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ABSTRACT

Advancements in deep learning for neuroimaging have resulted in the develop-
ment of increasingly complex models designed for a wide range of tasks. Despite
significant improvements in hardware, enhancing inference and training times
for these models remains crucial. Through an analysis of numerical uncertainty
in convolutional neural networks (CNNs) inference, we found that a substantial
amount of operations in these models are applied to values dominated by numerical
noise, with little to no impact on the final output. As a result, up to two-thirds of the
floating-point operations executed by some CNNs appear unnecessary. To address
this inefficiency, we introduce Conservative & Aggressive NaNs —novel variations
of PyTorch’s max pooling and unpooling operations. These techniques identify nu-
merically unstable voxels and replace them with NaNs, allowing models to bypass
operations on irrelevant data. We evaluated Conservative & Aggressive NaNs on
four models: the FastSurfer and FONDUE CNNs, widely used neuroimaging tools,
the Xception CNN, an image classification model, and another CNN designed to
classify the MNIST dataset. We observed speedups for data containing at least
50% NaNs, and most notably, for data with more than two-thirds NaNs (as in many
of our use cases), we observed an average speedup of 1.67×. Conservative NaNs
reduces the number of convolutions by an average of 30% across all tested models
and datasets, with no measurable degradation in performance. In some model
layers, it can skip up to 64.64% of convolutions with no performance degradation.
The more proactive Aggressive NaNs approach can skip up to 69.30% convolutions
for FastSurfer with no performance degradation, however, it sometimes leads to
measurable performance degradation for FONDUE and MNIST. Overall, Conserva-
tive & Aggressive NaNs provide substantial opportunities for runtime acceleration
of inference in CNNs, which could potentially reduce the environmental impact of
these models.

1 INTRODUCTION

Convolutional Neural Networks (CNNs), in particular U-Nets, are transforming neuroimaging by
progressively replacing traditional image analysis software with models that deliver comparable
performance in a fraction of the runtime. This allows for scalable processing of large datasets.
However, optimizing the inference and training times of these models remains a critical challenge, as
improvements in this area could facilitate near-real-time analyses across various applications, support
the training of larger models for tasks previously considered computationally infeasible, and reduce
the environmental impact of such analyses.

While investigating the numerical uncertainty in CNNs, we identified a key inefficiency in the
pooling and unpooling operations: approximately two-thirds of the embedding values propagate pure
numerical noise, leading to unnecessary computations in subsequent convolutional layers. This issue
arises when max pooling is applied to windows containing multiple near-equal values (within a small
epsilon threshold), leading to instability in the selection of the maximum index. When unpooling
later restores values based on these indices, small inconsistencies in index selection can result in
numerical noise filling large portions of the embedding space (Figure 1).

Despite the prevalence of this instability, affected models continue to train successfully and produce
accurate predictions. This suggests that much of the processed noise is irrelevant to model perfor-
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mance, presenting an opportunity for computational efficiency. To leverage this insight, we introduce
the Convervative & Aggressive NaNs approaches, which modify pooling operations as follows:

• Conservative NaNs modifies max pooling to return all possible indices of the maximum
value. When the unpooling operation is called, NaNs are inserted at these indices.

• Aggressive NaNs takes a more aggressive approach, preventing unstable indices altogether
by modifying max pooling to output NaNs in case of numerical uncertainty.

In both methods, we adapt convolution operations to handle tensors with NaNs, skipping computations
when NaNs exceed a predefined threshold.

2 NUMERICAL ANALYSIS OF FASTSURFER SEGMENTATION MODEL

2.1 NUMERICAL UNCERTAINTY OF FASTSURFER EMBEDDINGS

Figure 1: Significant Digit Maps for FastSurfer Model Embeddings in Selected Model Layers for
Numerically Unstable Data.

We examined the numerical uncertainty of the FastSurfer CNN during inference, focusing on the
stability of the final classification results as well as the embeddings.

