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Fine-tuning Games:
Bargaining and Adaptation for General-Purpose Models

∗

ABSTRACT
Major advances in Machine Learning (ML) and Artificial Intelli-

gence (AI) increasingly take the form of developing and releasing

general-purpose models. These models are designed to be adapted

by other businesses and agencies to perform a particular, domain-

specific function. This process has become known as adaptation or

fine-tuning. This paper offers a model of the fine-tuning process

where a Generalist brings the technological product (here an ML

model) to a certain level of performance, and one or more Domain-

specialist(s) adapts it for use in a particular domain. Both entities

are profit-seeking and incur costs when they invest in the technol-

ogy, and they must reach a bargaining agreement on how to share

the revenue for the technology to reach the market. For a relatively

general class of cost and revenue functions, we characterize the

conditions under which the fine-tuning game yields a profit-sharing

solution. We observe that any potential domain-specialization will

either contribute, free-ride, or abstain in their uptake of the technol-

ogy, and we provide conditions yielding these different strategies.

We show howmethods based on bargaining solutions and sub-game

perfect equilibria provide insights into the strategic behavior of

firms in these types of interactions, and we find that profit-sharing

can still arise even when one firm has significantly higher costs than

another. We also provide methods for identifying Pareto-optimal

bargaining arrangements for a general set of utility functions.
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1 INTRODUCTION
Generative machine-learning (ML) models have garnered a great

deal of excitement because they are considered to be general purpose
[8, 9, 12, 22, 23, 32]. Some have referred to these technologies as

foundation models [2, 3, 10] because they are designed as massive,

centralized models that support potentially many downstream uses.

For example, Bommasani et al. [2] write, “a foundation model is

itself incomplete but serves as the common basis from which many

task-specific models are built via adaptation.”

There is palpable excitement about these technologies. But to

turn their potential into actual use and impact, one needs to spe-

cialize and tweak the technology to particular application domains.
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This process takes various names, including adaptation [24] and, in

some contexts, fine-tuning [19, 28, 34].

Notably, the process of fine-tuning a technology involves multi-

ple parties. Technology teams developing ML and Artificial Intel-

ligence (AI) technologies rely on outside entities to adapt, tweak,

transfer, and integrate the general-purpose model. This dynamic

suggests a latent strategic interaction between producers of a foun-

dational, general-purpose technology and specialists considering

whether and how to adopt the technology in a particular context.

Understanding this interaction is necessary to study the social and

economic consequences of introducing the technology.

This paper brings methods from economic theory to model and

analyze the fine-tuning process. We put forward a model of fine-

tuning where the interaction between two agents, a generalist

and a specialist, determines how they’ll bring a general-purpose

technology to market (Figure 1). The result of this interaction is a

domain-adapted product that offers a certain level of performance
to consumers, in exchange for a certain level of surplus revenue

for the producers. Crucially, the producers must decide how to

distribute the surplus, and engage in a bargaining process to do

so. An immediate intuition might be to divide this surplus based

on contribution to the technology — however, this is one of many

potential bargaining solutions, each with different implications for

the technology’s performance and the distribution of utility. For ex-

ample, splitting based on contribution can yield a worse-performing

technology compared to other bargaining arrangements.

Through this analysis, we discover several general principles

that apply not just to today’s generative machine learning tech-

nologies, but to a potentially wide swath of models that exhibit a

similar structure — i.e., developed for general use and adapted to

one or more domains. Thus, even as these technologies improve

and develop, our proposed model of fine-tuning may continue to

describe how they may be adapted for real-world use(s).

Further, as we’ll discuss, some of our findings apply to other

general-purpose technologies outside machine learning context.

For example, cloud computing infrastructure enables a number of

consumer-facing services that use web hosting, database services,

and other on-demand computing resources. Additive manufactur-

ing (e.g., 3D printing) requires the production of a general-purpose

technology that other entities use to create valuable products in

particular domains. Digital marketplaces, too, are general market-

making technologies that enable specialists (vendors) to sell goods,

subject to a bargaining agreement over surplus.

Our main conceptual contribution is modeling the fine-tuning

process as a combination of 1) amulti-stage game and 2) a bar-
gaining process between a general-purpose technology producer

and one or more domain specialist(s). Both players bargain over

how to share revenue, and each takes a turn contributing to the

technology’s performance before it reaches the market. Within the

set of Pareto-optimal bargaining agreements, we introduce a num-

ber of bargaining solutions that represent potential arrangements

1
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Figure 1: An illustration of the fine-tuning game. In the first step, players bargain over the revenue-sharing agreement 𝛿 . In this
example, they agree that G will receive 80% of the revenue and D will receive 20%. In the second step,𝐺 develops the technology
to performance level 𝛼0 = 21. In the third step, 𝐷 ‘fine-tunes’ the technology to 𝛼1 = 25. If the players collectively receive revenue
of 25, they’d share so that 𝐺 receives 20 and 𝐷 receives 5.

for how entities involved in AI’s development should distribute

profit and effort. These bargaining solutions can be thought of as

normative proposals for how to appropriately distribute welfare.

A significant, high-level take-away from our analysis is a char-

acterization of the specialist fine-tuning strategy for any particular

domain. We find that any potential adaptor of a technology falls

into one of three groups: Contributors, who invest effort before

selling the technology; Free-riders, who sell the technology with-

out investing any additional effort; and Abstainers, who do not

enter any fine-tuning agreement and opt not to bring the technol-

ogy to their particular domain. It turns out, using only marginal

information about a domain (0th- and 1st-order approximations of

cost and revenue), it is possible to reliably determine which strategy

the adaptor will take for a notably broad set of scenarios and cost

and revenue functions (Section 4.1).

Our analysis consists in deriving the subgame perfect equilib-

rium strategies, identifying the set of Pareto-optimal bargaining

agreements, and then solving for various bargaining solutions pro-

posed by economists. Even in the presence of significant cost dif-

ferentials, we find bargaining leads to profit-sharing agreements

because specialists can leverage their power to exit the deal, reduc-

ing the reach of the technology — or, in the case of one specialist,

preventing the technology from being produced altogether. For

fine-tuning games with a somewhat general set of cost and revenue

functions, we develop a method for identifying Pareto-optimal bar-

gains. We find that the Pareto-optimal set is a single interval when

there is only one specialist, but may be multiple disjoint intervals

in the multi-specialist generalization. The potentially disjoint set

arises in cases with multiple specialists because a bargaining deal

might be reached with some subset of domain specialists while

others abstain.

Some have suggested that scholarship on AI and data-driven

technologies focuses predominantly on the technical developments

without situating these developments in political economy (though

notable exceptions exist) [1, 5, 6, 29, 33]. We propose a model that

accounts for the different interests and interactions involved in the

development of new, general-purpose AI technology. Our model

enables analysis on how these interactions affect market outcomes

like performance in practice. Understanding these interactions may

also inform future regulation of harms when they arise from gener-

ative machine-learning technologies.

1.1 Related Work
Existing approaches to fine-tuning. Fine-tuning a base model

(e.g., a language model [16]) often consists of several steps: (1) gath-

ering and processing domain-specific data, (2) choosing and adjust-

ing the base model’s architecture (including number of layers [31]

and parameters [26]) and the appropriate objective function [13],

(3) Updating the model parameters using techniques like gradient

descent or transfer learning, and (4) evaluating the resulting model

and refining if necessary. Fine-tuning is an instance of the broader

concept of transfer learning [35].

Existing economic models of general-purpose technology
production. Several lines of work in growth economics address

the development and diffusion of general-purpose technologies

(or GPTs). See [4] for a survey and [17] for a historic account of

electricity and IT as GPTs with major impacts on the US economy.

Scholars have examined the effects of factors such as knowledge

accumulation, entrepreneurial activity, network effects, and sectoral

interactions on the creation of GPTs [15]. The model presented

here abstracts away the forces giving rise to the creation of general-

purpose technologies, such as LLMs, in the first place, and instead

focuses on the later-stage decision of when (or at what performance

level) to release the GPT to market for domain-specialization.

Some have suggested that general-purpose technologies create

the need for new business models that describe their impact on

individual sectors [20]. Gambardella and McGahan [11] proposed a

similar model of domain adaptation for general-purpose technol-

ogy that is based on revenue sharing — however, they do not use

bargaining or multi-stage strategy to describe how the technology

is developed and brought to market. Our notion of performance as
it relates to model technologies is inspired by economic models of

product innovation [7, 30].

A related—but distinct—body of work is referred to as the hold-

up problem [25]. In this literature, two (or more) agents negotiate

over an incomplete contract and distribute surplus [14]. In these

models, after an initial agreement, players are able to re-negotiate

and alter parts of the contract, yielding shifts in strategy.

2 A MODEL OF FINE-TUNING
In this section, we put forward a model of fine-tuning a data-driven

technology for use in a domain-specific context. The technology is

developed in two steps: First, a general-purpose producer develops

a technology up to a certain level of performance. Then, a domain-

specific producer decides whether to adopt the technology, and how

2
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much to invest in the technology to further improve its performance

beyond the general-purpose baseline. After these steps, the two

entities share a payout.

Generalist. Player 𝐺 (for General-purpose producer) is the first

to invest in the technology’s performance, and brings the perfor-

mance level to 𝛼0 ∈ R. 𝐺 is motivated to invest in the technology

because, ultimately, the technology’s performance level determines

the revenue 𝐺 earns.

Domain Specialist. After investing in the technology,𝐺 can offer

the technology to a domain-specialist, denoted 𝐷 , who fine-tunes

the model to their specific use case. If 𝐷 and𝐺 enter an agreement,

𝐷 will invest in improving the technology’s performance from 𝛼0
to 𝛼1 ∈ R.
Revenue and costs. The technology’s performance, 𝛼1, determines

the total revenue that can be gained from fine-tuning the technol-

ogy in that domain. In particular, we assume there is a monotonic

function 𝑟 : R+ → R+ such that 𝑟 (𝛼1) is the total revenue generated
by performance level 𝛼1. Unless otherwise specified, we assume 𝑟 (·)
is the identity function, that is, the total revenue brought by tech-

nology is 𝛼1. The cost associated with producing 𝛼1 requires consid-

ering the two steps involved with developing the technology: gen-

eral production and fine-tuning. We say that𝐺 faces cost function

𝜙0 (𝛼0) : R+ → R+ to produce a general technology at performance-

level 𝛼0. 𝐷 faces cost function 𝜙1 (𝛼1;𝛼0) : R+ → R+ to bring the

technology from performance 𝛼0 to performance 𝛼1. We assume

these cost functions are publicly known. Unless otherwise speci-

fied, we also assume 𝑟 (0) = 0, 𝜙0 (0) = 0, and 𝜙1 (𝛼1 = 𝛼0;𝛼0) = 0,

meaning that not investing in the technology is free and brings in

zero revenue.

The fine-tuning game. The players are 𝐺 and 𝐷 . In deciding

whether to purchase the technology, 𝐷 negotiates revenue sharing

with 𝐺 . 𝐺 and 𝐷 share revenue 𝑟 (𝛼1) according to a bargaining

parameter 𝛿 ∈ [0, 1]. At the end of the game, 𝐺 receives 𝛿𝑟 (𝛼1)
in revenue, and 𝐷 receives (1 − 𝛿)𝑟 (𝛼1). The model fine-tuning

game consists in each player deciding their level of investment and

collectively bargaining to decide 𝛿 . The game proceeds as follows:

(1) 𝐺 and 𝐷 negotiate bargaining coefficient 𝛿 ∈ [0, 1].
(2) 𝐺 invests in a general-purpose technology, subject to cost

𝜙0 (𝛼0), yielding performance-level 𝛼0.

