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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has greatly improved the
performance of modern Large Language Models (LLMs). The RLHF process is
resource-intensive and technically challenging, generally requiring a large collec-
tion of human preference labels over model-generated outputs. Reinforcement
Learning from AI Feedback (RLAIF) addresses this data collection challenge by
leveraging synthetic preferences generated by an LLM. However, recent work has
shown that synthetic preferences labels may not align well with human preference
judgments (Zeng et al., 2023). To address this, we propose a hybrid approach
that unifies RLHF and RLAIF methodologies. We introduce GenRM, an iter-
ative algorithm that trains an LLM on self-generated reasoning traces, leading
to synthetic preference labels matching human preference judgments. Empiri-
cally, we show that zero-shot LLM-based judgments under-perform compared
to Bradley-Terry reward models on in-distribution tasks (between 9-36%). In
contrast, GenRM achieves in-distribution accuracy comparable to Bradley-Terry
models, while significantly outperforming them on out-of-distribution tasks (be-
tween 10-45%). Moreover, GenRM surpasses the performance of using LLMs
as judges on both in-distribution (by 9-31%) and out-of-distribution tasks (by 2-
6%). Our results show that combining the strengths of RLHF and RLAIF offers a
promising approach for improving the quality of synthetic preference labels.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has significantly improved the perfor-
mance of modern Large Language Models (LLMs) (see e.g., Reid et al., 2024; OpenAI, 2023).
Despite its effectiveness, the RLHF process presents several challenges. First, it requires a large
amount of human preference data to train reward models that reflect human preferences (Stiennon
et al., 2022; Bai et al., 2022a). Second, it necessitates additional architecture and infrastructure to
handle reward model training (Wang et al., 2024a; von Werra et al., 2020; Havrilla et al., 2023).
Third, it requires a sophisticated online optimization loop using algorithms, such as Proximal Policy
Optimization [PPO; Schulman et al. (2017)], to fine-tune an LLM-based policy to align with the
reward model (Zheng et al., 2023c).

To address the challenge of collecting large-scale human preference data, synthetic preference data
has emerged as a promising alternative. For example, Bai et al. (2022b) introduced Reinforce-
ment Learning from AI Feedback (RLAIF). Instead of relying on human users for feedback, their
method utilizes an LLM guided by a predefined set of principles—referred to as a “constitution”—
to generate and select model outputs that are helpful and harmless (Askell et al., 2021). Employ-
ing AI-generated preference labels has demonstrated meaningful Pareto improvements in balancing
helpfulness and harmlessness in assistant responses (Bai et al., 2022b; Kundu et al., 2023).

Direct alignment algorithms, such as Direct Preference Optimization (DPO) (Rafailov et al., 2023)
and Implicit Preference Optimization (IPO) (Azar et al., 2023), were developed to address the chal-
lenges of reward model training and online optimization. These works demonstrated that the reward
model and the optimal policy can be mathematically interchanged, allowing the policy to be trained
directly from preference data in an entirely offline manner, significantly simplifying the RLHF
pipeline. Benchmark evaluations (Lambert et al., 2024) have shown that DPO-based approaches
are competitive with traditional reward models based on the Bradley-Terry algorithm. However,
recent empirical evidence suggests that purely offline methods may underperform compared to on-
line approaches in both reward model-based reinforcement learning (Xu et al., 2024b;a) and in the
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Figure 1: Methods overview. Bradley-Terry methods directly output the probability of y1 being
preferred over y2, while GenRM compares the LLMs next-token probabilities of answer indicator
tokens (I1, I2). CoT-GenRM samples reasoning traces (r) followed by the answer indicator token.

RLAIF setting (Guo et al., 2024). As a result, state-of-the-art models such as the LLaMA-3 fam-
ily (Dubey et al., 2024) have adopted hybrid strategies that combine online DPO optimization with
separate reward models.

In this work, we identify two key limitations in current alignment approaches: (1) Explicitly param-
eterized reward models, while effective and accurate for in-distribution tasks, struggle with robust-
ness and generalization to out-of-distribution (OOD) data. (2) RLAIF approaches, such as utilizing
an LLM-as-a-judge, offer a more robust alternative but may not always align well with actual user
preferences when acting as the sole evaluator. To address these limitations, we propose a unified
framework for RLHF and RLAIF. Our approach begins with a strong pre-trained LLM, which we
employ as an evaluator. Using a dataset of user preferences, we adopt a STaR-like methodology
(Zelikman et al., 2022) to align the LLM with user choices, effectively training it to function as a re-
ward model. We demonstrate empirically that this fine-tuned judge model matches Bradley-Terry
reward models for in-distribution prompts while significantly improving generalization on OOD
prompts. Additionally, it outperforms the base LLM on both in-distribution and OOD scenarios.

2 PRELIMINARIES

In this section, we first outline the core components of the standard RLHF post-training pipeline
(Ziegler et al., 2020; Stiennon et al., 2022; Bai et al., 2022a; Ouyang et al., 2022), then summarize
the Self-Taught Reasoner (STaR) approach (Zelikman et al., 2022), and finally review LLM-as-a-
judge (Zheng et al., 2023a).