To do so, we used Monte Carlo Arithmetic (MCA) Parker (1997)—a stochastic arithmetic technique
that introduces random numerical perturbations to assess numerical uncertainty—implemented
through the Verrou tool Févotte & Lathuiliere (2016) that dynamically instruments binary executables
with MCA. Using Verrou, we instrumented FastSurfer inference to generate 10 iterations of the
model’s embeddings, each subjected to random perturbations, and computed the number of significant
digits across the 10 iterations Sohier et al. (2021). This analysis was performed for every layer of
the FastSurfer model, with the results visualized as heatmaps in Figure 1. This revealed that a large
fraction of the model embeddings were purely numerical noise (zero significant digits), represented
by red-colored regions in the figure.

The instability first appeared during the max unpooling operations in the FastSurfer decoder, which we
later determined resulted from the indices provided to the max unpooling operation. This instability
becomes especially pronounced when upsampling is applied to regions of the image background,
where uniform values dominate.

Interestingly, the segmentations resulting from the model were still accurate in spite of the presence
of substantial numerical noise in the embeddings, which suggested that computations performed on
these values were not contributing to the final result. This observation motivated the design of NaN
Convolutions and Conservative & Aggressive NaNs presented in this paper.

2.2 NUMERICAL UNCERTAINTY IN MAX POOLING

Max pooling Boureau et al. (2010) is a widely used downsampling technique that replaces a defined
window of values with its maximum value. It can optionally return indices that indicate the original
locations of these maximum values. During upsampling, max unpooling uses these indices to restore
the maximum values to their original positions, filling the remaining voxels with zeros. This process
ensures that the spatial structure of the input data is partially reconstructed based on the locations of
the selected maximum values. The indices generated during max pooling are especially useful in
U-Net architectures, where downsampling and upsampling processes are frequently coupled Zeiler
et al. (2010); Çiçek et al. (2016); Lu et al. (2019); Plascencia et al. (2023); De Feo et al. (2021).
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While investigating the numerical uncertainty of CNNs during inference, we found that numerical
instabilities arose during max unpooling operations due to fluctuations in the indices used by un-
pooling. When values within a pooling window are close to each other, even slight noise can lead to
index shifts while the maximum value remains unchanged. This instability is particularly evident
when upsampling is applied to areas of an image’s background, where values are nearly uniform.
Interestingly, we observed that the propagation of this numerical noise did not adversely impact the
final outputs of the models we tested.

Unstable voxels contribute no meaningful information to the model. To address this inefficiency, we
propose Conservative & Aggressive NaNs as a way to bypass operations on such irrelevant voxels. In
floating-point arithmetic, NaNs (Not-a-Number) are special values defined by the IEEE 754 standard
to represent undefined or unrepresentable results. A NaN is represented by an exponent of all ones
and a non-zero mantissa, and it is used to represent undefined or exceptional results in floating-point
calculations. Leveraging this concept, we use NaNs to mark numerically irrelevant voxels, effectively
skipping over operations that would otherwise be wasted on data that provides no useful information.
This approach enhances computational efficiency by allowing the model to focus on relevant data,
without altering the final output.

3 CONSERVATIVE NANS
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Figure 2: Comparison of Max Pooling vs Conservative & Aggressive NaNs in the presence of
numerical uncertainty. Green indicates numerically stable values, red unstable values.

Conservative NaNs is illustrated in Figure 2. Given X, the input tensor, W, a sliding window defined
by kernel size k × k and stride s, we first perform Multi Pooling to extract all indices of the max
values per window. Given W, max(W) denotes the maximum value in W and idx(W) are the indices
of W. We define the set of indices for all maximum values:

S = {i ∈ idx(W) | |Wi −max(W)| < ϵ}
This ensures that, rather than returning a single maximum index, the function returns a set S containing
all positions where the values are equal to the maximum value within an ϵ tolerance of 10−7. This
threshold corresponds to the resolution of single-precision computations and is applied per W. This
gives us M = {m1,m2, . . . ,mn}, a tensor of max values from X which is identical to normal max
pooling and D, a dictionary mapping each max value mi to a set of indices S in X.

