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Neural Manifold Geometry Encodes Feature Fields
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Abstract

Neural networks represent concepts, or “features”, but the general nature of these repre-
sentations remains poorly understood. Previous approaches treat features as scalar-valued
random variables. However, recent evidence for emergent world models motivates investi-
gating when and how neural networks represent more complex structures. In this work,
we formalize and study feature fields—function-valued features defined over manifolds and
other topological spaces corresponding to the underlying world (e.g., value functions, belief
distributions). We introduce linear field probing, a method that extends linear probing to
extract feature fields from neural activations. Whereas a linear probe maps scalar features
to individual points in activation space, a linear field probe embeds the topological space
of a feature field into activation space. We prove that the geometry of this embedding
fully defines the space of linearly representable functions for a given feature field. We em-
pirically study feature fields of various topologies using linear field probing and present
evidence of their emergence in transformers. This work establishes a formal connection
between geometry and representation in neural networks.

Keywords: Neural representation, Interpretability, Linear probe, World models
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Figure 1: Field Geometry Equivalence Theorem (informal): The geometry of the do-
main embedding in activation space encodes the basis functions of feature fields.
Shown left is a domain embedding, or feature manifold, obtained from a trans-
former trained on a toy task. Shown right are basis functions which are projections

of the embedding geometry.
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1. Introduction

The rapid advancement of artificial neural networks has continued alongside substantial in-
stitutional investment, whilst a principled understanding of their internal workings remains
elusive. Within AI and neuroscience, world models, or cognitive maps, respectively, are
representations that reflect structural relationships in the world. Recent work shows that
these world models emerge in neural networks during learning Gurnee and Tegmark (2023);
Nanda et al. (2023). For example, Li et al. (2023) discovered a board game world model
in a network trained to blindly predict sequences of game moves, despite never seeing the
board or being told the rules of the game.

In particular, much effort has been made in uncovering the hypothesized atoms, or
features of neural representation, typically assuming these features to be independent or
separable Elhage et al. (2022); Park et al. (2024b). When these features have been associated
to points in activation space (see Section 2), researchers have revealed the geometry appears
to be highly structured Engels et al. (2025); Li et al. (2025); Park et al. (2024a); Shai et al.
(2024); Li et al. (2023). Motivated by the relational structure such geometry may encode,
we introduce feature fields, a representation whose atoms are intrinsically related by their
correspondence to an underlying topological space, as illustrated in Figure 2.

We find that feature fields are represented in neural networks as an embedding of their
topology into activation space, as illustrated in Figure 4. In the special case where the
topology is a manifold, we believe that these domain embeddings may be related to the
”feature manifolds” speculated about in the literature Olah (2024). Furthermore, the ge-
ometry of this embedding fully defines the space of linearly representable functions for a
given feature field, as shown in Figure 1. Feature fields are a generalization of the atomic
picture of features: by considering a single domain point, the atomic features are recovered;
however the structure of the topology is forgotten.

In this paper, we make the following contributions: In Section 2, we define previous
atomic conceptions of features as feature variables. In Section 3, we formalize feature fields,
generalizing feature variables, which encode structural dependencies by the topology of the
domain space over which they are defined. In Section 4, we introduce linear field probing
as a method for recovering feature fields by discovering a domain embedding. In Section 5,
we prove that continuous linear fields are represented with a topological embedding of
their domain space in activation dual space. In Section 6, we prove that feature fields live
in a finite-dimensional Hilbert space, whose basis functions are encoded by the domain
embedding geometry. Finally, in Section 7, we trace the emergence and geometric evolution
of domain embeddings on several topologies across layers and training in transformers.

