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Abstract
Generalized category discovery faces a key001
issue: the lack of supervision for new and002
unseen data categories. Traditional methods003
typically combine supervised pretraining with004
self-supervised learning to create models, and005
then employ clustering for category identifi-006
cation. However, these approaches tend to007
become overly tailored to known categories,008
failing to fully resolve the core issue. Hence,009
we propose to integrate LLMs’ feedback in010
an active learning paradigm. Specifically,011
our method innovatively employs uncertainty012
propagation to select data samples from high-013
uncertainty regions, which are then labeled us-014
ing LLMs through a comparison-based prompt-015
ing scheme. This not only eases the labeling016
task but also enhances accuracy in identify-017
ing new categories. Additionally, a soft feed-018
back propagation mechanism is introduced to019
minimize the spread of inaccurate feedback.020
Experiments on various datasets demonstrate021
our framework’s efficacy and generalizability,022
significantly improving baseline models at a023
nominal average cost.024

1 Introduction025

Generalized Category Discovery (GCD) is a cru-026

cial task in open-world computing (Lin et al., 2020;027

Zhang et al., 2021b), where the goal is to auto-028

mate the classification of partially labeled data. It029

uniquely challenges systems to not only recognize030

predefined categories but also to discover entirely031

new categories from a mix of labeled and unlabeled032

data (Yang et al., 2021; Zeng et al., 2022). This033

task mirrors the dynamic and evolving nature of034

real-world data, where new categories frequently035

emerge, necessitating models that can adapt and036

learn continually.037

In traditional GCD methods, the initial step of-038

ten involves supervised pretraining on a labeled039
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Figure 1: The active learning loop with propagated
LLM feedback for model training.

dataset to establish a foundational understanding 040

of known categories (Zhong et al., 2021; Vaze et al., 041

2022). This is followed by self-supervised learn- 042

ing on unlabeled data or even contrastive learning, 043

allowing the model to extract and learn patterns 044

without explicit category labels (An et al., 2023). 045

The final stage typically employs clustering tech- 046

niques, like KMeans (MacQueen et al., 1967), to 047

group similar data points, aiming to identify cate- 048

gories. However, this sequential process tends to 049

imprint a bias towards the initially learned, known 050

categories, limiting the model’s ability to general- 051

ize to new, unseen categories (Mou et al., 2022). 052

This overfitting to familiar data restricts the scope 053

of GCD, preventing it from fully embracing the 054

open-world setting it is intended for. 055

Recently, Large Language Models (LLMs) such 056

as GPT-4 (OpenAI, 2023), PaLM (Chowdhery 057

et al., 2023), and LLaMA (Touvron et al., 2023) 058

have shown extraordinary versatility across a broad 059

range of NLP tasks, providing good quality super- 060

vision signals for summarization (Liu et al., 2023), 061

clustering (Zhang et al., 2023c) etc. Their ability 062

to understand and generate nuanced language pat- 063
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terns makes them promising for supplementing the064

