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Abstract

Neural networks represent concepts, or “features”, but the general nature of these repre-
sentations remains poorly understood. Previous approaches treat features as scalar-valued
random variables. However, recent evidence for emergent world models motivates investi-
gating when and how neural networks represent more complex structures. In this work,
we formalize and study feature fields—function-valued features defined over manifolds and
other topological spaces corresponding to the underlying world (e.g., value functions, belief
distributions). We introduce linear field probing, a method that extends linear probing to
extract feature fields from neural activations. Whereas a linear probe maps scalar features
to individual points in activation space, a linear field probe embeds the topological space
of a feature field into activation space. We prove that the geometry of this embedding
fully defines the space of linearly representable functions for a given feature field. We em-
pirically study feature fields of various topologies using linear field probing and present
evidence of their emergence in transformers. This work establishes a formal connection
between geometry and representation in neural networks.

Keywords: Neural Representations, Interpretability, Linear Probes, World Models

Figure 1: An illustration of three feature fields labeled a, b, c on distinct domain spaces: the
interval I, the circle S1, and the graph G. For every data point x ∼ X, the field
is realized as a function over the domain space: z 7→ f(x, z) ∈ RZ . Feature field a
depicts two realizations for each of x1, x2. Feature fields may represent posterior
distributions over a parameter space, or value functions over a state space.
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1. Introduction

Within AI and neuroscience, world models or cognitive maps, respectively, are representa-
tions that reflect structural relationships in the world. Recent work shows that these world
models emerge in neural networks during learning Gurnee and Tegmark (2023); Nanda et al.
(2023). For example, Li et al. (2023) discovered a board game world model in a network
trained to blindly predict sequences of game moves, despite never seeing the board or being
told the rules of the game. Much effort has been made on uncovering the hypothesized
atoms or features of neural representation. In activation space, these features appear to
have highly structured geometry (Engels et al., 2025; Li et al., 2025; Park et al., 2024a; Shai
et al., 2024; Li et al., 2023). However, many approaches typically assuming these features
to be independent or separable (Elhage et al., 2022; Park et al., 2024b).

To investigate the relational structure such geometry may encode, we introduce feature
fields, a representation whose atoms are intrinsically related by an underlying topological
space, as illustrated in Figure 1. We make the following contributions. First, we prove that
continuous feature fields are represented as topological embeddings of their domain into
activation space (Section 3.1). Second, we prove that the geometry of this embedding fully
determines the space of representable functions: feature fields live in a finite-dimensional re-
producing kernel Hilbert space whose basis functions are encoded by the domain embedding
geometry (Section 4). Third, we introduce linear field probing, a method for extracting fea-
ture fields from neural activations by discovering domain embeddings (Section 3.2). Finally,
we empirically validate our framework by tracing the emergence and geometric evolution of
domain embeddings across layers and training in transformers (Section 5).

2. Feature Variables

Consider the brain of a hypothetical dog. Her raw visual data about an object (such as
a bone) consists only of signals from retinal neurons, yet the neural activity in her visual
cortex may encode various meaningful features she perceives, such as “object weight (kg)”
or “object length (m).” For these scalar-valued features, we define a map from data points
in data space x ∈ X (e.g., retinal stimulus) to their corresponding scalar value (e.g., 1.03
kg), which we formalize as follows.

Definition 1 Let X : Ω → X be a random variable called the data distribution associated
with a data space X . A feature variable Fi : Ω → R for a concept i is a scalar-valued
random variable induced by a deterministic scalar map fi : X → R, with x 7→ fi(x).

Notice that this definition does not yet reference any neural network, as features may ex-
ist as a property of the data without being represented. We say a neural network represents
a feature variable Fi if the scalar fi(x) can be recovered from the network’s activation Φ(x)
for any input x ∈ X . These activations reside in a d-dimensional activation space A ⊂ Rd,
where the network maps each input x ∈ X to an activation vector Φ(x) ∈ A. In the simplest
case, the feature variable can be recovered via a dot product with the activations.
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Definition 2 A feature variable Fi is linearly represented in Φ if there exists a vector1

Ψi ∈ Rd such that fi(x) = ⟨Φ(x),Ψi⟩A for all x ∈ X , where the inner product ⟨v,w⟩A =
v ·w + wd is the standard Euclidean dot product augmented with a constant offset.2

The implication is that a feature variable is (linearly) represented by a vector
Ψi ∈ A. This is operationalized by linear probing (Alain and Bengio, 2016; Belinkov,
2022), a method to identify this vector by training Ψi to minimize the approximation error
|fi(x)− ⟨Φ(x),Ψi⟩A| across the data distribution. A feature variable is linearly represented
if and only if such a linear probe can successfully recover it from the network’s activations.
We illustrate two linearly represented feature variables in Figure 2 (top).