2. Feature Variables

A straightforward way to determine whether a neural network represents a concept is by
examining scalar “features.” Given an input space (e.g. an image) and a concept (e.g.
“food”), a feature variable is a function that maps each input to a scalar value corresponding
to a specific concept. As an example, consider a hypothetical dog neural network. The input
distribution contains the set of images that the dog sees, and the potential features include
“how bone-like” or “which compass direction ¢”.
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Figure 2: An illustration of three feature fields on distinct topologies: the interval I, the
circle S', and the graph G. The first feature field shows two different realizations
of the same feature field. For every data point = ~ X, field maps a data point
to a function over the domain space: ¢ — f(z,¢) € R®. For example, the above
feature fields may represent 1) posterior distributions over parameter spaces; 2)
value function over a state space.

Definition 1 A feature variable F; associated with a concept i is a scalar-valued random
variable defined by applying a deterministic, scalar function f; to the input random variable
X, i.e fi: X =R, withx — fi(x). For each input x € X, the scalar value f;(x) is called
the feature scalar.

Note that this definition does not reference the neural network internals. Quantifying
how much the network represents a given feature typically involves training a probe model,
such as the linear probe we discuss below. In Section 4, we generalize this approach to
linear field probes to detect structure beyond just scalars.

Linear Probing We say a neural network represents a feature variable X if the network’s
activations can be used to recover the corresponding feature scalar f;(x) for a given input
x € X. These activations reside in a d-dimensional activation space A C R%, where the
network maps each input z € X to an activation vector a(z) € A.

Linear probing is a popular method to recover feature variables from network activa-
tions Alain and Bengio (2016); Belinkov (2022). A linear probe for a feature variable Fj is a
linear map P; : A — R approximating the feature scalar as f;(z) ~ P;(a(x)) := (a(z), 8;) A,
where 3, € R? is a trainable weight vector." The inner product on activation space A is the
standard Euclidean dot product augmented with a constant offset (v, w)4 = v - w + wy.?
Whether a feature variable is represented by a neural network is naturally defined by whether
a linear probe can reconstruct it from activations:

Definition 2 A feature variable F; is linearly represented if and only if there exists a
weight vector B3; € R of F;, such that fi(x) = (a(z),B;)a for allz € X.

In Figure 3, we illustrate linear probes within activation space and contrast them with
linear field probes, introduced later in Section 4.

1. Technically, 8; € A* C R? is a vector from the dual activation space A*.
2. Equivalently, we can augment the activation vector with a constant-valued dimension and incorporate
the offset term into the weight vector.
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Figure 3: An illustration of feature variables and feature field for a hypothetical dog neural
network. A linear probe associates a feature scalar f;(x) with a vector 8; with
fi(x) = a(z) - B, for activation a(x). We introduce the linear field probe which
associates a feature field f(x,¢) with a vector field B(¢)with f(z, ¢) ~ a(x)-B(¢).
We illustrate an example of a linear field probe of a feature field over S', where
a neural network represents the probability of facing toward any orientation ¢
including northeast ¢ g and southwest ¢gyy.

3. Feature Fields Are Topological Representations

Practical neural networks rarely represent just one scalar feature variable. As a result,
prior work often considers collections of distinct feature variables. For example, one can
define a collection of feature variables corresponding to the probability of various events
(e.g. “finding a bone”, “finding a ball”, “finding nothing”) in some event space (“outcomes
of digging a hole”). This approach is practical as long as there are few enough events (i.e.
feature variables).

However, in real-world settings, treating feature variables as distinct ignores important
structural dependencies between them. Suppose we consider a different distribution where
events and their corresponding probabilities are related (e.g. “in which direction did I
bury the bone?”). Neighboring features variables (directions) have correlated probabilities
values, but the collection of distinct features treats them as independent. We wish to know
not only whether neural networks represent the individual features, but also whether they
encode the structural relationships between them.

We therefore introduce a class of topologically structured representations that naturally
capture such interdependencies, which we call feature fields.

Definition 3 A feature field F over a topological space ® (the domain space) is a
random field, induced by a deterministic function

f: X xP—=R, (z,0)— f(z,0),
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such that, to every data point x ~ X, the feature field assigns the scalar function

F(z):= (¢ f(x,0)) € R”.
called the realization of the feature field at x.

