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Abstract

Conversational recommender systems offer a
way for users to engage in multi-turn con-
versations to find items they enjoy. Dialog
agents for conversational recommendation rely
on expensive human dialog transcripts, limit-
ing their usage to domains where such data
exists. We develop an alternative, two-part
framework for training multi-turn conversa-
tional recommenders that accommodate a com-
mon paradigm of conversation: experts provide
and justify suggestions, while users can critique
and respond. We can thus adapt conversational
recommendation to a wider range of domains
where crowd-sourced ground truth dialogs are
not available. First, we train a recommender
system to jointly suggest items and justify its
reasoning via subjective aspects. We then fine-
tune this model to incorporate iterative user
feedback via self-supervised bot-play. Experi-
ments on three real-world datasets demonstrate
that our system can be applied to different rec-
ommendation models across diverse domains
to achieve state-of-the-art performance in multi-
turn recommendation. Human studies show
that systems trained with our framework pro-
vide more useful, helpful, and knowledgeable
suggestions in warm- and cold-start settings.

1 Introduction

Traditional recommender systems often give static
suggestions, affording users no way to meaning-
fully express their preferences and feedback. Con-
versational recommendation allows users to inter-
act with agents and suggestions, increasing their
willingness to trust and accept recommendations
(Qiu and Benbasat, 2009). Techniques for conversa-
tional recommendation are based on the paradigm
of conversation: how an agent can explain their
suggestions and how users can give feedback.
Recent work has explored conversational recom-
mendation through dialog agents trained to suggest
items and ask the user questions in free-form dialog
(Wirnestal, 2005). While such models can generate

Justification =~ Multi-Turn  Transcript-Free
LLC (2020a) X X 4
CE-VAE (2020b) 4 X v
M&M VAE (2021) X 4
Li et al. (2018) X v X
Kang et al. (2019) v v X
Zhou et al. (2020) v v X
Ours 4 v 4

Table 1: Critiquing systems (top) are not equipped for
multi-turn interactions. Dialog agents (bottom) learn
multi-turn behavior via large corpora of domain-specific
transcripts. Our framework allows us to train conversa-
tional recommenders without costly transcript data.

natural-sounding text, they require large training
corpora comprising transcripts from crowd-sourced
recommendation games (Kang et al., 2019). To cre-
ate high-quality training data, crowd-workers must
be knowledgable about many items in the target
domain—this expertise requirement limits data col-
lection to a few common domains like movies. It is
thus difficult to scale dialog-based recommenders
to domains where users have specific preferences
about subjective aspects but no dialog transcripts
exist (e.g. food and literature).

We address this challenge of data scarcity by
proposing a framework for training conversational
recommender systems based on conversational
critiquing and self-supervised bot-play. Rather
than use free-form dialog, many conversational
critiquing systems present users with items and
natural text aspects that justify their suggestions
(Zhou et al., 2020). Users can then critique individ-
ual aspects to guide the next turn’s recommenda-
tions. Our approach reflects this realistic interac-
tive paradigm where the agent suggests items and
explains their suggestions, while the user specifies
their preferences via specific feedback. Our frame-
work does not rely on supervised dialog examples
and can be applied to any setting where product
reviews or opinionated text can be harvested.
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Figure 1: In our conversational recommendation workflow, the system scores candidates and generates a justification
for the top item. If the user critiques an aspect, the system uses the critique to update the latent user representation.

We propose a framework comprising two parts:
First, we learn to jointly recommend items and
generate justifications based on subjective aspects,
leveraging ideas from conversational critiquing sys-
tems (Wu et al., 2019) trained via next-item recom-
mendation. We then fine-tune our model for multi-
turn recommendation via multiple turns of bot-play
in a recommendation game based on natural-text
product reviews and simulated critiques.

Our framework is model-agnostic—we apply
our method to two different underlying recommen-
dation architectures (Sedhain et al., 2016; Rendle
et al., 2009) and evaluate our models on three
large real-world recommendation datasets with
user reviews but no dialog transcripts. Our method
reaches goal items faster and with greater success
than state-of-the-art (SOTA) methods. We conduct
a study with real users, showing that it can effec-
tively help users find desired items in real time,
even in a cold-start setting.

