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Abstract
Conversational recommender systems offer a001
way for users to engage in multi-turn con-002
versations to find items they enjoy. Dialog003
agents for conversational recommendation rely004
on expensive human dialog transcripts, limit-005
ing their usage to domains where such data006
exists. We develop an alternative, two-part007
framework for training multi-turn conversa-008
tional recommenders that accommodate a com-009
mon paradigm of conversation: experts provide010
and justify suggestions, while users can critique011
and respond. We can thus adapt conversational012
recommendation to a wider range of domains013
where crowd-sourced ground truth dialogs are014
not available. First, we train a recommender015
system to jointly suggest items and justify its016
reasoning via subjective aspects. We then fine-017
tune this model to incorporate iterative user018
feedback via self-supervised bot-play. Experi-019
ments on three real-world datasets demonstrate020
that our system can be applied to different rec-021
ommendation models across diverse domains022
to achieve state-of-the-art performance in multi-023
turn recommendation. Human studies show024
that systems trained with our framework pro-025
vide more useful, helpful, and knowledgeable026
suggestions in warm- and cold-start settings.027

1 Introduction028

Traditional recommender systems often give static029

suggestions, affording users no way to meaning-030

fully express their preferences and feedback. Con-031

versational recommendation allows users to inter-032

act with agents and suggestions, increasing their033

willingness to trust and accept recommendations034

(Qiu and Benbasat, 2009). Techniques for conversa-035

tional recommendation are based on the paradigm036

of conversation: how an agent can explain their037

suggestions and how users can give feedback.038

Recent work has explored conversational recom-039

mendation through dialog agents trained to suggest040

items and ask the user questions in free-form dialog041

(Wärnestål, 2005). While such models can generate042

Justification Multi-Turn Transcript-Free

LLC (2020a) ✗ ✗ ✓
CE-VAE (2020b) ✓ ✗ ✓
M&M VAE (2021) ✓ ✗ ✓

Li et al. (2018) ✗ ✓ ✗
Kang et al. (2019) ✓ ✓ ✗
Zhou et al. (2020) ✓ ✓ ✗

Ours ✓ ✓ ✓

Table 1: Critiquing systems (top) are not equipped for
multi-turn interactions. Dialog agents (bottom) learn
multi-turn behavior via large corpora of domain-specific
transcripts. Our framework allows us to train conversa-
tional recommenders without costly transcript data.

natural-sounding text, they require large training 043

corpora comprising transcripts from crowd-sourced 044

recommendation games (Kang et al., 2019). To cre- 045

ate high-quality training data, crowd-workers must 046

be knowledgable about many items in the target 047

domain—this expertise requirement limits data col- 048

lection to a few common domains like movies. It is 049

thus difficult to scale dialog-based recommenders 050

to domains where users have specific preferences 051

about subjective aspects but no dialog transcripts 052

exist (e.g. food and literature). 053

We address this challenge of data scarcity by 054

proposing a framework for training conversational 055

recommender systems based on conversational 056

critiquing and self-supervised bot-play. Rather 057

than use free-form dialog, many conversational 058

critiquing systems present users with items and 059

natural text aspects that justify their suggestions 060

(Zhou et al., 2020). Users can then critique individ- 061

ual aspects to guide the next turn’s recommenda- 062

tions. Our approach reflects this realistic interac- 063

tive paradigm where the agent suggests items and 064

explains their suggestions, while the user specifies 065

their preferences via specific feedback. Our frame- 066

work does not rely on supervised dialog examples 067

and can be applied to any setting where product 068

reviews or opinionated text can be harvested. 069
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System (re-)scores candidate items 
using user preference embedding

System suggests top-scoring item 
and generates a justification

The Eye of the World
The Hobbit

The Last Unicorn
Assassin’s Apprentice

“You might like The Eye of the 
World. It’s a complex high 
fantasy novel about politics.”

User accepts the suggestion
or

User critiques an aspect from 
the justification

“I don’t really care for politics”

System updates user preference 
embedding via critique

Figure 1: In our conversational recommendation workflow, the system scores candidates and generates a justification
for the top item. If the user critiques an aspect, the system uses the critique to update the latent user representation.