(3) 𝐷 fine-tunes the technology, subject to cost 𝜙1 (𝛼1;𝛼0),
yielding performance-level 𝛼1.

The steps of the game are illustrated in Figure 1. Players earn the

following utilities, defined as revenue share minus cost:

𝑈𝐺 (𝛿) := 𝛿𝑟 (𝛼1) − 𝜙0 (𝛼0), (1)

𝑈𝐷 (𝛿) := (1 − 𝛿)𝑟 (𝛼1) − 𝜙1 (𝛼1;𝛼0) . (2)

If the players do not agree to a feasible bargain 𝛿 ∈ [0, 1], then
the bargaining outcome is referred to as disagreement. In this sce-

nario, the generalist receives 𝑑0 and the specialist receives 𝑑1. We

assume, unless otherwise specified, that the disagreement scenario

is described by 𝑑0 = 𝑑1 = 0.
1

1
It could be the case that a general-purpose technology producer receives positive

payout even if the specialist abstains from a bargain. This case is, essentially, a second

‘path’ for bringing a general technology to market. We discuss this possibility further

in the multi-specialist generalization of our model (Section 4).

2.1 Primer on Bargaining Games
Bargaining games are a potentially useful method for computer sci-

ence research. In this section we include a primer on these methods

before demonstrating their use in our model.

A bargain is a process for identifying joint agreements between

two or more agents on how to share payoff. The Bargaining Prob-
lem, formalized by [21], consists of two players that must jointly

decide how to share surplus profit. The problem consists of a set of

feasible agreements and a ‘disagreement’ alternative, which speci-

fies the utilities players receive if they do not come to an agreement.

Bargaining solutions are established ways to select among candi-

date agreements on how to share surplus. Different bargaining solu-

tions, proposed over the years by mathematicians and economists,

aim to satisfy certain desiderata like fairness, Pareto optimality,

and utility-maximization. Typically, solving for bargaining solu-

tions consists in defining some measure of joint utility between

players (e.g. take the sum, product, or minimum of the players’

utilities). The feasible, Pareto-optimal solution that maximizes this

joint utility is known as a bargaining solution.
Bargaining solutions are normative: they provide guidelines for

how surplus payoffs should be distributed. Solutions are inspired

by moral theories like utilitarianism (which aims to maximize the

sum of utilities) and egalitarianism (which aims to maximize the

worst-off agent). We demonstrate the use of bargaining solutions

in the subsequent sections.

2.2 Pareto-Optimal Bargains
Our model of the fine-tuning process unfolds in two stages: the

first stage is a bargain where the players must jointly agree on

𝛿 , and the second stage is a sequential game where the players

make decisions individually in order (i.e., 𝐺 moves first and 𝐷

moves second). In order to derive solutions, it is important to define

Pareto domination and Pareto efficiency. Once we’ve defined a few

preliminary qualities, we’ll state our first finding deriving the set

of Pareto-optimal solutions for a general set of cost and revenue

functions.

Definition 2.1 (Pareto-dominant agreements). A bargaining
agreement 𝛿𝑖 Pareto-dominates an alternative agreement 𝛿 𝑗 ≠ 𝛿𝑖
iff at least one player gains utility by switching from 𝛿 𝑗 to 𝛿𝑖 , and no
players lose utility.

Definition 2.2 (Pareto-optimal agreements). APareto-optimal
agreement is one where no alternative agreement would improve the
utility of one player without decreasing the utility of the other player.
In other words, it is an agreement that is not Pareto-dominated by
any other agreement.

Definition 2.3 (Strictly Unimodal Function). A function
𝑓 : R → R is called a strictly unimodal function over a real
domain 𝑥 ∈ D if there exists some value𝑚 ∈ D such that 𝑓 is strictly
increasing ∀𝑥 ≤ 𝑚 and 𝑓 is strictly decreasing ∀𝑥 ≥ 𝑚.

When reasoning about how two agents can jointly reach an

agreement, it is useful to start by considering the scenario where

one player is all-powerful, meaning the bargain is determined solely

to maximize one player’s utility. The formal definition of this sort

of bargaining arrangement is provided below.

3
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Figure 2: Example to illustrate Theorem 2.1. For two strictly
unimodal, positive utility functions over a bargaining param-
eter 𝛿 , the set of Pareto-optimal bargaining agreements is
the interval between their optima.

Definition 2.4 (Powerful-P solution). For a given fine-tuning
game player 𝑃 ∈ {𝐺, 𝐷}, the powerful-P solution is the revenue-
sharing agreement 𝛿Powerful 𝑃 ∈ [0, 1] that maximizes 𝑃 ’s utility:

𝛿Powerful 𝑃 = argmax𝛿∈[0,1]𝑈𝑃 (𝛿) .

2.3 Focus on Unimodal Utilities
We are now in a position to state our first theorem, which charac-

terizes the Pareto-optimal solutions to any fine-tuning game with

strictly unimodal utility functions.

Theorem 2.1. Consider a fine-tuning game where players bargain
over a parameter 𝛿 . If the players’ utilities are strictly unimodal
functions of 𝛿 , the set of Pareto-optimal agreements is the interval
between their optima {𝛿Powerful 𝐷 , 𝛿Powerful𝐺 }, where both players’
utilities are greater than the disagreement scenario. If no such interval
exists, then disagreement is Pareto-optimal.

The proof is provided in Appendix 6. To provide some intuition

for the proof, consider the range of agreements 𝛿 between the point

which maximizes one player’s utility (say, 𝛿Powerful 𝐷 ) and the point

which maximizes the other (𝛿Powerful𝐺 ). Agreements within this

range exhibit a trade-off between the two utilities. Agreements

outside this range, however, leave both players worse-off than, e.g.,

the nearest powerful-P solution, so they are Pareto-dominated. This

intuition is illustrated in Figure 2.

Theorem 2.1 applies to a notably broad set of utility functions. To

illustrate some of these forms, and for ease of reference, we provide

the following immediate corollary:

Corollary 2.1. If𝑈𝐷 is either strictly increasing, strictly decreas-
ing, or strictly concave in 𝛿 , and𝑈𝐺 is either strictly increasing, strictly
decreasing, or strictly concave in 𝛿 , then the set of Pareto-optimal
agreements is the interval between their optima {𝛿Powerful 𝐷 , 𝛿Powerful𝐺 },
where both players’ utilities are greater than the disagreement sce-
nario. If no such interval exists, then disagreement is Pareto-optimal.

Notice this follows immediately from Theorem 2.1 because any

strictly increasing, strictly decreasing or strictly concave function

on the interval 𝛿 ∈ [0, 1] is strictly unimodal on the same interval.

Equipped with the theorem above, solving the fine-tuning game

consists of the following steps: (1) Use backward induction to solve

for 𝐷 and 𝐺 ’s strategies, represented by 𝛼∗
1
and 𝛼∗

0
, in terms of 𝛿 .

(2) Find the set of Pareto-optimal bargaining agreements 𝛿 between

the powerful-D and powerful-G solutions. (3) Within the Pareto set,

solve for bargaining agreements that maximize some joint function

of the players’ utilities.

3 ANALYSIS FOR POLYNOMIAL COSTS
Our model applies to general cost and revenue functions, and in

Section 4 we provide results at this general level. But to understand

how the central parameters of the model interact in closed form,

it is also useful to study instantiations of the model with specific

functional forms. Accordingly, we show in this section how to solve

the model with a set of polynomial cost functions as a paradigmatic

instance of convex cost functions, where themarginal costs increase

as the technology is improved. Following this, we show how to

draw conclusions about the model with general costs.

Thus, in this section, cost functions take the following polyno-

mial function forms:

𝜙0 (𝛼0) := 𝑐0𝛼
𝑘0
0
, (3)

𝜙1 (𝛼1;𝛼0) := 𝑐1 (𝛼1 − 𝛼0)𝑘1 . (4)

Here, 𝑐0, 𝑐1 > 0 since costs should increase with investment, and

𝑘0, 𝑘1 > 1, meaning that an incremental improvement grows costlier

at higher levels of performance. We will continue to assume that

𝑟 (𝛼1) = 𝛼1 throughout this section’s analysis.

First (3.1), we derive the subgame perfect equilibrium strate-

gies 𝛼∗
0
, 𝛼∗

1
for fixed 𝛿 . Second (3.2), we find the set of Pareto-

optimal revenue-sharing schemes 𝛿𝑃𝑎𝑟𝑒𝑡𝑜 . Reaching a revenue-

sharing agreement 𝛿∗ ∈ 𝛿𝑃𝑎𝑟𝑒𝑡𝑜 is modeled as a bargaining prob-

lem because the players must decide how to share surplus utility.

So, third (3.3), we define five potential bargaining solutions: Best-

performing-model, VerticalMonopoly, Egalitarian, Nash Bargaining

Solution, and Kalai-Smorodinsky. Where possible, we derive closed-

form expressions for these solutions. We end by discussing the

implications of these different revenue-sharing schemes.

3.1 Subgame Perfect Equilibrium for a Given 𝛿

We use backward induction to determine the fine-tuning game’s

subgame perfect equilibrium (which we will refer to as a ‘solution’

or ‘equilibrium’). Fixing the outcome of the initial negotiation, 𝛿 , it

is possible establish the following closed-form solution:

Theorem 3.1. For a fixed 𝛿 , the sub-game perfect equilibrium
of the fine-tuning game with polynomial costs yields the following
best-response strategies:

𝛼∗
0
=

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

, 𝛼∗
1
=

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+
(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

.

A proof of the above result is provided in Appendix 7. Notice

that the domain-specific performance, 𝛼∗
1
, is equal to the general-

purpose performance, 𝛼∗
0
, plus a term, ( 1−𝛿

𝑘1𝑐1
)

1

𝑘
1
−1
, independent

of the 𝐺 ’s choice over 𝛼∗
0
. This is because the cost of marginal

improvements for 𝐷 only depends on the difference (𝛼1 − 𝛼0), and
is not affected by a large or small initial investment by 𝐺 . Though

we assume, in this section, that 𝐷’s cost is defined solely in terms of

marginal improvement, Appendix 7.9 and Section 4 contain findings

that generalize beyond this assumption.

As an immediate corollary of Theorem 3.1, we derive players’

utilities as a function of 𝛿 alone.
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Corollary 3.1. For a fixed bargaining parameter 𝛿 , the players’
utilities are as follows:

𝑈𝐺 (𝛿) =
(

1

𝑘0𝑐0

) 1

𝑘
0
−1

(
1 − 1

𝑘0

)
𝛿

𝑘
0

𝑘
0
−1 +

(
1

𝑘1𝑐1

) 1

𝑘
1
−1

𝛿 (1 − 𝛿)
1

𝑘
1
−1 ,

𝑈𝐷 (𝛿) =
(

1

𝑘1𝑐1

) 1

𝑘
1
−1

(
1 − 1

𝑘1

)
(1−𝛿)

𝑘
1

𝑘
1
−1 +

(
1

𝑘0𝑐0

) 1

𝑘
0
−1

(1−𝛿)𝛿
1

𝑘
0
−1 .

In order to determine the set of Pareto-optimal agreements, we

first find that the utility functions derived above are strictly uni-

modal for all 𝑐0, 𝑐1 and 𝑘0, 𝑘1 ≥ 2.