We summarize our main contributions as fol-
lows: 1) We present a framework for training con-
versational recommender systems using bot-play
on historical user reviews, without the need for
large collections of human dialogs; 2) We apply our
framework to two popular recommendation models
(BPR-Bot and PLRec-Bot), with each showing
superior or competitive performance in comparison
to SOTA recommendation and critiquing methods;
3) We demonstrate that our framework can be effec-
tively combined with query refinement techniques
to quickly suggest desired items.

2 Related Work

Justifying Recommendations Users prefer rec-
ommendations that they perceive to be transparent
or justified (Sinha and Swearingen, 2002). Some
early recommender systems presented the same
attributes of suggested items to all users (Vig
et al., 2009). Another line of work attempts to
generate natural language explanations of recom-
mendations. McAuley et al. (2012) mine key as-
pects from textual user reviews via topic extraction.

These aspects of interest can be expanded into full
sentences, constructed via template-filling (Zhang
et al., 2014) or recurrent language models (Ni et al.,
2019). Due to their unstructured nature, however,
sentence-level justifications have not been used for
iteratively refining recommendations. In this work,
we allow the user to provide feedback about spe-
cific aspects mentioned across natural language
product reviews in large recommendation datasets.

Conversational Critiquing Critiquing systems
allow users to incrementally construct preferences,
mimicking how humans refine their preferences
based on conversation context (Tversky and Simon-
son, 1993). Early critiquing methods treated user
feedback as hard constraints to shrink the search
space (Burke et al., 1996). Wu et al. (2019) intro-
duced a critiquing model with justifications com-
prising natural language aspects mined from user
reviews—with which users can then interact. An-
tognini et al. (2020) provide a single-sentence ex-
planation alongside a set of aspects, but require
users to interact only with the aspect set. Luo
et al. (2020b) use a variational auto-encoder (VAE)
(Kingma and Welling, 2014) for joint recommen-
dation and justification, learning a bi-directional
mapping function between latent user and aspect
representations. Current critiquing techniques are
either trained only for next-item recommendation,
or to handle a single turn of critiquing (Antognini
and Faltings, 2021), and struggle to incorporate
feedback in multi-turn settings. We adopt tech-
niques for encoding user feedback from critiquing
systems (Luo et al., 2020a), but we introduce a
multi-step, model-agnostic bot-play method to ex-
plicitly train our models for multi-turn conversa-
tional recommendation.

Dialog Agents for Recommendation We view
recommenders as domain experts who can elicit
preferences from human customers and suggest ap-
propriate items over the course of a session (Burke
et al., 1997). A recent line of work formulates
conversational recommendation as goal-oriented
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Figure 2: User feedback about aspects (c?, ¢') modifies
our prior latent user preference vector 40 to bring it
closer to the target item embedding.

dialog: at each turn, the user is either a) asked if
they prefer a specified aspect; or b) recommended
an item (Christakopoulou et al., 2016; Zhang et al.,
2018). Bot-play has been explored as a way to
train such dialog agents (Li et al., 2018; Kang et al.,
2019), which requires models to be trained and
fine-tuned using existing dialog transcripts. Such
approaches are expensive and limited to domains
where crowd-sourced workers can reliably and ac-
curately play the roles of expert and seeker in
Wizard-of-Oz style data collection (Dahlbick et al.,
1993). By allowing users to critique natural text
aspects of a suggested item, our framework for con-
versational recommendation allows for multi-turn
recommenders that can be trained using only prod-
uct review texts, widening the scope of domains
in which we can train conversational agents. In
Table 1 we compare our approach to recent frame-
works for critiquing and dialog agents for conver-
sational recommendation.

3 Model

Our model comprises (Figure 3): 1) A matrix fac-
torization recommender model M. that embeds
users and items in an h-dimensional latent space; 2)
A justification head Mjy, that predicts the natural
language aspects of an item toward which the user
holds preferences; and 3) A critiquing function f
that modifies a user’s preference embedding based
on aspect-level feedback. We support multi-step
critiquing (Figure 2): at each turn a user may indi-
cate which aspects they dislike about the current
suggestions via a critique c'. The critiquing func-
tion then modifies the latent user representation v,
via the critique to bring it closer to the target item.