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The RLHF pipeline consists of three stages designed to align an LLM with human preferences: (1)
Supervised finetuning (SFT); (2) Reward Modeling; and (3) Reinforcement Learning (RL).

2.1.1 SUPERVISED FINE-TUNING (SFT)

In the first stage, an LLM is trained to follow instructions using a dataset of prompts x and responses
y using maximum likelihood estimation (MLE) over the next-token predictions. The resulting model
is referred to as πSFT(y | x), where both the prompt and response strings are treated as single
variables. This model is used as a base for the next stages.
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2.1.2 BRADLEY-TERRY REWARD MODELING

Next, the SFT model πSFT(y | x) is leveraged to construct a reward model that captures human pref-
erences. Specifically, the SFT model is sampled, generating pairs of responses (y1, y2) ∼ πSFT(y |
x) for each prompt x in the dataset. Human annotators then rank the responses, producing pairs
of preferences yw ≻ yl | x, where yw and yl represent the preferred and non-preferred responses,
respectively. This ranking process is typically modeled using the Bradley-Terry (BT) preference
model (Bradley & Terry, 1952), which assumes the preference distribution:

pBT(y1 ≻ y2 | x) = exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y2))
= σ (r(x, y1)− r(x, y2)) , (1)

where the preference distribution p is driven by a latent reward function r(x, y), and σ is the logistic
function (although other objectives can be used). Using this framework and a dataset of rankings

D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1
, a parameterized reward model rϕ(x, y) is trained via maximum likeli-

hood estimation to predict the unobserved reward:

Lrew(rϕ) = −E(x,yw,yl)∼D [log σ (rϕ(x, yw)− rϕ(x, yl))] . (2)

This reward model is based on πSFT(y | x) with an additional linear predictor on top of the final
embedding layer of the model which produces the scalar reward estimate.

2.1.3 REINFORCEMENT LEARNING (RL)

In the final stage, the learned reward model rϕ(x, y) is used to further optimize the LLM πϕ via an
on-policy RL algorithm, such as Proximal Policy Optimization (PPO; Schulman et al., 2017). The
goal is to refine the LLM’s behavior so that it produces responses preferred by human evaluators.
The common optimization objective is:

max
πθ

Ex∼D,y∼πϕ(.|x)

[
rϕ(x, y)− βDKL [πθ(y | x) ∥ πref(y | x)]

]
, (3)

where DKL represents the Kullback-Leibler (KL) divergence, and πref(y | x) is typically the super-
vised fine-tuned model πSFT(y | x). The KL divergence penalty prevents the LLM πϕ from deviating
too far from its initial behavior, with the hyperparameter β controlling the trade-off between exploit-
ing the reward model and maintaining consistency with the reference model.

2.2 SELF-TAUGHT REASONER

The Self-Taught Reasoner (STaR) method introduces an iterative bootstrapping approach designed
to improve the reasoning capabilities of LLMs (Zelikman et al., 2022). STaR focuses on training
models to generate and refine rationales, particularly for tasks requiring complex reasoning in a
reinforcement learning-based manner. We outline the main points of the approach below.

2.2.1 RATIONALE GENERATION BOOTSTRAPPING

In our formulation we assume we have access to a dataset D = {x(i), y(i)}Ni=1 of questions x that
require strong reasoning and the corresponding answers y. Notice that we do not require access to
strong or ground-truth rationales for these problems. We begin by prompting a model ŷ(i), r̂(i) ∼
π(y, r|x(i)) to provide CoT rationale r̂(i) and final answer ŷ(i). We then filter the generated data,
keeping only rationales leading to a correct final answer (i.e. ŷ(i) = y(i)) to generate a dataset of
questions, (bootstrapped) rationales and answers DSTaR = {x(i), r̂(i), y(i)}Ni=1. DSTaR is then used
to train a model with the standard supervised fine-tuning objective:

LSTaR(πϕ) = −E(x,r̂,y)∼DSTaR [− log πϕ(y, r̂|x)] . (4)

The above procedure is repeated over several iterations and has since been adopted in various related
works (e.g., Hosseini et al., 2024; Andukuri et al., 2024; Fränken et al., 2024; Zelikman et al., 2024).
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2.2.2 POST-RATIONALIZATION

One limitation of bootstrapping rationale generation is that the model cannot improve on examples it
initially fails to solve. To address this issue, STaR introduces rationalization, a backward reasoning
process. For prompts where the model generates an incorrect rationale and answer, the correct
answer is provided to the model as a hint. The model then generates a new rationale based on
the correct answer, reasoning backward to generate a “post-rationale”. In technical terms there
is a rationalization model q which generates rationales r̂(i) ∼ q(r|x(i), y(i)) to justify the final
answer. This synthetic data is in turn used in the STaR objective in Eq. 4. We will also use this
approach to evaluate the effect of the quality of the bootstrapped reasoning chains, using samples
from rationalization models q with different capabilities.

