using values of p set to {19, 38, 57, 77},
where 19 is about one quarter of the total num-
ber of clusters. As reported in Table 3, we can
notice that the optimal GCD performance is at-
tained by including 38 representative samples to
prompt LLMs for acquiring supervision signals for
the unlabeled samples. The main reasons for this
observation come from two aspects: (1) A smaller
p may potentially omit the representative samples
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sharing the same underlying category as the se-
lected samples, leading to an inability for LLMs to
provide necessary supervision signals when com-
paring with the incorporated representative sam-
ples. (2) A larger number of representative samples
used in the Comparison-based Prompting leads to
a longer prompt. This can potentially cause LLMs
to misclassify the selected unlabeled samples into
inaccurate categories, which further degrade the
model performance.

4.6 Impact of Different Base GCD Models

In our experiments, we select the most informa-
tive unlabeled samples based on the existing GCD
models. To validate the effectiveness of the pro-
posed ALUP, we also examine how its performance
varies when different GCD models are integrated
within ALUP on the BANKING-50% dataset. As
depicted in Figure 4, we can observe consistent and
significant improvements with the proposed ALUP.
It indicates that the proposed ALUP framework
is effective in acquiring supervision signals from
LLMs to enhance the model performance of dis-
covering new categories and is adaptable to other
GCD models.

BANKING

KCR x Methods

ACC ARI NMI
259 ALUP-gpt-3.5-turbo  74.61  62.64 84.06
° | ALUP-FlanT5-XXL 7338 6229 83.76

Table 4: Effect of different LLMs.

4.7 Influence of Query Sample Number

We study the effect of varying the number of se-
lected unlabeled samples for querying LLMs in
Figure 5. It is observed that there is an increase
in model performance corresponding to the rise
in the number of samples selected for querying
LLMs. However, this growth rate progressively
diminishes as the LLMs’ feedback is propagated,
and selecting informative samples becomes more
challenging with the increasing number of selected
samples.

4.8 Effect of Different LLMs

In addition to employing close-sourced gpt-3.5-
turbo as the basic LLM in our experiments, we also
conduct experiments on the BANKING-25% to ex-
plore the use of open-sourced LLM FlanT5-XXL
(Chung et al., 2022) to derive supervision signals
for the ALUP. As shown in Figure 4, we can notice
that, when coupling the FlanT5-XXL in the ALUP
framework, there is a slight decrease in GCD per-
formance compared to other close-sourced gpz-3.5-
turbo model. However, it still surpasses the top-
performing baseline CsePL.

5 Conclusion

In summary, our ALUP framework innovatively
integrates Large Language Models with uncer-
tainty propagation in generalized category discov-
ery, marking a significant leap in the field. By
employing comparison-based LLM prompting and
a novel soft feedback propagation mechanism,
ALUP adeptly identifies and categorizes new data
with enhanced accuracy and efficiency. This ap-
proach not only surpasses traditional GCD meth-
ods but also minimizes the risk of error propaga-
tion, a critical advancement in handling real-world,
dynamic datasets with LLMs. Future endeavors
will focus on refining LLM integration, extending
our methods to multi-modal data, and enhancing
scalability and data privacy measures, furthering
ALUP’s potential in diverse and evolving open-
world computing.



Limitations

While our ALUP framework marks a significant
advance in Generalized Category Discovery us-
ing LLMs, it does have some limitations. The
reliance on LLMs can introduce biases and inac-
curacies, particularly in areas where these models
have limited training data or exposure. Although
our propagation method effectively reduces overall
costs, the initial computational demands of LLMs
may still pose scalability challenges, especially
for resource-limited environments. Additionally,
the framework currently focuses on textual data,
which could limit its applicability in multi-modal
data scenarios. Moreover, while our soft feedback
propagation mechanism aims to minimize error
spread, it is not immune to the risk of amplifying
initial inaccuracies from LLM feedback. Finally,
data privacy and security remain critical concerns
in the use of external LL.Ms, necessitating ongoing
vigilance and adaptation.
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A Appendix

A.1 Dataset Statistics

We show the detailed statistics of BANKING,
CLINC and StackOverflow datasets in Table 5.
Specifically, BANKING is a fine-grained category
discovery dataset collected from user dialogues in
banking domain. It contains over 13K user utter-
ances that span over 77 distinct categories. CLINC
is a multi-domain dataset, which encompasses 150
distinct categories and 22,500 utterances across
10 domains. StackOverflow is a technical question
dataset collected from Kaggle.com, which includes
20K questions with 20 categories.

A.2 Implementation Details

For the dataset setup, following (Zhang et al.,
2023a), we randomly select a specified ratio {25%,
50%} of categories, denoted as known category
rate (KCR), to serve as known categories. For each
known category, 10% of labeled samples are se-
lected to constitute a labeled dataset D;, while the
remaining samples are deemed as the unlabeled
data, thereby forming the unlabeled dataset D,,.

For the Uncertainty Propagation, we set the free-
dom « in Equation (1) to 1.0. The number of
propagated neighbors is specifically set to 25 for
all datasets. The p for calculating similarities in
Equation (4) is set to 1.0.