3.1 Base Recommender System

Our method can be applied to any recommender
that learns user and item representations. We show
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Figure 3: Given a user, items, and aspect critique vector,
our model encodes the critique Mag(c!,) and fuses it
with the user embedding YMF. The fused user represen-
tation ~, and item representation -y; are then used to
predict the justification and score items.

its effectiveness with two popular methods:

Bayesian Personalized Ranking (BPR) (Rendle
et al., 2009) is a matrix factorization recommender
system that aim to decompose the interaction ma-
trix R € RIVIXI1 into user and item representations
(Koren et al., 2009). BPR optimizes a ranked list
of items given implicit feedback (binary interac-
tions between users and items). Scores are com-
puted via inner product of h-dimensional user and
item embeddings: 2,; = (YMF,yMF). At train-
ing time, the model is given a user u, observed
item ¢ and unobserved item j. We maximize the
likelihood that the user prefers the observed item:
Lr = P(i >, j|O) = 0(ZTy,i — ZTu,j), where o
represents the sigmoid function =

Projected Linear Recommendation (PLRec) is
an SVD-based method to learn low-rank user/item
representations via linear regression (Sedhain et al.,
2016). The PLRec objective minimizes:

arg minz | 7y — r VW 2 +Q(W) (1)
w u

where V is a fixed matrix obtained by taking a
low-rank SVD approximation of R such that R =
UXVT, and W is a learned embedding. We obtain
an h-dimensional embeddings for users (\MF' =
7, V) and items (YMF = W)).

3.2 Generating Justifications

Our justification model (aspect prediction head)
consists of a fully connected network with two h-
dimensional hidden layers predicting a score s, 4
for each natural language aspect a. This model
takes the sum of user and item embeddings as in-
put. At training time, we incorporate an aspect
prediction loss £ 4 by computing the binary cross
entropy (BCE) for each aspect given the likelihood
the user cares about the aspect. At inference time,
we again compute the likelihood for each aspect



Pujia = 0(Su,i,q) and sample from the Bernoulli
distribution with p,, ; , to determine which aspects
a appear in the justification.

3.3 Encoding Aspects

We posit that the user’s latent representation are
partially explained by their written reviews. Thus,
we jointly learn an aspect encoder Mg alongside
our recommendation model. This takes the form
of a linear projection from the aspect space to the
user preference space: Mag(cl,) = W7, + b,
where ¢!, € 7K is the critique vector representing
the strength of a user’s preference for each aspect.
We fuse this aspect encoding with the latent user
embedding from M. to form the final user pref-
erence vector: v, = f(yMF Mag(c,)). For the
BPR-based model, we fuse via summation; for
PLRec, we take the mean. In training, the aspect
encoder takes in the user’s aspect history: ¢, = k¥.

3.4 Training

To train our BPR-based model, we jointly optimize
each component. Each training example comprises
a user and observed / unobserved items. We predict
scores for each item: &, ; = (YMF 4+ Mag(KY), vi).
We first compute the BPR loss (see Section 3.1)
with the predicted observed / unobserved scores.
We add the aspect prediction loss, scaled by a con-
stant Agp to the ranking loss for our training objec-
tive: £ = AgxpLa — Lr. We find empirically that
Akp € {0.5,1.0} works well.

To train our PLRec-based model, we follow
Luo et al. (2020a) and separately optimize M,
Miust, and Mag. The user and item embeddings are
learned via eq. (1). We solve the following linear
regression problem to optimize Mag:

arg 1 rginZ | AMF — Map(KY) |3 +Q(W) (2)

Finally, we optimize the aspect prediction (justifi-
cation) loss £ 4 to train the justification head.

3.5 Critiquing with Our Models

To perform conversational critiquing with a model
trained using our framework, we adapt the latent
critiquing formulation from Luo et al. (2020a), as
shown in Figure 1. At each turn ¢ of a session
for user u, the system assigns scores i‘f” for all
candidate items ¢, and presents the user with the
highest scoring item i. The system also justifies
its prediction with a set of predicted aspects l%j;l
The user may either accept the recommended item

Algorithm 1: Bot play framework for fine-
tuning conversational recommenders.

Recommender and Justifier Mrec, Mjust;
Critique fusion function feric;
Seeker model Meeker;
for each user u do
for goal item g € I (Reviewed Items) do
initialize loss £;
initialize 'y}t from Miec;
for turn ¢t € range(1,T) do
compute scores

ift,,i = Mrec(71tui) Viel,
L~ L+6- L’cE(g,:Etu’i);
recommend item i’ = arg max; @, ;
if i* = g then break with success;
generate justification

kit = Mius (s %3¢)3
Meerer critiques justification: cf,;

’nyJrI — fcm(’yfu CZ);

return fine-tuned agent

(ending the session) or critique an aspect from the
justification: a € {alky o = 1}.