Proposition 3.1. In the fine-tuning game with polynomial costs,
if 𝑘0, 𝑘1 ≥ 2, then 𝑈𝐺 and 𝑈𝐷 are strictly unimodal functions of
𝛿 ∈ [0, 1].

The above findings are proven in Appendix 7.3. They suggest that

a general set of cost functions yield strictly unimodal utility curves.

The set of Pareto-optimal solutions to these games can therefore

be identified using Theorem 2.1. It is easy to show that the strict

unimodality finding further generalizes to linear combinations of

polynomial terms of the form provided in Equations 3 and 4, so

long as all exponents are greater than or equal to 2. However, when

the condition is not met and 𝑘0, 𝑘1 < 2, numerical simulations

suggest that there are counter-examples to the strict unimodality

property. When the strict unimodality property does not hold, it

is still possible to analyze players’ strategies—for example, our

analysis in Section 4.1 and Appendix 7.9 stands even in cases where

utility functions that are not unimodal in 𝛿 .

Solving the powerful-𝐺 , powerful-𝐷 , vertical monopoly or other

bargaining solutions consists in maximizing players’ utilities either

separately or combined into a joint utility. This is possible once

parameters are specified; however, we cannot produce a closed-

form expression for the general polynomial case because doing so

would require solving for the zeroes of a polynomial of high degree.

Therefore, for the remainder of this section, we will demonstrate

the solution steps using parameter values 𝑘0, 𝑘1 = 2. We call this

the case of quadratic costs. We choose the quadratic case for clarity

and exposition, though we note that other solutions with other

parameter values can be calculated using analogous steps.

3.2 Pareto-optimal Agreements on 𝛿

We’ve derived both players’ optimal strategies for fixed 𝛿 . Now,

we consider the process where players agree on a particular value

of 𝛿 . Since both players must enter an agreement in order for the

technology to be viable, the determination of 𝛿 is a two-player

bargaining game. We start by solving for the set of Pareto-optimal

bargaining agreements, which is the interval between the ‘powerful-

player’ solutions, defined below.

3.2.1 Powerful-Player Solutions. As we showed in Theorem 2.1,

identifying the ‘powerful-player’ agreements is important for char-

acterizing the set of Pareto-optimal bargaining solutions. Thus, we

begin this section of analysis by solving for the powerful-𝐺 and

powerful-𝐷 solutions (as defined in Definition 2.4).

Proposition 3.2 (Powerful-𝐺 Solution). The Powerful-𝐺 solu-
tion to the model fine-tuning game with quadratic costs is as follows:

𝛿Powerful𝐺 =

{
𝑐0

2𝑐0−𝑐1 for 𝑐1 < 𝑐0,

1 for 𝑐1 ≥ 𝑐0 .

Proposition 3.3 (Powerful-𝐷 Solution). The Powerful-𝐷 solu-
tion to the model fine-tuning game with quadratic costs is as follows:

𝛿Powerful 𝐷 =

{
0 for 𝑐1 < 𝑐0,
𝑐1−𝑐0
2𝑐1−𝑐0 for 𝑐1 ≥ 𝑐0 .

Now, using Theorem 2.1 and Proposition 3.1, we can define the

set of Pareto-optimal solutions as:

𝛿Pareto ∈
{
𝛿 : 𝛿 ≤ 𝛿Powerful𝐺 ∩ 𝛿 ≥ 𝛿Powerful 𝐷

}
.

A visual representation of these solutions for the fine-tuning game

with quadratic costs is given in Figure 4.

3.3 Bargaining Solutions to Specify 𝛿

If neither player dominates in a bargain, how do they decide how to

share surplus profit? Solutions to bargaining problems tend to find

an agreement that maximizes some joint utility function or satisfies

certain desirable properties. In this section, we define the various

bargaining solutions that the two players could plausibly arrive at

within the set of Pareto-optimal solutions. These solutions mostly

use a joint utility function to guide the bargaining agreement, as

depicted in Figure 3. A visual representation of the bargaining solu-

tions is provided in Figure 4. Definitions and closed-form solutions

are provided below, and the proofs and steps yielding the solutions

are included in Appendix 7.

Solution that maximizes the technology’s performance. The
first solution we propose presumes the joint goal of the two players

is to collectively produce a technology with maximum performance

𝛼∗
1
. There are a few ways to think of this quantity: It is the perfor-

mance of the technology, and, equivalently, it is also the amount of

revenue the two players collect. Though we do not formally specify

a social welfare function, the technological performance can be

thought of as the total utility offered to society by firms 𝐺 and 𝐷 .

Definition 3.1 (Maximum-performance solution). For the
fine-tuning game, the maximum-performance bargaining solution is
the feasible revenue-sharing agreement 𝛿max-𝛼∗

1 ∈ [0, 1] that maxi-
mizes the technology’s performance 𝛼∗

1
: 𝛿max-𝛼∗

1 = argmax𝛿∈[0,1]𝛼
∗
1
.

Proposition 3.4 (Maximum-𝛼∗
1
Solution). A bargaining solu-

tion that maximizes the technology’s performance is given by:

𝛿Max-𝛼∗
1 =

{
0 for 𝑐1 < 𝑐0,

1 for 𝑐1 ≥ 𝑐0 .

Vertical Monopoly Solution. A perhaps intuitive approach to

bargaining is to choose a revenue-sharing agreement that maxi-

mizes the sum of utilities𝑈𝐺 +𝑈𝐷 . This solution imagines that the

two players are jointly controlled by a single entity who simply

wishes to maximize the sum of utility. This solution is known as

either the ‘vertical monopoly’ solution or the ‘utilitarian’ solution.
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Figure 3: Various joint-utility functions for finding bargaining solutions. Gray regions are 𝛿 values that are not Pareto-optimal
and therefore not candidate bargaining solutions. Color bar scales are defined assuming 𝑐0 = 1.

Definition 3.2 (Vertical Monopoly Solution). For the fine-
tuning game, the Vertical Monopoly (or ‘Utilitarian’) Solution is the
feasible revenue-sharing agreement 𝛿VM ∈ [0, 1] that maximizes the
sum of the players’ utilities: 𝛿VM = argmax𝛿∈[0,1] (𝑈𝐺 (𝛿) +𝑈𝐷 (𝛿)).

Proposition 3.5 (Vertical Monopoly Solution). The Vertical
Monopoly Bargaining Solution to the fine-tuning game with quadratic
costs is as follows:

𝛿Vertical Monopoly =
𝑐1

𝑐1 + 𝑐0
.

Egalitarian Bargaining Solution. An alternative bargaining ap-

proach tries to help the worst-off player. This bargaining solutions

is known as the ‘egalitarian’ solution.

Definition 3.3 (Egalitarian Bargaining Solution). For the
fine-tuning game, the Egalitarian Bargaining Solution is the feasible
revenue-sharing agreement 𝛿Egal. ∈ [0, 1] that maximizes the mini-
mum of players’ utilities:𝛿Egal. = argmax𝛿∈[0,1] (min𝑃∈{𝐺,𝐷 } (𝑈𝑃 (𝛿))) .

Proposition 3.6 (Egalitarian Bargaining Solution to the

fine-tuning game with qadratic costs). The Egalitarian Bar-
gaining Solution to the fine-tuning game with quadratic costs is:

𝛿Egal. =
−
√︃
𝑐2
0
− 𝑐0𝑐1 + 𝑐2

1
− 𝑐1 + 2𝑐0

3(𝑐0 − 𝑐1)
.

Nash Bargaining Solution. The Nash Bargaining solution maxi-

mizes the product between the two players’ utilities. This arrange-

ment satisfies a number of desiderata, originally laid out by [21].

Definition 3.4 (Nash Bargaining Solution). For the fine-
tuning game, the Nash Bargaining Solution is the feasible revenue-
sharing agreement 𝛿NBS ∈ [0, 1] that maximizes the product of the
players’ utilities: 𝛿NBS = argmax𝛿∈[0,1] (𝑈𝐺 (𝛿) ∗𝑈𝐷 (𝛿)).

Though a closed-form solution for quadratic functions is possible,

it involves solving the roots of a cubic function and yields a solution

that is clunky and uninterpretable. Therefore, we refer the reader

to our numerical findings on this solution, which are depicted in

Figures 3 and 4.

Kalai-Smorodinsky Bargaining Solution. Another solution sug-

gested in economic literature is known as the ‘Kalai-Smorodinsky’

bargaining solution. This solution equalizes the ratio of maximal

gains. More formally:

Definition 3.5 (Kalai-Smorodinsky Bargaining Solution).

([18]) For the fine-tuning game, the Kalai-Smorodinsky Bargaining
Solution (KSBS) is the feasible revenue-sharing agreement 𝛿KSBS ∈
[0, 1] that satisfies the following relation:

𝑈𝐺 (𝛿KSBS)
max𝛿∈𝛿Pareto 𝑈𝐺 (𝛿) =

𝑈𝐷 (𝛿KSBS)
max𝛿∈𝛿Pareto 𝑈𝐷 (𝛿) .

Notice the denominators in the above equation are simply the

utilities associated with the powerful-G and powerful-D solutions.

Despite this simplifying step, the closed form Kalai-Smorodinsky

solution is clunky and uninterpretable, so we omit it from this paper.

We refer the reader to our numerical findings on this solution, which

are depicted in Figure 4.

3.4 Discussion on Bargaining Solutions
Above we solve for a number of bargaining solutions revealing

different possible configurations of fine-tuning arrangements. The

general technology-producer and the domain specialist each have

different optimal arrangements, between which any agreement is

Pareto-optimal in the case of polynomial costs.

The first notable take-away is that players do not necessarily

opt to maximize their own share of the profit. Even if one player

has full control over the bargaining solution, depending on the

relative cost of production, they may benefit from a profit-sharing

agreement in order to encourage investment by the other player. If

bargaining is conceptualized as splitting a pie, one player prefers

to cede some portion of the pie if it means the entire pie grows to a

size that justifies profit-sharing. This phenomenon arises in real-

world settings. For instance, Apple allows third party developers

to build software on iPhones. Opening up the tasks of application

development to third parties improves consumer experience such

that consumers are willing to purchase apps or other capabilities

within apps. This additional revenue is then shared between Apple

and the developer, leaving Apple with higher profits and a better

product. Revenue sharing arises, often, because doing so is lucrative.

Profit-sharing is present even when both players have exceed-

ingly different costs of production (i.e., when 𝑐𝑖 approaches 0 or

∞). In these limiting instances, we find that the Nash bargaining

solution, Kalai-Smorodinski, and Egalitarian solutions all suggest

profit-sharing. Only the Utilitarian solution—which models the two

players as a vertical monopoly that is centrally controlled—yields

the intuitively performance-optimal bargain, where the player with
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Figure 4: Bargaining agreements for the fine-tuning game
with quadratic costs (i.e., the polynomial cost game where
𝑘0 = 𝑘1 = 2). Most bargaining solutions suggest revenue shar-
ing, even where one player faces much higher costs.

lower costs receives the entire profit. However, the vertical monop-

oly solution is not always performance-optimal. It underperforms

the KSBS when the players face similar costs (∼ 0.5 <
𝑐1
𝑐0

< 2.5).