3. Feature Fields Are Topological Representations

Real-world data contains many features. As a result, prior work often represents them as
collections of distinct feature variables. However, treating feature variables as independent
can obscure important structural dependencies between them.

Suppose our dog is tracking the direction in which she left her bone. Rather than track-
ing only the single most likely direction, she may instead maintain a probability distribution
f over the circular domain of possible compass directions, z ∈ S1. As she acquires new data
x, she may update f , so that, in particular, f(x, zNE) is her current probability that she left
her bone toward the Northeast (see Figure 2). The topology of the domain (see Appendix A
for a definition) may reflect essential structure of distributions f defined over it. For exam-
ple, probabilities at neighboring directions may be continuous, i.e., f(x, zNE) ≈ f(x, zNNE).

To capture such interdependencies, we introduce the feature field.

Definition 3 A feature field FZ : Ω → RZ over a (topological) domain space Z is a
random field (see Appendix A) induced by a deterministic scalar map3

f : X × Z → R, (x, z) 7→ f(x, z).

Two equivalent but insightful perspectives are obtained by fixing each of the arguments:
(i) (Global view) for every data point x ∼ X, the feature field assigns a function over the
domain FZ(x) := (z 7→ f(x, z)) ∈ RZ , called the realization of the feature field at x;
(ii) (Local view) for every domain point z ∈ Z, the feature field induces a feature variable
Fz via (x 7→ f(x, z)). Thus, FZ is a collection of feature variables indexed by points in Z.

Consequently, a feature field may be understood either as a function-valued random
variable with function domain Z, or as a collection of feature variables indexed by points of
that space, respectively. We illustrate three feature fields in Figure 1 and describe possible
examples of their semantics as posterior distributions and value functions in Appendix B.

1. Ψi may also be considered a covector from the activation dual space A∗.
2. Equivalently, we can augment the activation vector with a constant-valued dimension and incorporate

the offset term into the weight vector.
3. Throughout this paper, we use the term feature field to refer directly to the deterministic map f . The

distinction between f and FZ should be evident from context.
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Figure 2: An illustration of two feature variables and a feature field which are linearly
represented within the activation space of the brain of a hypothetical dog. Top:
A feature variable is represented by a vector Ψi that can read off a scalar function
fi(x) from the activation Φ(x) by a dot product fi(x) = Φ(x) ·Ψi. For example,
a dog’s neural activations may encode information about the weight and length
of an object she sees. Bottom: A feature field f(x, z) is represented by a domain
embedding Ψ(Z) with f(x, z) = Φ(x) · Ψ(z). For example, a dog tracking which
way she left her bone may represent a whole distribution of probabilities over
orientations Z ∼= S1, where f(x, zNE) is the probability she left it toward the
Northeast given the history of her experience x.

3.1. The Domain Embedding

We have so far only defined a feature field as a property of the data itself, rather than
as a representation in a neural network. In Section 2, we observed that a neural network
may (linearly) represent a feature variable by a vector Ψi ∈ A. From the local view, this
definition naturally extends so that a feature field may have a representation where each
point in the domain z ∈ Z is associated with a feature variable Fz and the vector Ψ(z)
representing it, resulting in a representation which is the collection of vectors {Ψ(z)}z∈Z .

Definition 4 A feature field is linearly represented in Φ if and only if there exists a
domain map Ψ : Z → A such that

f(x, z) = ⟨Φ(x),Ψ(z)⟩A for all x ∈ X , z ∈ Z. (1)

Equivalently, a feature field is linearly represented if and only if the feature variable Fz at
each point z ∈ Z is linearly represented.
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It follows that the image of the domain map Ψ(Z) ⊆ A, called the domain embed-
ding4, is the (linear) representation of a feature field. Thus, analysis of feature fields
within a neural network reduces to analysis of their domain embeddings, as we shall see in
subsequent sections. We illustrate the domain embedding of a feature field in Figure 3.