2.3 RLAIF AND LLM-AS-A-JUDGE

Reinforcement Learning from AI Feedback (RLAIF) presents an alternative approach to the stan-
dard RLHF pipeline. Bai et al. (2022b) demonstrate the efficacy of RLAIF in training helpful and
harmless models without relying on human feedback labels for harmlessness assessment. Their
work shows that as language model capabilities improve, AI identification of harms increases sig-
nificantly, particularly when leveraging chain-of-thought reasoning. Notably, they demonstrate that
utilizing self-supervised preference labels for reinforcement learning can yield improvements in
model behavior that are competitive with or surpass those achieved using human feedback for harm-
lessness evaluation. Zheng et al. (2023a) introduce the LLM-as-a-Judge method, further extending
the RLAIF paradigm. They demonstrate that strong language models, even without explicit training
for evaluation tasks, can provide judgments that exhibit agreement with human preferences. Their
study finds that LLMs can achieve over 80% agreement with human preferences, a level compa-
rable to inter-expert agreement. This finding establishes a foundation for developing LLM-based
evaluation frameworks.

3 CONNECTIONS BETWEEN RLHF AND PREFERENCE MODELLING

We begin by pointing out a theoretical connection between the RLHF post-training approach out-
lined in the previous section and general preference modeling. One of the key observations of the
DPO approach (Rafailov et al., 2023) is that the reward modeling objective in Eq. 1 is under-
constrained, which can create significant optimization challenges for the RL problem in Eq. 3 (Wu
et al., 2023; Ahmadian et al., 2024) (in fact, theoretically, it can have arbitrarily low signal-to-noise
ratio). To alleviate this issue, prior works (Stiennon et al., 2022; Ouyang et al., 2022) use a baseline
reward from on a fixed reference distribution:

max
πθ

Ex∼D,y∼πϕ(.|x)

[
[rϕ(x, y)− rϕ(x, yref)]− βDKL [πθ(y | x) ∥ πref(y | x)]

]
. (5)

Here the reference yref is a human completion from an SFT dataset or a sample from the base SFT
model. However, notice that by inverting Eq. 1 we have:

rϕ(x, y)− rϕ(x, yref) = log

(
pBT(y ≻ yref|x)

1− pBT(y ≻ yref|x)

)
. (6)

That is, under the Bradley-Terry formulation the standard RLHF optimization procedure is actually
optimizing a preference likelihood objective.

The core contribution of our work is that we replace the Bradley-Terry reward modelling approach
with a strictly more general preference modelling objective p(yw ≻ yl|x) that does not assume a
point-wise reward estimate, a special model architecture, or a specific preference distribution param-
eterization as in Eq. 1. That is, we assume a standard preference dataset and model the preference
distribution pϕ(yw ≻ yl|x) using an LLM, without any additional assumptions. Notice that this
formulation is fully general as we can extract preference probabilities either from the likelihoods
of the LLM output or from majority voting counts. This can be used in the standard pipeline with
PPO (Stiennon et al., 2022; Ouyang et al., 2022) in Eq. 5 using the reward formulation in Eq. 6.
Alternatively, if we sample preferences from the above model, we can also utilize an iterative or
online *PO optimization manner following Munos et al. (2024) or Calandriello et al. (2024).
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4 GENERATIVE REWARD MODELS: A UNIFIED RLHF-RLAIF APPROACH

In our proposed framework we begin with an LLM pϕ (we will use the notation pθ instead of πθ to
highlight that we are referring to an evaluation model rather than the policy itself) acting as a zero-
shot judge in an RLAIF setting, as outlined in Section 2.3. That is, given a task x and two responses
y1 and y2, we directly prompt the model pϕ to provide an answer indicator token I indicating a
preference over the answers. We consider two variants of our approach:

1. The Generative Reward Model (GenRM) approach prompts the model to act as a classifier
directly providing the answer token probabilities for each response Î ∼ pϕ(I|x, y1, y2).

2. The CoT-GenRM approach additionally prompts the model to provide intermediate Chain-
of-Thought reasoning Î , r̂ ∼ pϕ(I, r|x, y1, y2) before providing the final answer indicator
token.

Our prompts are based on the standard MT-Bench prompt (Zheng et al., 2023b), and can be found
in Appendix B. We use the LLM judge as a prior and further train it to align with the ground-truth

dataset judgements. We begin with the preference dataset D =
{
x(i), y

(i)
1 , y

(i)
2 , I(i)

}N

i=1
as outlined

in Section 2.1.2, however we consider unranked answers y
(i)
1 , y

(i)
2 and the corresponding winning

choice I(i). We design several training techniques for the generative reward modelpϕ.

GenRM (no CoT): To train the GenRM model, we use the standard supervised fine tuning objective

LGenRM(πϕ) = E(x,y1,y2,I)∼D[− log pϕ(I|x, y1, y2)] (7)

essentially using the LLM as a classifier trained with next-token prediction.