The bargaining solutions are neither binding rules nor descrip-

tive observations; instead, they are normative. Identifying joint

utility functions can help guide agents towards decisions that serve

collective interests. For example, utilitarian and egalitarian solu-

tions offer different visions for the appropriate distribution of wel-

fare. In the same vein, specifying and committing to a social welfare
functionwould allow us to identify a bargaining solution that might

be referred to as ‘socially optimal.’ Unsurprisingly, however, speci-

fying social interests in a single function is a difficult undertaking.

In any given context, all the relevant interests, requirements, and

aims must be accounted for. In our present case, a social welfare

function would need to balance the interests of (at least) 1) the

technology’s producers 2) consumers who value performance and

3) other external stakeholders. The procedure demonstrated in this

section (and generalized in the coming sections) provides a road

map for a social welfare analysis of the deployment of general-

purpose models. Such an analysis might uncover how fine-tuning

processes can be configured to serve collective, societal interests.

4 MULTIPLE DOMAIN SPECIALISTS
So far, we’ve modeled the fine-tuning process as a two-player game

between a generalist and a specialist. However, an important feature

of general-purpose AI models is that they can be developed without

fully anticipating the set of possible downstream use-cases. To

capture the possibly many use-cases for general-purpose models,

in this section, we generalize our model to the case where 𝑛 ≥ 1

domain specialists adapt the technology.

The multi-specialist fine-tuning game. Consider a game with

𝑛 ≥ 1 specialists. The players are 𝐺 , 𝐷1, 𝐷2,...,𝐷𝑛 and we’ll use 𝑖

to index the specialists. 𝐺 develops a technology to general per-

formance 𝛼0, after which domain specialist 𝐷𝑖 specializes the tech-

nology to reach performance 𝛼𝑖 in their domain. 𝐺 and 𝐷𝑖 share

revenue 𝑟𝑖 (𝛼𝑖 ) according to bargaining parameter 𝛿 ∈ [0, 1]. The
bargaining parameter is fixed, which captures common scenarios

where the generalist simply has to set a certain pricing agreement

for model access. In other words, 𝐺 cannot price discriminate de-

pending on domain 𝑖 . The game proceeds as follows:

• Players collectively bargain to decide 𝛿 ∈ [0, 1].2
• 𝐺 invests in a general-purpose technology yielding performance-

level 𝛼0 and subject to cost 𝜙0 (𝛼0).
• Each specialist 𝐷𝑖 may fine-tune the technology by choos-

ing a performance level 𝛼𝑖 subject to cost 𝜙𝑖 (𝛼𝑖 ;𝛼0).
Players’ utilities are defined as revenue share minus cost:

𝑈𝐺 (𝛿) :=
∑︁
𝑖

𝛿𝑟𝑖 (𝛼𝑖 ) −𝜙0 (𝛼0),𝑈𝐷𝑖
(𝛿) := (1−𝛿)𝑟𝑖 (𝛼𝑖 ) −𝜙𝑖 (𝛼𝑖 ;𝛼0) .

If the general-purpose producer does not agree to a feasible bargain

𝛿 ∈ [0, 1], then all players receive 0 utility. If any particular special-

ist does not agree to a feasible bargain, this does not preclude other

specialists from reaching a deal. Note that some general-purpose

technologies might be marketed directly to consumers by the gen-

eralist, meaning that reaching a deal with an individual specialist

is not, necessarily, needed for𝐺 to receive revenue. We believe this

scenario can be captured by an additional specialist engaged in a

vertical monopoly agreement with 𝐺 .

4.1 Domain Specialists’ Equilibrium Strategies
When there are potentially many domains where a technology may

prove useful or marketable, different strategies around investment

levels and fine-tuning can arise. In some domains, a technology

may be adopted ‘as-is’ without significant additional investment or

specialization. In other domains, it might be in everyone’s interest

for a technology to receive significant investment and specialization.

Finally, in some domains, a technology might not be viable for

any use at all. In this section, we explore the different sorts of

cooperation (or non-cooperation) that might arise in domains with

different characteristics. Our next general finding is a theorem on

the different regimes of domain-specialist strategies, depending on

particular attributes of revenue and cost functions.

First, we’ll offer a set of relevant definitions to help characterize

the different possible regimes of strategies for the specialist. Then,

we’ll state the formal theorem.

Definition 4.1 (Contributor). A domain specialist 𝐷𝑖 is a con-
tributor at the profit-sharing agreement 𝛿 if, given the generalist
optimal investment 𝛼0 at 𝛿 , 𝐷𝑖 ’s optimal strategy is to bring the
technology to performance 𝛼∗

𝑖
> 𝛼0.

Definition 4.2 (Free-rider). A domain specialist 𝐷𝑖 is a free-
rider at the profit-sharing agreement 𝛿 if, given the generalist optimal
investment 𝛼0 at 𝛿 , 𝐷𝑖 ’s optimal strategy is to enter the deal without
improving its performance, so 𝛼∗

𝑖
= 𝛼0.

Definition 4.3 (Abstainer). A domain specialist 𝐷𝑖 is an ab-
stainer at the profit-sharing agreement 𝛿 if, given the generalist
optimal investment 𝛼0 at 𝛿 , 𝐷𝑖 ’s optimal strategy is to exit the deal
and opt for disagreement.

Notice that any specialist with any cost and revenue function

is inevitably either a contributor, free-rider, or abstainer. These

2
In cases with multiple domain specialists, the bargain over 𝛿 is a multi-player bar-

gaining game. We arrive at bargaining solutions for games with more than two players

through a similar process to the two-player case, where a joint utility function is

specified and then optimized. For more on collective welfare-driven decisions, see [27].
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Figure 5: Examples illustrating Theorem 4.1. When fixed
costs are under control and investment is marginally prof-
itable (upper left quadrant), the domain specialist will con-
tirbute to the technology. When fixed costs are under control
but investment is not marginally profitable (upper right), the
domain specialist will free-ride. When fixed costs are too
high and investment is marginally costly (lower right), the
domain specialist will not bring the technology to market.
Finally, when the fixed costs are too high but investment
yields marginal returns (lower left), the domain specialist
might abstain or contribute, depending on whether revenue
sufficiently exceeds cost at any level of investment.

three regimes span the possible strategies for 𝐷𝑖 in the fine-tuning

game. Below, we outline conditions that characterize a specialist’s

strategy depending on their domain’s cost and revenue {𝑟, 𝜙𝑖 }.

Theorem 4.1. Say a generalist has produced a general-purpose
technology operating at performance𝛼0 and available at profit-sharing
parameter 𝛿 . For any specialist with utility unimodal in 𝛼𝑖 , the fol-
lowing conditions characterize their strategy, shown in Table 1.

• “Fixed Costs Under Control” (FCUC): At zero investment (𝛼𝑖 =
𝛼0), the domain specialist 𝑖’s cost is less than its share of the
revenue. Formally, 𝑟𝑖 (𝛼0) > 1

1−𝛿 𝜙𝑖 (𝛼0).
• “Marginally Profitable Investment” (MPI): At zero investment
(𝛼𝑖 = 𝛼0), a marginal investment from the domain specialist
𝑖 increases its revenue share more than its costs. Formally,
𝑟 ′
𝑖
(𝛼0) > 1

1−𝛿 𝜙
′
𝑖
(𝛼0).

“FCUC” “MPI” Type of Specialist
T T Contributor
T F Free-rider
F T Contributor or Abstainer*
F F Abstainer

Table 1: Types of specialists. In the third case (*), more in-
formation is needed to conclude whether the specialist con-
tributes or abstains.

A proof of the above theorem is provided in Appendix 8.1. The

requirement that specialist utility is unimodal in 𝛼𝑖 is, in our view,

quite natural and broad. It covers three possible scenarios: 1) spe-

cialist utility is increasing with investment, 2) specialist utility is

decreasing with investment, or 3) specialist utility increases with

investment up to a certain point, beyond which any further invest-

ment is not cost-justified.

It is important to note that the three ‘regimes’ defined in this

section can describe a specialist’s strategy in either the 1-specialist

or multi-specialist fine-tuning game. In the 1-specialist case, the

potential strategies describe counter-factuals that depend on the

particular cost and revenue functions of the specialist. In the multi-

specialist game, all of these regimes are ways of grouping domains

and all can exist simultaneously.

One scenario portrayed in Table 1 does not determine cleanly

which regime the specialist falls into. In the scenario labeled with

an asterisk (*), fixed costs are not under control but it is marginally

profitable to invest in the technology. At zero investment, the tech-

nology is not ready to bring to market profitably, and it is unclear

only from the marginal return on an initial investment whether it is

worthwhile for the specialist to invest. In this case, the technology

is potentially viable with some non-zero effort spend or, alterna-

tively, not viable for the domain at any level of investment. More

information would be needed to conclude whether the specialist

would contribute. In particular, if (1−𝛿)𝑟𝑖 (𝛼𝑖 ) −𝜙𝑖 (𝛼𝑖 ) has positive
real roots (above 𝛼0), then we’d conclude the technology is viable.

An illustration of Theorem 4.1 is provided in Figure 5. The in-

determinate case contains two possible scenarios, one where the

specialist would abstain and one where the specialist would con-

tribute. A neat feature of this result is that these behaviors about

particular domain adaptations depend only on attributes about the

domain around 𝛼𝑖 = 𝛼0. It uses only 0th- and 1st-order approxima-

tions of𝑈𝐷𝑖

��
𝛼𝑖=𝛼0

, when the domain has invested no effort.

This theorem perhaps explains why technologies see significant

uptake in some domains and not others. It could, potentially, help

identify domains that are particularly likely or unlikely to adopt

a general purpose technology. It also may explain why some tech-

nologies are re-sold without additional investment while others

require significant fine-tuning.

5 CONCLUSION
Our model provides a starting point for considering the different in-

terests and choices involved in the development of general-purpose

models. By putting forward this model, we attempt to invoke the

political economy of the development of general AI technologies.

These technologies are produced by a number of entities with dif-

ferent interests, and may potentially affect many individuals. This

paper models agents’ different interests explicitly, and proposes

methods for weighing between them in light of societal values.

The work suggests a number of interesting directions for further

research. One direction is to identify further general existence re-

sults for bargaining solutions with general functions in this model.

More broadly, we also believe that formalizing the societal interests

involved in AI regulation is an important direction; such a formal-

ism would need to build on an underlying model that contains the

economic interests of the firms producing the AI technology. Our

model may therefore help form the foundation for such work.
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6 SECTION 2 MATERIALS
6.1 Pareto set characterization and Theorem 2.1

Proof of Theorem 2.1. Consider three non-overlapping inter-

vals that collectively span the feasible set 𝛿 ∈ [0, 1]. These intervals
are:

(1) 0 ≤ 𝛿 < min(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 )
(2) min(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 ) ≤ 𝛿 ≤ max(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 )
(3) max(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 ) < 𝛿 ≤ 1

We will characterize each of these intervals in turn, finding that

intervals (1) and (3) are always Pareto dominated, and interval (2)

is characterized by a trade-off in utilities.

(1) Within interval (1), the domain is characterized by 𝛿 <

min(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 ) ⇒ 𝛿 < 𝛿Powerful 𝐷 and 𝛿 <

𝛿Powerful𝐺 . By the definition of a strictly unimodal function

(2.3), this means that both utility functions {𝑈𝐷 ,𝑈𝐺 } are
strictly increasing over interval 1. Thus, there exists some

quantity 𝜖 > 0 such that, for any value 𝛿 in interval (1),

𝑈𝐷 (𝛿 + 𝜖) > 𝑈𝐷 (𝛿) and 𝑈𝐺 (𝛿 + 𝜖) > 𝑈𝐺 (𝛿). Thus, every
potential agreement in interval (1) is Pareto-dominated.