We then apply the Conservative NaNs operation:

Y[j] =


mi if j ∈ S and |S| = 1

NaN if j ∈ S and |S| > 1

0 otherwise

where Y is the upsampled output tensor containing the max values in their original location prior to
pooling as well as introducing NaNs.

4 AGGRESSIVE NANS

We illustrate Aggressive NaNs in Figure 2. For each tensor window W in the input tensor X, the max
pooling operation Y (W) is computed as:

Y (W) = (m, im)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Where m is the maximum value of W and im, the index of the maximum value of W, i.e. im =
argmax(W).

For Aggressive NaNs, we redefine the max pooling operation Y to handle potential NaNs and
tie-breaking for repeated maximum values as follows:

Y ′(W) =

{
(NaN, (0, 0)) if Counter > t1

(m, im) otherwise

Where Counter = Card ({w ∈ W:,:,j | |w −m| < ϵ}), t1 is a user-defined threshold that specifies
the maximum number of near-equal values allowed for m, and ϵ = 10−7 is the tolerance to handle
floating-point precision issues. We assign index (0,0) for unstable pooling cases to simplify imple-
mentation. This default is efficient and robust to implement, avoiding the overhead of resolving tie-
breaking logic. We derive m and im, from W̄, defined as W̄ = {Wn,i,j ∈ W | Wn,i,j is not NaN}
in order to ignore NaN values.

5 NAN CONVOLUTION

NaN Convolution handles the presence of NaNs introduced through Aggressive or Conservative
NaNs, skipping over numerically irrelevant operations. Consider a padded 4D input tensor X of
shape (N,Cin, Hin,Win), a 4D kernel tensor K of shape (Cout, Cin, Hk,Wk), and a NaN threshold
t2 ∈ [0, 1], where N is the batch size, Cin is the number of input channels, Cout is the number of
output channels, Hin is the height of the input, Win is the width of the input, Hk is the height of the
kernel, and Wk is the width of the kernel.

For each window W in the input tensor, where W is of shape (Cin, Hin,Win) and its elements are in
R ∪ {NaN}, we define the output of the NaN convolution of W by kernel K as performed per batch:

Yc,h,w =


NaN if rc,h,w ≥ t2
Cin-1∑
c=0

Hk-1∑
h=0

Wk-1∑
w=0

W̄c,h,w Kc,h,w if rc,h,w < t2

Where rc,h,w is the ratio of NaNs across the input channels, height and width dimensions:

rc,h,w =
Card({w ∈ Wn,i,j |w = NaN})

CinHinWin

We apply this NaN Convolution to all convolution layers in the network. An exception is made for
pointwise convolutions, which are addressed with a modified approach detailed in Appendix A.

We define W̄ as the modified window where NaNs are replaced with one of two approaches.

Approach A replaces NaNs with µn,i,j , defined as the mean of the non-NaN values within W:

W̄ =

{
µn,i,j if Wn,i,j = NaN
Wn,i,j otherwise

Approach B replaces NaNs with a random value from a Gaussian distribution centered around
maxn,i,j , the maximum of the non-NaN values within W, and a standard deviation σ of 10−3.

W̄ =

x ∼ N
(
max
n,i,j

(W), σ2

)
if Wn,i,j = NaN

Wn,i,j otherwise

Approach A can smooth the outputs of NaN Convolutions, which is advantageous in some settings.
However, when smoothing is undesirable, Approach B introduces variability into the output. This
variability is particularly useful in models with subsequent iterations of Aggressive NaNs, as it
prevents overly aggressive NaN introduction that could result from exploiting the smoothed output of
Approach A.

W̄ is introduced to ensure that regions where the number of NaNs remains below the threshold t2 are
unaffected, since standard operations cannot inherently manage NaN values. It replaces the previous
versions of the window and serves as the basis for the convolution operation.
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6 EXPERIMENTS & RESULTS

We implemented Conservative & Aggressive NaNs, NaN Convolutions and standard convolutions in
Python and evaluated their performance across four convolutional neural networks: FastSurfer Hen-
schel et al. (2020), a U-Net for whole-brain segmentation; FONDUE Adame-Gonzalez et al. (2023),
a nested U-Net for MRI denoising; Xception Chollet (2017), an image classification model based
on depthwise separable convolutions; and a classic CNN for digit classification on MNIST LeCun
& Cortes (1998). We provide architectural diagrams for all models in Appendix C and dataset
description in Appendix B. Although we primarily report results on the axial brain plane, we verified
that similar conclusions hold across the sagittal and coronal planes.