3.2. Linear Field Probes Recover Feature Fields

We introduce linear field probing as a method for recovering feature fields from neural
activations. Whereas a linear probe identifies the vector that represents a feature variable,
a linear field probe identifies the domain embedding that represents a feature field.

Definition 5 A linear field probe for a feature field FZ is a family of linear probes
ℓz : A → R, with ℓz(a) := ⟨a, Ψ̂(z)⟩A for z ∈ Z, parameterized by a domain map Ψ̂ : Z → A,
and used to approximate the field values via ℓz(Φ(x)) = ⟨Φ(x), Ψ̂(z)⟩A ≈ f(x, z).

Thus, a feature field is linearly represented in the activations if and only if a linear field
probe can recover it from those activations. A field probe is trained by learning a (generally
nonlinear5) domain map Ψ̂. Knowledge of the topology of Z is not necessarily assumed, so
long as a parameterization of Z is given. For example, a linear field probe may be trained
by discretizing Z and independently training a linear probe ℓz for each z.

3.3. Domain Homeomorphism

We have not so far made use of the topology in imposing structure on realizations of
the feature field. In the beginning of Section 3, we found that one natural imposition
is continuity. For example, our dog tracking bone directions may have similar belief for
adjacent directions, so that f(x, zNE) ≈ f(x, zNNE).

Definition 6 A feature field is called continuous if and only if all realizations (z 7→
f(x, z)) ∼ F are continuous for all x ∼ X. That is, f(x, z) is continuous in the domain
argument z for a fixed data point x.

We show that, under mild conditions, the domain embedding of continuous feature fields
preserves the topology of (i.e. is homeomorphic to, see Appendix A) the domain space itself.

Theorem 7 (Domain Homeomorphism Theorem) Let f(x, z) = ⟨Φ(x),Ψ(z)⟩ be a
linearly represented continuous feature field such that (1) the family {f(x, ·)}x∈X separates
points, (2) Φ(X) spans the subspace containing Ψ(Z), and (3) Z is compact. Then the
domain embedding Ψ(Z) is homeomorphic to the domain space Z.

These conditions are mild: (1) says distinct domain points are distinguishable (if z1 ̸= z2
then some x has f(x, z1) ̸= f(x, z2)), (2) excludes wasted representational capacity, and (3)
holds for most natural domains including intervals, circles, and graphs. We defer the proof
to Appendix I.

4. Not to be confused with the activation “manifold” Φ(X).
5. As we shall observe in Section 4, linearity in Ψ trivializes the expressivity of the feature field. The

linearity of a field probe specifically refers to the linear inner product with the activations ⟨Φ(x), Ψ̂(z)⟩A.
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Figure 3: Domain Homeomorphism Theorem (informal): For continuous feature
fields, the domain embedding Ψ(Z) in activation space preserves the topology of
the domain space Z, so that Ψ(Z) ∼= Z.

By the theorem, we have that our dog that tracks directions over the circle Z ∼= S1

represents her beliefs by a circle Ψ(Z) ∼= S1 that resides within her activation space. Thus,
she explicitly represents an abstract hidden space that she has never observed directly.

4. The Geometry of Feature Fields

In this section, we show that the geometry of the domain embedding fully determines
the space of representable feature fields. The space of square-integrable functions over
the domain, L2(Z), is infinite-dimensional. However, we prove that linearly representable
realizations are confined to a finite-dimensional subspace determined entirely by the domain
embedding geometry.

Definition 8 For a feature field FZ with domain embedding Ψ(Z), the realization space
is the space of functions over Z which are linearly representable realizations of f , given by
span({fx(z)}x∈X ).

To characterize this space, we define the feature kernel K(z, z′) = ⟨Ψ(z),Ψ(z′)⟩, which
encodes the geometry of the domain embedding through pairwise inner products. The kernel
K defines a function space (called the reproducing kernel Hilbert space, see Appendix A)
HK . We now establish an equivalence between HK and the realization space.