(2) Within interval (2), the domain is characterized by

min(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 ) ≤ 𝛿 , and also

𝛿 ≤ max(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 ). If𝛿Powerful 𝐷 = 𝛿Powerful𝐺 ,

then the value 𝛿 = 𝛿Powerful 𝐷 = 𝛿Powerful𝐺 is the unique

Pareto-optimal agreement because it is optimal for both

players. Otherwise if 𝛿Powerful 𝐷 ≠ 𝛿Powerful𝐺 , then in-

terval (2) can be characterized as follows: For one player

𝑃 ∈ {𝐺, 𝐷}, the utility𝑈𝑃 one utility function is strictly de-

creasing because 𝛿 ≥ 𝛿Powerful 𝑃 and𝑈𝑃 (𝛿) is a strictly uni-
modal function. For the other player {𝐺, 𝐷} \ 𝑃 , the utility
𝑈{𝐺,𝐷 }\𝑃 is strictly increasing because𝛿 ≤ 𝛿Powerful {𝐺,𝐷 }\𝑃

and𝑈{𝐺,𝐷 }\𝑃 (𝛿) is a strictly unimodal function. Since one

player’s utility is strictly increasing and the other’s is strictly

decreasing, any perturbation of 𝛿 within interval (2) consti-

tutes a utility gain for one player and a utility loss for the

other. For any value of 𝛿 within this interval, if both play-

ers’ utilities exceed the disagreement payoff (i.e., positive

utility), then 𝛿 is Pareto-optimal.

(3) Within interval (3), the domain is characterized by 𝛿 >

max(𝛿Powerful 𝐷 , 𝛿Powerful𝐺 ) ⇒ 𝛿 > 𝛿Powerful 𝐷 and 𝛿 >

𝛿Powerful𝐺 . By the definition of a strictly unimodal function

(2.3), this means that both utility functions {𝑈𝐷 ,𝑈𝐺 } are
strictly decreasing over interval (3). Thus, there exists some

quantity 𝜖 > 0 such that, for any value 𝛿 in interval (3),

𝑈𝐷 (𝛿 − 𝜖) > 𝑈𝐷 (𝛿) and 𝑈𝐺 (𝛿 − 𝜖) > 𝑈𝐺 (𝛿). Thus, every
potential agreement in interval (3) is Pareto-dominated.

Thus interval (2) is Pareto-efficient among the set of feasible bar-

gaining agreements. □

7 SECTION 3 MATERIALS
7.1 Subgame perfect equilibrium findings

Proof of Theorem 3.1. We solve the game using backward in-

duction as follows:

First, starting with the last stage (3), we solve for 𝛼∗
1
given

𝛼0, 𝛿, 𝑐1:

𝛼∗
1
= argmax𝛼1

𝑈𝐷 (𝛼1, 𝛼, 𝛿)

⇒ 𝜕𝑈𝐷

𝜕𝛼1

����
𝛼1=𝛼

∗
1

= 0

⇒ 𝜕

𝜕𝛼1

(
(1 − 𝛿)𝛼1 − 𝑐1 (𝛼1 − 𝛼0)𝑘1

) ����
𝛼1=𝛼

∗
1

= 0

⇒ (1 − 𝛿) − 𝑘1𝑐1 (𝛼∗1 − 𝛼0)𝑘1−1 = 0

⇒ 𝛼∗
1
= 𝛼0 +

(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

. (5)

Note that
𝜕2𝑈𝐷

𝜕𝛼2

1

= −𝑘1 (𝑘1 − 1)𝑐1 (𝛼1 − 𝛼0)𝑘1−2. This quantity is

negative as long as 𝑘 > 1, which is assumed. Thus, the 𝛼∗
1
derived

above yields a global maximum of𝑈𝐷 .

Second, knowing 𝐷’s choice of 𝛼∗
1
above, we solve for 𝛼∗

0
as

follows:

𝛼∗
0
= argmax𝛼0

𝑈𝐺 (𝛼0, 𝛿)

⇒ 𝜕𝑈𝐺

𝜕𝛼0

����
𝛼0=𝛼

∗
0

= 0

⇒ 𝜕

𝜕𝛼0

(
𝛿𝛼∗

1
− 𝑐0𝛼

𝑘0
0

) ����
𝛼0=𝛼

∗
0

= 0

⇒ 𝜕

𝜕𝛼0

(
𝛿

(
𝛼0 +

(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

)
− 𝑐0𝛼

𝑘0
0

) ����
𝛼0=𝛼

∗
0

= 0

⇒ 𝜕

𝜕𝛼0

(
𝛿𝛼0 + [const] − 𝑐0𝛼

𝑘0
0

) ����
𝛼0=𝛼

∗
0

= 0

⇒ 𝛿 − 𝑘0𝑐0 (𝛼∗0 )
𝑘0−1 = 0

⇒ 𝛼∗
0
=

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

.

The second derivative
𝜕2𝑈𝐺

𝜕𝛼2
= −𝑘0 (𝑘0−1)𝑐0 (𝛼0)𝑘0−2. This quantity

is negative as long as 𝑘 > 1, which is assumed. Thus, the value of

𝛼∗
0
derived above yields a global maximum of𝑈𝐺 .

Finally, plugging in 𝛼∗
0
=

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

into Equation 5, we obtain

the following expression for 𝛼∗
1
as a function of 𝛿 only:

𝛼∗
1
=

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+
(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

.

This finishes the proof. □
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7.2 Utilities as a function of 𝛿
Proof of Corollary 3.1. Plugging the formulas fromTheorem

3.1 into Equation 1, we obtain:

𝑈𝐺 = 𝛿𝛼1 − 𝜙0 (𝛼0)

= 𝛿

((
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+
(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

)
− 𝑐0

((
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

)𝑘0
= 𝛿

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+ 𝛿

(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

− 𝑐0

(
𝛿

𝑘0𝑐0

) 𝑘
0

𝑘
0
−1

=


(

1

𝑘0𝑐0

) 1

𝑘
0
−1

− 𝑐0

(
1

𝑘0𝑐0

) 𝑘
0

𝑘
0
−1

 𝛿
𝑘
0

𝑘
0
−1

+
(

1

𝑘1𝑐1

) 1

𝑘
1
−1

𝛿 (1 − 𝛿)
1

𝑘
1
−1

=

(
1

𝑘0𝑐0

) 1

𝑘
0
−1

(
1 − 1

𝑘0

)
𝛿

𝑘
0

𝑘
0
−1 +

(
1

𝑘1𝑐1

) 1

𝑘
1
−1

𝛿 (1 − 𝛿)
1

𝑘
1
−1 .

Plugging the formulas from Theorem 3.1 into Equation 2, we

obtain:

𝑈𝐷 = (1 − 𝛿)𝛼1 − 𝜙𝑖 (𝛼1;𝛼0)

= (1 − 𝛿)
[(

𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+
(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

]
−𝑐1

[(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+
(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

−
(

𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

]𝑘1
= (1 − 𝛿)

(
𝛿

𝑘0𝑐0

) 1

𝑘
0
−1

+ (1 − 𝛿)
(
1 − 𝛿

𝑘1𝑐1

) 1

𝑘
1
−1

−𝑐1
(
1 − 𝛿

𝑘1𝑐1

) 𝑘
1

𝑘
1
−1

=

(
1

𝑘0𝑐0

) 1

𝑘
0
−1

(1 − 𝛿)𝛿
1

𝑘
0
−1 +

(
1

𝑘1𝑐1

) 1

𝑘
1
−1

(1 − 𝛿)
𝑘
1

𝑘
1
−1

−
(

1

𝑘1𝑐1

) 1

𝑘
1
−1

(
1

𝑘1

)
(1 − 𝛿)

𝑘
1

𝑘
1
−1

=

(
1

𝑘1𝑐1

) 1

𝑘
1
−1

(
1 − 1

𝑘1

)
(1 − 𝛿)

𝑘
1

𝑘
1
−1 +

(
1

𝑘0𝑐0

) 1

𝑘
0
−1

(1 − 𝛿)𝛿
1

𝑘
0
−1 .

□

7.3 Utilities are stricly unimodal functions of 𝛿
Proof of Proposition 3.1. We’ll start by proving𝑈𝐺 is strictly

unimodal, and then extend the results to𝑈𝐷 .

Beginning with 𝑈𝐺 : The proof relies on the following Lemma:

Lemma 7.1. A differentiable continuous function f(𝛿) is strictly uni-
modal over 𝛿 ∈ [𝑎, 𝑏] if the following conditions are met: i) 𝑓 ′ (𝑎) > 0,
ii) 𝑓 ′ is concave over the domain.

Proof of Lemma 7.1. By the definition of strict unimodality, we

can conclude a function 𝑓 (𝛿) is strictly unimodal over an interval

[𝑎, 𝑏] if one of the following properties hold: 1) 𝑓 ′ (𝛿) > 0 ∀ 𝛿 ∈

[0, 1], meaning the function is strictly increasing over the interval,

or 2) For some value 𝑐 ∈ (𝑎, 𝑏), the function is strictly increasing

for values [𝑎, 𝑐) and strictly decreasing for values (𝑐, 𝑏]. Notice that,
so long as condition (i) holds (i.e., the function starts out strictly

increasing at 𝑎), the function is strictly unimodal as long as its

derivative crosses the 𝑓 ′ = 0 axis at no more than one point in

[𝑎, 𝑏]. So, the remainder of the proof finds a contradiction when

we assume conditions (i) and (ii) and that there are two values in

(𝑎, 𝑏) for which 𝑓 ′ = 0.

𝛿a b

(a,p)

(q,0) (r,0)

Figure 6: Illustration of the proof for Lemma 7.1. If the de-
rivative of a function 𝑓 is positive at 𝑎 and concave, it cannot
cross the axis more than 1 time, meaning 𝑓 is strictly uni-
modal.

Consider the curve 𝑓 ′ = 𝑑𝑓

𝑑𝛿
. We specify a point on this curve

using {(𝑥,𝑦) |𝑥 = 𝛿,𝑦 =
𝑑𝑓

𝑑𝛿
}. Given condition (i), There is some

point 𝑥0 = (𝑎, 𝑝) where 𝑝 > 0 and 𝑥0 ∈ 𝑑𝑓

𝑑𝛿
. Assume for the sake of

contradiction that there are two points 𝑥1 = (𝑞, 0), 𝑥2 = (𝑟, 0) where
𝑥1, 𝑥2 ∈ 𝑑𝑓

𝑑𝛿
and 𝑎 < 𝑞 < 𝑟 < 𝑏 (without loss of generality). We can

plug these three points into the definition of concavity and find

our contradiction: First, notice 𝑙 =
𝑞−𝑎
𝑟−𝑎 ∈ (0, 1) because 𝑎 < 𝑞 < 𝑟 .