To quantify the computational impact, we calculated the ratio of skipped operations relative to the total
number of convolutions. This ratio was tracked both across individual operations, the architectural
layers of the models and across brain slices in the neuroimaging data, providing a comprehensive view
of the effect of the NaN approaches. We experimented with a range of threshold values for t2 (from
1.0 to 0.4), which determine the minimum ratio of NaNs in a patch required to skip the corresponding
convolution. A threshold of 1.0 skips only fully-NaN patches, while 0.4 allows for more aggressive
skipping. Unless otherwise specified, we refer to the baseline models that use standard PyTorch
operations as the “default” implementations. Scripts, configuration details, and further documentation
for this experiment are available on GitHub nan.

6.1 NAN CONVOLUTIONS ACHIEVE SPEEDUP
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Figure 3: Average Speed Up Between Standard and NaN Convolutions (left plot). Ratio of skipped
convolutions (right plot).

We measured runtime performance across a range of input tensor sizes, where NaNs were randomly
distributed. The NaN Convolution threshold t2 was fixed at 0.5 throughout to isolate the effects of
varying tensor size and NaN density. This threshold was selected based on its consistent success in
multiple real-world neuroimaging use cases. We define speedup as the ratio of standard convolution
time to NaN Convolution time; values above 1.0 indicate a performance gain. Nonetheless, depending
on the size of the input and NaN density, we had compute times ranging from 3.31× 10−3 to 9.16
seconds per NaN Convolution and a range of 8.67× 10−3 to 7.29 seconds per standard convolution.

As shown in the left plot of Figure 3, under random NaN distributions, speedups were modest at
33% NaN presence (0.68×–0.84×), but surpassed parity by 50% (1.05× average). At 75% and
90% NaN presence, speedups consistently exceeded 2×, reaching up to 2.76× for large matrices.
These results confirm that skipping NaN regions yields significant runtime improvements as input
sparsity increases. However, a plateau was observed at larger inputs, likely due to shared bottlenecks
in resource bandwidth, or the Python interpreter, which affect both convolution types equally.

Furthermore, we translate the NaN density in input tensors into the number of skipped convolutions
in the right plot of Figure 3, and observe that the NaN density is generally proportional to the number
of skipped convolutions. Crucially, input tensors containing 50% or more NaNs are common in
real-world neuroimaging pipelines such as FastSurfer and FONDUE. In such cases, NaN Convolution
offers a practical strategy to bypass unnecessary computation without compromising model output.
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Figure 4: Comparison of Standard and NaN Convolutions in bfloat16 and float32 for GPU

To further assess the generalizability of our method, we evaluated its compatibility with reduced-
precision settings. As shown in Figure 4, NaN Convolution maintained its performance advantage
over standard convolution when executed in lower-precision formats such as bfloat16 on GPU. In fact,
we observe a slight increase in speed up for bfloat16 compared to float32 on GPU, which we attribute
to hardware-level optimization for bfloat16. Compared to quantization and pruning, NaN-based
operations are orthogonal and complementary, providing an additional pathway to runtime efficiency
in high-resolution, sparse-input settings. Exploring combined strategies remains a compelling
direction for future work. Overall, these findings show that even without hardware-level acceleration,
NaN Convolution offers a substantial and practical runtime advantage when large portions of the
input are impacted by numerical noise.

6.2 CONSERVATIVE NANS SKIPS 30% OF CONVOLUTIONS IN NEUROIMAGING MODELS AND
PRESERVES ACCURACY
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Figure 5: Ratio of Skipped Convolutions Across FONDUE (top) and FastSurfer (bottom) for Ar-
chitecture (left) and Axial Brain Slices (right). For Thresholds 1, 0.8, 0.5 and 0.4, 6.1 %, 10.95%,
26.59% and 31.95% of total convolutions were skipped respectively for FastSurfer. For FONDUE, 0
%, 26.85%, 33.97% and 33.77 % of total convolutions were skipped respectively.