Theorem 9 (Field Geometry Equivalence Theorem) Let f(x, z) = ⟨Φ(x),Ψ(z)⟩ be
a linearly represented feature field such that Φ(X ) spans the subspace containing Ψ(Z).
Then the realization space is the RKHS associated with the feature kernel, given by

HK =


d∑

j=1

√
λjajψj(z) : aj ∈ R

 . (2)
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Figure 4: Field Geometry Equivalence Theorem (informal): The geometry of the do-
main embedding in activation space encodes the basis functions of feature fields.
Shown left is a domain embedding, or feature manifold, obtained from a trans-
former trained on a toy task. Shown right are basis functions which are projections
of the embedding geometry.

For any realization f(x, z), there exists a unique spectral representation:

f(x, z) =

d∑
j=1

√
λjaj(x)ψj(z) (3)

where aj(x) = Φ(x)Tej are coefficients determined by projecting the activation onto the
principal directions {ej} of the domain embedding, {ψj} are the eigenfunctions of the inte-
gral operator TK , and {λj} are the corresponding eigenvalues.

The theorem establishes a direct correspondence between the geometry of the domain
embedding and the function space structure of representable fields. The eigenfunctions are
given by projecting the domain embedding onto principal directions ψj(z) =

1√
λj
⟨Ψ(z), ej⟩.

Since the domain embedding lives in Rd, at most d eigenvalues are nonzero, so dim(HK) ≤ d.
This is a significant constraint: out of the infinite-dimensional space L2(Z), only a finite-
dimensional subspace can be linearly represented, and its basis is encoded by the principal
components of the domain embedding.

5. Experiments

In this section, we provide empirical validation for the theoretical framework of feature
fields, linear field probing, and domain embedding geometry developed in this paper.
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Figure 5: Analysis of feature fields on two topologies. A,E: Domain embeddings Z are
homeomorphic to underlying domain spaces. B,F: Eigenfunction bases are re-
covered as neural networks representations of the feature field. C,G: Feature
field realizations corresponding to data samples, as encoded by basis functions,
which become progressively more accurate with more basis functions. D,H: Do-
main embedding kernel, from which basis functions may be obtained.

We experiment with two tasks designed to induce the emergent formation of feature
fields of two topologies Z = I and Z = S1 inside neural networks. Both tasks are of
the following form: Given parameters of a hidden feature field, output an integral of the
feature field. Mathematically, choose a task y = m(x) where x parametrizes a feature field
f(x, z)—where for fixed x, fx(z) is a function over a topology Z—and y is an integral of f ,
defined as y =

∫
Z f(x, z)g(z)dµ(z). We describe choices of f and g in Appendix C.

We find that feature fields are linearly represented in transformers. We train a linear
field probe on transformers trained on the two tasks. The local interpretation allows us
to approximate a linear field probe by discretizing Z and training a linear probe for each
point in the discretized domain space. We find that for both tasks, the feature fields are
linearly represented in the second layer of a 2-layer transformer but not a 1-layer trans-
former. Example feature field realizations are displayed in Figure 5 (C and G), Figure 7,
and Figure 11.

After training Ψ(Z), the feature kernel was obtained by assembling a Gram matrix
K(z, z′) = ⟨Ψ(z),Ψ(z′)⟩A, displayed in Figure 5 (D and H). Then the eigenfunction basis
is obtained by an eigendecomposition of the kernel matrix displayed in Figure 5 (B and F)
and Figure 10. Equivalently, the eigenfunction basis is obtained by plotting the projection
of Ψ(z) onto its principal components as a function of z. Moreover, for samples of the
feature field, we show that the basis function coefficients obtained from the activations in
the domain embedding subspace (by projecting the activation onto the principal components
of Ψ(z)) match those obtained by numerically calculating the integral

∫
f(x, z)ψi(z)dµ(z)

in Figure 8 and Figure 9. These results show that the feature field function basis may be
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recovered and that the coefficients in neural network activation space match the theoretical
coefficients in the function space.