CoT-GenRM with Rationalization: To train the CoT-GenRM we will also consider two settings—
bootstrapping intermediate reasoning from ground-truth or, potentially, a stronger rationalization
model r ∼ qϕ(r|x(i), y

(i)
1 , y

(i)
2 ). We can then train the model with maximum likelihood over both

the reasoning chain and ranking:

LGenRM-Rationalization(pϕ) = E(x,y1,y2,r,I)∼D[− log pϕ(I|x, y1, y2, r)− log pϕ(r|x, y1, y2)] (8)

we refer to this as a post-rationalization approach, similar to the approach described in Section 2.2.2.

CoT-GenRM-STaR: Finally we consider an approach where the model self-bootstraps intermediate
reasoning using a STaR approach as outlined in Section 2.2.1. We will also consider two loss
objectives here—following the filtering strategy described in the above section, we use the standard
SFT loss similar to Eq. 8 on reasoning chains that yield the correct judgement. We denote models
trained with this objective as STaR-SFT.

Alternatively, we would like to utilize all the sampled data, including reasoning chains that yield
wrong judgments. Similar to the reasoning approach in Pang et al. (2024) we create a dataset of pref-
erence pairs D = {x(i), y

(i)
1 , y

(i)
2 , r

(i)
w , I

(i)
w , r

(i)
l , I

(i)
l }, where rw are rationales that lead to correct

rankings Iw and rl are rationales that lead to incorrect rankings Il. We then use a DPO optimization
objective of the form:

LGenRM-DPO(pϕ) = ED

[
log σ

(
β log

pϕ(Iw, rw|x, y1, y2)
pref(Iw, rw|x, y1, y2)

− β log
pϕ(Il, rl|x, y1, y2)
pref(Il, rl|x, y1, y2)

)]
. (9)

We denote models trained with this objective as STaR-DPO.

5 EXPERIMENTS

In this section we evaluate the performance of our proposed Generative Reward Modelling ap-
proaches as compared to classical Bradley-Terry reward models (Bradley & Terry, 1952), a more
recent reward variant called PairRM (Jiang et al., 2023), as well as zero-shot RLAIF evaluation. All
reward models are based on the LLaMa-3.1 8B Instruct model (Dubey et al., 2024).

We consider two separate training datasets: UltraFeedback (Cui et al., 2023), a large-scale feed-
back dataset of 61k pairs focusing on general instruction following, and UltraInteract (Yuan et al.,
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Figure 2: Comparing generative reward models with prior reward modeling methods on in-
domain (UltraFeedback) data and out-of-domain data (RewardBench). All generative model scores
are the result of a majority vote over 32 samples.

2024b), a dataset consisting of multi-turn reasoning trees focusing on math, code and logic, includ-
ing advanced capabilities such as tool use and environment interaction. We evaluate models on
each training dataset as well as on RewardBench (Lambert et al., 2024), a general reward modeling
benchmark which consists of four subsets—Chat, Chat (Hard), Reasoning, and Safety. Full training
details can be found in Appendix B.

In our experiments we evaluate the following questions:

1. Do generative reward models match the performance of classical reward models?
2. How robust are reward models and how well do they generalize to OOD data?
3. Does reasoning improve reward modelling and can we use inference time compute to im-

prove results?
4. Do we need strong reasoning data to train generative RMs or can we bootstrap the reasoning

from the model itself?
5. Does improved reward accuracy performance yield improved policy performance?

5.1 PERFORMANCE OF GENERATIVE RMS ON GENERAL ASSISTANT TASKS

We show our first main set of results in Fig. 2. All models are trained on the UltraFeedback dataset
and evaluated on a held-out split of in-domain data as well as on RewardBench.

We first evaluate the zero-shot performance of the LLaMa 3.1 8B Instruct model as an evaluator
using both CoT prompting with self-consistency (LLM-as-a-judge in Figure 2) and acting as a clas-
sifier directly outputting the response ranking (GenRM (base) in 2). We see that using that prompting
the model to reason over the answers significantly boosts performance from 52.25% to 67.75% on
the UltraFeedback evaluation dataset and from 60.60% to 75.18% accuracy on RewardBench.

However, when we compare the zero-shot methods with trained models, we find that both ap-
proaches substantially under-perform the Bradley-Terry RM, PairRM and trained GenRM mod-
els which all have comparable accuracies, around 73-74%. We see that the STaR-DPO model
also matches these accuracies in-distribution at 73.9%. On the other hand, the STaR-SFT model
achieves in-distribution accuracy of only 67.4%, which essentially shows no change of performance
compared to the base LLM.