supervision of new categories in GCD. However,065

the direct application of LLMs in GCD, which typ-066

ically involves processing and clustering thousands067

of samples, raises substantial challenges. The in-068

tensive computational demands of LLMs could069

lead to issues with data privacy, high latency, and070

increased costs, which are particularly problematic071

in large-scale GCD scenarios.072

To circumvent these challenges, integrating073

LLMs into an active learning framework presents074

a practical and efficient solution. This approach en-075

tails selectively using LLMs to provide supervision076

signals, especially in cases where the data is most077

uncertain or the categories are novel. However,078

this integration brings forth new challenges: opti-079

mizing the use of LLMs to ensure cost and time080

efficiency, and critically, ensuring the reliability of081

the feedback provided by LLMs. Effective strate-082

gies are needed to mitigate the risk of propagating083

incorrect feedback from LLMs.084

Addressing these challenges, our approach085

Actively Learns from LLMs with Uncertainty086

Propagation for GCD, termed as ALUP shown087

in Figure 1. We begin by employing an uncer-088

tainty propagation strategy, which systematically089

identifies data samples in regions of high uncer-090

tainty – these are the areas where the model is091

least confident and, therefore, where LLM input092

could be most beneficial. The selected samples093

are then labeled using LLMs through a sophis-094

ticated comparison-based prompting technique.095

This method leverages the comparative strength096

of LLMs, making it easier for them to provide ac-097

curate feedback, especially for new and complex098

categories. To further enhance our approach, we in-099

corporate a soft label propagation mechanism. This100

mechanism carefully extends the LLM-generated101

feedback to similar, neighboring samples, effec-102

tively amplifying the value of each LLM query103

while minimizing the risk of propagating errors.104

Rigorous testing on diverse datasets has shown105

that our method not only significantly improves106

upon existing baseline models but also does so107

with a nominal increase in cost, offering a scalable,108

efficient, and effective solution for the intricate109

problem of GCD.110

In summary, our contributions are threefold:111

• We developed an innovative active learning112

framework integrating LLMs feedback for 113

GCD, addressing the challenge of limited su- 114

pervision for new data categories. 115

• We combined uncertainty-region based 116

data selection and comparison-based LLMs 117

prompting, significantly enhancing GCD 118

accuracy and efficiency with soft propagation. 119

• Experiments demonstrated marked improve- 120

ments over traditional GCD methods across 121

diverse datasets, affirming the framework’s 122

effectiveness and resource efficiency. 123

2 Related Work 124

2.1 Generalized Category Discovery 125

Unsupervised Approaches: The realm of GCD 126

has been fundamentally shaped by unsupervised 127

methods, focusing on learning cluster-friendly rep- 128

resentations. These early approaches (Xie et al., 129

2016; Yang et al., 2017; Padmasundari and Ban- 130

galore, 2018; Caron et al., 2018; Hadifar et al., 131

2019) laid the groundwork by leveraging unsuper- 132

vised clustering algorithms to categorize samples 133

based on inherent similarities. Recent advance- 134

ments, particularly with the emergence of LLMs, 135

have brought a paradigm shift. The integration of 136

LLMs in unsupervised GCD (De Raedt et al., 2023; 137

Zhang et al., 2023d; Viswanathan et al., 2023) rep- 138

resents a novel direction, pushing the boundaries 139

of category identification beyond traditional clus- 140

tering techniques. 141

Semi-Supervised Approaches: In contrast, 142

semi-supervised GCD approaches blend limited 143

labeled data with possibly larger unlabeled data 144

to enhance category discovery (Hsu et al., 2018, 145

2019; Han et al., 2019). Methods like CDAC+ (Lin 146

et al., 2020) utilize labeled data to guide clustering, 147

creating a synergy between supervised knowledge 148

and unsupervised discovery. The two-stage 149

scheme, involving base model pretraining and 150

iterative optimization (Zhang et al., 2021a,b; Wei 151

et al., 2022; Zhang et al., 2023a; Zhou et al., 152

2023; Mou et al., 2023), has been a popular 153

approach. It benefits from pseudo label signals 154

generated by the pretrained model, although it 155

often struggles with the quality of pseudo labels 156

and sample representations. Efforts to refine 157

learning objectives, such as contrastive learning 158

(Mou et al., 2022; Zhang et al., 2022a), aim to 159
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directly learn discriminative representations for160