Feature fields have a global and local interpretation which we describe in Appendix B
alongside motivating examples. Feature fields are intrinsically topological representations
explicitly connected to the structured domain space on which they are defined. This domain
space is latent or hidden in the sense of not being directly observable by the neural network
through the data X: the domain space exists out there in the world.

4. Linear Field Probes Extract Feature Fields

We introduce linear field probing as a method for extracting feature fields from neural
activations.

Definition 4 A linear field probe for a feature field f is a function P : A x & — R
approximating f, defined by

f(z,0) = Pla(z),¢) = (a(z), B(¢))a, (1)
where P is parameterized by a domain map B : ¢ — A*.

A linear field probe inherits global and local interpretations from the feature field it
approximates. For a fixed data point x ~ X, it provides a global view as a function over
the domain space, (¢ — P(a(z),$)) € R®. Conversely, fixing a domain parameter ¢ yields
a local linear probe P, corresponding to the feature variable Fj,. Thus, a linear field probe
may be understood as a parameterized family of linear probes. Figure 3 illustrates this
relationship.

It is important to note that the domain map B3 need not be linear—indeed, linearity
would trivialize the geometry, thus trivializing the representational capacity, as we will see
in Section 6. The linearity of a field probe specifically refers to the linear inner product
used to extract the field from activations.

5. The Domain Embedding

We now turn to the central object of study for the rest of the paper: the domain embedding.
We show that this object serves as the natural representation of feature fields. Furthermore,
for continuous feature fields, the domain embedding in activation space is topologically
isomorphic (homeomorphic) to the original domain space.

Whether a feature field is represented by a model is naturally defined by whether it is
extractable from the activations by a linear field probe:

Definition 5 A feature field is linearly represented if and only if there exists a domain
map (3 such that

flz,¢) = (a(x),B(¢d))a foralzxe X, ¢cd. (2)
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Figure 4: Domain Homeomorphism Theorem: For continuous feature fields, the do-
main map to its image in activation space B : ® — B(®) C RY is a homeomor-
phism. Equivalently, the domain embedding B(®) is a topological embedding.

Under this definition, the image 3(®) C A, called the domain embedding, is a represen-
tation of the feature field. In contrast, a feature variable is represented by a single point in
activation space. Note the difference between domain embeddings B(®) and the activation
“manifold” «(X): Although both live in activation space®, the activation manifold is an
embedding the data space X, whereas domain embedding is an embedding of the domain
space ®. We illustrate the domain embedding of a feature field in Figure 4.

For the rest of the paper, we turn our attention to continuous feature fields:

Definition 6 A feature field is called continuous if and only if all realizations (¢ —
flx,¢)) ~ F are continuous for all x ~ X. That is, f(x,d) is continuous in the domain
argument.

We now show that the feature fields representation, the domain embedding B(®) in
activation space, is homeomorphic to the domain space (we defer all proofs to the appendix):

Theorem 7 (Domain Homeomorphism Theorem) Consider a linearly represented fea-
ture field f(xz,¢) = (a(x),B(¢)). Suppose that for each fized z, the map ¢ — f(z, @) is

continuous and injective, and that the set a(X) spans the space containing B3(®). Then,

the embedding 3 : ® — R% is a homeomorphism to its image.

Thus, the domain embedding 3(®) is a topological embedding, i.e., it retains the topol-
ogy of the original domain space ®. The remarkable implication is: A neural network
which represents a feature field holds a topologically intact image of the “la-
tent” domain ® which it has never “seen” directly. This domain @ is latent in the
sense of hidden to the neural network, which has only ever directly observed X.

6. The Geometry of Feature Fields

In this section, we show feature fields are confined to live in a particular reproducing kernel
Hilbert space (RKHS) which is determined by the geometry of the feature manifold em-

3. Technically, 3(®) resides in the dual space A*
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bedding B(M). The space of square-integrable fields over the manifold is given by L?(®),
forming an infinite dimensional function space. However, we find that representable feature
fields live in a much smaller, finite dimensional RKHS.