We propose a framework comprising two parts:070

First, we learn to jointly recommend items and071

generate justifications based on subjective aspects,072

leveraging ideas from conversational critiquing sys-073

tems (Wu et al., 2019) trained via next-item recom-074

mendation. We then fine-tune our model for multi-075

turn recommendation via multiple turns of bot-play076

in a recommendation game based on natural-text077

product reviews and simulated critiques.078

Our framework is model-agnostic—we apply079

our method to two different underlying recommen-080

dation architectures (Sedhain et al., 2016; Rendle081

et al., 2009) and evaluate our models on three082

large real-world recommendation datasets with083

user reviews but no dialog transcripts. Our method084

reaches goal items faster and with greater success085

than state-of-the-art (SOTA) methods. We conduct086

a study with real users, showing that it can effec-087

tively help users find desired items in real time,088

even in a cold-start setting.089

We summarize our main contributions as fol-090

lows: 1) We present a framework for training con-091

versational recommender systems using bot-play092

on historical user reviews, without the need for093

large collections of human dialogs; 2) We apply our094

framework to two popular recommendation models095

(BPR-Bot and PLRec-Bot), with each showing096

superior or competitive performance in comparison097

to SOTA recommendation and critiquing methods;098

3) We demonstrate that our framework can be effec-099

tively combined with query refinement techniques100

to quickly suggest desired items.101

2 Related Work102

Justifying Recommendations Users prefer rec-103

ommendations that they perceive to be transparent104

or justified (Sinha and Swearingen, 2002). Some105

early recommender systems presented the same106

attributes of suggested items to all users (Vig107

et al., 2009). Another line of work attempts to108

generate natural language explanations of recom-109

mendations. McAuley et al. (2012) mine key as-110

pects from textual user reviews via topic extraction.111

These aspects of interest can be expanded into full 112

sentences, constructed via template-filling (Zhang 113

et al., 2014) or recurrent language models (Ni et al., 114

2019). Due to their unstructured nature, however, 115

sentence-level justifications have not been used for 116

iteratively refining recommendations. In this work, 117

we allow the user to provide feedback about spe- 118

cific aspects mentioned across natural language 119

product reviews in large recommendation datasets. 120

Conversational Critiquing Critiquing systems 121

allow users to incrementally construct preferences, 122

mimicking how humans refine their preferences 123

based on conversation context (Tversky and Simon- 124

son, 1993). Early critiquing methods treated user 125

feedback as hard constraints to shrink the search 126

space (Burke et al., 1996). Wu et al. (2019) intro- 127

duced a critiquing model with justifications com- 128

prising natural language aspects mined from user 129

reviews—with which users can then interact. An- 130

tognini et al. (2020) provide a single-sentence ex- 131

planation alongside a set of aspects, but require 132

users to interact only with the aspect set. Luo 133

et al. (2020b) use a variational auto-encoder (VAE) 134

(Kingma and Welling, 2014) for joint recommen- 135

dation and justification, learning a bi-directional 136

mapping function between latent user and aspect 137

representations. Current critiquing techniques are 138

either trained only for next-item recommendation, 139

or to handle a single turn of critiquing (Antognini 140

and Faltings, 2021), and struggle to incorporate 141

feedback in multi-turn settings. We adopt tech- 142

niques for encoding user feedback from critiquing 143

systems (Luo et al., 2020a), but we introduce a 144

multi-step, model-agnostic bot-play method to ex- 145

plicitly train our models for multi-turn conversa- 146

tional recommendation. 147

Dialog Agents for Recommendation We view 148

recommenders as domain experts who can elicit 149

preferences from human customers and suggest ap- 150

propriate items over the course of a session (Burke 151

et al., 1997). A recent line of work formulates 152

conversational recommendation as goal-oriented 153
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Figure 2: User feedback about aspects (c0, c1) modifies
our prior latent user preference vector γ0

u to bring it
closer to the target item embedding.

dialog: at each turn, the user is either a) asked if154

they prefer a specified aspect; or b) recommended155

an item (Christakopoulou et al., 2016; Zhang et al.,156

2018). Bot-play has been explored as a way to157

train such dialog agents (Li et al., 2018; Kang et al.,158

2019), which requires models to be trained and159

fine-tuned using existing dialog transcripts. Such160

approaches are expensive and limited to domains161

where crowd-sourced workers can reliably and ac-162

curately play the roles of expert and seeker in163

Wizard-of-Oz style data collection (Dahlbäck et al.,164

1993). By allowing users to critique natural text165

aspects of a suggested item, our framework for con-166

versational recommendation allows for multi-turn167

recommenders that can be trained using only prod-168

uct review texts, widening the scope of domains169

in which we can train conversational agents. In170

Table 1 we compare our approach to recent frame-171

works for critiquing and dialog agents for conver-172

sational recommendation.173

3 Model174

Our model comprises (Figure 3): 1) A matrix fac-175

torization recommender model Mrec that embeds176

users and items in an h-dimensional latent space; 2)177

A justification head Mjust that predicts the natural178

language aspects of an item toward which the user179

holds preferences; and 3) A critiquing function fcrit180

that modifies a user’s preference embedding based181

on aspect-level feedback. We support multi-step182

critiquing (Figure 2): at each turn a user may indi-183

cate which aspects they dislike about the current184

suggestions via a critique ct. The critiquing func-185

tion then modifies the latent user representation γu186

via the critique to bring it closer to the target item.187

3.1 Base Recommender System188

Our method can be applied to any recommender189

that learns user and item representations. We show190

Items

User
Recommender

         User Embedding

         Item Embedding Item scores

Justification Model

Justification       Critique              Aspect Encoder

Fusion

User

Figure 3: Given a user, items, and aspect critique vector,
our model encodes the critique MAE(c

t
u) and fuses it

with the user embedding γMF
u . The fused user represen-

tation γu and item representation γi are then used to
predict the justification and score items.