When we evaluate these models on out-of-distribution tasks (RewardBench) we see that STaR-DPO
achieves the strongest result, over both the base model prior (81.9% versus 77.8%) and trained RM
with the GenRM having the stronger performance at 78.9%. The STaR-DPO model outperforms
or matches baselines across all RewardBench categories. On the other hand, the STaR-SFT model

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

UltraInteract RewardBench
(Reasoning)

RewardBench
(excl. Reasoning)

30

40

50

60

70

80

90

Ac
cu

ra
cy

Bradley-Terry RM
GenRM (base)

GenRM
PairRM

LLM-as-a-judge
STaR-SFT

STaR-DPO
STaR-Rationalizer

Figure 3: Comparing generative reward models with prior reward modeling methods on in-
domain (UltraInteract) data and out-of-domain data (RewardBench) split into reasoning and non-
reasoning subsets. All generative model scores are the result of a majority vote over 32 samples.

still does not substantially differ from the base model. The GenRM model outperforms the Bradley-
Terry RM and PairRM with performance comparable to STaR-DPO across Chat, Chat (Hard) and
Reasoning. However, one notable observation is that reasoning-based approaches show significantly
stronger performance on the Safety category with the STaR-DPO model achieving 91.0% accuracy
versus the best performing PairRM model, which achieves accuracy of 81.8%.

Overall, we see that the STaR-DPO reasoning model matches the best performance on the in-
distribution dataset and has the strongest out-of-domain generalization across evaluation categories
on RewardBench.

5.2 PERFORMANCE ON REASONING TASKS

We also evaluate performance specifically on reasoning tasks by training models on the UltraInteract
dataset, which specifically focuses on challenging evaluations of reasoning chains. The experiments
in this section focus on meta-reasoning, i.e. the capability to reason about reasoning steps. Figure 3
shows that the STaR-DPO model outperforms STaR-SFT on the UltraInteract evaluation dataset and
achieves a significant improvement of 90.2% versus 68.8% for the base model. This is slightly lower
than the explicit RM models, which all achieve comparable performance around 94%.

However, we see an interesting divergence on the RewardBench evaluation. For this experiment we
show performance on the Reasoning category in RewardBench versus all other categories. We see
that the Bradley-Terry RM, PairRM, and GenRM struggle to generalize to the RewardBench data,
with the Bradley-Terry model scoring worse than random and the best performing GenRM model
achieving 70.8% accuracy, which is worse than the LLM-as-a-judge performance at 76.6%. On the
other hand the STaR-DPO significantly outperforms both baselines with 87.2%. This shows that the
model successfully generalizes the meta-reasoning capabilities from the training dataset to a differ-
ent distribution of reasoning prompts and answers. Additionally, on the non-reasoning evaluations
in RewardBench, unsurprisingly the LLM-as-a-judge achieves the strongest result with 78.0% accu-
racy, while all explicit reward models struggle to generalize to these tasks and distributions. At the
same time STaR-DPO only suffers a small loss of accuracy on these domains at 75.0%.

Based on the prior experiments we observe that the STaR-DPO model significantly outperforms the
base LLM-as-a-judge, but also the GenRM model which does not use reasoning on held out tasks
in RewardBench. One major variable is how to generate the reasoning chains used for training. In
the experiments described so far rationales were sampled following a STaR-based approach using
the same base model. We also evaluate an approach sampling rationales from a post-rationalization
model r ∼ qϕ(r|x, y1, y2, I), which are then used for SFT training using Eq. 8, we refer to this
as STaR-Rationalizer. Results from this approach on UltraFeedback are shown in Fig. 2 and for
UltraInteract in Fig. 3. Interestingly we observe that the STaR-Rationalizer model matches the
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Figure 4: Comparing generative reward models with prior reward modeling methods with ma-
jority vote evaluation. Top row models are trained on UltraFeedback (Cui et al., 2024), and bottom
row models are trained on UltraInteract (Yuan et al., 2024a). Left column models are evaluated on ei-
ther UltraFeedback or UltraInteract, and right column models are evaluated on RewardBench (Lam-
bert et al., 2024). Solid line methods are sampled to produce final answers and shading reflects a
95% confidence interval.

performance of the STaR-DPO model on both datasets, significantly out-performing the STaR-SFT
approach, which uses the same training objective. However, we see that this model struggles to
generalize to the RewardBench tasks, under-performing not only the STaR-DPO model, but the
base LLM as well on both datasets. This is an interesting empirical phenomenon that warrants
further study, but we hypothesize that the core issue is that the training rationales from the post-
rationalization model are off-policy for the base model, creating a distribution mismatch during
training. While the model is able to learn those rationales on the training distribution it fails on more
novel tasks where it generates rationales different from those seen during training.

5.3 USING INFERENCE-TIME COMPUTE

In addition to the previously discussed benefits, using LLMs as reward models also allows us to uti-
lize additional inference time compute to improve performance. Indeed our results from the previous
sections show that using COT prompting to induce reasoning in the evaluator model can significantly
improve performance on new prompts and tasks over the base GenRM approach (which does not
use CoT). In this section we show further results on accuracy using self-consistency and majority
voting. Our results are shown in Fig. 4. We see that majority voting at 32 improves performance
consistently and adds 1.6% accuracy on the UltraFeedback Dataset and 3.8% on RewardBench in
that case. On UltraInteract majority voting improves performance by 4.6% and 4.9% on Reward-
Bench. This indicates that ”System 2” types of reasoning approaches can significantly improve the
accuracy of the critic model. We believe using models with strong reasoning to provide feedback
and evaluation to other models is a promising direction.
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Figure 5: Best-Of-N performance for LLaMa 3.8 Instruct 8b model with different reward models.
We use ArenaHard evaluations for reward models trained on UltraFeedback and MATH 500 for
models trained on UltraInteract, which is focused on reasoning.

