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Abstract

Large Language Models (LLMs) have shown001
immense potential in multimodal applications,002
yet the convergence of textual and musical do-003
mains remains relatively unexplored. To ad-004
dress this gap, we present MusiLingo, a novel005
system for music caption generation and music-006
related query responses. MusiLingo employs a007
single projection layer to align music represen-008
tations from the pre-trained frozen music audio009
model MERT(Li et al., 2023b) with a frozen010
LLMs, bridging the gap between music audio011
and textual contexts. We train it on an exten-012
sive music caption dataset and fine-tune it with013
instructional data. Due to the scarcity of high-014
quality music Q&A datasets, we created the015
MusicInstruct (MI) dataset from captions in the016
MusicCaps datasets, tailored for open-ended017
music inquiries. Empirical evaluations demon-018
strate its competitive performance in generating019
music captions and composing music-related020
Q&A pairs.021

1 Introduction022

In the realm of Music Information Retrieval (MIR),023

prevailing methodologies for contemporary musi-024

cal descriptions typically lean on discriminative025

learning. An illustrative instance is music tagging026

(Law et al., 2009; Won et al., 2020, 2021), where027

descriptors encompassing genres, composers, in-028

struments, emotions, and tempos are ascribed to029

each music clip. In this case, the model output030

is confined to a pre-determined set of categorical031

labels, thereby constraining its applicability in con-032

texts like music exploration and recommendation,033

where the ability to handle and generate more hu-034

manised, intricate, and nuanced music captions or035

music Q&A would boast a diverse array of practi-036

cal applications. These include generating textual037

descriptions for items found within extensive mu-038

sic catalogues, annotating copious user-generated039

content; automatically providing descriptions for040

evocative music featured in videos, catering to the041

needs of the hearing-impaired; and furnishing ex- 042

planations for automated music recommendations. 043

Furthermore, this advancement facilitates enhanced 044

search and discovery of musical material for com- 045

posers, all through user-friendly queries, while also 046

serving as an inspiration for text-based music gen- 047

eration algorithms. 048

Despite the substantial music information en- 049

coded within textual representations, research to 050

bridge the gap between the acoustic music and nat- 051

ural language modalities is in its nascent stages. 052

MusCaps (Manco et al., 2021) leverages convo- 053

lutional networks for music understanding and 054

recurrent neural networks for captioning. Mu- 055

Lan (Huang et al., 2022) uses contrastive learn- 056

ing to align the text embedding and audio embed- 057

ding joint audio-text embedding for music tagging 058

and retrieval of music with text query. But the 059

work is not open-sourced. LP-MusicCaps (Doh 060

et al., 2023a) and audio captioning transformer 061

(ACT) (Mei et al., 2021) utilise a cross-modality 062

transformer-based encoder-decoder architecture 063

for music/audio captioning. Although these stud- 064

ies have shown notable advancements in tackling 065

music captioning, their effectiveness in function- 066

ing within a genuine conversational context for 067

question-answering remains somewhat restricted. 068

A prospective avenue for better performance, in 069

light of the recent triumphs of large language mod- 070

els (LLMs), entails integrating the conversation and 071

generalisation proficiencies offered by LLMs into 072

musical tasks. 073

Several works have applied LLMs to multimodal 074

tasks. UniVAL (Shukor et al., 2023) offers a versa- 075

tile model for image, video, audio, and language 076

modalities, while LTU (Gong et al., 2023b) excels 077

in audio quizzing. However, none of these models 078

are suitable for music-related question-answering 079

and dialogue. To enable the bridge of two modal- 080

ities on limited resources, we are inspired by the 081

success of vision-language pre-training. In vision- 082
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language pre-training, the prevailing approach is083