its effectiveness with two popular methods: 191

Bayesian Personalized Ranking (BPR) (Rendle 192

et al., 2009) is a matrix factorization recommender 193

system that aim to decompose the interaction ma- 194

trix R ∈ R|U |×|I| into user and item representations 195

(Koren et al., 2009). BPR optimizes a ranked list 196

of items given implicit feedback (binary interac- 197

tions between users and items). Scores are com- 198

puted via inner product of h-dimensional user and 199

item embeddings: x̂u,i = ⟨γMF
u , γMF

i ⟩. At train- 200

ing time, the model is given a user u, observed 201

item i and unobserved item j. We maximize the 202

likelihood that the user prefers the observed item: 203

LR = P (i >u j|Θ) = σ(x̂u,i − x̂u,j), where σ 204

represents the sigmoid function 1
1+e−x . 205

Projected Linear Recommendation (PLRec) is 206

an SVD-based method to learn low-rank user/item 207

representations via linear regression (Sedhain et al., 208

2016). The PLRec objective minimizes: 209

argmin
W

∑
u

∥ ru − ruVW T ∥22 +Ω(W ) (1) 210

where V is a fixed matrix obtained by taking a 211

low-rank SVD approximation of R such that R = 212

UΣV T , and W is a learned embedding. We obtain 213

an h-dimensional embeddings for users (γMF
u = 214

ruV ) and items (γMF
i = Wi). 215

3.2 Generating Justifications 216

Our justification model (aspect prediction head) 217

consists of a fully connected network with two h- 218

dimensional hidden layers predicting a score su,i,a 219

for each natural language aspect a. This model 220

takes the sum of user and item embeddings as in- 221

put. At training time, we incorporate an aspect 222

prediction loss LA by computing the binary cross 223

entropy (BCE) for each aspect given the likelihood 224

the user cares about the aspect. At inference time, 225

we again compute the likelihood for each aspect 226
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pu,i,a = σ(su,i,a) and sample from the Bernoulli227

distribution with pu,i,a to determine which aspects228

a appear in the justification.229

3.3 Encoding Aspects230

We posit that the user’s latent representation are231

partially explained by their written reviews. Thus,232

we jointly learn an aspect encoder MAE alongside233

our recommendation model. This takes the form234

of a linear projection from the aspect space to the235

user preference space: MAE(c
t
u) = W T ctu + b,236

where ctu ∈ Z|K| is the critique vector representing237

the strength of a user’s preference for each aspect.238

We fuse this aspect encoding with the latent user239

embedding from Mrec to form the final user pref-240

erence vector: γu = f(γMF
u ,MAE(c

t
u)). For the241

BPR-based model, we fuse via summation; for242

PLRec, we take the mean. In training, the aspect243

encoder takes in the user’s aspect history: ctu = kU
u .244

3.4 Training245

To train our BPR-based model, we jointly optimize246

each component. Each training example comprises247

a user and observed / unobserved items. We predict248

scores for each item: x̂u,i = ⟨γMF
u +MAE(kU

u ), γi⟩.249

We first compute the BPR loss (see Section 3.1)250

with the predicted observed / unobserved scores.251

We add the aspect prediction loss, scaled by a con-252

stant λKP to the ranking loss for our training objec-253

tive: L = λKPLA − LR. We find empirically that254

λKP ∈ {0.5, 1.0} works well.255

To train our PLRec-based model, we follow256

Luo et al. (2020a) and separately optimize Mrec,257

Mjust, and MAE. The user and item embeddings are258

learned via eq. (1). We solve the following linear259

regression problem to optimize MAE:260

argmin
W,b

∑
u

∥ γMF
u −MAE(k

U
u ) ∥22 +Ω(W ) (2)261

Finally, we optimize the aspect prediction (justifi-262

cation) loss LA to train the justification head.263

3.5 Critiquing with Our Models264

To perform conversational critiquing with a model265

trained using our framework, we adapt the latent266

critiquing formulation from Luo et al. (2020a), as267

shown in Figure 1. At each turn t of a session268

for user u, the system assigns scores x̂tu,i for all269

candidate items i, and presents the user with the270

highest scoring item î. The system also justifies271

its prediction with a set of predicted aspects k̂tu,i.272

The user may either accept the recommended item273

Algorithm 1: Bot play framework for fine-
tuning conversational recommenders.