Definition 8 For a feature field f(x, ¢), the feature field space is a space of deterministic
functions over ® which are linearly representable realizations of f given by {fz(¢) | x € X}

Define the feature kernel K(¢p,¢") = (3(¢),3(¢")) encoding the geometry of the feature
manifold embedding. K is continuous, symmetric, and positive definite by construction,
and therefore uniquely defines a reproducing kernel Hilbert space (RKHS) Hy. We now
show an equivalence between the feature field space and H:

Theorem 9 (Field Geometry Equivalence Theorem) Feature field space is the RKHS
associated with the feature kernel given by

d
e = {3 VR 1 e 2} 3)

For any linear feature field f(x,¢), there exists a unique representation:

d
Fla,0) =V Ajas(x);(9) (4)
j=1

where aj(z) = a(x)Te; are coefficients determined by projecting the activation, {1;} are

the eigenfunctions of T, and {\;} are the corresponding eigenvalues.

This establishes that the geometry of the feature embedding encodes the representation
of the feature space. Equivalently, the principal projections of the feature embedding are
identical to the eigenfunction basis of the feature field.

We visualize Theorem 2 in Figure 1. The feature field space is a strict subset of the
space of all square-integrable functions on the feature manifold Hx C L*(®). L*(®) is an
infinite dimensional function space. Since our feature map is finite-dimensional (living in
R?), only the first d eigenvalues are non-zero, and so Hx may be at most d dimensional.
Thus, we establish that the domain embedding directly defines the feature field space.

7. Experiments

In this section, we provide empirical validation for the theoretical framework of feature
fields, linear field probing, and domain embedding geometry developed in this paper.

7.1. Feature Field Tasks

We experiment with two tasks designed to induce the emergent formation of feature fields
of two topologies ® = I and ® = S! inside neural networks. Both tasks are of the following
form: Given parameters of a hidden feature field, output a functional of the feature field.
Mathematically, choose a task y = m(z) where x parametrizes a feature field f(x, )—where
for fixed x, f.(¢) is a function over a topology ®—and y is a functional of f, defined as
y =[5 f(x,0)9(d)dp(p). We describe choices of f and g in Appendix C.
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We plot the effective dimension of the domain embedding, approximated with the
participation ratio, across layers and training. We observe a phase transition in
the second layer embedding (left) which corresponds to the phase transition in
the model loss curve (right), both between 400 and 600 epochs. After this period,
both the domain embedding effective dimension and the linear field probe loss
plateaus. Meanwhile, the first layer linear field probe shows no evidence for the
development of linear representation of the feature field.

7.2. Extracting Feature Fields with Linear Field Probes

We find that feature fields are linearly represented in transformers. We train a linear
field probe on transformers trained on the two tasks defined in Section 7.1. The local
interpretation allows us to approximate a linear field probe by discretizing ® and training
a linear probe for each point in the discretized domain space. We find that for both tasks,
the feature fields are linearly represented in the second layer of a 2-layer transformer but
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not a l-layer transformer. Example feature field realizations are displayed in Figure 5 (C
and G), Figure 7, and Figure 11.

7.3. Extracting the RKHS with the Domain Embedding

The discretized linear field probes trained in Section 7.2 are parameterized with a dis-
cretized matrix encoding 3(®). The kernel is obtained assembling a Gram matrix K (¢, ¢') =
(B(9),B(¢')) 4, displayed in Figure 5 (D and H). Then the eigenfunction basis is obtained by
an eigendecomposition of the kernel matrix displayed in Figure 5 (B and F) and Figure 10.
Equivalently, the eigenfunction basis is obtained by plotting the projection of 3(¢) onto its
principal components as a function of ¢. Moreover, for samples of the feature field, we show
that the basis function coefficients obtained from the activations in the domain embedding
subspace (by projecting the activation onto the principal components of 3(¢)) match those
obtained by numerically calculating the integral [ f(z, ¢)i(¢)du(¢) in Figure 8 and Fig-
ure 9. These results show that: the feature field function basis may be recovered, and that
the coefficients in neural network activation space match the theoretical coefficients in the
function space.