We study training dynamics on the beta distribution over Z = I, and study the de-
velopment of its geometry over training. In Figure 6, we plot a comparison over the same
training run between (1) the effective dimension of the domain embedding in the first and
second layers and (2) the linear field probe recovery loss in the first and second layers, along
with (3) the transformer task loss. The effective dimension is measured with the partici-
pation ratio, defined as PR = (

∑
i λi)

2/(
∑

i λ
2
i ), where {λi} are eigenvalues. We observe

a “phase transition” in the task loss as well as in the effective dimension dimension of the
domain embedding in the second layer over the same period from roughly 400–600 epochs.
We observe the linear field probe loss plateaus near the end of the phase transition period.
Additionally, we find little change in the probe loss in the first layer, indicating that the fea-
ture field representation emerges in the second layer of the transformer. These findings are
consistent with the theoretical findings of Section 4, establishing a correspondence between
domain embedding dimension and representational capacity.

6. Related Work

Elhage et al. (2022) considered sparse features with correlated co-occurrence, rather than
correlated values; the feature scalars are still independent. Engels et al. (2025) study multi-
dimensional features, especially features which appear to have circular geometry—like days
of the week, or months of the year—and find that projections of the features into their prin-
cipal components show clean circles. On the other hand, the circular domain embedding
in Figure 5 appears highly curved and not so cleanly circular in any two principal compo-
nents. A clean geometry would result in limited representational capacity. Li et al. (2023)
trained nonlinear classifier probes over the 8×8 tiled topology of the Othello board, finding
non-trivial geometry in the embedding of the underlying board. This may be considered
a non-linear classifier field probe, as the topology of the board was taken into account,
although only a preliminary analysis of the geometry was performed. Nanda et al. (2023)
performed a follow up analysis, training a linear classifier field probes, although no study
of the geometry was performed.

7. Conclusion

We generalize the concept of scalar-valued feature variables to function-valued feature fields.
Feature fields are defined over a topological domain space, which encodes the structural re-
lationships of the world. We introduce linear field probes that can extract feature fields from
neural networks by discovering an embedding of the topological domain space. We show
that, for continuous feature fields, the domain embedding retains the topological structure
of the original domain. The geometry of the domain embedding is a kernel that defines
the space of representable realizations of the feature field. We validate our claims empiri-
cally and find that representations of feature fields naturally emerge in transformer neural
networks. This work lays the groundwork for a principled understanding of topological
representations, providing a step toward a more complete theory of world models.
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Appendix A. Background

Topology A topological space is a set T equipped with a collection of open sets that
defines a notion of continuity and neighborhood. A map f : T → T ′ between topological
spaces is said to be continuous if the preimage of every open set in T ′ is open in T . A
homeomorphism is a bijective, continuous map with a continuous inverse—formally identi-
fying two topological spaces as topologically equivalent. A map Ψ : T → Rd is a topological
embedding if it is continuous, injective, and its image Ψ(T ) ⊂ Rd inherits the topology of
T ; that is, Ψ is a homeomorphism onto its image.

Random Fields A random field generalizes a scalar-valued random variable to a function-
valued random variable defined over a topological space. More formally, given a probability
space, a random field F is a collection of random variables F = {Ft : t ∈ T} indexed by
points in a topological space T . A sample or realization of F is a deterministic function
f : T → R, obtained by evaluating each Ft at the same outcome in the underlying probability
space. Continuity of realizations is often assumed to preserve the structure imposed by the
topology of T .

Function Spaces A function space is a vector space whose elements are functions f :
T → R, defined on a topological domain T . Of particular interest is the space RT , denoting
the set of all real-valued functions on T . Within RT , a notable subspace is the Reproducing
Kernel Hilbert Space (RKHS), a Hilbert space of functions associated with a symmetric,
positive-definite kernel K : T × T → R. This kernel defines an inner product structure
and induces a canonical feature map t 7→ K(t, ·), embedding each point t ∈ T into the
RKHS. The RKHS has the important property that pointwise evaluation is continuous—a
consequence of the reproducing property f(t) = ⟨f,K(t, ·)⟩.

Reproducing Kernel Hilbert Spaces (RKHS) Let K be a symmetric and positive
definite kernel. According to the Moore-Aronszajn theorem, the kernel K uniquely de-
fines a reproducing kernel Hilbert space (RKHS) HK . This kernel defines a linear integral
transform TK : L2(Z) → L2(Z):

[TKg](z) =

∫
Z
K(z, z′)g(z′)dµ(z′) (4)

By Mercer’s theorem, the kernel K has a spectral decomposition:

K(z, z′) =

∞∑
j=1

λjψj(z)ψj(z
′) (5)

where {ψj} are the orthonormal eigenfunctions of TK with corresponding non-negative
eigenvalues {λj}.