new categories. However, the challenge remains161

in effectively decoupling pseudo label generation162

from representation learning, a gap our work163

addresses by introducing LLMs into the GCD.164

2.2 Active Learning in the Era of LLMs165

Traditional Active Learning (AL): AL has tra-166

ditionally been a solution to the data scarcity prob-167

lem in NLP (Ren et al., 2022; Zhang et al., 2022b),168

focusing on identifying and annotating informative169

samples. Various acquisition strategies have been170

employed, including uncertainty-based (Wang and171

Shang, 2014; Schröder et al., 2022; Yu et al., 2023),172

diversity-based (Sener and Savarese, 2018; Gissin173

and Shalev-Shwartz, 2019; Citovsky et al., 2021),174

and hybrid methods (Liu et al., 2018; Zhan et al.,175

2022). While effective, these methods still rely on176

expensive human expertise for annotation.177

LLMs as a Game-Changer in AL: With the178

advent of LLMs, a new frontier in AL has been179

explored. LLMs are now being considered as180

cost-effective alternatives to human experts (Zhang181

et al., 2023d; Cheng et al., 2023; Zhang et al.,182

2023b; Margatina et al., 2023). For instance, Xiao183

et al. (2023) demonstrated the use of LLMs as184

active annotators, harnessing their ability to dis-185

till task-specific knowledge interactively. In our186

work, we further this exploration by applying AL187

with LLMs to GCD. Our unique contribution not188

only lies in the implementation of an uncertainty-189

driven propagation strategy to maximize the utility190

of LLMs in a cost-effective manner, but also in the191

design of a soft feedback propagation scheme to192

minimize he spread of inaccurate feedback.193

3 Methodology194

3.1 Problem Formulation195

In this work, we study the GCD formulated as196

follows: Assuming we have a set of known cat-197

egories Ck and a set of unknown categories Cu,198

where {Ck ∩ Cu} = ∅ and |Ck|+ |Cu| = K. Here199

K is the total number of categories in dataset. Un-200

der the semi-supervised GCD setting, given a set201

of labeled data Dl = {(xi, yi)|yi ∈ Ck}Li=1, and a202

set of unlabeled data Du = {xj}Uj=1 where the cat-203

egory of each xj belongs to {Ck ∪ Cu}, the task is204

to learn a representation extractor M to identify all205

unknown categories from Du and perform accurate 206

clustering to classify each sample in {Dl ∪ Du} 207

into its corresponding category. 208

3.2 Approach Overview 209

General GCD models, denoted as M, usually first 210

extract representations Z = {zi}|Dl∪Du|
i=1 for each 211

data sample xi and then perform K-means to lo- 212

cate cluster centers {µi}Ki=1 for doing GCD. For 213

our proposed ALUP framework, it builds upon 214

existing GCD models and effectively incorporate 215

LLM feedbacks in active learning scheme. 216

Figure 2 depicts an overview of the proposed 217

ALUP framework for GCD. It encompasses three 218

key designs: Uncertainty Propagation for sam- 219

ple selection, Comparison-based Prompting for 220

soliciting LLM’s feedack, and Soft Feedback Prop- 221

agation for wisely spreading the feedack. In what 222

follows, we will detail these designs separately. 223

3.3 Uncertainty Propagation (UP) 224

Within the ALUP framework, we design uncer- 225

tainty propagation to select the most informative 226

unlabeled samples that are representative for high 227

uncertainty regions. Note that given a general GCD 228

model M, we can extract representations zi for 229

each xi in the dataset and perform K-means to 230

locate cluster centers {µk}Kk=1. To estimate the 231

model predictive uncertainty, following Xie et al. 232

(2016), we use the Student’s t-distribution to com- 233

pute the probability of assigning the sample xi to 234

each cluster k: 235

qik =
(1 + ∥zi − µk∥2/α)−

α+1
2∑

k′(1 + ∥zi − µk′∥2/α)−
α+1
2

, (1) 236

where α represents the freedom of the Student’s 237

t-distribution. After obtaining the model predictive 238

probabilities, we employ the entropy (Lewis and 239

Gale, 1994) to measure the uncertainty for each 240

sample xi: 241

u(xi) = −
K∑
k=1

qiklogqik. (2) 242

Here, a higher u(xi) can indicate a higher likeli- 243

hood of the model M incorrectly assigning xi to a 244

wrong cluster. However, directly adopting this indi- 245

vidual uncertainty score for selecting samples can 246

lead to suboptimal outcomes as it can be sensitive 247
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Figure 2: The overall ALUP framework. It consists three main designs: Uncertainty Propagation for region-based
sample selection, Comparison-based Prompting for soliciting more accurate LLM’s feedack, and Soft Feedback
Propagation for wisely spreading the feedack to boost both efficiency and effectiveness.

to outliers (Karamcheti et al., 2021). To address248

this issue, following Yu et al. (2023), we further249

measure the similarities between each sample and250

its neighbors and propagate the individual uncer-251

tainty score to neigbors. Specifically, for each data252

point xi, we first find its k-nearest neighbors based253

on the Euclidean distance as:254

N (xi) = KNN
top−k

(zi,Zu), (3)255

where Zu denotes the representations of unlabeled256

samples and N (xi) represents the set of nearest257

neighbors of xi. Then, we calculate the similarities258

between xi and its neighbors based on the radial259

basis function (RBF) (Schölkopf et al., 1997):260

sim(zi, zj) = exp(−ρ∥zi − zj∥22), (4)261

where xj ∈ N (xi) and ρ is a hyper-parameter262

that regulates the extent of uncertainty propaga-263

tion. After measuring the similarities, we refine264

the uncertainty score of sample xi as:265

u(xi) = u(xi) +

∑
xj∈N (xi)

sim(zi,zj)·u(xj)

|N (xi)| .

(5)266

After several rounds of uncertainty score propa-267

gation, we obtain the final uncertainty score u(xi).268

Based on which, we greedily select one sample xqi269

from each cluster ci to form the sample set Q:270

xqi = argmax
xj∈ci

(u(xj)). (6)271

We emphasize that a sample will exhibit higher 272

propagated uncertainty only when it and its neigh- 273

boring samples both possess high uncertainty lev- 274

els. Hence, we are selecting samples from uncer- 275

tain regions. By actively obtaining feedback from 276

LLMs for such samples in Q, we can significantly 277

improve the model performance in GCD. 278

3.4 Comparison-based Prompting (CP) 279

After selecting the most informative unlabeled sam- 280

ples based on the UP strategy, we need to query 281

external LLMs to obtain pseudo category labels for 282

these samples. However, since the category labels 283

of newly emerged categories remain unknown, it 284

is infeasible to request LLMs to directly generate 285

possibly a brand new label for the selected sample. 286

To overcome this, we design a comparison-based 287

prompting method from the clustering perspective, 288

which prompts LLMs to classify a sample by com- 289

paring it with other samples representing distinct 290

categories. 291

Specifically, for each category cluster, we need 292

to find a representative sample for it. Hence, we 293

first compute the distances of various samples 294

within the cluster to its center µi, and then select 295

the sample closest to µi to represent this cluster. 296

We denote the close-to-center sample as µi. Given 297

these close-to-center samples S = {µi}Ki=1, we 298

construct the prompt to query LLMs as: 299
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Cluster [c1]: Sample [µ1]; Cluster [c2]: Sample [µ2]; . . . ;

Cluster [cp]: Sample [µp]. Above is a list of samples repre-

senting distinct categories. Please identify one sample that

shares the same or similar underlying category as the input

sample from the provided list.