Conservative NaNs targets voxels in the numerically unstable background of neuroimaging data,
which can account for up to two-thirds of the input space. By skipping convolutions on these voxels,
the method reduces redundant computation without harming downstream predictions. Importantly,
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once the proportion of skipped convolutions surpasses 50%, we estimate a theoretical speedup of up
to 2×, calculated by translating the skip ratios into runtime savings as shown in Figure 3.

In FastSurfer, skipped operations occur exclusively in decoder blocks, with the fraction increasing
from mid to late layers (Figure 5, top left). Slice-wise analysis shows the highest skip rates at the
extremes of the brain volume, where background voxels dominate (Figure 5, top right). Across
thresholds of 1, 0.8, 0.5, and 0.4, total computational savings were 6.12%, 10.95%, 26.59%, and
31.94%, respectively, rising to 16.21–64.64% when restricted to decoder layers.

In FONDUE, a nested U-Net architecture model, skipped convolutions also concentrated in back-
ground regions (Figure 5, bottom row). At threshold 0.5, variability increased because NaNs appeared
inconsistently across slices. Unlike FastSurfer, where NaNs propagated into the final output (but
could be safely replaced with zeros since they only affected background voxels), FONDUE naturally
limited NaN propagation due to fewer unpooling operations. Its hierarchical structure caused NaNs to
emerge progressively from deeper to shallower layers rather than monotonically, resulting in overall
skip ratios of 0%, 26.85%, 33.97%, and 33.77% for thresholds of 1, 0.8, 0.5, and 0.4.

We then assessed performance with each model’s standard evaluation metrics. For FastSurfer, we an-
alyzed the Dice-Sørensen coefficient Dice (1945) to quantify the spatial overlap between FastSurfer’s
segmentations and the reference segmentations produced by the FreeSurfer pipeline Fischl et al.
(2002). Since FastSurfer was trained on data processed by FreeSurfer, these reference segmentations
serve as the ground truth for assessing its performance. In Figure 6, we observe the Dice–Sørensen
scores were unchanged across thresholds; accuracy matched the default implementation, with visible
declines near the brain center attributable to anatomical complexity, not Conservative NaNs.

For FONDUE, we evaluated peak signal-to-noise ratio (PSNR), which quantifies image quality,
and corroborated our findings with the structural similarity index (SSIM) metric, which captures
perceptual differences in luminance, contrast, and structure (not reported here to avoid redundancy).
In the left plot of Figure 7, PSNR was maintained across thresholds 1–0.4. Thresholds <0.4 degraded
performance and were excluded. Overall, Conservative NaNs preserves model performance while
significantly reducing computational workload.
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Figure 6: Comparison of Dice-Sørensen scores for default, Conservative (left plot) & Aggressive
NaNs (right plot) Implementations of Fastsurfer across Axial Brain Slices.

6.3 AGGRESSIVE NANS TRADES OFF ACCURACY WITH INCREASED EFFICIENCY

Aggressive NaNs skips a significant fraction of convolution operations, but this efficiency gain
comes with a trade-off in accuracy. We evaluated the method on four different models—FastSurfer,
FONDUE, MNIST, and Xception—covering both neuroimaging and natural image tasks. Since
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unpooling layers are absent in Xception and MNIST, Conservative NaNs was applied only to
FastSurfer and FONDUE, but Aggressive NaNs were applied to all models. For NaN substitution
during convolution, we used Approach A for the neuroimaging and Xception CNNs, and Approach
B for the MNIST CNN, as this setup yielded the most robust performance. Overall, we find that
Aggressive NaNs is best suited for models operating on homogeneous image regions, such as those
found in MRI, while its benefits diminish on heterogeneous RGB datasets.