to follow a new paradigm, connecting pre-trained084

unimodal encoders with LLMs via a learnable in-085

terface. This approach keeps encoders and lan-086

guage models fixed, using query tokens or adapter087

layers (Zhang et al., 2023b) to transfer informa-088

tion between modalities. The interface can be a089

set of query tokens that extract information from090

the modality, as BLIP-2 (Li et al., 2023a) and091

Flamingo (Alayrac et al., 2022), or an adapter092

layer that projects embeddings from one modal-093

ity to another. Mini-GPT4 (Zhu et al., 2023) and094

Video-ChatGPT (Maaz et al., 2023) use simple095

linear adapters to project the visual embeddings096

onto text embedding space. Video-LLaMA (Zhang097

et al., 2023a) adopts the Q-Former design from098

BLIP-2 for the adapter and incorporates 2 projec-099

tions from the image and audio data in the video.100

LLaMA-Adapter (Zhang et al., 2023b) employs101

a parameter-efficient approach with small adapter102

modules within transformer blocks. A contempo-103

rary work, MU-LLAMA (Liu et al., 2023b), ex-104

tends the LLaMA-adapter concept to music lan-105

guage tasks. These models, which utilise pre-106

trained frozen encoders and learnable interfaces, of-107

fer a promising approach to connecting any modal-108

ity with language models, providing efficient train-109

ing and maximal preservation of the model’s origi-110

nal knowledge.111

Given these insights, we introduce a novel mu-112

sic language model designed for music captioning,113

question answering, and query responses. Our ap-114

proach involves a single projection layer configura-115

tion with temporal compression applied to music116

embeddings. Unlike Mu-Llama multilayer percep-117

tron (MLP) for Llama-adapter that projects music118

embedding to top layers of Llama, we use a simpler119

projection to send the embedding to the beginning120

layer of Llama. We also incorporate a pre-training121

phase to align them with textual representations and122

fine-tune the model using our proprietary dataset123

derived from GPT-4 (Brown et al., 2020). This124

equips our model with the capability to understand125

different aspects of musical compositions and en-126

ables it to provide accurate and natural responses127

to user queries.128

In summary, our work features the following129

core contributions:130

• We introduce MusiLingo, a novel music-131

language model capable of performing music132

question answering and captioning;133

• We demonstrate superior performance and 134

state-of-the-art (SOTA) modelling for a va- 135

riety of metrics for music Q&A; 136

• We create a new MusicInstruct (MI) dataset, 137

which features 60,493 Q&A pairs covering 138

both general questions like music summarisa- 139

tion, and specific questions related to music 140

genres, moods, and instruments. 141

• Our ablation study delves into the impact of 142

fine-tuning datasets on MusiLingo’s perfor- 143

mance. It reveals that the choice of training 144

data significantly influences the model’s effec- 145

tiveness. 146

Section 2 details our methodology for the MI 147

dataset creation and the music question-answering 148

tasks. Section 3 outlines the MusiLingo model 149

structure and training procedure. Section 4 presents 150

experiments and evaluations of our model and base- 151

lines. Our code is available on GitHub1. 152

2 Dataset & Evaluation Metrics 153

2.1 Large Dataset for Pre-training 154

In our study, we utilise the LP-MusicCaps-MSD 155

dataset (Doh et al., 2023a) for pre-training. This 156

dataset is derived from the ECALS subset (Doh 157

et al., 2023b) of the Million Song Dataset (Bertin- 158

Mahieux et al., 2011) and consists of 520k 30- 159

second clips with a vocabulary of 1054 labels en- 160

compassing various categories such as genre, style, 161

instrument, vocal, mood, theme, and culture. Each 162

music clip is associated with an average of 10.2 163

labels, used for generating pseudo captions, includ- 164

ing one caption, one summary, and one rephrased 165

version for each audio clip using the GPT-4 model. 166

We employ this extensive GPT-generated dataset 167

for pre-training and subsequently fine-tune our re- 168

sults using a smaller, high-quality Q&A dataset. 169

2.2 Q&A Dataset Collection 170

To enhance the model’s ability to generate content 171

of superior quality, we conducted additional fine- 172

tuning using a bespoke music Question-Answering 173

dataset we developed and named the MusicInstruct 174

(MI) dataset. This dataset comprises Q&A pairs 175

corresponding to individual musical compositions 176

and is expressly tailored to tackle open-ended in- 177

quiries within the realm of music. It is derived 178

from the music-caption pairs in the MusicCaps 179

1GitHub Repository
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The music recording features a ballad song that contains sustained strings, mellow piano 
melody and soft female vocal singing over it. It sounds sad and …
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Figure 1: Overview of the MusiLingo model. Note that the backbone LLM can be easily replaced from Vicuna-7B
to other LLMs.