Here, p is the number of representative sam-300

ples used for the comparison. In our experiments,301

for each xqi in Q, we empirically incorporate302

p = |Q|/2 representative samples that are close to303

xqi into the prompt. With this design, we can ef-304

fectively utilize LLMs to classify the selected sam-305

ples into their corresponding categories, denoted as306

Q = {xqi , yLLMi }Ki=1, bypassing the requirement307

for explicit labels of unknown categories.308

3.5 Soft Feedback Propagation (SFP)309

By querying LLMs using the CP method, we can310

endow the selected unlabeled samples with their311

respective pseudo labels to augment the GCD mod-312

els for discerning new categories. However, a per-313

formance gap persists between the partially and314

fully LLM-augmented GCD models. Given that315

the selection of the unlabeled samples is based on316

their model predictive uncertainty and neighbor-317

ing uncertainty, and samples distributed close to318

each other are more likely to share the same cate-319

gory, we thus propose a Label Propagation mech-320

anism to propagate the pseudo labels generated321

by LLMs across their similar neighbors, amplify-322

ing the utility of the feedback from LLMs without323

any additional cost. Specifically, for each xqi in Q,324

we refine the model prediction qj of its uncertain325

neighbor xj ∈ N (xqi ) in Equation (1) to propagate326

the LLM-generated pseudo label yLLMi :327

qj = (1− sim(zj , z
q
i )) · qj + sim(zj , z

q
i ) · yLLM , (7)328

329

ypropj =

{
yLLMi , if argmax(qj) = yLLMi

−1, otherwise
, (8)330

where sim(·, ·) denotes the similarity function de-331

fined in Equation (4). yLLM is an one-hot vector332

where the value of position yLLMi is set to 1. To333

interpret the Equation (8), we argue that when the334

uncertain neighbor xj ∈ N (xqi ) is assigned to the335

same cluster as the LLM-labeled sample xqi ac-336

cording to the refined qj , the pseudo label yLLMi337

will be propagated to the xj . Otherwise, the xj338

will reject the pseudo label yLLMi and remain as 339

an unlabeled sample. 340

4 Experiments 341

4.1 Datasets 342

We conduct experiments on three popular GCD 343

datasets: BANKING (Casanueva et al., 2020), 344

CLINC (Larson et al., 2019), and StackOverflow 345

(Xu et al., 2015). The detailed statistics are re- 346

ported in Appendix A.1. In our experiments, we 347

keep the same train, development, and test splits 348

as previous work (Liang and Liao, 2023). More 349

experimental details are provided in the Appendix 350

A.2. 351

4.2 Evaluation Metrics 352

We use the following metrics adopted in previ- 353

ous work (Zhang et al., 2022a; Zhou et al., 2023; 354

De Raedt et al., 2023) to evaluate the GCD per- 355

formance: Accuracy (ACC) based on Hungarian 356

algorithm, Adjusted Rand Index (ARI), and Nor- 357

malized Mutual Information (NMI). The specific 358

definitions are presented in Appendix A.3. It is 359

worth noting that ACC is regarded as the primary 360

metric for evaluation, with higher values indicating 361

better GCD performance. 362

4.3 Baselines 363

We compare with the following SOTA GCD meth- 364

ods: DTC (Han et al., 2019), CDAC+ (Lin et al., 365

2020), DeepAligned (Zhang et al., 2021b), Prob- 366

NID (Zhou et al., 2023), DCSC (Wei et al., 367

2022), MTP-CLNN (Zhang et al., 2022a), US- 368

NID (Zhang et al., 2023a), and the best-performing 369

method CsePL (Liang and Liao, 2023). We leave 370

the details of these baselines in Appendix A.4. 371

4.4 Main Results 372

4.4.1 GCD Performance Comparison 373

Table 1 presents the main GCD results of our pro- 374

posed ALUP compared to the existing baselines, 375

where the peak performance is highlighted in bold. 376

Generally speaking, the proposed ALUP frame- 377

work consistently outperforms all existing base- 378

lines across three datasets with large margins. Here, 379

we analyze the results from the following aspects: 380

Comparison of different methods in GCD: As 381

shown in Table 1, it is observed that the ALUP has 382
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KCR Methods
BANKING CLINC StackOverflow

ACC ARI NMI ACC ARI NMI ACC ARI NMI

25%

DTC 31.75 19.09 55.59 56.90 41.92 79.35 29.54 17.51 29.96
CDAC+ 48.00 33.74 66.39 66.24 50.02 84.68 51.61 30.99 46.16
DeepAligned 49.08 37.62 70.50 74.07 64.63 88.97 54.50 37.96 50.86
ProbNID 55.75 44.25 74.37 71.56 63.25 89.21 54.10 38.10 53.70
DCSC 60.15 49.75 78.18 79.89 72.68 91.70 - - -
MTP-CLNN 65.06 52.91 80.04 83.26 76.20 93.17 74.70 54.80 73.35
USNID 65.85 56.53 81.94 83.12 77.95 94.17 75.76 65.45 74.91
CsePL 71.06 60.36 83.32 86.16 79.65 94.07 79.47 64.92 74.88
ALUP 74.61 62.64 84.06 88.40 82.44 94.84 82.20 64.54 76.58