11



Yocum Allen Olshausen Russell

Appendix B. Feature Field Examples

We provide two motivating examples of feature fields below.

1. Posterior distributions: Bayesian inference involves updating posterior distributions
over entire parameter spaces rather than just tracking the maximum a posterior esti-
mate. A neural network Bayesian receives an observation of the world x and updates
a posterior distribution p(z|x) conditioned on the observation over a parameter space
topology which encodes the relationship between parameters θ ∈ Θ. Thus, we obtain
a feature field f(x, θ) = p(θ|x) defined over a topology Z = Θ.

2. Value functions: An agent tracks a value function over all possible states and actions,
rather than just the highest value state and action. A neural network agent experiences
a history x and updates a value function Vx(s) over a state space topology which
encodes the relationships between states s ∈ S. Thus, we obtain a feature field
f(x, s) = Vx(s) defined over a topology Z = S.

Appendix C. Feature Field Construction

Z = I We consider a beta distribution Beta(a, b) feature field defined over the unit interval
I = [0, 1]. The feature field is defined using the beta distribution probability density
function f = (z; a, b),6 which takes two parameters a, b > 0. Our task is for a model to
take input x = (a, b) and output a scalar functional m(x) =

∫ 1
0 f(x, z)g(z)dµ(z). We choose

g(z;ω) = cos(2πωz), with frequency hyperparameter ω.

Z = S1 We consider a k-mixture of von Mises distributions feature field defined over the
circle topology S1. The feature field is defined with two parameters x = (µ1, µ2), specifying
the means of two von Mises distributions. Then the task is defined as f(x, z) ∝ eκ cos(x−µ1)+
eκ cos(x−µ2), g(z;ω1, ω2, ω3, c1, c2, c3) = c1 cos(2πω1z) + c2 cos(2πω2z) + c3 cos(2πω3z).

6. Notated a, b instead of the typical α, β to not confuse with activations and features.
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Appendix D. Notation

Notation Meaning / Type

f(X) Feature (random variable over random input X)
f(x) Feature scalar (value of the feature at a fixed input x)
f(X,Z) Feature field (random field over manifold)
f(X, z) Feature (random variable at a fixed manifold point z)
f(x,Z) Feature function (deterministic function over manifold with fixed input x)
f(x, z) Feature scalar (scalar at fixed input x and fixed manifold point z)

Φ(x) Activations
A Activation space
X Data space
x ∈ X Data point
Z Feature space
z ∈ Z Domain point
Ψ(z) Feature map
f(x, z) Feature field

f̂(x, z) Density/superposition field
K(z, z′) Reproducing kernel
TK Kernel transform
{ψj} Kernel eigenfunctions
{λj} Kernel eigenvalues
{aj} Eigenfunction coefficients, spectral coordinates
HK Reproducing kernel Hilbert space

Table 1: Summary of feature notation and their corresponding object types.

13



Yocum Allen Olshausen Russell

Appendix E. Experimental Details

All experiments were conducted on a MacBook Pro with an Apple M1 chip and 16 GB of
RAM.

Component Setting

Residual stream dimension 512
Discretization points (linear field probe) 1000
Train/test split (transformer dataset) 60% / 40%
Train/test split (linear field probe dataset) 90% / 10%
Optimizer Adam (both models)
Training epochs (transformer) 2000
Training epochs (linear field probe) 2000
Attention heads (transformer) 8

Feature Field Functions

Beta distribution: g(z) = cos(3.5 · 2πz)
Von Mises mixture: g(z) = 100 cos(2πz) + 50 cos(4πz − 0.71)

+25 cos(6πz − 0.123)
Von Mises concentration (κ) 10

Table 2: Summary of experimental hyperparameters and functional forms used in field prob-
ing.
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Appendix F. Equations

Φ(x) =

∫
Z
f̂(x, z)Ψ(z)dµ(z) = TΨ[f̂x] =

d∑
j=1

ajej

Ψ(z) =
d∑

j=1

√
λjψj(z)ej = Z(K1/2)