Recommender and Justifier Mrec,Mjust;
Critique fusion function fcrit;
Seeker model Mseeker;
for each user u do

for goal item g ∈ I+u (Reviewed Items) do
initialize loss L;
initialize γ1

u from Mrec;
for turn t ∈ range(1, T ) do

compute scores
x̂t
u,i = Mrec(γ

t
u, i) ∀ i ∈ I;

L ← L+ δt · LCE(g, x̂
t
u,i);

recommend item ît = argmaxi x̂
t
u,i;

if ît = g then break with success;
generate justification
k̂u,̂it = Mjust(γ

t
u, γît);

Mseeker critiques justification: ctu;
γt+1
u ← fcrit(γ

t
u, c

t
u);

return fine-tuned agent

(ending the session) or critique an aspect from the 274

justification: a ∈ {a|k̂u,i,a = 1}. 275

Given a user critique, the system modifies the 276

predicted scores for each item and presents the user 277

with a new item and justification: 278

x̂t+1
u,i = Mrec(γ̂

t+1
u , i) (3) 279

k̂t+1
u,i = Mjust(γ̂

t+1
u , i) (4) 280

γ̂t+1
u ← fcrit(γ̂

t
u, c

t
u) (5) 281

Effectively, a user critique modifies our prior for 282

the user’s preferences; we then re-rank the items 283

presented to the user. 284

At inference time, ctu is the cumulative critique 285

vector, initialized with the user’s aspect history: 286

ctu = ct−1
u −max(kU

u , 1)⊙mt
u; c0u = kU

u (6) 287

where ⊙ is element-wise multiplication. Here the 288

critique should match the strength of a user’s previ- 289

ous opinion of the aspect kU
u . Even if a user has not 290

mentioned an aspect in their previous reviews, the 291

max ensures a non-zero effect from each critique. 292

3.6 Learning to Critique via Bot Play 293

We propose a framework for critiquing via bot 294

play that simulates user sessions when provided 295

just a set of user reviews. We first pre-train our 296

expert model (recommender, justifier, and aspect 297

encoder). A seeker model is pre-trained via a sim- 298

ple prior: provided a target item and justification, 299

it selects the most popular aspect present in the 300

justification but not the target’s historical aspects 301

kI
i to critique. For each training example (user 302
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Users Items Reviews A A/I A/U

Books 13,889 7,649 654,975 75 27.0 25.0
Beer 6,369 4,000 935,524 75 60.2 54.6
Music 5,635 4,352 119,081 80 20.0 16.5

Table 2: Dataset statistics, including avg. unique aspects
mentioned in reviews per item (A/I) and user (A/U).