7.4. Training Dynamics

We study training dynamics on the beta distribution over & = I, and study the development
of its geometry over training. In Figure 6, we plot a comparison over the same training run
between 1) the effective dimension of the domain embedding in the first and second layers,
2) the linear field probe recovery loss in the first and second layers, and 3) the transformer
task loss. The effective dimension is measured with the participation ratio, defined as
PR = (3, A3)/(3_; A?), where {\;} are eigenvalues. We observe a “phase transition” in
the task loss as well as in the effective dimension dimension of the domain embedding in
the second layer over the same period from roughly 400—600 epochs. We observe the
linear field probe loss plateaus near the end of the phase transition period. Additionally,
we find little change in the probe loss in the first layer, indicating that the feature field
representation emerges in the second layer of the transformer. These findings are consistent
with the theoretical findings of Section 6, establishing a correspondence between domain
embedding dimension and representational capacity.

8. Conclusion

We generalize the concept of scalar-valued feature variables to function-valued feature fields.
Feature fields are defined over a topological domain space, which encodes the structural re-
lationships of the world. We introduce linear field probes, which can extract feature fields
from neural networks by discovering an embedding of the topological domain space. We
show that, for continuous feature fields, the domain embedding retains the topological struc-
ture of the original domain. The geometry of the domain embedding is a kernel that defines
the space of representable realizations of the feature field. We validate our claims empiri-
cally and find that representations of feature fields naturally emerge in transformer neural
networks. This work lays the groundwork for a principled understanding of topological
representations, providing a step toward a more complete theory of world models.
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Appendix A. Background

Topology A topological space is a set T equipped with a collection of open sets that
defines a notion of continuity and neighborhood. A map f : T — T” between topological
spaces is said to be continuous if the preimage of every open set in 7" is open in T. A
homeomorphism is a bijective, continuous map with a continuous inverse—formally identi-
fying two topological spaces as topologically equivalent. A map 5 : T — R? is a topological
embedding if it is continuous, injective, and its image §(T") C R inherits the topology of T’
that is, 8 is a homeomorphism onto its image.

Random Fields A random field generalizes a scalar-valued random variable to a function-
valued random variable defined over a topological space. More formally, given a probability
space, a random field F' is a collection of random variables F' = {F}; : t € T'} indexed by
points in a topological space T. A sample or realization of F is a deterministic function
f:T — R, obtained by evaluating each F; at the same outcome in the underlying probability
space. Continuity of realizations is often assumed to preserve the structure imposed by the
topology of T.

Function Spaces A function space is a vector space whose elements are functions f :
T — R, defined on a topological domain T'. Of particular interest is the space RT, denoting
the set of all real-valued functions on 7. Within R”, a notable subspace is the Reproducing
Kernel Hilbert Space (RKHS), a Hilbert space of functions associated with a symmetric,
positive-definite kernel K : T x T — R. This kernel defines an inner product structure
and induces a canonical feature map t — K(t,-), embedding each point ¢ € T into the
RKHS. The RKHS has the important property that pointwise evaluation is continuous—a
consequence of the reproducing property f(t) = (f, K(t,-)). We provide a detailed discussion
of RKHS theory in Appendix J.

Appendix B. Feature Field Interpretations and Examples

Interpretations We can better understand a feature field by viewing it from two per-
spectives, each offering different insights into its structure and behavior.

e Global Interpretation: Fixing a data point x € X gives a global view of the feature
field. In this view, the feature field maps a data point to a function over the domain
space: ¢ — f(x,¢) € R®. In contrast, a feature variable maps a data point to a scalar
value.

e Local Interpretation: Fixing a domain point ¢ € ® gives a local view of the feature
field. In this view, each domain point defines a distinct feature variable (x — f(x, ®))
that assigns a scalar value to each data point. Here, the feature field is naturally seen
as a collection of interrelated feature variables Iy : ¢ € ®, indexed by the topology.
An equivalent definition consistent with this idea is provided in Appendix I.