5.4 BOOTSTRAPPING RATIONALES Bootstrap Source UltraFeedback RewardBench

Llama3.1 8B
68.63 77.34
67.68 77.61
67.38 77.05

Llama3.1 70B
70.50 77.09
70.13 68.78
69.58 63.43

GPT-4
62.85 69.58
68.55 75.63
71.73 78.29

GPT-4 (full) 62.60 70.52

Table 1: Bootstrapping STaR-SFT with mod-
els of different capabilities. All methods train
a Llama 3.1 8B model using rejection sampling
from the bootstrap source. Only the first iteration
of data comes from the bootstrap source. GPT-
4 (full) is trained entirely on the reasoning from
GPT-4. Scores are majority vote over 32 samples.

We show additional evaluations in Table 1 us-
ing different models to bootstrap reasoning on
the UltraFeedback domain. We see similar re-
sults to the above when using rationales gen-
erated by a strong GPT-4 model, which sig-
nificantly under-performs the standard STaR
methods, however this is alleviated with addi-
tional on-policy training. Finally we see that
bootstrapping reasoning with samples from the
stronger LLaMa 3.1 70B Instruct model from
the same family slightly improves performance
on UltraFeedback, but leads to somewhat worse
generalization to RewardBench. Our results in-
dicate that on-policy training of the critic mod-
els can meaningfully impact performance.

5.5 BEST-OF-N SAMPLING WITH
GENERATIVE RMS

We further evaluate the degree to which improved reward modeling translates to downstream model
performance. Due to the high computational cost of RL training models with all baselines we
evaluate Best-Of-N performance on top of the existing LLaMa 3 8B Instruct model. For pairwise
models, we use the probability of out-performing an answer from some reference model as a scoring
function as outlined in Section 3. We evaluate reward models trained on UltraFeedback on the
ArenaHard Li et al. (2024) benchmark and reward models trained on UltraInteract, on the MATH
500 Hendrycks et al. (2021) test question set. Results are shown in Fig. 5. While performance
improves with more samples across all reward models, the CoT-GenRM with STaR-DPO training
shows the most favorable scaling. That is, the reward model’s improved generalization performance
on the classification task also carries over to improved policy in the Best-Of-N setting as well.

6 RELATED WORK

The concept of using language models for providing feedback, also known as constitutional AI or
RLAIF Bai et al. (2022b) has gained significant traction in recent years. Zheng et al. (2023b) fur-
ther popularized the paradigm of LLM evaluation (”LLM-as-a-judge”), demonstrating that strong
language models can effectively perform judgments with chain-of-thought (CoT) reasoning that ap-
proximate human evaluation. Building on this, Kim et al. (2024) proposed Prometheus, employing
supervised fine-tuning from a powerful model to provide CoT reasoning and scoring, demonstrat-
ing strong evaluation performance from a smaller open model. In the current work we show that
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zero-shot LLM evaluations may not fully align with human feedback and significant improvements
in accuracy can be gained from additional fine-tuning. Moreover, in our proposed approach of com-
bining RLAIF with STaR-based tuning we do not require ground-truth reasoning or supervision
from a stronger model. Concurrently with this work, Zhang et al. (2024) presented Generative Ver-
ifiers, training CoT-GenRM with an SFT objective to act as a verifier for mathematical reasoning.
They find similiar observations to our experiments in Sections 5.2 and 5.3. However, one notable
exception is that unlike our approach they rely on access to full reference solutions at training time.
Another concurrent work in this direction is Ankner et al. (2024), which combines CoT reasoning
generation with Bradley-Terry reward modelling. They present empirical findings on the benefits
of reasoning, similar to the ones we show in Section 5.1, although crucially, they rely on a separate
strong model to provide rationales and require the Bradley-Terry reward model hybrid architecture,
while we use fully self-bootstrapped rationales in a full language modelling setup without the need
for any additional architecture overhang.

A number of concurrent works have also proposed approaches for self-bootstrapping generative crit-
ics. In Wang et al. (2024c), the authors present an approach similar to our STaR-SFT method using
data augmentation to create synthetic preference pairs. On the other hand Wu et al. (2024) instead
uses DPO for optimizing the evaluator, but the feedback is based on additional meta-judge evalua-
tor. Similarly, Wang et al. (2024b) also generates data using a number of augmentation techniques
and deploys DPO training. We note that these data generation techniques are complementary to our
approach which focuses on using STaR-based methods to allign LLM generative reward models and
replace explicit reward models.