and a goal item they have reviewed), we allow303

the expert and seeker models to converse with the304

goal of recommending the goal item. We fine-305

tune the expert by maximizing its reward (mini-306

mizing loss) in the bot-play game (Algorithm 1).307

We end the session after the goal item is recom-308

mended or a maximum session length of T = 10309

turns is reached. We define the expert’s loss as310

the cross entropy loss of recommendation scores311

per turn: Lexpert =
∑T

t δt−1 · LCE(g, x̂
t
u,i) where312

δ is a discount factor1 to encourage successfully313

recommending the goal item at earlier turns, and314

LCE(g, x̂
t
u,i) is the cross-entropy loss between pre-315

dicted scores and the goal item.316

4 Experimental Setting317

We select hyperparameters for our initial models318

via AUC, and for bot-play fine-tuning via the suc-319

cess rate at 1 (SR@1) on the validation set. We320

train each model once, taking the median of three321

evaluation runs per experimental setting. For base-322

line models, we re-used the authors’ code. We will323

release code upon publication.324

Datasets We evaluate our models on three325

public real-world recommendation datasets with326

100K+ reviews each: Goodreads Fantasy (Books)327

(Wan and McAuley, 2018), BeerAdvocate (Beer)328

(McAuley et al., 2012), and Amazon CDs & Vinyl329

(Music) (McAuley et al., 2015). We keep only re-330

views with positive ratings, setting thresholds of331

t > 4.0 for Beer and Music and t > 3.5 for Books.332

We partition each dataset into 50% training, 20%333

validation, and 30% test splits Table 2.334

We follow the pipeline of Wu et al. (2019)335

to extract subjective aspects from user reviews:336

1) Extract high-frequency unigram and bigram337

noun- and adjective phrases; 2) Prune bigram338

keyphrases using a Pointwise Mutual Information339

(PMI) threshold, ensuring aspects are statistically340

unlikely to have randomly co-occurred; and 3)341

Represent reviews as sparse binary vectors indi-342

1We use a discount factor of δ = 0.9

cating whether each aspect was expressed in the 343

review. Aspects describe qualities ranging from 344

taste for beers (e.g. citrus) and emotions for mu- 345

sic (e.g. soulful) to perceived character qualities in 346

books (e.g. strong female). 347

Multi-Step Critiquing Following prior work on 348

critiquing (Luo et al., 2020a; Li et al., 2020), we 349

simulate multi-step recommendation sessions to as- 350

sess model performance. We simulate user sessions 351

following Algorithm 1, with two main differences: 352

(1) We randomly sample user u and their goal item 353

g from the test set, and (2) We do not compute loss 354

or update our model during a session. We set a 355

maximum session limit of T = 10 turns. 356

To evaluate how our models behave with differ- 357

ent user behaviors, we simulate each observation 358

with three different critique selection strategies (Li 359

et al., 2020): 1) Random: We assume the user ran- 360

domly chooses an aspect—this assumes no prior 361

knowledge on the part of the user; 3) Pop: We as- 362

sume the user selects the most popular aspect used 363

across all training reviews; and 3) Diff: We assume 364

the user selects the aspect that deviates most from 365

the goal item reviews—the aspect with the largest 366

frequency differential between the goal item and 367

current item: argmaxa(kI
ît,a
− kI

g,a). In all set- 368

tings, a user may only see any single item once and 369

may only critique each aspect once per session. 370

Candidate Algorithms Our method can apply to 371

any base recommender system; here we train bot- 372

play models based on BPR and PLRec—BPR-Bot 373

and PLRec-Bot respectively. We assess linear cri- 374

tiquing baselines that co-embed critique and user 375

representations (Luo et al., 2020a), where fcrit is 376

a weighted sum of the user preference vector γu 377

and embeddings for each critiqued aspect. UAC 378

uniformly averages γu and all critiqued aspect em- 379

beddings. BAC averages γu with the average of 380

critiqued aspect embeddings. LLC-Score learns 381

weights by maximizing the rating margin between 382

items containing critiqued aspects and those with- 383

out. Instead of directly optimizing the scoring mar- 384

gin, LLC-Rank (Li et al., 2020) minimizes the 385

number of ranking violations. These models cannot 386

generate justifications; we binarize the historical 387

aspect frequency vector for the item (kI
u,̂it

) as a 388

justification at each turn. We also compare against 389

a SOTA interactive recommender, CE-VAE (Luo 390

et al., 2020b), which learns a VAE with a bidirec- 391

tional mapping between critique vectors and the 392
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Figure 4: Success Rate @ N (% sessions where target
item rank ≤ N) across datasets and user models. BPR-
Bot (brown triangle) and PLRec-Bot (pink circle) out-
perform baselines (dashed) in all settings.

user latent preference space.393

5 Experiments394

RQ1: Can our framework enable multi-step395

critiquing? We measure multi-step critiquing396

performance via average success rate (Figure 4)–397

the percentage of sessions where the target item398

reaches rank N—and session length (Figure 5). As399

our bot-play fine-tuning seeker model picks cri-400

tiques by popularity, we expect our models to per-401

form best in the Pop setting. However, BPR-Bot402

and PLRec-Bot succeed faster and at a higher rate403

than baselines in all user settings, including random404

critiquing with no prior on user behavior. Linear405

critiquing models (UAC, BAC, LLC-Score/Rank)406

perform poorly on multi-step critiquing compared407

to models that can generate justifications. This408

suggests that personalized justifications help users409

choose more effective aspects to critique.410

Our models can also generate personalized justi-411

fications that are more helpful for narrowing down412

a user’s preferences compared to CE-VAE: BPR-413

Bot and PLRec-Bot out-perform the baseline in414

all settings. We have thus shown that our bot-415

play framework enables the training of multi-turn416

conversational recommenders without the need for417

costly supervised dialog transcripts.418

In general, the large item space makes it difficult419

Figure 5: Avg. # of turns for target item to reach rank
N, across datasets and user models. BPR-Bot (brown
triangle) and PLRec-Bot (pink circle) promote targets
faster than baselines (dashed), especially for low N.

for critiquing models to reach the goal item within 420

the turn limit, with the best model reaching the goal 421

item in only 6-15% of sessions. This suggests that 422

practical conversational recommenders may benefit 423

from constraint-based filtering as well as an initial 424

set of user requirements—while users often start a 425

session with a seed set of reqirements—e.g. in car 426

buying, whether they want an SUV or coupe (Pu 427

and Faltings, 2000). We demonstrate in RQ3 that 428

our model can be combined with constraint-based 429

query refinement to quickly achieve significantly 430

higher success rates. 431

RQ2: Does bot-play specifically improve multi- 432

step critiquing ability? We next demonstrate 433

that our bot-play fine-tuning is responsible for gains 434

in multi-step critiquing performance by comparing 435

BPR-Bot (left) and PLRec-Bot (right) in Figure 6 436

against ablated versions that were trained using the 437

first step of our framework but not fine-tuned via 438

bot-play. For clarity, we display only results using 439

the Pop user behavioral model, as we observe the 440

same trends with the Random and Diff user models. 441

In domains with relatively high aspect occurrence 442

across reviews (Books, Beer), bot-play confers a 3- 443

6% improvement in success rate for various N. This 444

demonstrates that we can effectively train conver- 445

sational recommender systems using our bot-play 446

framework using domains with rich user reviews 447
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Figure 6: Success Rate @ N (% sessions where target
item rank ≤ N), comparing bot-play (orange) against
non-bot-play ablations (blue). Bot-play improves target
item ranking across datasets compared to the ablation,
for both BPR-Bot (crosses) and PLRec-Bot (circles).