Examples We provide two motivating examples of feature fields below.

1. Posterior distributions: Bayesian inference involves updating posterior distributions
over entire parameter spaces rather than just tracking the maximum a posterior esti-
mate. A neural network Bayesian receives an observation of the world x and updates

11



a posterior distribution p(¢|z) conditioned on the observation over a parameter space
topology which encodes the relationship between parameters 8 € ©. Thus, we obtain
a feature field f(z,0) = p(f|x) defined over a topology ® = ©.

2. Value functions: An agent tracks a value function over all possible states and actions,
rather than just the highest value state and action. A neural network agent experiences
a history = and updates a value function V,(s) over a state space topology which
encodes the relationships between states s € S. Thus, we obtain a feature field
f(z,s) = Vz(s) defined over a topology ® = S.

Appendix C. Feature Field Construction

® =1 We consider a beta distribution Beta(a, b) feature field defined over the unit interval
I = [0,1]. The feature field is defined using the beta distribution probability density
function f = (¢;a,b)?, which takes two parameters a,b > 0. Our task is for a model to take
input = (a,b) and output a scalar functional m(x) = fol fz,0)g(p)du(p). We choose
g9(¢;w) = cos(2mwe), with frequency hyperparameter w.

® = S We consider a k-mixture of von-mises distributions feature field defined over the
circle topology S!. The feature field is defined with two parameters x = (u1, y2), specifying
the means of two von mises distribution. Then the task is defined as f(z, ¢) x e* cos(z—p1) 4
e e0S(@=12) (b oy, wa, w3, €1, Ca, €3) = €1 co8(2TW1P) 4 ¢o cos(2mwad) + €3 cos(2mw3 ).

Appendix D. Related Work on Features

Correlated features Elhage et al. (2022) considered sparse features with correlated co-
occurrence, rather than correlated values; the feature scalars are still independent.

Multidimensional features FEngels et al. (2025) study irreducible features, especially
features which appear to have circular geometry, like days of the week, or months of the
year. Projections of the features into the principal components show clean circles. On the
other hand, the circular domain embedding in Figure 5 appears highly curved and not so
cleanly circular in any two principal components. A clean geometry would result in limited
representational capacity. Future work may investigate the relationship between feature
fields and multidimensional features.

Existing examples of feature fields Li et al. (2023) trained a nonlinear classifier probes
over the eight-by-eight tiled topology of the Othello board, finding non-trivial geometry in
the embedding of the underlying board. This may be considered a non-linear, classifier field
probe, as the topology of the board was taken into account, although only a preliminary
analysis of the geometry was performed. Nanda et al. (2023) performed a follow up analysis,
training a linear classifier field probes, although no study of the geometry was performed.

4. Notated a, b instead of the typical «a, 8 to not confuse with activations and features.

12
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Appendix E. Notation

Notation Meaning / Type

)

Feature (random variable over random input X)

(X
f(z) Feature scalar (value of the feature at a fixed input x)
f(X, M)  Feature field (random field over manifold)
(X, ) Feature (random variable at a fixed manifold point ¢)
flz, M) Feature function (deterministic function over manifold with fixed input x)
fx, ) Feature scalar (scalar at fixed input z and fixed manifold point ¢)
ax) Activations
A Activation space
X Data space
reX Data point
M Feature space
0eM Domain point
B(o) Feature map
flz,0) Feature field
f (x, ) Density /superposition field
K(¢,¢) Reproducing kernel
Tk Kernel transform

{v;}
A}
{aj}
Hi

Kernel eigenfunctions

Kernel eigenvalues

Eigenfunction coefficients, spectral coordinates(?)
Reproducing kernel Hilbert space

Table 1: Summary of feature notation and their corresponding object types.
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Appendix F. Experimental Details

All experiments were conducted on a MacBook Pro with an Apple M1 chip and 16 GB of
RAM.