Next, plugging in the definition of concavity:

𝑑 𝑓

𝑑𝛿
((1 − 𝑙)𝑎 + 𝑙𝑟 ) ≥ (1 − 𝑙)𝑑 𝑓

𝑑𝛿
(𝑎) + 𝑙 𝑑 𝑓

𝑑𝛿
(𝑟 )

𝑑 𝑓

𝑑𝛿

((
1 − 𝑞 − 𝑎

𝑟 − 𝑎

)
𝑎 + 𝑞 − 𝑎

𝑟 − 𝑎
𝑟

)
≥

(
1 − 𝑞 − 𝑎

𝑟 − 𝑎

)
[𝑝] + 𝑞 − 𝑎

𝑟 − 𝑎
[0]

𝑑 𝑓

𝑑𝛿

(
𝑎 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑎 + 𝑞 − 𝑎

𝑟 − 𝑎
𝑟

)
≥ 𝑝 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑝

𝑑 𝑓

𝑑𝛿

(
𝑎 + (𝑟 − 𝑎)𝑞 − 𝑎

𝑟 − 𝑎

)
≥ 𝑝 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑝

𝑑 𝑓

𝑑𝛿

(
𝑎 + (𝑟 − 𝑎)𝑞 − 𝑎

𝑟 − 𝑎

)
≥ 𝑝 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑝

𝑑 𝑓

𝑑𝛿
(𝑎 + (𝑞 − 𝑎)) ≥ 𝑝 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑝

𝑑 𝑓

𝑑𝛿
(𝑞) ≥ 𝑝 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑝

0 ≥ 𝑝 − 𝑞 − 𝑎

𝑟 − 𝑎
𝑝 > 0.

Hence the contradiction: We know 𝑝 − 𝑞−𝑎
𝑟−𝑎 𝑝 > 0 is strictly greater

than 0 because 𝑝 > 0 and 𝑙 ∈ (0, 1). Thus a function characterized

by conditions (i) and (ii) cannot contain these three points. This

concludes Lemma 7.1’s proof: If 𝑓 ′ is concave, and starts positive

at 𝑎, it must cross the axis at most once meaning 𝑓 is unimodal.
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□

Now, we prove the utilities are unimodal by showing that 𝑈𝐺 (𝛿)
satisfies both conditions in Lemma 7.1 for the domain 𝛿 ∈ [0, 1].

We first differentiate𝑈𝐺 with respect to 𝛿 .

𝜕𝑈𝐺

𝜕𝛿
= 𝜕

𝜕𝛿

[(
1

𝑘0𝑐0

) 1

𝑘
0
−1

(
1 − 1

𝑘0

)
𝛿

𝑘
0

𝑘
0
−1 +

(
1

𝑘1𝑐1

) 1

𝑘
1
−1

𝛿 (1 − 𝛿)
1

𝑘
1
−1

]
= 𝜕

𝜕𝛿

[
𝐴𝛿

𝑘
0

𝑘
0
−1 + 𝐵𝛿 (1 − 𝛿)

1

𝑘
1
−1

]
,

where 𝐴 :=

(
1

𝑘0𝑐0

) 1

𝑘
0
−1

(
1 − 1

𝑘0

)
> 0 and 𝐵 :=

(
1

𝑘1𝑐1

) 1

𝑘
1
−1

> 0. 𝐴 is

positive as long as 𝑘0 > 1 and 𝑐0 > 0, which is given. 𝐵 is positive

as long as 𝑘1 > 1 and 𝑐1 > 0, which is given. Continuing:

= 𝐴

(
𝑘0

𝑘0−1

)
𝛿

1

𝑘
0
−1

+𝐵
[
−𝛿

(
1

𝑘1−1

)
(1 − 𝛿)

1

𝑘
1
−1 −1 + (1 − 𝛿)

1

𝑘
1
−1

]
= 𝐴

(
𝑘0

𝑘0−1

)
𝛿

1

𝑘
0
−1 + (1−𝛿 )

1

𝑘
1
−1 −1

𝑘1−1 [−𝛿 + (𝑘1 − 1) (1 − 𝛿)]

= 𝐴

(
𝑘0

𝑘0−1

)
𝛿

1

𝑘
0
−1 + (1−𝛿 )

1

𝑘
1
−1 −1

𝑘1−1 [𝑘1 − 𝑘1𝛿 − 1 + 𝛿 − 𝛿]

= 𝐴

(
𝑘0

𝑘0−1

)
𝛿

1

𝑘
0
−1 + (1−𝛿 )

1

𝑘
1
−1 −1

𝑘1−1 [𝑘1 (1 − 𝛿) − 1]
𝜕𝑈𝐺

𝜕𝛿
= 𝐴

(
𝑘0

𝑘0−1

)
𝛿

1

𝑘
0
−1 + 𝐵

(
𝑘1

𝑘1−1

)
(1 − 𝛿)

1

𝑘
1
−1

−𝐵
(

1

𝑘1−1

)
(1 − 𝛿)

1

𝑘
1
−1 −1 .

Now we can show the first condition (a) in Lemma 7.1 holds:

𝜕𝑈𝐺

𝜕𝛿

����
𝛿=0

= [0] + 𝐵

(
𝑘1

𝑘1 − 1

)
− 𝐵

(
1

𝑘1 − 1

)
= 𝐵

(
𝑘1 − 1

𝑘1 − 1

)
= 𝐵 > 0.

To show the second condition (b) in Lemma 7.1 holds, we per-

form the second-derivative test, which requires differentiating the

function two more times:

𝜕3𝑈𝐺

𝜕𝛿3
= 𝐴

(
𝑘0

𝑘0−1

) (
1

𝑘0−1

) (
1

𝑘0−1 − 1

)
𝛿

1

𝑘
0
−1 −2

+𝐵
(

𝑘1
𝑘1−1

) (
1

𝑘1−1

) (
1

𝑘1−1 − 1

)
(1 − 𝛿)

1

𝑘
1
−1 −2

−𝐵
(

1

𝑘1−1

) (
1

𝑘1−1 − 1

) (
1

𝑘1−1 − 2

)
(1 − 𝛿)

1

𝑘
1
−1 −3 .

The above expression is never positive. First, notice all three

coefficients are less than or equal to zero:

• 𝐴( 𝑘0
𝑘0−1 ) (

1

𝑘0−1 ) (
1

𝑘0−1−1) is the product of one negative and
otherwise non-negative numbers: Given 𝑘0 ≥ 2, observe

𝐴 > 0, ( 𝑘0
𝑘0−1 ) > 0, ( 1

𝑘0−1 ) > 0, ( 1

𝑘0−1 − 1) ≤ 0.

• 𝐵( 𝑘1
𝑘1−1 ) (

1

𝑘1−1 ) (
1

𝑘1−1−1) is the product of one negative and
otherwise non-negative numbers: Given 𝑘1 ≥ 2, observe

𝐵 > 0, ( 𝑘1
𝑘1−1 ) > 0, ( 1

𝑘1−1 ) > 0, ( 1

𝑘1−1 − 1) ≤ 0.

• −𝐵( 1

𝑘1−1 ) (
1

𝑘1−1 − 1) ( 1

𝑘1−1 − 2) is the product of three neg-
ative and otherwise non-negative numbers: Given 𝑘1 ≥ 2,

observe −𝐵 < 0, ( 1

𝑘1−1 ) > 0, ( 1

𝑘1−1 − 1) ≤ 0,( 1

𝑘1−1 − 1) < 0.

Second, notice all three expressions of 𝛿 are defined and positive

on the interval (0, 1):

• 𝛿
1

𝑘
0
−1 −2

is positive and defined ∀𝛿 > 0.

• (1 − 𝛿)
1

𝑘
1
−1 −2

is positive and defined ∀𝛿 < 1.

• (1 − 𝛿)
1

𝑘
1
−1 −3

is positive and defined ∀𝛿 < 1.

Every term in our derived expression for
𝜕3𝑈𝐺

𝜕𝑈𝐺
3
is non-positive. Thus

the function
𝜕𝑈𝐺

𝜕𝑈𝐺
is concave satisfying condition (b) in Lemma 7.1.

This completes the proof that𝑈𝐺 is unimodal.

Moving on to 𝑈𝐷 : Notice the formulation of 𝑈𝐺 in Corollary

3.1 is almost exactly the same functional form as𝑈𝐷 . If we define a

variable 𝛾 = (1−𝛿), we can use the identical proof completed above

to show 𝑈𝐷 is unimodal in 𝛾 . Since we prove unimodality on the

interval [0, 1], a function defined over𝛾 ∈ [0, 1] is simply a function

of 𝛿 ∈ [0, 1] reflected over the vertical line 𝛿 = 0.5. A transform that

reflects a univariate function over the vertical line passing through

the midpoint of its domain preserves strict unimodality. □

7.4 Powerful-G Bargaining Solution
Proof of Proposition 3.2. The powerful-𝐺 solution is the so-

lution 𝛿Powerful𝐺 that maximizes 𝑈𝐺 over the feasible set of 𝛿 ∈
[0, 1]:

𝛿Powerful𝐺 = argmax𝛿𝑈𝐺 (𝛿)
⇒ 𝜕𝑈𝐺

𝜕𝛿
= 0

⇒ 𝜕
𝜕𝛿

[
𝛿2

4𝑐0
+ 𝛿

2𝑐1
− 𝛿2

2𝑐1

]
= 0 Corr. 3.1

⇒ 𝛿
2𝑐0

+ 1

2𝑐1
− 𝛿

𝑐1
= 0

⇒ 𝛿

(
1

2𝑐0
− 1

𝑐1

)
= − 1

2𝑐1

⇒ 𝛿 = − 1

2𝑐1

(
𝑐1−2𝑐0
2𝑐1𝑐0

)−1
⇒ 𝛿 =

𝑐0
2𝑐0−𝑐1 .

The second partial derivative
𝜕2𝑈𝐺

𝜕𝛿2
= 1

2𝑐0
− 1

𝑐1
, which is negative

as long as 0 <
𝑐1
𝑐0

< 2. Since there is only one root, the derived

equation is a global maximum for 0 < 𝑐1 < 2𝑐0. However, notice

that the derived expression is only feasible for the values 𝑐1 ≤ 𝑐0,

since the value 𝛿 must be in the range [0, 1] (Specialist would not

take a negative share of the profit). Thus, 𝛿Powerful𝐺 = 1

2−𝑐1 for

0 < 𝑐1 < 𝑐0.

The remainder of the proof will show that, for 𝑐1 ≥ 𝑐0, within the

feasible set 0 ≤ 𝛿 ≤ 1, 𝛿 = 1 maximizes𝑈𝐺 . We’ll do so by showing

that the partial derivative
𝜕𝑈𝐺

𝜕𝛿
is non-negative for all 𝑐1 ≥ 𝑐0 and

0 ≤ 𝛿 ≤ 1. Assume for sake of contradiction:
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1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

𝜕𝑈𝐺

𝜕𝛿
< 0

⇒ 𝛿
2𝑐0

+ 1

2𝑐1
− 𝛿

𝑐1
< 0

⇒ 𝛿

(
1

2𝑐0
− 1

𝑐1

)
+ 1

2𝑐1
< 0

⇒ 𝛿

(
𝑐1−2𝑐0
2𝑐1𝑐0

)
+ 𝑐0

2𝑐1𝑐0
< 0

⇒ 𝛿 (𝑐1 − 2𝑐0) + 𝑐0 < 0 because 𝑐1, 𝑐0 > 0.

⇒ 𝛿 (𝑐1 − 2𝑐0) < −𝑐0 .

Notice the resulting expression is only met when 𝛿 < 0 or 𝑐1 ≤ 𝑐0.

However, we’re given 𝛿 ∈ [0, 1] ∩ 𝑐1 ≥ 𝑐0.