Given a user critique, the system modifies the
predicted scores for each item and presents the user
with a new item and justification:

B = Mec(3,M4) (3)
kLE = My (357, 4) (4)
:YZ—H < fcrit(;ﬁu CZ) (5)

Effectively, a user critique modifies our prior for
the user’s preferences; we then re-rank the items
presented to the user.

At inference time, ¢!, is the cumulative critique
vector, initialized with the user’s aspect history:

t _ t—1
u_cu

c —max(kV, 1) oml; & =k7 (6)

where © is element-wise multiplication. Here the
critique should match the strength of a user’s previ-
ous opinion of the aspect kg . Even if a user has not
mentioned an aspect in their previous reviews, the
max ensures a non-zero effect from each critique.

3.6 Learning to Critique via Bot Play

We propose a framework for critiquing via bot
play that simulates user sessions when provided
just a set of user reviews. We first pre-train our
expert model (recommender, justifier, and aspect
encoder). A seeker model is pre-trained via a sim-
ple prior: provided a target item and justification,
it selects the most popular aspect present in the
justification but not the target’s historical aspects
kil to critique. For each training example (user



Users Items Reviews A A/l  A/U
Books 13,889 7,649 654,975 75 27.0 250
Beer 6,369 4,000 935,524 75 60.2 54.6
Music 5,635 4,352 119,081 80 20.0 16.5

Table 2: Dataset statistics, including avg. unique aspects
mentioned in reviews per item (A/I) and user (A/U).

and a goal item they have reviewed), we allow
the expert and seeker models to converse with the
goal of recommending the goal item. We fine-
tune the expert by maximizing its reward (mini-
mizing loss) in the bot-play game (Algorithm 1).
We end the session after the goal item is recom-
mended or a maximum session length of 7' = 10
turns is reached. We define the expert’s loss as
the cross entropy loss of recommendation scores
per turn: L% = Y151 Lop(g,aY ;) where
§ is a discount factor' to encourage successfully
recommending the goal item at earlier turns, and
Lce(g, :fvf”) is the cross-entropy loss between pre-
dicted scores and the goal item.

4 Experimental Setting

We select hyperparameters for our initial models
via AUC, and for bot-play fine-tuning via the suc-
cess rate at 1 (SR@1) on the validation set. We
train each model once, taking the median of three
evaluation runs per experimental setting. For base-
line models, we re-used the authors’ code. We will
release code upon publication.

Datasets We evaluate our models on three
public real-world recommendation datasets with
100K+ reviews each: Goodreads Fantasy (Books)
(Wan and McAuley, 2018), BeerAdvocate (Beer)
(McAuley et al., 2012), and Amazon CDs & Vinyl
(Music) (McAuley et al., 2015). We keep only re-
views with positive ratings, setting thresholds of
t > 4.0 for Beer and Music and ¢ > 3.5 for Books.
We partition each dataset into 50% training, 20%
validation, and 30% test splits Table 2.

We follow the pipeline of Wu et al. (2019)
to extract subjective aspects from user reviews:
1) Extract high-frequency unigram and bigram
noun- and adjective phrases; 2) Prune bigram
keyphrases using a Pointwise Mutual Information
(PMI) threshold, ensuring aspects are statistically
unlikely to have randomly co-occurred; and 3)
Represent reviews as sparse binary vectors indi-

"We use a discount factor of § = 0.9

cating whether each aspect was expressed in the
review. Aspects describe qualities ranging from
taste for beers (e.g. citrus) and emotions for mu-
sic (e.g. soulful) to perceived character qualities in
books (e.g. strong female).

Multi-Step Critiquing Following prior work on
critiquing (Luo et al., 2020a; Li et al., 2020), we
simulate multi-step recommendation sessions to as-
sess model performance. We simulate user sessions
following Algorithm 1, with two main differences:
(1) We randomly sample user v and their goal item
g from the fest set, and (2) We do not compute loss
or update our model during a session. We set a
maximum session limit of 7' = 10 turns.

To evaluate how our models behave with differ-
ent user behaviors, we simulate each observation
with three different critique selection strategies (Li
et al., 2020): 1) Random: We assume the user ran-
domly chooses an aspect—this assumes no prior
knowledge on the part of the user; 3) Pop: We as-
sume the user selects the most popular aspect used
across all training reviews; and 3) Diff: We assume
the user selects the aspect that deviates most from
the goal item reviews—the aspect with the largest
frequency differential between the goal item and
current item: arg maxa(kg[t W k{m). In all set-
tings, a user may only see an7y single item once and
may only critique each aspect once per session.