50%

DTC 49.85 37.05 69.46 64.39 50.44 83.01 52.92 37.38 49.80
CDAC+ 48.55 34.97 67.30 68.01 54.87 86.00 51.79 30.88 46.21
DeepAligned 59.38 47.95 76.67 80.70 72.56 91.59 74.52 57.62 68.28
ProbNID 63.02 50.42 77.95 82.62 75.27 92.72 73.20 62.46 74.54
DCSC 68.30 56.94 81.19 84.57 78.82 93.75 - - -
MTP-CLNN 70.97 60.17 83.42 86.18 80.17 94.30 80.36 62.24 76.66
USNID 73.27 63.77 85.05 87.22 82.87 95.45 82.06 71.63 78.77
CsePL 76.94 66.66 85.65 88.66 83.14 95.09 85.68 71.99 80.28
ALUP 79.45 68.78 86.79 90.53 84.84 95.97 86.70 73.85 81.45

Table 1: Main performance results on the generalized category discovery across three public datasets. KCR denotes
the known category rate.

a significant improvement compared with existing383

top-performing baselines, i.e., CsePL and USNID.384

For example, the proposed ALUP surpasses pre-385

vious SOTA CsePL by margins of 2.51% in ACC,386

2.12% in ARI, and 1.14% in NMI on BANKING-387

50%. Moreover, it is noteworthy that performance388

gains are more pronounced when a larger number389

of categories remain unknown. For example, the390

ACC performance of our ALUP improves 3.55%391

on BANKING-25%. It proves that the ALUP can392

acquire effective supervision signals from LLMs393

to enhance the model performance of discovering394

new categories.395

Comparison of different datasets: We evalu-396

ate the performance of the proposed ALUP on397

different datasets, including the single-domain,398

fine-grained BANKING dataset and the multi-399

domain CLINC dataset. From Table 1, we can no-400

tice that all existing methods exhibit significantly401

lower performance on the BANKING dataset com-402

pared to the CLINC dataset, indicating that the403

single-domain fine-grained scenario is more chal-404

lenging for GCD. However, the ALUP achieves405

a more significant improvement of 1%~3% on406

BANKING-50% compared with the CsePL, while407

only 0.8%~2% on CLINC-50%. This observation408

further strengthens the benefits of our ALUP in pro-409

KCR Methods
BANKING

ACC ARI NMI

25%

ALUP 74.61 62.64 84.06
- w/o UP 73.41 61.30 83.42
- w/o SFP 72.73 60.97 83.68
- w HP 70.24 59.08 82.32

50%

ALUP 79.45 68.78 86.79
- w/o UP 78.64 67.16 86.05
- w/o SFP 77.66 67.04 86.43
- w HP 75.60 64.33 84.72

Table 2: Ablation results on BANKING dataset.

viding effective supervision signals to cope with 410

the challenges in fine-grained category discovery. 411

4.5 In-depth Analyses 412

In this subsection, we conduct further detailed anal- 413

yses to explore the impact of each key component 414

within the proposed ALUP framework. 415

4.5.1 Effect of Uncertainty Propagation 416

Table 2 presents the experimental results of remov- 417

ing the Uncertainty Propagation in Equation (5) 418

from the ALUP on the BANKING dataset. We can 419

observe that the GCD performance of the ALUP 420

substantially diminishes across various known cat- 421

egory ratios. Especially, the ACC of the ALUP 422

decreases by 1.20% while the ARI and NMI drop 423
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1.34% and 0.64% on BANKING-25% respectively.424