in lieu of crowd-sourced dialog transcripts. In do-448

mains with more sparse coverage of subjective as-449

pects (i.e. Music), we observe lower improvement450

when using bot-play—our model may encounter451

insufficient cases of rare aspects being critiqued.452

In future work, we will explore adding noise to453

our user model to ensure that the bot-play process454

encounters more rare aspects.455

We confirm that our method is model-agnostic,456

as it improves recommendation success rates for457

both the matrix factorization-based (BPR) and lin-458

ear (PLRec) recommender systems. Models with459

a higher latent dimensionality (h ∈ [50, 400] for460

PLRec-Bot vs. h=10 for BPR-Bot) benefit more461

from bot-play, suggesting that our method learns462

to effectively navigate complex preference spaces.463

RQ3: Can our models be effectively combined464

with query refinement? So far, we have as-465

sumed that users provide soft feedback: even if466

a user has critiqued aspect a during a session, fu-467

ture suggested items may still contain aspect a.468

This assumption holds for some aspects: for exam-469

ple, even if previous users mentioned that a song470

was dispassionate, a user may find it emotional and471

enjoyable. However, the user may reject the sug-472

gestion right after reading reviews. We thus try473

treating critiques as hard constraints: users should474

not receive items whose reviews mention critiqued475

aspects. We compare three models with turn-0476

ranked lists of candidate items initialized from477

BPR-Bot. The Query baseline model suggests an478

Figure 7: Hit rate by turn for query refinement models
on each dataset with multi-step critiquing up to 10 turns.

item each turn and asks the user if they like aspect 479

a—the aspect that most evenly divides the remain- 480

ing candidate items: argmina ||I+a | − |I−a ||. The 481

Filter model generates a justification for each sug- 482

gested item that the user can critique. The hybrid 483

Filter+Re-rank model incorporates our learned 484

critiquing function to modify the user preference 485

vector and re-rank the remaining candidate items. 486

We conduct user simulations with the Pop user 487

model and plot the hit rate by turn—rate of achiev- 488

ing the goal item g at or before turn t—in Figure 7. 489

While binary queries guarantee targets will even- 490

tually be found, the queried aspect may be unre- 491

lated to suggested items. Models that allow users to 492

critique justifications reach high success rates much 493

faster than binary querying in the first 6-10 turns. 494

Re-ranking after filtering improves performance 495

across domains, suggesting that we have learned 496

how user critiques relate to their latent preferences 497

for other aspects. 498

For the Beer and Books domains, the filtering ap- 499

proach reaches higher success rates compared to bi- 500

nary querying within the session turn limit (70.7% 501

vs. 69.7% and 57.0% vs. 55.2%, respectively). We 502

see less of a benefit in the Music domain. Aspect 503

sparsity may play a role: per Table 2, only 25% 504

of possible aspects are expressed for the average 505

item. Music also contains a longer tail of rare (ex- 506

pressed only for a few items) aspects compared 507

to Books and Beer—as such, user critiques prune 508

fewer items on average. 509

Our bot-play framework can be easily adapted 510

to train models incorporating hard critiquing con- 511

straints by pruning candidate items. One possible 512

extension involves masking the fine-tuning loss to 513

only adjust the scores of non-pruned items, set- 514

ting pruned item scores to a large negative value: 515

x̂u,i = −1e15 ∀ i ∈ I+a . We also wish to explore 516

fine-tuning with a ranking loss during bot-play, to 517

encourage the model to rank items containing a 518

critiqued aspect i ∈ I+a below those without. 519
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BPR-Bot Useful Informative Knowledgeable Adaptive
vs W L W L W L W L

Ablation 78 10 73 11 68 15 85 5
CE-VAE 83 9 74 10 63 16 81 8

PLRec-Bot Useful Informative Knowledgeable Adaptive
vs W L W L W L W L

Ablation 86 5 78 7 74 8 81 9
CE-VAE 87 7 79 11 77 12 83 10

Table 3: Session-level human evaluation via ACUTE-
EVAL. W/L percentages are reported while ties are not.
All results statistically significant with p < 0.05.