Candidate Algorithms Our method can apply to
any base recommender system; here we train bot-
play models based on BPR and PLRec—BPR-Bot
and PLRec-Bot respectively. We assess linear cri-
tiquing baselines that co-embed critique and user
representations (Luo et al., 2020a), where fc is
a weighted sum of the user preference vector 7,
and embeddings for each critiqued aspect. UAC
uniformly averages 7, and all critiqued aspect em-
beddings. BAC averages -, with the average of
critiqued aspect embeddings. LLC-Score learns
weights by maximizing the rating margin between
items containing critiqued aspects and those with-
out. Instead of directly optimizing the scoring mar-
gin, LLC-Rank (Li et al., 2020) minimizes the
number of ranking violations. These models cannot
generate justifications; we binarize the historical
aspect frequency vector for the item (ki ;) as a
justification at each turn. We also comparej against
a SOTA interactive recommender, CE-VAE (Luo
et al., 2020b), which learns a VAE with a bidirec-
tional mapping between critique vectors and the
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Figure 4: Success Rate @ N (% sessions where target
item rank < N) across datasets and user models. BPR-
Bot (brown triangle) and PLRec-Bot (pink circle) out-
perform baselines (dashed) in all settings.

user latent preference space.

5 Experiments

RQ1: Can our framework enable multi-step
critiquing? We measure multi-step critiquing
performance via average success rate (Figure 4)—
the percentage of sessions where the target item
reaches rank N—and session length (Figure 5). As
our bot-play fine-tuning seeker model picks cri-
tiques by popularity, we expect our models to per-
form best in the Pop setting. However, BPR-Bot
and PLRec-Bot succeed faster and at a higher rate
than baselines in all user settings, including random
critiquing with no prior on user behavior. Linear
critiquing models (UAC, BAC, LLC-Score/Rank)
perform poorly on multi-step critiquing compared
to models that can generate justifications. This
suggests that personalized justifications help users
choose more effective aspects to critique.

Our models can also generate personalized justi-
fications that are more helpful for narrowing down
a user’s preferences compared to CE-VAE: BPR-
Bot and PLRec-Bot out-perform the baseline in
all settings. We have thus shown that our bot-
play framework enables the training of multi-turn
conversational recommenders without the need for
costly supervised dialog transcripts.

In general, the large item space makes it difficult
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Figure 5: Avg. # of turns for target item to reach rank
N, across datasets and user models. BPR-Bot (brown
triangle) and PLRec-Bot (pink circle) promote targets
faster than baselines (dashed), especially for low N.

for critiquing models to reach the goal item within
the turn limit, with the best model reaching the goal
item in only 6-15% of sessions. This suggests that
practical conversational recommenders may benefit
from constraint-based filtering as well as an initial
set of user requirements—while users often start a
session with a seed set of reqirements—e.g. in car
buying, whether they want an SUV or coupe (Pu
and Faltings, 2000). We demonstrate in RQ3 that
our model can be combined with constraint-based
query refinement to quickly achieve significantly
higher success rates.

RQ2: Does bot-play specifically improve multi-
step critiquing ability? We next demonstrate
that our bot-play fine-tuning is responsible for gains
in multi-step critiquing performance by comparing
BPR-Bot (left) and PLRec-Bot (right) in Figure 6
against ablated versions that were trained using the
first step of our framework but not fine-tuned via
bot-play. For clarity, we display only results using
the Pop user behavioral model, as we observe the
same trends with the Random and Diff user models.
In domains with relatively high aspect occurrence
across reviews (Books, Beer), bot-play confers a 3-
6% improvement in success rate for various N. This
demonstrates that we can effectively train conver-
sational recommender systems using our bot-play
framework using domains with rich user reviews
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Figure 6: Success Rate @ N (% sessions where target
item rank < N), comparing bot-play (orange) against
non-bot-play ablations (blue). Bot-play improves target
item ranking across datasets compared to the ablation,
for both BPR-Bot (crosses) and PLRec-Bot (circles).

in lieu of crowd-sourced dialog transcripts. In do-
mains with more sparse coverage of subjective as-
pects (i.e. Music), we observe lower improvement
when using bot-play—our model may encounter
insufficient cases of rare aspects being critiqued.
In future work, we will explore adding noise to
our user model to ensure that the bot-play process
encounters more rare aspects.