K(z, z′) =
d∑

j=1

λjψj(z)ψj(z
′) = ⟨Ψ(z),Ψ(z′)⟩A

K1/2(z, z′) =
d∑

j=1

√
λjψj(z)ψj(z

′)

[TKg](z) =

∫
Z
K(z, z′)g(z′)dµ(z′) = ⟨g,Kz⟩L2

TK1/2 = Z ◦ TΨ

[TΨg] =

∫
Z
gΨ(z)dµ(z)

f(x, z) =
d∑

j=1

√
λjaj(x)ψj(z) = ⟨Φ(x),Ψ(z)⟩A = ⟨fx,Kz⟩HK

f̂(x, z) = T−1
K [f ] =

d∑
j=1

1√
λj
aj(x)ψj(z)
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Appendix G. Training Effective Dimension

Figure 6: We plot the effective dimension of the domain embedding, approximated with the
participation ratio, across layers and training. We observe a phase transition in
the second layer embedding (left) which corresponds to the phase transition in
the model loss curve (right), both between 400 and 600 epochs. After this period,
both the domain embedding effective dimension and the linear field probe loss
plateaus. Meanwhile, the first layer linear field probe shows no evidence for the
development of linear representation of the feature field.

Appendix H. Linear Field Probe Results

In the following figures, we display feature field realizations, an eigenfunction basis, and
coefficients, which were extracted through the use of linear field probes.

Figure 7: 9 realizations of the beta distribution obtained from transformer activations using
the linear field probe.
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Figure 8: For the beta distribution feature field, eigenbasis coefficients match between eigen-
functions and closed form integral.

Figure 9: For the von Mises mixture feature field, eigenbasis coefficients match between
eigenfunctions and closed form integral.
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Figure 10: First 12 eigenfunction basis for beta distribution feature field.

Figure 11: Fifteen realizations of the mixture von Mises distribution obtained from trans-
former activations using the linear field probe.
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Appendix I. Proofs

We provide proofs for the two theorems of the paper.

I.1. Theorem 1

Theorem 10 (Domain Homeomorphism Theorem) Let f(x, z) = ⟨Φ(x),Ψ(z)⟩ be a
linearly represented continuous feature field satisfying:

1. For each x ∈ X, the map z 7→ f(x, z) is continuous.

2. The family {f(x, ·)}x∈X separates points: if z1 ̸= z2, then f(x, z1) ̸= f(x, z2) for some
x ∈ X.

3. The set Φ(X) spans the subspace containing Ψ(Z).

4. Z is compact.

Then Ψ(Z) is homeomorphic to Z.

Proof We show that Ψ is a continuous bijection onto its image. Since Z is compact and
Rd is Hausdorff, this implies Ψ is a topological embedding.

Step 1: Ψ is injective.
Suppose Ψ(z1) = Ψ(z2). Then for all x ∈ X,

f(x, z1) = ⟨Φ(x),Ψ(z1)⟩ = ⟨Φ(x),Ψ(z2)⟩ = f(x, z2).

Since the family {f(x, ·)}x∈X separates points, we conclude z1 = z2.

Step 2: Ψ is continuous.
Let V = span{Ψ(z) : z ∈ Z}. By assumption, Φ(X) spans V , so we can choose

x1, . . . , xk ∈ X such that {Φ(x1), . . . ,Φ(xk)} is a basis for V .
Define the map

g : Z → Rk, g(z) =
(
f(x1, z), . . . , f(xk, z)

)⊤
.

Since each f(xi, ·) is continuous, g is continuous.
Now, write Ψ(z) =

∑k
j=1 cj(z) Φ(xj) for some coefficients cj(z). Then

g(z)i = f(xi, z) = ⟨Φ(xi),Ψ(z)⟩ =
k∑

j=1

cj(z) ⟨Φ(xi),Φ(xj)⟩ = [Gc(z)]i,

where G is the Gram matrix with entries Gij = ⟨Φ(xi),Φ(xj)⟩. Since {Φ(xi)} is linearly
independent, G is invertible, so c(z) = G−1g(z) and

Ψ(z) =

k∑
i=1

[G−1g(z)]iΦ(xi).

This expresses Ψ as a composition of continuous maps, so Ψ is continuous.