dataset (Manco et al., 2021). The dataset is re-180

leased with cc-by-nc-4.0 license. The audio is181

available on YouTube with the given id, and the182

Q&A pairs along with metadata can be downloaded183

at our Huggingface page 2184

The MI dataset was crafted through prompt en-185

gineering and the application of few-shot learn-186

ing techniques to ChatGPT (OpenAI, 2023). In187

essence, given the ground truth caption of a musical188

excerpt from the MusicCaps dataset, we designed a189

prompt instructing the chatbot to generate multiple190

Q&A pairs based on the provided caption. The191

prompt consists of three key components: (1) An192

instruction delineating the task, serving as a system193

message directed at ChatGPT; (2) A set of few-shot194

example questions that the chatbot may generate;195

and (3) A concluding query featuring the music196

caption in question. Subsequently, after generating197

all Q&A pairs, we employed another prompt to cat-198

egorize whether the generated Q&A pair accurately199

encapsulates the essence of the music caption. Pairs200

that ChatGPT classified as negative were filtered201

out, and any outliers stemming from generation202

errors were meticulously removed.203

The resulting MI dataset comprises two versions:204

v1 encompassing 27,540 Q&A pairs, with ques-205

tions seeking comprehensive details about a musi-206

2Download dataset at here.

cal snippet, such as its genre, tempo, vocal gender, 207

mood, and instruments utilised, often yielding con- 208

cise one or two-sentence responses. Conversely, v2 209

encompasses 32,953 Q&A pairs, featuring ques- 210

tions of a more general nature about the musical 211

piece, with responses typically being more exten- 212

sive and serving as paraphrased renditions of the 213

original caption. 214

2.3 Evaluation Metrics 215

Both music captioning and music question an- 216

swering are text-generation tasks. To this end, 217

we use well-established text generation metrics to 218

evaluate the model performances on both tasks, 219

where the generated music captions/Q&A are com- 220

pared to the ground truth texts. Metrics we used 221

include BLEU (Papineni et al., 2002; Lin and 222

Och, 2004), METEOR (Banerjee and Lavie, 2005), 223

ROUGE (Lin, 2004), and Bert-Score (Zhang* et al., 224

2020). 225

To make our results comparable with Mu-Llama, 226

we use the average of BU1, BU2, BU3, and BU4 227

as the result of the BLEU value. 228

3 Method 229

In this section, we introduce MusiLingo, a po- 230

tent music-language model that leverages LLM 231

capabilities to enhance music comprehension. The 232

model’s key innovation lies in the use of adapters, 233
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a prevalent technique in LLM-based multimodal234