7 CONCLUSION AND FUTURE DIRECTIONS

To conclude, this work introduces Generative Reward Models (GenRM) as a novel framework that
combines the strengths of Reinforcement Learning from Human Feedback (RLHF) and Reinforce-
ment Learning from AI Feedback (RLAIF) to improve preference modeling for large language mod-
els (LLMs). By leveraging self-generated reasoning traces and iterative training loops, GenRM can
fine-tune LLMs to better align with human preferences, addressing key limitations of both human
and AI feedback mechanisms. The GenRM approach demonstrates that integrating chain-of-thought
reasoning within preference modeling can significantly improve both in-distribution and out-of-
distribution performance compared to baselines. The Chain-of-Thought (CoT) GenRM variant aug-
ments preference judgment tasks with intermediate reasoning traces, boosting model performance
by encouraging more logical, step-wise decision-making. This leads to better generalization on com-
plex tasks such as reasoning and safety-related scenarios. Empirical results show that GenRM and
its variants maintain competitive in-distribution accuracy while outperforming traditional methods
on out-of-distribution tasks. Notably, STaR-DPO models, which rely on reasoning-based preference
optimization, demonstrate superior robustness and performance across benchmarks. In summary,
Generative Reward Models present a significant advancement in combining human and AI feedback
to enhance the quality of synthetic preference labels. It improves scalability, out-of-distribution gen-
eralization, and model performance. Future exploration into online optimization, robust reasoning,
and adaptation to multimodal tasks will be key to realizing the full potential of this framework in
practical deployments.
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A EVALUATION EXAMPLE

Prompt

User: Name two animal species that live in
the ocean.
[The Start of Assistant A’s Answer]
Dolphin and shark.
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
Common ocean animals include sharks,
whales, and dolphins.
[The End of Assistant B’s Answer]

STaR-DPO
For the user’s question, which is to name
two animal species that live in the ocean,
we have responses from two assistants.

Assistant A’s response is ”Dolphin and
shark.” Although it names two species that
live in the ocean, it lacks depth and detail.
The response does not provide further
information about the species, and it only
mentions two examples.

Assistant B’s response is ”Common ocean
animals include sharks, whales, and dol-
phins.” This response is more detailed and
provides additional information about the
types of ocean animals. However, the
question specifically asks for two species,
and Assistant B’s response names three
species.

Considering the user’s question, I would
say that Assistant A’s response is more
suitable because it directly answers the
question by naming two animal species that
live in the ocean.

[[A]]

LLM-as-a-judge

To compare the two responses, let’s con-
sider the factors mentioned earlier.

Helpfulness: Both responses provide the
user with two (in the case of Assistant
A) or more (in the case of Assistant B)
ocean-dwelling animal species. However,
Assistant B provides a more comprehensive
list of common ocean animals, which could
be more helpful to the user.

Relevance: Both responses are directly
related to the user’s question about ocean-
dwelling animal species.

Accuracy: Both responses are accurate
in providing examples of ocean-dwelling
animals. However, Assistant B provides a
more specific list of common ocean animals.

Depth: Assistant B’s response is more
detailed, providing a list of common ocean
animals, while Assistant A’s response is
more concise but less detailed.

Creativity: Both responses are straightfor-
ward and do not show much creativity.

Level of detail: Assistant B’s response pro-
vides more detail by listing specific ocean
animals, while Assistant A’s response is
more general.

Overall, considering the factors above, As-
sistant B’s response provides more helpful
and detailed information, making it a better
choice for the user’s question.

[[B]]

Figure 6: An example where LLM-as-a-judge fails to provide an accurate judgement, but STaR-
DPO succeeds. Sentences where critical reasoning takes place are bolded for emphasis.

B ADDITIONAL EXPERIMENT DETAILS

B.1 PROMPTS

Our prompts follow Zheng et al. (2023a) with the following differences. For our LLM-as-a-judge
and STaR (Figure 7), we remove the tie. For GenRM (Figure 9), we remove the brackets, and
remove the explanation request in the system prompt. For Rationalizer (Figure 8), we remove the
output instructions from the system prompt, and add a prompt to explain why A or B is better.

All prompts are using llama 3.1 instruct chat templates to format the prompts
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System:
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to
the user question displayed below. You should choose the assistant that follows the user’s instructions and
answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the
two responses and provide a short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After
providing your explanation, output your final verdict by strictly following this format: ”[[A]]” if assistant A
is better, ”[[B]]” if assistant B is better

User:
[Chat Context]
{chat}

[The Start of Assistant A’s Answer]
{answer a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer b}
[The End of Assistant B’s Answer]

Figure 7: Prompt structure for LLM-as-a-Judge and STaR-SFT/DPO methods

System:
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to
the user question displayed below. You should choose the assistant that follows the user’s instructions and
answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the
two responses and provide a short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

User:
[Chat Context]
{chat}

[The Start of Assistant A’s Answer]
{answer a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer b}
[The End of Assistant B’s Answer]

Explain why response (A/B) is better than response (B/A).

Figure 8: Prompt structure for generating rationals for rationalizer methods
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System: Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants to the user question displayed below. You should choose the assistant that follows the user’s
instructions and answers the user’s question better. Your evaluation should consider factors such as the
helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Avoid any position
biases and ensure that the order in which the responses were presented does not influence your decision.
Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. Output your verdict by strictly following this format: ”A” if assistant
A is better, ”B” if assistant B is better

User:
[Chat Context]
{chat}

[The Start of Assistant A’s Answer]
{answer a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer b}
[The End of Assistant B’s Answer]

Figure 9: Prompt structure for GenRM methods

B.2 HYPERPARAMETERS

B.2.1 TRAINING HYPERPARAMETERS

For all training, we use the GPT-NeoX framework (Andonian et al., 2023). Models use the same
hyperparameters across each dataset. Table 2 contains our hyperparameter choices for each training
method.