Step 3: Conclusion.
We have shown that Ψ : Z → Ψ(Z) is a continuous bijection. Since Z is compact and

Ψ(Z) ⊆ Rd is Hausdorff, Ψ is a topological embedding. So Ψ(Z) is homeomorphic to Z.
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I.2. Theorem 9 (Field Geometry Equivalence Theorem)

Theorem 11 (Field Geometry Equivalence Theorem) Let f(x, z) = ⟨Φ(x),Ψ(z)⟩ be
a linearly represented feature field such that Φ(X ) spans the subspace V = span{Ψ(z) :
z ∈ Z}. Then the realization space equals the RKHS HK associated with the feature kernel
K(z, z′) = ⟨Ψ(z),Ψ(z′)⟩.

Proof We prove the theorem in three steps: (1) every realization fx lies in HK , (2) the
realization space equals HK , and (3) the spectral representation holds.

Step 1: Every realization lies in HK .

Let V = span{Ψ(z) : z ∈ Z}. By assumption, Φ(X ) spans V , so we may write any Φ(x)
as:

Φ(x) =

n∑
i=1

ciΨ(zi) + Φ(x)⊥

where Φ(x)⊥ ⊥ V . Since Ψ(z) ∈ V for all z, the orthogonal component does not contribute:

fx(z) = ⟨Φ(x),Ψ(z)⟩ =
n∑

i=1

ci⟨Ψ(zi),Ψ(z)⟩ =
n∑

i=1

ciK(zi, z)

Thus fx is a finite linear combination of kernel sections Kzi(·) = K(zi, ·), which lies in HK

by definition of the RKHS.

Step 2: The realization space equals HK .

From Step 1, every fx ∈ HK , so span{fx : x ∈ X} ⊆ HK .

For the reverse inclusion, we show every kernel section Kz0 lies in the realization space.
Fix z0 ∈ Z. Since Ψ(z0) ∈ V = span{Φ(x) : x ∈ X}, there exist x1, . . . , xn ∈ X and
coefficients c1, . . . , cn such that:

Ψ(z0) =
n∑

i=1

ciΦ(xi)

Then for any z ∈ Z:

Kz0(z) = ⟨Ψ(z0),Ψ(z)⟩ =
n∑

i=1

ci⟨Φ(xi),Ψ(z)⟩ =
n∑

i=1

cifxi(z)

Hence Kz0 ∈ span{fx}. Since kernel sections span HK , we have HK ⊆ span{fx : x ∈ X}.
Step 3: The spectral representation.

Let C =
∫
Z Ψ(z)Ψ(z)Tdµ(z) be the covariance matrix of the domain embedding, with

eigendecomposition C =
∑

j λjeje
T
j where {ej} are orthonormal eigenvectors and λ1 ≥

λ2 ≥ · · · ≥ 0.

Define ψj(z) = ⟨Ψ(z), ej⟩/
√
λj for each j with λj > 0.
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Claim: {ψj} are orthonormal in L2(Z, µ).

⟨ψj , ψk⟩L2 =
1√
λjλk

∫
Z
⟨Ψ(z), ej⟩⟨Ψ(z), ek⟩ dµ(z)

=
1√
λjλk

eTj

(∫
Z
Ψ(z)Ψ(z)Tdµ(z)

)
ek

=
1√
λjλk

eTj C ek =
λk√
λjλk

δjk = δjk

Claim: {ψj} are eigenfunctions of TK with eigenvalues {λj}.
The domain embedding can be written as Ψ(z) =

∑
j

√
λjψj(z)ej , which gives the

Mercer decomposition:

K(z, z′) = ⟨Ψ(z),Ψ(z′)⟩ =
∑
j

λjψj(z)ψj(z
′)

Applying TK to ψk:

[TKψk](z) =

∫
Z
K(z, z′)ψk(z

′)dµ(z′) =
∑
j

λjψj(z)⟨ψj , ψk⟩L2 = λkψk(z)

Claim: The spectral representation holds.

f(x, z) = ⟨Φ(x),Ψ(z)⟩ =

〈
Φ(x),

∑
j

√
λjψj(z)ej

〉
=

∑
j

√
λj ⟨Φ(x), ej⟩︸ ︷︷ ︸

=aj(x)

ψj(z)

This completes the proof.
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