models. Our approach builds upon a design where235

both the music encoder and LLM remain fixed,236

while a single adapter network is trained to project237

music embeddings into the text embedding space.238

As demonstrated in fig. 1, We utilised MERT-330M239

(Li et al., 2023b) as the music encoder and Vicuna-240

7B (Chiang et al., 2023) as the language model,241

with the adapter consisting of a simple linear layer242

followed by temporal compression. Our method-243

ology involves pre-training and instruction tuning244

to grasp music concepts and generate coherent re-245

sponses. This streamlined design substantially re-246

duces the time and resources needed for music-247

language model training.248

3.1 Model Architecture249

In this paper, we introduce MusiLingo, a large250

music-language model that leverages the power251

of LLMs to achieve superior music-understanding252

capabilities. The core of the model lies in the use253

of adapters, which is a method that has become in-254

creasingly popular in the field of LLM-based multi-255

modal models. There have been a variety of designs256

for how and where to use adapters (Zhu et al., 2023;257

Li et al., 2023a; Alayrac et al., 2022; Maaz et al.,258

2023; Zhang et al., 2023a,b; Liu et al., 2023a), and259

our work extends from the design where both the260

music encoder and the LLM are completely frozen,261

and one adapter network is trained to project music262

embeddings onto the text embedding space. We263

used MERT-v1-330M (Li et al., 2023b) as our mu-264

sic encoder and Vicuna-7B (Chiang et al., 2023)265

as the language model, and the adapter is a simple266

linear layer followed by a temporal compression267

operation. We then perform both a pre-training268

step and an instruction tuning step to learn the mu-269

sic concepts and form them into coherent answers.270

This simple yet effective adapter design signifi-271

cantly reduces the time and resources needed to272

train a music-language model and helps bridge the273

gap between these two modalities.274

The MusiLingo model consists of a music en-275

coder, an adaptation layer, and a pre-trained LLM276

to achieve cross-modal understanding between mu-277

sic and text data. In particular, We use MERT as278

our music encoder to extract the acoustic and mu-279

sical information from the input music clip and280

use Vicuna as the language model, which takes the281

music embedding output from the adaptation layer282

and generates text responses based on additional283

user text input. For the adaptation network we use 284

a simple linear layer, which has been demonstrated 285

to be fairly effective in a few recent works in the 286

vision-language domain (Maaz et al., 2023; Liu 287

et al., 2023a; Zhu et al., 2023). Note that the choice 288

of a linear layer is also based on the observation 289

that MERT has encapsulated the information in 290

different dimensions via its attention layers. Con- 291

sequently, there may not be an imperative need 292

to introduce supplementary architectural elements, 293

such as attention layers or BLIP-2 Q-Former (Li 294

et al., 2023a), for the acquisition of temporal di- 295

mension information. 296

To harness both high-level and low-level infor- 297

mation within music audio, we calculate the fi- 298

nal music embedding by taking the weighted av- 299

erage of the outputs from each transformer block 300

in the MERT model. This embedding is then pro- 301

jected onto the text embedding space of the lan- 302

guage model via a linear layer. However, the en- 303

coded music representations can be lengthy, pos- 304

ing training challenges, and the uncompressed se- 305

quence elements lack meaningful alignment with 306

the language model’s token embeddings. To ad- 307

dress this, we introduce a temporal compression 308

step following the linear layer. Given the output 309

embedding M ∈ RB×T×D from the adaptation 310

layer (with B, T , and D representing batch size, 311

number of timesteps, and embedding dimension, 312

respectively), we compress subsequences of length 313

t along the temporal dimension by computing the 314

average. This results in a new embedding with a 315

reduced temporal dimension of T ′ = ⌈T/t⌉. Thus, 316

the input to the language model after compression 317

is a vector of shape B × T ′ ×D. 318

3.2 Music-Text pre-training 319

To train the MusiLingo model, we initiate a pre- 320

text task focused on aligning music concepts with 321

the language model. In this phase, our goal is to 322

effectively transform music embeddings into text 323

embeddings using established music captioning 324

datasets, specifically LP-MusicCaps-MSD (Doh 325

et al., 2023a). As illustrated in Fig.1, each music 326

clip undergoes encoding by the MERT encoder and 327

the adapter layer for each music-caption pair. The 328

ground truth caption is tokenised and converted 329

into text embeddings using the Vicuna model, then 330

appended to the music embeddings via concatena- 331

tion. The loss is the original language modelling 332

loss from the Vicuna model, with the tokens for 333
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regression limited to the caption tokens. This pre-334