FastSurfer consistently maintained strong performance despite extensive skipping of convolutions.
33.24% of total convolutions were skipped at threshold 1, and 44.19% at threshold 0.5. When
focusing only on NaN-affected layers, the rate of skipped operations rose to 50.59% and 69.30%,
respectively—demonstrating the aggressive efficiency gains possible with moderate thresholds. As
shown in Figure 8, up to 44.19% of total convolutions were skipped at threshold 0.5, with even higher
rates in NaN-affected layers—corresponding to a theoretical speedup approaching 2×. Dice scores
remained nearly identical to the default model, with only minor deviations in the cerebellum region.
Since FastSurfer is trained on FreeSurfer outputs, and FreeSurfer is known to segment the cerebellum
inaccurately Morell-Ortega et al. (2024); Carass et al. (2018); Romero et al. (2017), the observed
drop is likely due to unreliable labels rather than Aggressive NaNs itself (see Appendix D for a
detailed analysis). This result demonstrates that Aggressive NaNs can deliver substantial efficiency
improvements without sacrificing segmentation quality in robust neuroimaging architectures.
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Figure 8: Ratio of Skipped Convolutions Across FastSurfer for Architecture (left plot) and Axial
Brain Slices (right plot). For Threshold 1 and 0.5, 33.24 % and 44.19 % of convolutions were skipped.

In contrast, FONDUE exhibited a measurable drop in accuracy (Figure 7). PSNR declined across
thresholds, although most PSNR values remained above 20 dB, which is considered acceptable for
MRI quality. This indicates that while Aggressive NaNs reduces computation, it can be model-
dependent.

In the MNIST digit classification benchmark, Aggressive NaNs showcased its sensitivity to data
redundancy. With high thresholds (≥1), accuracy remained near 99%, while lower thresholds
highlighted the method’s ability to aggressively prune computations—skipping up to 78.6% of
convolutions, equivalent to a ∼2× speedup in some layers (Figure 9a). However, this came with
steep accuracy trade-offs at low thresholds, reflecting the limited redundancy of MNIST compared to
larger neuroimaging datasets.

When applied to the Xception CNN on ImageNet, Aggressive NaNs further highlighted its dependence
on data structure (Figure 9b). The method is demonstrated as compatible with depthwise separable
convolutions while preserving accuracy, but only ∼1% of convolutions were skipped, underscoring
the reduced opportunity for efficiency gains in heterogeneous RGB images. These results position
Aggressive NaNs as a strong candidate for domains with high spatial redundancy, while remaining
technically applicable to more complex architectures.

Taken together, we show that Aggressive NaNs provides substantial computational savings on models
trained for neuroimaging (e.g., FastSurfer) and, to a lesser extent, on simpler datasets like MNIST.
While it sometimes trades efficiency for accuracy—degrading performance in sensitive architectures
(FONDUE) and showing limited benefit on heterogeneous RGB datasets (MNIST, Xception)—we
also show it works well beyond standard convolution implementations. Its strengths lie in domains
with homogeneous image regions, provided thresholds and architectures are chosen carefully.
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Figure 9: F1 (line plot) and convolution skipping patterns (bar plot) under Aggressive NaNs for (a)
MNIST CNN and (b) Xception CNN.

7 CONCLUSION

We introduced Conservative & Aggressive NaNs, and NaN Convolutions—modified operations that
skip computations on numerically unstable and irrelevant voxels by propagating NaNs. Conservative
NaNs reacts to instability as it arises, while Aggressive NaNs proactively filters out irrelevant data,
allowing selective computation based on input stability in CNNs and computational efficiency.
Furthermore, NaN persistence can offer a mechanism for quantifying uncertainty, especially in
ambiguous regions of medical images. This dual use—efficiency and interpretability—makes the
proposed methods particularly valuable for clinical and explainable AI applications.