□

7.5 Powerful-D Bargaining Solution
Proof of Proposition 3.3. The powerful-𝐷 solution is the so-

lution 𝛿Powerful 𝐷 that maximizes𝑈𝐷 over the feasible set:

𝛿Powerful 𝐷 = argmax𝛿𝑈𝐷 (𝛿)
⇒ 𝜕𝑈𝐷

𝜕𝛿
= 0

⇒ 𝜕
𝜕𝛿

[(
1

4𝑐1

)
+

(
1

2𝑐0
− 1

2𝑐1

)
𝛿 +

(
1

4𝑐1
− 1

2𝑐0

)
𝛿2

]
= 0 Corr. 3.1

⇒
(

1

2𝑐0
− 1

2𝑐1

)
+ 2

(
1

4𝑐1
− 1

2𝑐0

)
𝛿 = 0

⇒
(

1

2𝑐1
− 1

𝑐0

)
𝛿 = 1

2𝑐1
− 1

2𝑐0

⇒ 𝛿 =

(
𝑐
0
−𝑐

1

2𝑐
0
𝑐
1

)(
𝑐
0
−2𝑐

1

2𝑐
0
𝑐
1

)
⇒ 𝛿 =

𝑐1−𝑐0
2𝑐1−𝑐0 .

The second partial derivative
𝜕2𝑈𝐷

𝜕𝛿2
= 1

2𝑐1
− 1

𝑐0
, which is negative

as long as 2𝑐1 > 𝑐0. Since there is only one root, the derived equation

is a global maximum for 2𝑐1 > 𝑐0. However, notice that the derived

expression is only feasible for the values 𝑐1 ≥ 𝑐0, since the value 𝛿

must be in the range [0, 1] (Generalist would not take a negative

share of the profit). Thus, 𝛿Powerful 𝐷 =
𝑐1−𝑐0
2𝑐1−𝑐0 for 𝑐1 ≥ 𝑐0.

The remainder of the proof will show that, for 𝑐1 < 𝑐0, within

the feasible set 0 ≤ 𝛿 ≤ 1, 𝛿 = 0 maximizes 𝑈𝐷 . We’ll do so by

showing that the partial derivative
𝜕𝑈𝐷

𝜕𝛿
≤ 0 for all 0 < 𝑐1 < 1 and

0 ≤ 𝛿 ≤ 1. Assume for sake of contradiction:

𝜕𝑈𝐷

𝜕𝛿
> 0

⇒
(

1

2𝑐0
− 1

2𝑐1

)
+

(
1

2𝑐1
− 1

𝑐0

)
𝛿 > 0

⇒
(

1

2𝑐1
− 1

𝑐0

)
𝛿 > 1

2𝑐1
− 1

2𝑐0

⇒
(
𝑐0−2𝑐1
2𝑐0𝑐1

)
𝛿 >

𝑐0−𝑐1
2𝑐0𝑐1

⇒ (𝑐0 − 2𝑐1) 𝛿 > 𝑐0 − 𝑐1 because 𝑐0, 𝑐1 > 0.

We show the contradiction ∀𝑐1
𝑐0

∈ (0, 1) (equivalently, every sce-

nario where 0 < 𝑐1 ≤ 𝑐0):

• For
1

2
<

𝑐1
𝑐0

< 1, the final step implies 𝛿 >
𝑐1−𝑐0
2𝑐1−𝑐0 , which

contradicts the global optimum finding above.

• For 0 <
𝑐1
𝑐0

< 1

2
, the final step implies 𝛿 ≤ 𝑐1−𝑐0

2𝑐1−𝑐0 . But
notice the right-hand-side must be negative, contradicting

the given range 𝛿 ∈ [0, 1].
• Finally, for

𝑐1
𝑐0

= 1

2
, the final step implies 0 > 1

2
.

Thus we’ve established the contradiction.

□

7.6 Maximum-performance bargaining solution
Proof of Proposition 3.4. We will show that within the feasi-

ble region 𝛿 ∈ [0, 1], 𝑐1 > 0, the following three properties hold:

(1)
𝜕𝛼1

𝜕𝛿
(𝑐1) < 0 ∀ 𝑐1 < 𝑐0

(2)
𝜕𝛼1

𝜕𝛿
(𝑐1) > 0 ∀ 𝑐1 > 𝑐0

(3)
𝜕𝛼1

𝜕𝛿
(𝑐1) = 0 for 𝑐1 = 𝑐0

First, we differentiate our expression for𝛼1 (𝛿 ; 𝑐0, 𝑐1) with respect
to 𝛿 , using the expression attained in Theorem 3.1:

𝜕𝛼1

𝜕𝛿

= 𝜕
𝜕𝛿

[
𝛿
2𝑐0

+ 1−𝛿
2𝑐1

]
= 1

2𝑐0
− 1

2𝑐1
.

Now notice each of the three properties are satisfied in turn:

(1) For 𝑐1 < 𝑐0,
𝜕𝛼1

𝜕𝛿
= 1

2𝑐0
− 1

2𝑐1
< 0.

(2) For 𝑐1 > 𝑐0,
𝜕𝛼1

𝜕𝛿
= 1

2𝑐0
− 1

2𝑐1
> 0.

(3) For 𝑐1 = 𝑐0,
𝜕𝛼1

𝜕𝛿
= 1

2𝑐0
− 1

2𝑐1
= 0.

□

7.7 Vertical monopoly bargaining solution
Proof of Proposition 3.5. The vertical monopoly or “utilitar-

ian” solution is the solution that maximizes the sum of utilities:

𝛿𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑀𝑜𝑛𝑜𝑝𝑜𝑙𝑦 = argmax𝛿𝑈𝐺 (𝛿) +𝑈𝐷 (𝛿)
⇒ 𝜕

𝜕𝛿
(𝑈𝐺 (𝛿) +𝑈𝐷 (𝛿)) = 0

⇒ 𝛿
2𝑐0

+ 1

2𝑐1
− 𝛿

𝑐1
+

(
1

2𝑐0
− 1

2𝑐1

)
+ 2

(
1

4𝑐1
− 1

2𝑐0

)
𝛿 = 0 Corr. 3.1

⇒ 𝛿

(
1

2𝑐0
− 1

𝑐1
+ 1

2𝑐1
− 1

𝑐0

)
= − 1

2𝑐1
− 1

2𝑐0
+ 1

2𝑐1

⇒ 𝛿 (𝑐1 − 2𝑐0 + 𝑐0 − 2𝑐1) = −𝑐1
⇒ 𝛿 =

𝑐1
𝑐1+𝑐0 .

The second partial derivative is
𝜕2𝑈𝐺

𝜕𝛿2
= − 1

2𝑐1
− 1

2𝑐0
which is

negative for any 𝑐0, 𝑐1 > 0, meaning 𝛿𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑀𝑜𝑛𝑜𝑝𝑜𝑙𝑦 =
𝑐1

𝑐1+𝑐0
maximizes the sum of utilities. □

7.8 Egalitarian bargaining solution
Proof of Proposition 3.6. The Kalai (egalitarian) solution𝛿Egal.

is the solution that maximizes the minimum utility among players.

First, observe that if there exists a point in the Pareto solution set

where the two utilities are equal, this point must be the egalitarian

solution. Pareto means that an increase in any player’s utility must

correspond to a decrease in another player’s utility. If a solution

within the Pareto set equalizes utilities, then any other solution
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must inevitably trade off one player’s utility for the other’s, meaning

any alternative solution would yield a lower utility for at least one

player.

So, setting the utilities equal we get:

𝑈𝐺 (𝛿) = 𝑈𝐷 (𝛿)
𝛿2

4𝑐0
+ 𝛿

2𝑐1
− 𝛿2

2𝑐1
=

1

4𝑐1
+ 𝛿

2𝑐0
− 𝛿

2𝑐1
+ 𝛿2

4𝑐1
− 𝛿2

2𝑐0
Corr. 3.1

𝛿2 (3𝑐1 − 3𝑐0) + 𝛿 (4𝑐0 − 2𝑐1) − 𝑐0 = 0

Plugging into the quadratic formula, we get two candidate solu-

tions:

𝛿Egal.
?

=


√︃
𝑐2
0
− 𝑐0𝑐1 + 𝑐2

1
− 𝑐1 + 2𝑐0

3(𝑐0 − 𝑐1)
,
−
√︃
𝑐2
0
− 𝑐0𝑐1 + 𝑐2

1
− 𝑐1 + 2𝑐0

3(𝑐0 − 𝑐1)


Notice that the first of these solutions, for 𝑐0, 𝑐1 > 0, is not in the

feasible set 0 ≤ 𝛿 ≤ 1. Thus, the Egalitarian solution is given by:

𝛿Egal. =
−
√︃
𝑐2
0
− 𝑐0𝑐1 + 𝑐2

1
− 𝑐1 + 2𝑐0

3(𝑐0 − 𝑐1)
.

□

7.9 One-player findings for general revenue and
costs

The fine-tuning game may be defined for any cost and revenue

functions 𝜙0, 𝜙1, 𝑟 . We demonstrate in Section 3 that closed-form

solutions are attainable for certain polynomial function forms. In

this section, we provide general results that suggest the existence
of solutions for a broad set of cost and revenue functions. We put

forward an existence finding that suggests meaningful cooperation

(profit sharing agreement without free-riding) is viable in a swath

of fine-tuning games. Our result is that for any non-decreasing cost

and revenue functions, as long as 𝑟 ′ (0) > 𝜆0𝜙
′
0
(0) and 𝑟 ′ (𝛼0) >

𝜆1𝜙
′
1
(𝛼0) where 𝜆0, 𝜆1 ≥ 2, there exists a profit-sharing solution

that (a) Pareto-dominates disagreement and (b) does not lead to

free-riding.

Before we state the theorem formally, we have to define free

riding for the fine-tuning game:

Definition 7.1 (Free riding). A solution to the fine-tuning game
𝛿𝑖 ∈ [0, 1] exhibits free riding if at least one player receives profit
without investing any effort in improving the technology. That is,
either 𝛼0 = 0 or 𝛼1 = 𝛼0.

The formal theorem statement is below:

Theorem 7.1 (Revenue sharing solution for the fine-tun-

ing game). Consider any fine-tuning game where 𝑟 (𝛼1), 𝜙0 (𝛼0), and
𝜙1 (𝛼1) are non-decreasing. If the following two marginal conditions
are met:

• Condition 1: 𝑟 ′ (0) > 𝜆0𝜙
′
0
(0) where 𝜆0 ≥ 2,

• Condition 2: 𝑟 ′ (𝛼0) > 𝜆1𝜙
′
1
(𝛼0) where 𝜆1 ≥ 2,

Then there exists a solution 𝛿∗ to the fine-tuning game with the
following properties: (A) Players share revenue 0 < 𝛿∗ < 1. (B)
Players do not free ride. (C) 𝛿∗ Pareto-dominates disagreement.

Proof of Theorem 7.1. We prove this theorem via a sequence

of Lemmas.

Lemma 7.2. If 𝑟 ′ (0) > 𝜆0𝜙
′
0
(0) for a constant 𝜆0 ≥ 2, then there

exists a set𝐴∗ ⊆ (0, 1) such that 1
2
∈ 𝐴∗ and for all 𝛿 ∈ 𝐴∗,𝛼∗

0
(𝛿) > 0,

𝑈𝐺 (𝛿) > 0.

Let’s presume 𝛿∗ = 1

2
. If we can show that this solution yields

𝛼∗
0
> 0, then this means the generalist’s utility is greater than 0

for investing some non-zero effort spend. 𝛼∗
0
is the value of 𝛼0 that

maximizes𝑈𝐺 , so if𝑈𝐺 has positive slope at 𝛼0 = 0, then 𝛼∗
0
> 0.