For the Comparison-based Prompting, we em-
ploy the gpt-3.5-turbo as the basic LLM in our
experiments. While acquiring supervision signals,
the temperature is set to O for deterministic outputs,
and the maximum tokens are constrained to 256.
The default values are retained for the rest of pa-
rameters. The number of representative samles is
specifically set to 38 for the BANKING dataset, 75
for the CLINC dataset, and 20 for the StackOver-
flow dataset.

A.3 Evaluation Metrics

In the experiments, we employ three standard eval-
uation metrics: ACC, ARI, and NMI to evaluate
the GCD performance. Specifically, ACC mea-
sures the performance of GCD by comparing the
predicted labels with the ground-truth labels. The
definition of ACC is as follows:

Zij\; Ly =map(yi)

ACC = N
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Dataset Domain Categories  Utterances
BANKING banking 77 13,083
CLINC multi-domain 150 22,500
StackOverflow question 20 20,000

Table 5: Statistics of datasets used in the experiments.

where {¢;,y;} denote the predicted label and the
ground-truth label for a given sample z; respec-
tively. map(-) is a mapping function that maps
each predicted label g; to its corresponding ground-
truth label y; by Hungarian algorithm.

ARI calculates the similarity between the pre-
dicted and ground-truth clusters, assessing the ac-
curacy of clustering on a pairwise basis. ARI is
defined as:

2o (") 12 (5) =5 (D1 (5)
(5)+5; ()1 (5) 55 (D1 (3)
where u; = 3 ;n; j,and v; = >, n; j. N denotes
the number of all samples. n; ; is the number of
sample pairs that are both assigned to i*" predicted
cluster and j** ground-truth cluster.

NMI computes the normalized mutual informa-
tion to quantify the agreement between the pre-
dicted and ground-truth clusters, providing a mea-
sure of clustering consistency. It can be calculated
as follows:

ARI

35

H(y) + H(y)

where {y, y} denote the predicted labels and the
ground-truth labels respectively. I(y, y) is the mu-
tual information between ¢ and y. H (-) represents
the entropy function.

NMI(y,y)

A.4 Baselines

In this work, we compare the proposed ALLUP

with the following representative baselines:

DTC (Han et al., 2019): A semi-supervised deep

clustering approach with a novel mechanism for

estimating the number of intents based on labeled
data.

CDAC+ (Lin et al., 2020): A pseudo-labeling

approach that employs pairwise constraints and a

target distribution as guiding factors in the learn-

ing of new categories.

* DeepAligned (Zhang et al., 2021b): A semi-
supervised approach that addresses the clustering
inconsistency problem by using an alignment
strategy for learning utterance embeddings.



Banking77
Cluster Num Methods
ACC ARI NMI
USNID 65.85 56.53 81.94
K =177 (gold) CsePL 71.06 60.36 83.32
ALUP 74.61 62.64 84.06
USNID 60.72 49.18 78.11
K = 74 (predicted) | CsePL 69.75 56.70 81.30
ALUP 72.55 61.04 82.78

Table 6: Effect of estimating cluster number K.

ProbNID (Zhou et al., 2023): A probabilistic
framework that capitalizes on the expectation-
maximization algorithm, conceptualizing intent
assignments as probable latent variables.
DCSC (Wei et al., 2022): A pseudo-labeling
method involving the dual-task, which uses the
SwAV algorithm and Sinkhorn-Knopp (Cuturi,
2013) to assign soft clusters.

MTP-CLNN (Zhang et al., 2022a): A two-stage
method that enhances representation learning via
a multi-task pre-training and a nearest neigh-
bor contrastive learning for identifying new cate-
gories.

USNID (Zhang et al., 2023a): A framework
supports both unsupervised and semi-supervised
new intent discovery, incorporating an effec-
tive centroid initialization strategy designed to
learn cluster representations by utilizing histori-
cal clustering information.

CsePL (Liang and Liao, 2023): A method that
utilizes two-level contrastive learning with la-
bel semantic alignment to enhance the cluster
semantics, and a soft prompting strategy for dis-
covering new intents.

We re-run the released code of ProbNID to get its
results. The other baselines’ results are retrieved
from Zhang et al. (2023a).

B Estimate the Category Number K

In the complex task of generalized category discov-
ery in real-world scenarios, accurately predicting
the total number of categories, represented as K,
remains a significant challenge. Drawing from the
methodologies proposed by Zhang et al. (2021b),
our research leverages pre-initialized intent fea-
tures to autonomously determine /K. We begin by
assigning an initially large number of clusters, K,
and then utilize a refined model to extract feature
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representations from our training dataset. These
representations are grouped into distinct clusters
using the K-means algorithm. Clusters that are
densely populated and demonstrate well-defined
boundaries are recognized as valid category clus-
ters. Conversely, smaller, less distinct clusters
are considered less relevant and subsequently dis-
carded. The selection criteria for this process can
be outlined as follows.

K/

K =>4(Si > p),

i=1

where |S;| is the i-th grouped cluster size, p is the
filtering threshold. §(-) denotes the indicator func-
tion, whose output is 1 if the condition is satisfied.

Experimental results are reported in Table 6.
The comparative results show that the proposed
ALUP incurs only a minor performance decline
with predicted category number. This indicates
that our ALUP exhibits robustness in handling in-
accurately predicted category number.
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