Our experiments on neuroimaging models (FastSurfer and FONDUE), classification benchmarks
(MNIST CNN), and a depthwise separable CNN (Xception) reveal distinct behaviors for the two
strategies. Conservative NaNs consistently preserved performance across all neuroimaging data,
reducing computations by 31.94% in FastSurfer and up to 33.97% in FONDUE without any loss
of accuracy. Aggressive NaNs, by contrast, is effective primarily on MRI data, achieving up to
39% convolution reduction in FastSurfer, but requires careful threshold tuning to avoid performance
degradation. MNIST and Xception serve as clear examples of the limitations of these methods:
while some efficiency gains are possible, heterogeneous RGB data and complex natural images limit
the extent of skipped operations and the achievable speedup, despite stable NaN propagation in
Xception’s depthwise separable convolutions.

The NaN Convolution time trials further confirmed substantial runtime improvements—especially at
high NaN densities—with consistent trends across float32 and bfloat16 precisions on CPU and GPU.
These results establish a novel and practical path toward improving the computational efficiency
of convolutional networks. Beyond theoretical contribution, we provide evidence of speedup and
reduced resource utilization, which can be linked to lower resource consumption. In an era where
the environmental cost of deep learning is under increasing scrutiny, our findings highlight how
architectural-level innovations can contribute to more sustainable AI. Future directions include
combining NaN-aware methods with sparse tensor representations, im2col-based transformations,
and hardware-aware execution strategies to further increase efficiency. Together, these developments
can pave the way for scalable, efficient, and environmentally conscious deep learning.
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A POINTWISE CONVOLUTION EDGE CASE

Pointwise convolutions are typically the second step in depthwise separable convolutions. Also
referred to as 1× 1 convolution, it is used to combine the output channels across different feature
maps.

For pointwise convolutions, our method functions as long as the number of input channels (Cin) is
strictly greater than 1, ensuring that enough values exist to compute a meaningful ratio and propagate
NaNs accordingly. Otherwise, if all three dimensions of the convolution window are 1, e.g. in a 1× 1
convolution where Cin = 1, the kernel operates on a single scalar value. In this case, our default
threshold-based NaN Convolution approach was not well defined. To address this, we’ve revised its
definition as follows:

Yc,h,w =


NaN if numel(W̄c,h,w) = 1 & W̄c,h,w = NaN
Cin-1∑
c=0

Hk-1∑
h=0

Wk-1∑
w=0

W̄c,h,w Kc,h,w otherwise

This extension ensures consistency with the intended behavior of NaN handling.

B DATASETS

Table 1: Subjects sampled in the CoRR dataset.

Subject Image Dimension Voxel Resolution Data Type

sub-0025248 (208, 256, 176) (1.00, 1.00, 1.00) float32
sub-0025531 (160, 240, 256) (1.20, 0.94, 0.94) float32
sub-0025011 (128, 256, 256) (1.33, 1.00, 1.00) float32
sub-0003002 (176, 256, 256) (1.00, 1.00, 1.00) int16
sub-0025350 (256, 256, 220) (0.94, 0.94, 1.00) float32

For FastSurfer and FONDUE, we used the Consortium for Reliability and Reproducibility (CoRR)
dataset, a multi-centric, open resource aimed to evaluate test-retest reliability and reproducibil-
ity. We randomly selected 5 T1-weighted MRIs from 5 different subjects, one from each
CoRR acquisition site, and accessed them through Datalad Halchenko et al. (2021). The se-
lected images included a range of image dimensions, voxel resolutions and data types (Ap-
pendix Table 1). We processed all subjects’ images using FreeSurfer’s recon-all command with
the following steps: -motioncor -talairach -nuintensitycor -normalization
-skullstrip -gcareg -canorm -careg. These steps ensured that the images were
motion-corrected, skull-stripped, intensity-normalized, and registered both linearly and non-linearly,
preparing them as input for FastSurfer segmentation.

For the MNIST model, the CNN used in this experiment was custom-built while the dataset was
downloaded from PyTorch’s torchvision library.

For Xception, we evaluated the model on the first 1,000 samples of the ImageNet validation
dataset Deng et al. (2009) available on Kaggle in order to further test our approach beyond neuroimag-
ing and on convolution variations such as depth wise separable convolutions. Due to the current
incompatibility of Adaptive Pooling and Linear layers with NaN propagation, NaNs were converted
to zeros before the final two layers.