This observation indicates that the Uncertainty425

Propagation can accurately identify the most infor-426

mative samples for querying LLMs to enhance the427

GCD model performance, which notably avoids428

selecting outliers with high model uncertainty but429

are less beneficial for the model learning.430

4.5.2 Effect of Soft Feedback Propagation431

We also explore the contribution of the Soft Feed-432

back Propagation by comparing the model perfor-433

mance when omitting the feedback propagation434

from LLMs Equation (8) with the standard ALUP.435

As presented in Table 2, we find that the model436

performance significantly decreases without propa-437

gating the feedback from LLMs, with ACC drops438

by 1.88%, ARI by 1.67%, and NMI by 0.38%. Nev-439

ertheless, ALUP w/o SFP still slightly outperforms440

the best-performing baseline CsePL. We argue the441

reasons for this observation lie in: (1) Acquiring442

supervision signals from LLMs for the informa-443

tive samples is beneficial for improving the model444

performance in discovering new categories. (2)445

The Soft Feedback Propagation strategy can effec-446

tively filter out and propagate the accurate super-447

vision signals from LLMs, amplifying the utility448

of LLM’s feedback while concurrently minimizing449

the risk of propagating errors.450

Compared to the Soft Feedback Propagation,451

we also investigate the Hard Propagation (ALUP452

w HP) in the ALUP, which directly extends the453

LLMs’ feedback to the neighboring samples with-454

out any control. As presented in Table 2, we can455

observe that the model performance significantly456

decreases with Hard Propagation, falling below457

even that of the CsePL. This is probably due to458

the propagation of inaccurate supervision signals459

from LLMs,which introduces considerable noise460

into the model learning.461

4.5.3 Number of Propagated Neighbors462

To delve deeper into the effectiveness of the Un-463

certainty Propagation within the proposed ALUP,464

we further conduct experiments on the BANKING465

dataset to explore how varying the number of prop-466

agated neighbors for selecting unlabeled samples467

influences model performance. Figure 3 presents468

the performance curves corresponding to various469

numbers of propagated neighbors. When increas-470

ing the number of propagated neighbors in Equa-471

5 15 20 25 30 35 40 50
Propagated Neighbors

45
50
55
60
65
70
75
80
85

Pe
rf

or
m

an
ce

KCR = 0.25

ACC
ARI
NMI

Figure 3: Effect of the number of propagated neighbors.

KCR p
BANKING

ACC ARI NMI

25%

19 73.70 61.40 83.58
38 74.61 62.64 84.06
57 72.01 60.86 83.04
77 71.36 59.58 82.64

50%

19 78.44 67.46 86.25
38 79.45 68.78 86.79
57 77.56 66.04 85.93
77 76.66 65.23 85.59

Table 3: Effect of the number of representative samples
in Comparison-based Pompting.

tion (3), there is a gradual improvement in the 472

performance of the proposed ALUP, culminating 473

in peak performance with 25 propagated neigh- 474

bors. However, when the number of propagated 475

neighbors exceeds 25, there is a decline in model 476

performance. This decrease can be attributed to the 477

inclusion of less uncertain samples, which poten- 478

tially introduces significant noise into the process 479

of unlabeled sample selection. 480

4.5.4 Effect of Representative Samples 481

To evaluate the effectiveness of the Comparison- 482

based Prompting method, we also analyze how the 483

model performance varies with different numbers 484

of representation samples p incorporated into the 485

prompt for querying LLMs. We conduct experi- 486

ments using values of p set to {19, 38, 57, 77}, 487

where 19 is about one quarter of the total num- 488

ber of clusters. As reported in Table 3, we can 489

notice that the optimal GCD performance is at- 490

tained by including 38 representative samples to 491

prompt LLMs for acquiring supervision signals for 492

the unlabeled samples. The main reasons for this 493

observation come from two aspects: (1) A smaller 494

p may potentially omit the representative samples 495
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Figure 5: Effect of number of query samples on the
BANKING-50%.

sharing the same underlying category as the se-496

lected samples, leading to an inability for LLMs to497

provide necessary supervision signals when com-498

paring with the incorporated representative sam-499

ples. (2) A larger number of representative samples500

used in the Comparison-based Prompting leads to501

a longer prompt. This can potentially cause LLMs502

to misclassify the selected unlabeled samples into503

inaccurate categories, which further degrade the504

model performance.505

4.6 Impact of Different Base GCD Models506

In our experiments, we select the most informa-507

tive unlabeled samples based on the existing GCD508

models. To validate the effectiveness of the pro-509

posed ALUP, we also examine how its performance510

varies when different GCD models are integrated511

within ALUP on the BANKING-50% dataset. As512

depicted in Figure 4, we can observe consistent and513

significant improvements with the proposed ALUP.514

It indicates that the proposed ALUP framework515

is effective in acquiring supervision signals from516

LLMs to enhance the model performance of dis-517

covering new categories and is adaptable to other518

GCD models.519

KCR Methods
BANKING

ACC ARI NMI

25% ALUP-gpt-3.5-turbo 74.61 62.64 84.06
ALUP-FlanT5-XXL 73.38 62.29 83.76

Table 4: Effect of different LLMs.