Model AdamW LR AdamW
(β1, β2)

Optimizer
Weight Decay

Optimizer
Schedule LR warmup β

STaR-SFT 1.0e-6 n/a
STaR-DPO 1.0e-6 1.0
STaR-SFT Rationalizer 2.0e-5 n/a
STaR-IPO Rationalizer 1.0e-6 (0.9, 0.95) 0.1 cosine 0.1 0.4
Bradley-Terry RM 1.0e-6 n/a
GenRM 1.0e-6 n/a
PairRM 1.0e-6 n/a

Table 2: Hyperparameters for different models.

B.2.2 GENERATION HYPERPARMETERS

All models use the following settings for generation:

• SGLang version: 0.3.0 (Zheng et al., 2024)

• Temperature: 1.0

• Top-p: 0.95

B.3 STAR ITERATIONS

For each training run, we only sample from each pairwise data point one time. We split each dataset
into three equal portions, and then apply the model to one of these splits without reusing any splits.
We do not share any data between iterations, each iteration is fully sampled from the split, and does
not include any of the previously generated data into the training. To generate the new data points,
we sample from the latest model on the current split. From there, we train the latest model on that
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split in an online manner. In order to accomplish roughly the same number of training steps for each
dataset, ultrafeedback uses 3 epochs from this generated data, while ultrainteract uses 1 epoch on
this data.

C RESULTS ACROSS ITERATIONS

Training Dataset UltraFeedback UltraInteract

Evaluation Dataset UltraFeedback RewardBench UltraInteract RewardBench

Method (iteration) Maj@1 Maj@32 Maj@1 Maj@32 Maj@1 Maj@32 Maj@1 Maj@32

STaR-SFT (1) 67.42 68.62 76.10 77.34 72.33 75.03 72.33 74.20
STaR-SFT (2) 67.05 67.67 75.71 77.60 76.26 79.18 72.95 74.52
STaR-SFT (3) 66.10 67.38 75.48 77.05 78.10 80.10 70.45 72.03

STaR-DPO (1) 69.30 71.28 78.29 81.27 82.23 86.46 73.13 78.04
STaR-DPO (2) 71.70 72.98 78.46 81.94 84.70 88.40 76.31 79.92
STaR-DPO (3) 72.08 73.58 79.23 82.60 85.58 90.23 74.36 79.20

Rationalizer (1) 70.90 73.05 71.73 75.83 84.31 85.11 67.04 68.61
Rationalizer (2) 71.05 73.62 68.54 71.91 88.19 88.55 60.28 61.37
Rationalizer (3) 71.23 73.22 67.62 69.48 90.39 90.77 58.19 58.16

Table 3: STaR method evaluation results throughout training iterations.

D NUMERICAL RESULTS

UltraFeedback RewardBench Chat Chat Hard Reasoning Safety

Bradley-Terry RM 73.90 74.84 94.41 53.95 69.26 70.12
GenRM (base) 52.25 60.60 58.38 50.66 63.15 80.44
GenRM 73.65 78.93 93.02 56.14 79.82 75.38
PairRM 73.30 77.02 91.34 53.95 73.59 77.29
LLM-as-a-judge 67.75 77.82 94.33 50.95 77.02 87.72
STaR-SFT 67.38 77.05 94.47 48.40 78.44 86.56
STaR-DPO 73.58 82.60 95.19 58.71 83.91 91.06
STaR-Rationalizer 73.22 69.48 94.62 49.71 66.50 83.88

Table 4: Comparing generative reward models with prior reward modeling methods on in-
domain (UltraFeedback) data and out-of-domain data (RewardBench and all subsets). All generative
model scores are the result of a majority vote over 32 samples.

UltraInteract RewardBench Chat Chat Hard Reasoning Safety

Bradley-Terry RM 93.71 56.77 85.20 49.12 38.59 54.15
GenRM (base) 59.05 31.16 58.38 50.66 63.15 80.44
GenRM 93.95 64.22 87.99 48.25 70.84 49.80
PairRM 94.42 62.52 88.27 48.03 70.48 43.28
LLM-as-a-judge 68.82 77.63 94.33 51.51 76.62 88.06
STaR-SFT 80.10 73.70 92.35 46.07 80.02 76.37
STaR-DPO 90.23 78.02 93.64 51.82 87.19 79.44
STaR-Rationalizer 90.77 59.14 82.02 42.05 59.83 52.66

Table 5: Comparing generative reward models with prior reward modeling methods on in-
domain (UltraInteract) data and out-of-domain data (RewardBench and all subsets) split into rea-
soning and non-reasoning subsets. All generative model scores are the result of a majority vote over
32 samples.
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