When applying NaN instrumentation to the models, we used Approach A within NaN Convolution
for NaN substitution for the neuroimaging CNNs and Approach B for the MNIST CNN in order to
achieve robust performance.

We processed the data for FastSurfer, FONDUE and Xception on the Anonymous cluster from
Anonymous which include AMD Rome 7502, AMD Rome 7532, and AMD Milan 7413 CPUs with
48 to 64 physical cores, 249 GB to 4000 GB of RAM and Linux kernel 3.10. We executed the MNIST
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CNN and the NaN Convolution time trials on the Anonymous cluster with 8 × compute nodes each
with an Intel Xeon Gold 6130 CPU, 250 GB of RAM, and Linux kernel 4.18.0-240.1.1.el8_lustre.x86
64 as well as 3 Tesla T4 GPUs with 16GB of memory each. We used FreeSurfer v7.3.1, FONDUE
v1.1, FastSurfer v2.1.1, PyTorch v2.4.0, and Singularity/Apptainer v1.2.

C MODEL ARCHITECTURES

Figure 10: Illustration of FastSurfer’s architecture. The CNN consists of four competitive dense
blocks (CDB) in the encoder and decoder part, separated by a bottleneck layer. Figure reproduced
from Henschel et al. (2020).

Figure 11: Illustration of FONDUE’s architecture. The CNN consists of convolutional block units
(CBU) in the nested encoder and decoder parts. Figure reproduced from Adame-Gonzalez et al.
(2023).
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Figure 12: Illustration of Xception’s architecture. The data first goes through the entry flow, then
through the middle flow which is repeated eight times, and finally through the exit flow. Note that
all Convolution and SeparableConvolution layers are followed by batch normalization (not included
in the diagram). All SeparableConvolution layers use a depth multiplier of 1 (no depth expansion).
Figure reproduced from Chollet (2017).
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Figure 13: Illustration of the MNIST CNN’s architecture.

D CEREBELLUM SEGMENTATION

A regional analysis (Appendix Figure 14) reveals that most of the degradation is concentrated in
the cerebellum, a region known for its complex anatomy and segmentation challenges. Appendix
Figure 15 highlights that FastSurfer, trained on FreeSurfer segmentations, inherits its limitations in
this area. This suggests that segmentation errors in this region stem from the underlying dataset rather
than Aggressive NaNs itself. Prior work has shown that the cerebellum is difficult to segment due to
its intricate structure, proximity to other brain regions, high inter-subject variability, and often low
contrast in neuroimaging data Morell-Ortega et al. (2024); Carass et al. (2018); Romero et al. (2017).
Additionally, FreeSurfer segmentations, which FastSurfer was trained on, are known to struggle with
these regions. Additional visualizations of cerebellum segmentation quality are provided in Appendix
Figure 16.
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Figure 14: Dice-Sørensen Score Analysis of FastSurfer Across Default, Conservative NaNs (Unpool)
and Aggressive NaNs (Pool) implementations for brain regions of interest (ROI). Threshold 0.5 was
used for both NaN implementations here due to being the most stringent threshold common across
models and methods. The legend maintains consistent colors for the same subjects across methods to
enhance clarity.

(a) Worst Performing Subject for Threshold 1; sub-
0025248

(b) Worst Performing Subject for Threshold 0.5; sub-
0025011

Figure 15: Comparison of segmentation outputs between Aggressive NaNs and default FastSurfer
across different thresholds, displayed in coronal (left), axial (center), and sagittal (right) planes. The
different brain regions are colored according to the FastSurfer colormap, except for the bright red
voxels scattered throughout the brain which denote differences in segmentation outputs.

Figure 16: Comparison of FastSurfer’s cerebellum segmentation with and without Aggressive NaNs.
On the left is the default FastSurfer segmentation, while on the right, the overlay shows the differences
between NaN-FastSurfer (threshold 1) and the default version. Both segmentations are superimposed
on the anatomical MRI scan of the cerebellum for reference.
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