4.7 Influence of Query Sample Number 520

We study the effect of varying the number of se- 521

lected unlabeled samples for querying LLMs in 522

Figure 5. It is observed that there is an increase 523

in model performance corresponding to the rise 524

in the number of samples selected for querying 525

LLMs. However, this growth rate progressively 526

diminishes as the LLMs’ feedback is propagated, 527

and selecting informative samples becomes more 528

challenging with the increasing number of selected 529

samples. 530

4.8 Effect of Different LLMs 531

In addition to employing close-sourced gpt-3.5- 532

turbo as the basic LLM in our experiments, we also 533

conduct experiments on the BANKING-25% to ex- 534

plore the use of open-sourced LLM FlanT5-XXL 535

(Chung et al., 2022) to derive supervision signals 536

for the ALUP. As shown in Figure 4, we can notice 537

that, when coupling the FlanT5-XXL in the ALUP 538

framework, there is a slight decrease in GCD per- 539

formance compared to other close-sourced gpt-3.5- 540

turbo model. However, it still surpasses the top- 541

performing baseline CsePL. 542

5 Conclusion 543

In summary, our ALUP framework innovatively 544

integrates Large Language Models with uncer- 545

tainty propagation in generalized category discov- 546

ery, marking a significant leap in the field. By 547

employing comparison-based LLM prompting and 548

a novel soft feedback propagation mechanism, 549

ALUP adeptly identifies and categorizes new data 550

with enhanced accuracy and efficiency. This ap- 551

proach not only surpasses traditional GCD meth- 552

ods but also minimizes the risk of error propaga- 553

tion, a critical advancement in handling real-world, 554

dynamic datasets with LLMs. Future endeavors 555

will focus on refining LLM integration, extending 556

our methods to multi-modal data, and enhancing 557

scalability and data privacy measures, furthering 558

ALUP’s potential in diverse and evolving open- 559

world computing. 560
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Limitations561

While our ALUP framework marks a significant562

advance in Generalized Category Discovery us-563

ing LLMs, it does have some limitations. The564

reliance on LLMs can introduce biases and inac-565

curacies, particularly in areas where these models566

have limited training data or exposure. Although567

our propagation method effectively reduces overall568

costs, the initial computational demands of LLMs569

may still pose scalability challenges, especially570

for resource-limited environments. Additionally,571

the framework currently focuses on textual data,572

which could limit its applicability in multi-modal573

data scenarios. Moreover, while our soft feedback574

propagation mechanism aims to minimize error575

spread, it is not immune to the risk of amplifying576

initial inaccuracies from LLM feedback. Finally,577

data privacy and security remain critical concerns578

in the use of external LLMs, necessitating ongoing579

vigilance and adaptation.580
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A Appendix897

A.1 Dataset Statistics898

We show the detailed statistics of BANKING,899

CLINC and StackOverflow datasets in Table 5.900

Specifically, BANKING is a fine-grained category901

discovery dataset collected from user dialogues in902

banking domain. It contains over 13K user utter-903

ances that span over 77 distinct categories. CLINC904

is a multi-domain dataset, which encompasses 150905

distinct categories and 22,500 utterances across906

10 domains. StackOverflow is a technical question907

dataset collected from Kaggle.com, which includes908

20K questions with 20 categories.909

A.2 Implementation Details910

For the dataset setup, following (Zhang et al.,911

2023a), we randomly select a specified ratio {25%,912

50%} of categories, denoted as known category913

rate (KCR), to serve as known categories. For each914

known category, 10% of labeled samples are se-915

lected to constitute a labeled dataset Dl, while the916

remaining samples are deemed as the unlabeled917

data, thereby forming the unlabeled dataset Du.918

For the Uncertainty Propagation, we set the free-919

dom α in Equation (1) to 1.0. The number of920

propagated neighbors is specifically set to 25 for921

all datasets. The ρ for calculating similarities in922

Equation (4) is set to 1.0.923

For the Comparison-based Prompting, we em-924

ploy the gpt-3.5-turbo as the basic LLM in our925

experiments. While acquiring supervision signals,926

the temperature is set to 0 for deterministic outputs,927

and the maximum tokens are constrained to 256.928

The default values are retained for the rest of pa-929

rameters. The number of representative samles is930

specifically set to 38 for the BANKING dataset, 75931

for the CLINC dataset, and 20 for the StackOver-932

flow dataset.933

A.3 Evaluation Metrics934

In the experiments, we employ three standard eval-935

uation metrics: ACC, ARI, and NMI to evaluate936

the GCD performance. Specifically, ACC mea-937

sures the performance of GCD by comparing the938

predicted labels with the ground-truth labels. The939

definition of ACC is as follows:940

ACC =

∑N
i=1 1yi=map(ŷi)

N
941

Dataset Domain Categories Utterances

BANKING banking 77 13,083
CLINC multi-domain 150 22,500

StackOverflow question 20 20,000

Table 5: Statistics of datasets used in the experiments.

where {ŷi, yi} denote the predicted label and the 942

ground-truth label for a given sample xi respec- 943

tively. map(·) is a mapping function that maps 944

each predicted label ŷi to its corresponding ground- 945

truth label yi by Hungarian algorithm. 946

ARI calculates the similarity between the pre- 947

dicted and ground-truth clusters, assessing the ac- 948

curacy of clustering on a pairwise basis. ARI is 949

defined as: 950

ARI =
∑

i,j

(ni,j
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) 951

where ui =
∑

j ni,j , and vj =
∑

i ni,j . N denotes 952

the number of all samples. ni,j is the number of 953

sample pairs that are both assigned to ith predicted 954

cluster and jth ground-truth cluster. 955

NMI computes the normalized mutual informa- 956

tion to quantify the agreement between the pre- 957

dicted and ground-truth clusters, providing a mea- 958

sure of clustering consistency. It can be calculated 959

as follows: 960

NMI(ŷ,y) =
2 · I(ŷ,y)