6 Human Study520

Human Evaluation Following Li et al. (2019),521

we conduct a comparative evaluation of 100 sim-522

ulated user sessions on four criteria: which agent523

seems more useful, informative, knowledgeable524

and adaptive. We compare each bot-play model525

(BPR-Bot and PLRec-Bot) against an ablative ver-526

sion (with no bot-play) and the best baseline (CE-527

VAE). Each sample is evaluated by three annotators.528

We observe substantial inter-annotator agreement,529

with Fleiss κ (Fleiss and Cohen, 1973) of 0.67,530

0.79, 0.73, and 0.60 for the usefulness, informa-531

tiveness, knowledgeable, and adaptiveness criteria,532

respectively. Scores are shown in Table 3.533

BPR-Bot and PLRec-Bot are judged to be signif-534

icantly more informative and knowledgeable than535

ablative models and CE-VAE, showing that our536

justification module accurately presents important537

aspects of each suggestion. The usefulness and538

adaptiveness criteria capture how models help the539

user achieve their end goal (i.e. finding the most540

relevant item in as few turns as possible). Bot-541

play models are judged to be more useful than542

alternatives and follow critiques more consistently543

when adapting their recommendations. Our frame-544

work allows us to train conversational agents that545

are useful and engaging for human users: evalu-546

ators overwhelmingly judged the models trained547

via bot-play to be more useful, informative, knowl-548

edgeable, and adaptive compared to CE-VAE and549

ablated variants.550

Cold-Start User Study We conduct a user study551

using the Books dataset to evaluate if our model is a552

useful real-time conversational recommender. We553

recruited 64 human users—half interacting with554

BPR-Bot and half with the ablation (no bot-play).555

We initialize each session with the mean of all556

learned user embeddings. At each turn, the user557

Useful Informative Adaptive Like

No Bot 0.67±0.24 0.75±0.21 0.64±0.27 41%
Ours 0.79±0.24 0.88±0.18 0.78±0.23 69%

Table 4: Turn- and session-level feedback from cold-
start user study. Statistically significant results in bold.

sees the three top-ranked items with justifications 558

(aspects) and can critique multiple aspects. On 559

average, users critiqued two aspects per turn. 560

At each turn, we again ask users if the gener- 561

ated jutifications are informative, useful in help- 562

ing to make a decision, and whether our system 563

adapted its suggestions in response to the user’s 564

feedback. We provide four options for each ques- 565

tion: no/weak-no/weak-yes/yes, mapping these val- 566

ues to a score between 0 and 1 (Kayser et al., 2021), 567

with normalized aggregated scores for each ques- 568

tion in Table 4. BPR-Bot significantly out-scores 569

the ablation in all three metrics (p < 0.01), show- 570

ing that fine-tuning via our bot-play framework 571

instills a stronger ability to respond to critiques and 572

provide meaningful justifications—even for unseen 573

users. At the end of a session, we additionally 574

ask the user how frequently (if at all) they would 575

choose to engage with our interactive agent in their 576

daily life. Users preferred BPR-Bot by significant 577

margins—69% indicated they would “often” or “al- 578

ways” use BPR-Bot to find books compared to 41% 579

for the ablation. 580

7 Conclusion 581

In this work we develop conversational recom- 582

menders that can engage with users over multi- 583

ple turns, justifying suggestions and incorporating 584

feedback about item aspects. We present a model- 585

agnostic framework for training conversational rec- 586

ommenders in this modality via self-supervised 587

bot-play in any domain with only review data. We 588

use two popular underlying recommender systems 589

to train the BPR-Bot and PLRec-Bot agents us- 590

ing our framework, showing quantitatively on three 591

datasets that our models 1) offer superior multi- 592

turn recommendation performance compared to 593

current SOTA methods; 2) can be effectively com- 594

bined with query refinement to quickly converge 595

on suitable items; and 3) can effectively refine sug- 596

gestions in real-time, as shown in user studies. In 597

future work, we aim to adapt our framework to nat- 598

ural language critiques (i.e. utterances), allowing 599

users to more flexibly express feedback. 600
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A Additional Experimental Details 714