training step is crucial for enabling the model to335

comprehend music concepts and convert them into336

textual representations.337

3.3 Music Instruction Tuning338

While the pre-training step plays a pivotal role in339

aligning music and text concepts, it alone does340

not suffice for generating high-quality conversa-341

tional content. Hence, we incorporate an instruc-342

tion tuning step to facilitate the model’s ability to343

respond to various music-related questions. This344

fine-tuning process draws from two datasets: MI345

(detailed in Section 2), and MusicQA (Liu et al.,346

2023b), which contains question-answer pairs gen-347

erated with the assistance of an LLM. Instruction348

tuning on these two datasets effectively imparts the349

model with the capability to answer music-related350

questions in a human-like manner and equips it351

with the knowledge to generalise to unseen tasks352

concerning musical content.353

4 Experiment and Results354

In this section, we introduce the experimental setup355

as well as present an evaluation of our model’s356

performance on the Question-Answering of music357

on the MusicQA and MI datasets. Besides, we358

evaluate the performance of music captioning on359

the MusicCaps dataset. We compare our results360

to state-of-the-art models and discuss the unique361

challenges posed by this dataset. Last, we carry out362

an ablation study on training on different parts of363

the MI dataset.364

4.1 Experiment Setup365

In the pre-training phase, we train the network by366

concatenating the encoded caption with the pro-367

jected music embedding and optimizing it for the368

caption tokens using the original language mod-369

elling loss. To ensure consistency, we use only the370

"caption_writing" in the pre-training dataset as the371

ground truth music caption since it contains mostly372

rephrased versions of each other. For instruction373

tuning, each data instance consists of an instruction374

or music-related question and its corresponding an-375

swer. We concatenate the instruction text token376

embeddings with the music embeddings, and the377

answer token embeddings with the instruction em-378

beddings, with an additional prefix ###Assistant:379

denoting the start of the answer. The objective is380

language modelling, with only the answer tokens381

contributing to the loss computation. During pre- 382

training, we trained the model with a batch size 383

of 32 for 20k steps using 4 A100 80G GPUs for 384

1-2 days. For each fine-tuning stage on different 385

datasets, we completed 2 epochs of training on a 386

single A100 40G GPU for 0.5-1 day. Please re- 387

fer to our Github repo for detailed information on 388

hyperparameters. 389

4.2 Result Analysis on Question-Answering 390

Model B-U↑ M-R↑ R-L↑ BERT-S↑

MusicInstruct (Short)

LTU (Gong et al., 2023b) 29.7 36.6 42.8 90.3

LTU-AS (Gong et al., 2023a) 30.4 36.3 42.0 90.9

MU-LLaMA (Liu et al., 2023b) 45.5∗ 50.1∗ 51.3∗ 93.2∗

MusiLingo / MI(short) 47.0 51.4 51.4 92.9
MusiLingo / MusicQA + MI(short) 47.1 51.7 51.6 92.9

MusicInstruct (Long)

LTU (Gong et al., 2023b) 6.7 9.3 9.0 83.1

LTU-AS (Gong et al., 2023a) 6.0 8.8 8.2 83.3

MU-LLaMA (Liu et al., 2023b) 14.3∗ 25,6∗ 41.1∗ 88.6∗

MusiLingo / MI(long) 45.0 25.0 22.9 86.1

MusicQA

LTU (Gong et al., 2023b) 24.2 27.4 32.6 88.7

Llama-adapter (Zhang et al., 2023b) 27.3 33.4 41.3 89.5

MU-LLaMA (Liu et al., 2023b) 30.6 38.5 46.6 90.1

MusiLingo / MusicQA 32.4 37.2 45.3 90.6

MusiLingo / MI short + MusicQA 33.2 38.4 46.5 91.0

Table 1: Music question answering results on the the
MI dataessts and MusicQA.

Table 1 demonstrates the experimental results 391

of various models in the field of music question 392

answering. These are categorised into three dif- 393

ferent scenarios: “MusicInstruct (Short)” which 394

represents the short questions on MI datasets, “Mu- 395

sicInstruct (Long)” which refers to the long sub- 396

jective questions on the MI dataset, and “Mu- 397

sicQA” which denotes the test set of the MusicQA 398

dataset generated from the tags of MTG-jamendo 399

datasets(Bogdanov et al., 2019). The table presents 400

performance metrics for four key evaluation crite- 401

ria: B-U (Bleu-Uni), M-R (METEOR-Rouge), R-L 402

(ROUGE-L), and BERT-S (BERT-Score). 403

From the table, MusiLingo demonstrates the 404

highest overall performance on MusicQA datasets. 405

“MusiLingo / MusicQA” represent the model fine- 406

tuned with Q&A pairs on the finetune se) of the 407

MusicQA dataset, generated from MagnaTagaTune 408

(MTT) dataset (Law et al., 2009). Our experiments 409

on the MusicQA dataset demonstrate competi- 410

tive performance, aligning with the state-of-the-art 411

(SOTA) results provided by Mu-llama. Specifically, 412
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our model achieves comparable performance on M-413