Component Setting

Residual stream dimension 512

Discretization points (linear field probe) 1000

Train/test split (transformer dataset) 60% / 40%
Train/test split (linear field probe dataset) 90% / 10%
Optimizer Adam (both models)
Training epochs (transformer) 2000

Training epochs (linear field probe) 2000

Attention heads (transformer) 8

Feature Field Functions

Beta distribution: g(¢) = cos(3.5 - 2m¢)
Von Mises mixture: g(¢) = 100 cos(2m¢) + 50 cos(4mp — 0.71) + 25 cos(67¢ — 0.123)
Von Mises concentration (k) 10

Table 2: Summary of experimental hyperparameters and functional forms used in field prob-
ing.
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Appendix G. Equations

- / F(z, 9)8(6)du(@) = Tylfy] = Zajej
wa] d)ej = B(K?)
K(¢,¢) = ijwij) = (B(¢): B(¢") 4
K'?(¢,¢') Zl VA (¢

[Trg](¢ / K(p,¢)g (¢') = (9, Kg) 2
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Appendix H. Linear Field Probe Results

In the following figures, we display feature field realizations, an eigenfunction basis, and
coefficients, which were extracted through the use of linear field probes.
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Figure 7:

the linear field probe.
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Figure 8:

Figure 9: For the von mises mixture feature field, eigenbasis coefficients match between
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—— vector-basis coeffs

—— ground truth coeffs
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For the beta distribution feature field, eigenbasis coefficients match between eigen-

functions and closed form integral.
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Figure 10: First 12 eigenfunction basis for beta distribution feature field.
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Figure 11: Fifteen realizations of the mixture von Mises distribution obtained from trans-
former activations using the linear field probe.

Appendix I. Feature Field Alternative Definition

Definition 10 (Feature field) A feature field Fr a collection of feature variables {F; :
t € T}, where every point in the topology t is associated with a feature variable F.
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Appendix J. Reproducing Kernel Hilbert Spaces

Let K be a symmetric and positive definite kernel. According to the Moore-Aronszajn
theorem, the kernel K uniquely defines a reproducing kernel Hilbert space (RKHS) Hx.
This kernel defines a linear integral transform Ty : L2(M) — L2(M):

Trgl(6 /Kw & )dp(&) (5)

By Mercer’s theorem, the kernel K has a spectral decomposition:
o
= _Ai(9)ui(¢) (6)
j=1

where {1;} are the orthonormal eigenfunctions of Tx with corresponding non-negative
eigenvalues {A;}.

Appendix K. Non-orthogonal features have correlated measurements

Consider two features scalars f,, f, by with associated unit vectors, v,,vp, |v;| = 1. For
simplicity let fq, fy ~ N(0,1). Assume that p(fas, fo) = p(fa)p(fp) features are uncorrelated,
and v, - v = ¢ > 0 feature vectors are not orthogonal.

Let the activation be a superposition of these two vectors x = f,v, + fovp

Then the feature measurements are (f,) = vq - € = fo + fp(vq - Vp)

The measurement correlation of the features p((f,), (fp)) is then

COU(<fa> < >) E<fa><fa>]_ [<fa>}E[<fb>]

[
=Elcf2 +cfi + (1+ ) fafo] =
Var((fa)) =E[fa+cfy)) =1+ ¢
Var((fs)) = E[fy + cfe] = 1 + ¢
p({fa), (fo) = Cov({fa), {fo))/V/Var({(fa))Var({fs))
2¢
1+

where we see now that the measurements are correlated for ¢ > 0.

Appendix L. Discrete features as special case

For discrete non-orthogonal features, the machinery developed in this paper still applies,
accounting for the geometry in a way that handles correlations rather than trying to force
low coherence.
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Appendix M. Proofs

We provide proofs for the two theorems of the paper.

M.1. Theorem 1

Proof Let A be a finite-dimensional real inner—product space and write

f(z,¢) = (a(x),6())a, X, pc

Step 0. The relevant subspace. Set

V = Span{ﬁ(qﬁ) | o € <I>} C A.