All experiments were conducted on a machine with 715

a 2.2GHz 40-core CPU, 132GB memory and one 716

RTX 2080Ti GPU. We use PyTorch version 1.4.0 717

and optimize our models using the Rectified Adam 718

(Liu et al., 2020) optimizer. Best hyperparam- 719

eters for each base recommender system model 720

are shown in Table 6. We perform hyperparame- 721

ter search over a coarse sweep of: h ∈ [2, 500], 722

LR ∈ [1e−5, 1e−2], λ ∈ [1e−5, 1e−2]. Model 723

parameter sizes are a function of the hidden dimen- 724

sionality h and number of items |I| and users |U |, 725

and is dominated by h · (|I|+ |U |). 726

As mentioned in Section 4, we re-use the authors’ 727

publicly code with relevant citations following in- 728

tended usage (academic research). This includes 729

usage of the NLTK package2 to extract unigrams 730

and bigrams from natural text reviews. We will 731

release our code under the MIT license.3 732

All code and reviews in this dataset are in En- 733

glish. We hope to extend our work to identify re- 734

lated aspects in multi-lingual reviews in the future. 735

B Time Complexity 736

In Table 5, we report the mean and standard error of 737

time taken per turn for LLC-Score, CE-VAE, BPR- 738

Bot, and PLRec-Bot. As baseline code does not 739

leverage the GPU, we also critique with PLRec-Bot 740

and BPR-Bot on the CPU only. We observe LLC- 741

Score and PLRec-Bot to be an order of magnitude 742

slower per critiquing cycle compared to CE-VAE 743

and BPR-Bot. BPR-Bot shows acceptable latency 744

for real-world applications (sub-10 ms), and we ob- 745

serve empirically in our cold-start user study that 746

we can host BPR-Bot as a real-time recommenda- 747

tion service. Time trials were conducted with batch 748

size of 1; production throughput can be improved 749

further with parallel processing. Each model exe- 750

cutes using a different framework (numpy for LLC- 751

Score, Tensorflow for CE-VAE, and Pytorch 752

for PLRec-Bot/BPR-Bot), which may contribute to 753

differences in inference speed. 754

C Human Evaluation 755

The datasets we used have been processed to re- 756

move offensive words and phrases before present- 757

ing them to human evaluators and users. We per- 758

form our human evaluation via the Amazon Me- 759

2https://www.nltk.org/
3https://opensource.org/licenses/MIT
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chanical Turk (MTurk) platform, recruiting crowd-760

workers with a historical 99% acceptance rate on761

their work to ensure quality, and no other limi-762

tations. Crowd-workers were paid in excess of763

Federal minimum wage in the United States given764

the average time taken to complete an evaluation.765

Participants in the user study were recruited from766

Universities in the United States.767

Users in both our user evaluation and user study768

were permitted to exit the task at any time and769

have their interactions wiped from the project. We770

do not collect biometrics or personally identifiable771

information (PII) from users in our user study, and772

users were informed that this study was part of an773

academic research project and may be published.774

An image of the interface presented to crowd-775

workers in our human evaluation is shown in Fig-776

ure 8. For the human evaluation, we presented777

two user simulation traces from different models778

(e.g. PLRec-Bot and CE-VAE) in a random order,779

then ask users to decided which of the two models780

is more useful, which is more informative, which is781

more knowledgeable, and which is more adaptive.782

Each user simulation trace is for the same user and783

target item, to be able to fairly compare models.784

An image of the interface used for our cold-start785

user study is shown in Figure 9.786

D Risks787

As we aim to train conversational multi-turn rec-788

ommendation agents, the primary risks of our ap-789

proach lie in taking too long to present a user with790

good items or suggesting items they dislike. This791

risk is not unique to our approach and to some792

extent depends on the target domain (e.g. users793

may hold stronger opinions about food than they794

do computer hardware). One risk surface is the795

natural language aspects (and product names) that796

we surface to users as part of our recommend-and-797

justify approach. These could theoretically contain798

offensive or uncomfortable phrasing, but this risk799

can be minimized by a human-in-the-loop review800

of the aspect extraction process (e.g. blacklisting801

certain extracted aspects) or by applying toxic text802

detection to filter user reviews as a pre-processing803

step.804
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Figure 8: User interface for user evaluation, with two placeholder conversations. Users are asked which of the two
models (presented in random order) is more useful, informative, knowledgeable, and adaptive.

LLC-Score CE-VAE BPR-Bot PLRec-Bot

Books 40.64 ± 20.46 4.61 ± 1.16 2.70 ± 3.95 48.84 ± 14.08
Beer 15.94 ± 14.52 3.26 ± 1.18 2.54 ± 2.36 49.43 ± 14.81
Music 42.21 ± 21.04 3.36 ± 1.37 2.25 ± 0.62 6.80 ± 7.53

Table 5: Mean and standard error of wall-clock time (ms) per turn of critiquing for linear (LLC-Score) and variational
(CE-VAE) baselines vs. our models (BPR-Bot, BPR-PLRec)

Dataset Model h LR λL2 λKP λc β Epoch Dropout

Books BPR 10 0.001 0.01 0.5 – – 200 –
PLRec 50 – 80 – – – 10 –
CE-VAE 100 0.0001 0.0001 0.01 0.01 0.001 300 0.5

Beer BPR 10 0.001 0.01 0.5 – – 200 –
PLRec 50 – 80 – – – 10 –
CE-VAE 100 0.0001 0.0001 0.01 0.01 0.001 300 0.5

Music BPR 10 0.01 0.1 1.0 – – 200 –
PLRec 400 – 1000 – – – 10 –
CE-VAE 200 0.0001 0.0001 0.001 0.001 0.0001 600 0.5

Table 6: Best hyperparameter settings for each base recommendation model. UAC, BAC, LLC-Score, LLC-Rank
models use PLRec as a base model. BPR-Bot uses BPR as a base model.
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Figure 9: User interface for user study, with turn-level feedback prompts and an example of a critiqued aspect
(“Battle")
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