Notice that this positive-utility outcome is met as long as

𝜕𝑈𝐺

𝜕𝛼0

��
𝛼0=0

> 0. This condition would necessarily mean that there

exists some positive 𝛼0 > 0 which maximizes𝑈𝐺 . So, formally:

𝑟 ′ (0) > 2𝜙 ′
0
(0)

1

2

𝑟 ′ (0) − 𝜙 ′
0
(0) > 0

𝜕

𝜕𝛼0
(𝛿𝑟 − 𝜙0)

����
𝛼0=0

> 0

𝜕𝑈𝐺

𝜕𝛼0

����
𝛼0=0

> 0.

Notice that this inequality is met as long as 𝑟 ′ (0) > 𝜆0𝜙
′
0
(0)

where 𝜆0 > 2. Thus, there is a non-empty set 𝐴∗
of solutions with

1

2
∈ 𝐴∗

that yield positive 𝛼0 and positive𝑈𝐺 .

Lemma 7.3. If 𝑟 ′ (𝛼0) > 𝜆1𝜙
′
1
(𝛼0) for a constant 𝜆1 ≥ 2, then

there exists a set 𝐵∗ ⊆ (0, 1) such that 1

2
∈ 𝐵∗ and for all 𝛿 ∈ 𝐵∗,

𝛼∗
1
(𝛿) > 𝛼∗

0
,𝑈𝐷 (𝛿) > 0.

Let’s presume 𝛿∗ = 1

2
. If we can show that this solution yields

𝛼∗
1
> 𝛼∗

0
, then this means the domain specialist’s utility is greater

than 0 for investing some non-zero effort spend. 𝛼∗
1
is the value of

𝛼1 that maximizes𝑈𝐷 , so if 𝑈𝐷 has positive slope at 𝛼1 = 𝛼∗
0
, then

𝛼∗
1
> 𝛼∗

0
.

Notice that this positive-utility outcome is met as long as

𝜕𝑈𝐷

𝜕𝛼1

��
𝛼1=𝛼

∗
0

> 0 – this condition would necessarily mean that there

exists some 𝛼∗
1
> 𝛼∗

0
which maximizes𝑈𝐷 . So, formally:

𝑟 ′ (𝛼0) > 2𝜙 ′
1
(𝛼0)

1

2

𝑟 ′ (𝛼0) − 𝜙 ′
1
(𝛼0) > 0

𝜕

𝜕𝛼1
((1 − 𝛿)𝑟 − 𝜙1)

����
𝛼1=𝛼0

> 0

𝜕𝑈𝐷

𝜕𝛼1

����
𝛼1=𝛼0

> 0.

Notice that this inequality is met as long as 𝑟 ′ (𝛼0) > 𝜆1𝜙
′
1
(𝛼0)

where 𝜆1 ≥ 2. Thus, there is a non-empty set 𝐵∗ of solutions with
1

2
∈ 𝐵∗ that yield 𝛼∗

1
> 𝛼∗

0
and positive𝑈𝐷 .

Corollary 7.1. 𝐴∗ ∩ 𝐵∗ is a non-empty set where any solution
𝛿∗ ∈ 𝐴∗ ∩ 𝐵∗ satisfies the three properties: 0 < 𝛿𝑖 < 1; 0 < 𝛼∗

0
< 𝛼∗

1
;

and𝑈𝐷 ,𝑈𝐺 > 0.

This Corollary follows from the findings that have already been

shown in the former Lemmas.
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First,𝐴∗ ∩𝐵∗ is non-empty because
1

2
∈ 𝐴∗

(as shown in Lemma

7.2) and
1

2
∈ 𝐵∗ (as shown in Lemma 7.3) so it follows that

1

2
∈

𝐴∗ ∩ 𝐵∗.
The three properties are each met for the following reasons:

(1) Property 1 (0 < 𝛿∗ < 1) is met because
1

2
∈ 𝐴∗ ∩ 𝐵∗ and

0 < 1

2
< 1 so the existence finding is satisfied for a non-

extreme value of 𝛿 . This means, for 𝛿∗ ∈ 𝐴∗ ∩ 𝐵∗, players
share revenue.

(2) Property 2 (0 < 𝛼∗
0
< 𝛼∗

1
) is met because any solution in 𝐴∗

yields 𝛼∗
0
> 0 (as shown in Lemma 7.2) and any solution

in 𝐵∗ yields 𝛼∗
1
> 𝛼∗

0
(as shown in Lemma 7.3). This means,

for 𝛿∗ ∈ 𝐴∗ ∩ 𝐵∗, players do not free-ride (they both act to

improve the technology).

(3) Property 3 (𝑈𝐺 ,𝑈𝐷 > 0) is met because any solution in 𝐴∗

yields 𝑈𝐺 > 0 (as shown in Lemma 7.2) and any solution

in 𝐵∗ yields𝑈𝐷 > 0 (as shown in Lemma 7.3). This means

any solution 𝛿∗ ∈ 𝐴∗ ∩ 𝐵∗ yields positive utility for both

players, which Pareto-dominates the disagreement scenario

in which both players have zero utility.

□

The intuition for the above proof is that, as long as it is marginally

profitable for both players to invest some finite positive amount of

effort, then both players have positive utility (Pareto-dominating

the disagreement alternative), neither player free rides, and both

receive some profit.

This theorem perhaps helps explain why real-world situations

arise where two different entities collaboratively invest in technolo-

gies. Cooperation is advantageous in a wide variety of fine-tuning

scenarios. In the next section, we will further generalize our find-

ings to a new set of games, for which the above theorems may be

adapted.

8 SECTION 5 MATERIALS
8.1 Theorem on the Three Specialist Regimes

Proof of Theorem 4.1. We prove this theorem in a sequence of

Lemmas. The proof follows for any given specialist 𝐷𝑖 and revenue-

sharing parameter 𝛿 .

Lemma 8.1. If fixed costs are under control, meaning 𝑟𝑖 (𝛼0) >
1

1−𝛿 𝜙𝑖 (𝛼0), then 𝐷𝑖 will not abstain – instead, 𝐷𝑖 would always
prefer to free-ride.

If 𝑟𝑖 (𝛼0) > 1

1−𝛿 𝜙𝑖 (𝛼0), then 𝑈𝐷𝑖

��
𝛼𝑖=𝛼0

= 𝑟𝑖 (𝛼0) − 1

1−𝛿 𝜙𝑖 (𝛼0) is
simply the RHS minus the LHS of the inequality. This means 𝑈𝐷𝑖

must be positive at 𝛼𝑖 = 𝛼0. Thus, as long as fixed costs are under

control, the specialist prefers free-riding to abstaining.

Lemma 8.2. If fixed costs are not under control, meaning 𝑟𝑖 (𝛼0) <
1

1−𝛿 𝜙𝑖 (𝛼0), then 𝐷𝑖 will not free-ride – instead, 𝐷𝑖 would always
prefer to abstain.

If 𝑟𝑖 (𝛼0) < 1

1−𝛿 𝜙𝑖 (𝛼0), then 𝑈𝐷𝑖

��
𝛼𝑖=𝛼0

= 𝑟𝑖 (𝛼0) − 1

1−𝛿 𝜙𝑖 (𝛼0) is
simply the RHS minus the LHS of the inequality. This means 𝑈𝐷𝑖

must be negative at 𝛼𝑖 = 𝛼0. Thus, as long as fixed costs are not

under control, the specialist prefers abstaining to free-riding.

Lemma 8.3. If it is marginally profitable to invest in the technology,
meaning 𝑟 ′

𝑖
(𝛼0) > 1

1−𝛿 𝜙
′
𝑖
(𝛼0), then 𝐷𝑖 will not free-ride – instead,

𝐷𝑖 would always prefer to contribute.

If 𝑟 ′
𝑖
(𝛼0) > 1

1−𝛿 𝜙
′
𝑖
(𝛼0), then

𝜕𝑈𝐷𝑖

𝜕𝛼𝑖

��
𝛼𝑖=𝛼0

= 𝑟 ′
𝑖
(𝛼0) − 1

1−𝛿 𝜙
′
𝑖
(𝛼0)

is simply the RHS minus the LHS of the inequality. This means𝑈𝐷𝑖

is increasing at 𝛼𝑖 = 𝛼0. Thus, as long as it is marginally profitable

to improve the technology, the specialist prefers contributing to

free-riding.

Lemma 8.4. If it is marginally costly to invest in the technology,
meaning 𝑟 ′

𝑖
(𝛼0) < 1

1−𝛿 𝜙
′
𝑖
(𝛼0), then 𝐷𝑖 will not contribute – instead,

𝐷𝑖 would always prefer to free-ride.

If 𝑟 ′
𝑖
(𝛼0) < 1

1−𝛿 𝜙
′
𝑖
(𝛼0), then

𝜕𝑈𝐷𝑖

𝜕𝛼𝑖

��
𝛼𝑖=𝛼0

= 𝑟 ′
𝑖
(𝛼0) − 1

1−𝛿 𝜙
′
𝑖
(𝛼0)

is simply the RHS minus the LHS of the inequality. This means

𝑈𝐷𝑖
is decreasing at 𝛼𝑖 = 𝛼0. Thus, as long as it is marginally

costly to improve the technology, the specialist prefers free-riding

to contributing.

Taken together, we can conclude the following about combina-

tions of conditions:

• Fixed costs under control, marginally profitable investment:

A<F, F<C (Lemmas 8.1 and 8.3). Thus the specialist would

contribute.

• Fixed costs under control, marginally costly: A<F, C<F (Lem-

mas 8.1 and 8.4). Thus the specialist would free-ride.

• Fixed costs not under control, marginally profitable: F<A,

F<C (Lemmas 8.2 and 8.3). Thus the specialist would either

abstain or contribute.

• Fixed costs not under control, marginally costly: F<A, C<F

(Lemmas 8.2 and 8.4). Thus the specialist would abstain.

Above, the short-hand notation ‘A,’ ‘F,’ and ‘C’ refer to the strate-

gies of abstaining, free-riding, and contributing, respectively. The

optimal strategies follow from the two marginal conditions. This

completes the proof. □

15


	Abstract
	1 Introduction
	1.1 Related Work

	2 A Model of Fine-Tuning
	2.1 Primer on Bargaining Games
	2.2 Pareto-Optimal Bargains
	2.3 Focus on Unimodal Utilities

	3 Analysis for Polynomial Costs
	3.1 Subgame Perfect Equilibrium for a Given 
	3.2 Pareto-optimal Agreements on 
	3.3 Bargaining Solutions to Specify 
	3.4 Discussion on Bargaining Solutions

	4 Multiple Domain Specialists
	4.1 Domain Specialists' Equilibrium Strategies

	5 Conclusion
	References
	6 Section 2 Materials
	6.1 Pareto set characterization and Theorem 2.1

	7 Section 3 Materials 
	7.1 Subgame perfect equilibrium findings
	7.2 Utilities as a function of 
	7.3 Utilities are stricly unimodal functions of 
	7.4 Powerful-G Bargaining Solution
	7.5 Powerful-D Bargaining Solution
	7.6 Maximum-performance bargaining solution
	7.7 Vertical monopoly bargaining solution
	7.8 Egalitarian bargaining solution
	7.9 One-player findings for general revenue and costs

	8 Section 5 Materials
	8.1 Theorem on the Three Specialist Regimes