By hypothesis the family {a(z)}.ex also spans V. Restrict the inner product of A to
V'; henceforth every vector lives in V. Because V is finite-dimensional, choose points
T1,...,Tr € X such that

B = {a(xl),...,a(xk)}
is a basis of V.

1. Injectivity of 5. Suppose B(¢1) = 5(¢2). Then f(x,p1) = f(x, ¢2) for every x € X,
contradicting the assumed injectivity of f(x,-). Thus 3 is injective.

2. Continuity of 3. Form the Gram matriz G € R¥*¥ with entries G; = (a(z;), a(z;)).
Because B is linearly independent, G is symmetric positive-definite and hence invertible.
Define the map

g:®— R g(¢) = (f@1,0),..., flan,9).

Each component f(z;,/) is continuous, so g is continuous. Write any vector v € V in the

basis B as v = Zle ¢i(v) a(z;) and note g(¢) = G ¢(8(¢)). Hence

c(B(9)) =Gg(0),  B(9) =D _[GT9(9)]; alw).

Because ¢ and matrix multiplication by G~! are continuous, /3 is continuous.

3. Continuity of the inverse. Give §(®) C V the subspace topology. Let (yy) C 5(®)
converge to y € B(®) and set ¢y = B~ (yn), ¢ = B (y). For any x € X the inner product
is continuous, so

f(JI,QS)\) = <O[(.CC)7y)\> — <Oz(.’E),y> = f($,¢)

Thus f(z,¢) — f(x,¢) for every x € X. Because each map f(x,) is injective, the family
{f(x,")}zex separates points of ®; therefore the only possible limit for the net (¢)) is ¢,
i.e. py—¢. Hence B~ is continuous.

4. Conclusion. [: ®— 3(P) is bijective, continuous, and has a continuous inverse, so it
is a homeomorphism onto its image. Consequently B(®) is a topological embedding of the
domain space 9. [}
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M.2. Theorem 2

Let ® be a topological space and V' a (real) Hilbert space with inner product (-,-)y.
Suppose we are given two maps

a: X —V, B:D—V,
and define the feature field

fiXx® — R f(2,9) = (a(z),B(6)),-

Then, for each fixed z € X, the section f; : & — R given by f.(¢) = f(x,¢) belongs to a
reproducing-kernel Hilbert space on .
Proof 1. Build the kernel from the embedding. Define

K(Qbaw) = <ﬁ(¢)a6(¢)>vv gb,’gb € o.

For any finite collection {¢1,..., ¢} C ® and scalars c1,...,cm € R,

2
>0,
Vv

S ey K66 7) = | 3 B0

i,j=1 i=1

so K is symmetric and positive-definite. By the Moore—Aronszajn theorem there exists a
unique RKHS Hx C R® whose reproducing kernel is K.

2. Express f, as a kernel combination. Fix x € X. Because V is a Hilbert space,
the vector a(z) can be approximated in norm by finite linear combinations of 3(¢):

m

— m) (m) (m) (m)
OZ(Z‘) - Tr}gnoo a]’ B(Qs] )7 aj € Rv d)] € <I>
7j=1

For any finite expansion we obtain

(@), B(6)), = 3 ai™ (B6™), B(6)), = Y- ai™ K (6™, 0).
j=1

j=1
Hence each truncated version of f, lies in Hx (finite kernel sums are by definition elements
of the RKHS).

3. Take the limit in the RKHS. The space Hx is complete, and the above finite
sums converge in the Hy norm because

Hiaé»“K(@W»HHK — |2 s, — ey < .
Jj=1 j=1

Thus the exact section f, is the norm limit of elements already in Hyg, so f. € Hg.
Moreover

[falltge = lle(@)llv

4. Conclusion. For every z € X the slice ¢ — f(x, ¢) resides in the RKHS Hx built
from the kernel K(¢,v) = (8(¢), 5(¢))y. Hence the given inner-product form guarantees
that the feature field lives in a reproducing-kernel Hilbert space. |
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