R and R-L metrics and surpasses the SOTA meth-414

ods on BU and BERT-S, confirming its effective-415

ness in addressing the challenges posed by the Mu-416

sic question-answering task. Besides, “MusiLingo417

/ MI Short + MusicQA” is finetuned on the short-418

question partition on the MI dataset and then is419

finetuned on the MusicQA dataset. The results are420

particularly excellent in the B-U and BERT-S met-421

rics and have no significant difference in M-R and422

R-L compared to the SOTA approach.423

Furthermore, MusiLingo demonstrates more424

competitive results on MI datasets in terms of425

both short objective questions and long subjective426

questions. In the objective question scenario, we427

see that “MusiLingo / MI (Short)” has achieved428

the highest scores for all rule-based evaluation429

criteria, outperforming other audio Q&A models,430

and provides competitive results compared to Mu-431

llama. Moreover, “The MusiLingo / MusicQA +432

MI (Short)”, doing the continuous training on “The433

MusiLingo / MusicQA”, only demonstrates slight434

improvement.435

In the long-form music instructions, “MusiLingo436

/ MI (Long)” outperforms other models by a sig-437

nificant margin. It is interesting to note that audio438

Q&A baseline systems LTU (Gong et al., 2023b)439

and LTU-AS (Gong et al., 2023a) perform well on440

objective questions such as instrument events and441

genres, while performing poorly in this scenario,442

suggesting the effectiveness of the MusiLingo ap-443

proach for handling queries with more extended444

and higher-level music semantics. Note that Mu-445

llama may not be a good baseline system for the446

query-response on the MI dataset due to label leak447

issues. The Mu-Llama is trained on the pre-training448

partition of MusicQA, which includes audio record-449

ings in the evaluation split of MusicCaps along with450

the MPT-7B-generated Q&A pairs based on these451

recordings. The testing split of the MI dataset is452

based on the same audio in the evaluation split of453

MusicCaps along with the GPT-4-generated Q&A454

pairs based on these recordings. Both Q&A pairs455

include information on instruments, genre, emo-456

tion, singers, and the audience’s feelings.457

Overall, the experimental results suggest that458

MusiLingo is a promising model for music ques-459

tion answering, showing competitive performance460

across various scenarios. It is particularly strong461

in handling complex, long-form queries, making462

it a valuable tool for music enthusiasts and profes-463

sionals looking for detailed and accurate answers 464

to their questions. 465

4.3 Result Analysis on Music Captioning 466

We investigate the effectiveness of utilising a 467

pipeline approach for music captioning, shedding 468

light on its potential benefits. Given some previ- 469

ous Q&A models, such as Mu-llama which can 470

perform captioning, we use the question “Please 471

give a caption to the music” and the caption ground 472

truth to train a music captioning model. Our ex- 473

periments are conducted on the MusicCaps dataset, 474

and we present key performance metrics in Table 475

2. 476

We did not include Mu-llama in the table be- 477

cause Mu-llama uses the whole MusicCaps dataset 478

audio for training and then evaluates the results 479

on the private dataset, making comparisons with 480

such models on the MusicCaps dataset as a testing 481

set not entirely suitable. Besides, it lacks trans- 482

parency in explaining its captioning process, with 483

the opacity stemming from the inherent diversity 484

in the prompts query.

Model B-U↑ M-R↑ R-L↑ BERT-S↑

MusCaps (Manco et al., 2021) 10.2 17.0 22.2 83.5

LTU (Gong et al., 2023b) 4.6 7.6 8.5 83.6

LTU-AS (Gong et al., 2023a) 4.0 6.0 6.3 82.9

LP-MusicCaps (Doh et al., 2023a) 14.7 22.4 21.5 87.8
MusiLingo Pre-trained 4.7 6.5 6.7 80.7

MusiLingo / MusicCaps 30.8 21.6 21.7 86.8

Table 2: Music captioning results on the MusicCaps
datasets.

485
Table 2 summarises the results obtained by var- 486

ious models on the MusicCaps dataset. These re- 487

sults underscore the effectiveness of our proposed 488

Q&A pipeline approach in improving music cap- 489

tioning performance. MusiLingo provides SOTA 490

performance in B-U and R-L metrics. However, 491

we acknowledge that our model’s performance in 492

music captioning is still not on par with the cur- 493

rent SOTA models, especially on the BERT-score. 494

Further improvements are required to bridge this 495

gap. 496

4.4 Ablition on Fine-tuning Datasets 497

In this subsection, we present an ablation study that 498

investigates the impact of fine-tuning datasets on 499

the performance of MusiLingo, in the domain of 500

music question answering. We explore how dif- 501

ferent fine-tuning strategies based on variations 502
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Model B-U↑ M-R↑ R-L↑ BERT-S↑