H(ŷ) +H(y)
961

where {ŷ,y} denote the predicted labels and the 962

ground-truth labels respectively. I(ŷ,y) is the mu- 963

tual information between ŷ and y. H(·) represents 964

the entropy function. 965

A.4 Baselines 966

In this work, we compare the proposed ALLUP 967

with the following representative baselines: 968

• DTC (Han et al., 2019): A semi-supervised deep 969

clustering approach with a novel mechanism for 970

estimating the number of intents based on labeled 971

data. 972

• CDAC+ (Lin et al., 2020): A pseudo-labeling 973

approach that employs pairwise constraints and a 974

target distribution as guiding factors in the learn- 975

ing of new categories. 976

• DeepAligned (Zhang et al., 2021b): A semi- 977

supervised approach that addresses the clustering 978

inconsistency problem by using an alignment 979

strategy for learning utterance embeddings. 980
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Cluster Num Methods
Banking77

ACC ARI NMI

K = 77 (gold)
USNID 65.85 56.53 81.94
CsePL 71.06 60.36 83.32
ALUP 74.61 62.64 84.06

K = 74 (predicted)
USNID 60.72 49.18 78.11
CsePL 69.75 56.70 81.30
ALUP 72.55 61.04 82.78

Table 6: Effect of estimating cluster number K.

• ProbNID (Zhou et al., 2023): A probabilistic981

framework that capitalizes on the expectation-982

maximization algorithm, conceptualizing intent983

assignments as probable latent variables.984

• DCSC (Wei et al., 2022): A pseudo-labeling985

method involving the dual-task, which uses the986

SwAV algorithm and Sinkhorn-Knopp (Cuturi,987

2013) to assign soft clusters.988

• MTP-CLNN (Zhang et al., 2022a): A two-stage989

method that enhances representation learning via990

a multi-task pre-training and a nearest neigh-991

bor contrastive learning for identifying new cate-992

gories.993

• USNID (Zhang et al., 2023a): A framework994

supports both unsupervised and semi-supervised995

new intent discovery, incorporating an effec-996

tive centroid initialization strategy designed to997

learn cluster representations by utilizing histori-998

cal clustering information.999

• CsePL (Liang and Liao, 2023): A method that1000

utilizes two-level contrastive learning with la-1001

bel semantic alignment to enhance the cluster1002

semantics, and a soft prompting strategy for dis-1003

covering new intents.1004

We re-run the released code of ProbNID to get its1005

results. The other baselines’ results are retrieved1006

from Zhang et al. (2023a).1007

B Estimate the Category Number K1008

In the complex task of generalized category discov-1009

ery in real-world scenarios, accurately predicting1010

the total number of categories, represented as K,1011

remains a significant challenge. Drawing from the1012

methodologies proposed by Zhang et al. (2021b),1013

our research leverages pre-initialized intent fea-1014

tures to autonomously determine K. We begin by1015

assigning an initially large number of clusters, K ′,1016

and then utilize a refined model to extract feature1017

representations from our training dataset. These 1018

representations are grouped into distinct clusters 1019

using the K-means algorithm. Clusters that are 1020

densely populated and demonstrate well-defined 1021

boundaries are recognized as valid category clus- 1022

ters. Conversely, smaller, less distinct clusters 1023

are considered less relevant and subsequently dis- 1024

carded. The selection criteria for this process can 1025

be outlined as follows. 1026

K =

K′∑
i=1

δ(|Si| > ρ), 1027

where |Si| is the i-th grouped cluster size, ρ is the 1028

filtering threshold. δ(·) denotes the indicator func- 1029

tion, whose output is 1 if the condition is satisfied. 1030

Experimental results are reported in Table 6. 1031

The comparative results show that the proposed 1032

ALUP incurs only a minor performance decline 1033

with predicted category number. This indicates 1034

that our ALUP exhibits robustness in handling in- 1035

accurately predicted category number. 1036

14


	Introduction
	Related Work
	Generalized Category Discovery
	Active Learning in the Era of LLMs

	Methodology
	Problem Formulation
	Approach Overview
	Uncertainty Propagation (UP)
	Comparison-based Prompting (CP)
	Soft Feedback Propagation (SFP)

	Experiments
	Datasets
	Evaluation Metrics
	Baselines
	Main Results
	GCD Performance Comparison

	In-depth Analyses
	Effect of Uncertainty Propagation
	Effect of Soft Feedback Propagation
	Number of Propagated Neighbors
	Effect of Representative Samples

	Impact of Different Base GCD Models
	Influence of Query Sample Number
	Effect of Different LLMs

	Conclusion
	Appendix
	Dataset Statistics
	Implementation Details
	Evaluation Metrics
	Baselines

	Estimate the Category Number K