MusicCaps

MusiLingo / MusicCaps 30.8 21.6 21.7 86.8
MusiLingo / MI short 2.1 8.4 9.0 84.4

MusiLingo / MI long 22.4 22.2 29.3 86.1

MusiLingo / MI mix 20.4 20.2 27.2 85.8

MusicInstruct (Short)

MusiLingo / MI(short) 47.0 51.4 51.4 92.9
MusiLingo / MI(long) 7.2 21.1 56.5 89.3

MusiLingo / MI(mixed) 46.1 50.9 51.1 92.8

MusicInstruct (Long)

MusiLingo / MI(short) 12.3 13.6 15.0 83.2

MusiLingo / MI(long) 45.0 25.0 22.9 86.1
MusiLingo / MI(mixed) 40.3 24.3 23.6 85.6

MusicQA

MusiLingo / MusicQA 32.4 37.2 45.3 90.6
MusiLingo / MI short 27.6 34.0 38.2 89.5

MusiLingo / MI long 12.4 24.6 51.8 88.5

MusiLingo / MI mix 26.8 33.6 43.0 89.4

Table 3: Ablition study results in MusiLingo perfor-
mance after finetuning on a different partition of MI
dataset.

in training data, influence the effectiveness of503

MusiLingo. The fine-tuning datasets considered in504

our study are different partitions of MusicInstruct505

including MI (Short), MI (Long), and MI (all).506

Our investigation revealed that models trained507

on a combination of short objective questions and508

long subjective questions were consistently outper-509

formed by models trained exclusively on a single510

partition of Q&A pairs, even though we increased511

the calculation steps. This observation underscores512

the potential risk of incorporating diverse training513

data into the model training process, promoting514

enhanced performance. Besides, finetuning on MI515

(short) provides worse results on MI (long) and vice516

versa, suggesting a significant difference between517

short questions and long questions. Furthermore,518

we find that short questions are good for MusicQA519

zero-shot learning and long questions are good for520

captioning.521

Overall, the results also highlight the importance522

of evaluating models in different scenarios to gain523

a more comprehensive understanding of their capa-524

bilities and limitations. This information can guide525

the development of more robust and versatile music526

question-answering systems in the future.527

5 Conclusion 528

In summary, our submission introduces MusiLingo, 529

a pioneering large language model that effectively 530

bridges the gap between music and text domains. 531

With the aid of a single projection layer, MusiLingo 532

aligns music representations with textual contexts, 533

delivering outstanding performance in music cap- 534

tioning and question-answering tasks. The intro- 535

duction of our innovative MusicInstruct dataset fur- 536

ther enhances its capabilities. We envision that our 537

work lays the foundation for a new era of multi- 538

modal applications in the field of music, offering 539

exciting possibilities for both music enthusiasts and 540

researchers, promising to revolutionise the way we 541

engage with and comprehend music. 542

Limitations 543

Our current model’s fine-tuning process is rela- 544

tively brief, and there is room for enhancing its 545

performance through more extensive training and a 546

more thorough exploration of hyperparameter con- 547

figurations. Currently, the model provides good 548

results on each dataset only after training on the 549

same dataset and does not provide universality on 550

all the downstream Q&A datasets. We recognize 551

these limitations and consider them as avenues for 552

future research. 553

Furthermore, there might be some model halluci- 554

nations when GPT-4 generates the answer for long 555

questions with subjective descriptions based on the 556

input music, given the input to GPT only includes 557

the annotation in the MusicCaps dataset and does 558

not necessarily align with human feelings on the 559

music excerpts. 560

Ethics Statement 561

Google has chosen to release only the YouTube 562

IDs associated with the music in the MusicCaps 563

dataset, refraining from providing the raw audio 564

data. This approach introduces ambiguity regard- 565

ing the dataset’s copyright implications. Besides 566

the audio, annotation is generated by AI algorithms 567

– the usage of GPT is to mimic human behaviour 568

and we use it only for research use. We would like 569

to emphasise that it cannot replace the human feel- 570

ing towards music and we make our model public 571

only for research use under cc-by-nc-sa license. 572

We acknowledge the need for transparent consid- 573

eration of copyright ethics in dataset construction 574

and use. We require people only to use our dataset 575

in a non-commercial way given the copyright issue. 576
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