We confirm that our method is model-agnostic,
as it improves recommendation success rates for
both the matrix factorization-based (BPR) and lin-
ear (PLRec) recommender systems. Models with
a higher latent dimensionality (h € [50,400] for
PLRec-Bot vs. h=10 for BPR-Bot) benefit more
from bot-play, suggesting that our method learns
to effectively navigate complex preference spaces.

RQ3: Can our models be effectively combined
with query refinement? So far, we have as-
sumed that users provide soft feedback: even if
a user has critiqued aspect a during a session, fu-
ture suggested items may still contain aspect a.
This assumption holds for some aspects: for exam-
ple, even if previous users mentioned that a song
was dispassionate, a user may find it emotional and
enjoyable. However, the user may reject the sug-
gestion right after reading reviews. We thus try
treating critiques as hard constraints: users should
not receive items whose reviews mention critiqued
aspects. We compare three models with turn-0
ranked lists of candidate items initialized from
BPR-Bot. The Query baseline model suggests an
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Figure 7: Hit rate by turn for query refinement models
on each dataset with multi-step critiquing up to 10 turns.

item each turn and asks the user if they like aspect
a—the aspect that most evenly divides the remain-
ing candidate items: arg min, ||I;7| — |1, ||. The
Filter model generates a justification for each sug-
gested item that the user can critique. The hybrid
Filter+Re-rank model incorporates our learned
critiquing function to modify the user preference
vector and re-rank the remaining candidate items.
We conduct user simulations with the Pop user
model and plot the hit rate by turn—rate of achiev-
ing the goal item g at or before turn {—in Figure 7.

While binary queries guarantee targets will even-
tually be found, the queried aspect may be unre-
lated to suggested items. Models that allow users to
critique justifications reach high success rates much
faster than binary querying in the first 6-10 turns.
Re-ranking after filtering improves performance
across domains, suggesting that we have learned
how user critiques relate to their latent preferences
for other aspects.

For the Beer and Books domains, the filtering ap-
proach reaches higher success rates compared to bi-
nary querying within the session turn limit (70.7%
vs. 69.7% and 57.0% vs. 55.2%, respectively). We
see less of a benefit in the Music domain. Aspect
sparsity may play a role: per Table 2, only 25%
of possible aspects are expressed for the average
item. Music also contains a longer tail of rare (ex-
pressed only for a few items) aspects compared
to Books and Beer—as such, user critiques prune
fewer items on average.

Our bot-play framework can be easily adapted
to train models incorporating hard critiquing con-
straints by pruning candidate items. One possible
extension involves masking the fine-tuning loss to
only adjust the scores of non-pruned items, set-
ting pruned item scores to a large negative value:
&y, = —1elb Vi € I, We also wish to explore
fine-tuning with a ranking loss during bot-play, to
encourage the model to rank items containing a
critiqued aspect i € I below those without.



BPR-Bot Useful Informative Knowledgeable Adaptive
Vs W L W L w L W L
Ablation 78 10 73 11 68 15 8 5
CE-VAE 83 9 74 10 63 16 81 8
PLRec-Bot Useful Informative Knowledgeable Adaptive
Vs W L W L w L W L
Ablation 8 5 78 7 74 8 81 9
CE-VAE 87 7 1 11 77 12 83 10

Table 3: Session-level human evaluation via ACUTE-
EVAL. W/L percentages are reported while ties are not.
All results statistically significant with p < 0.05.

6 Human Study

Human Evaluation Following Li et al. (2019),
we conduct a comparative evaluation of 100 sim-
ulated user sessions on four criteria: which agent
seems more useful, informative, knowledgeable
and adaptive. We compare each bot-play model
(BPR-Bot and PLRec-Bot) against an ablative ver-
sion (with no bot-play) and the best baseline (CE-
VAE). Each sample is evaluated by three annotators.
We observe substantial inter-annotator agreement,
with Fleiss x (Fleiss and Cohen, 1973) of 0.67,
0.79, 0.73, and 0.60 for the usefulness, informa-
tiveness, knowledgeable, and adaptiveness criteria,
respectively. Scores are shown in Table 3.

BPR-Bot and PLRec-Bot are judged to be signif-
icantly more informative and knowledgeable than
ablative models and CE-VAE, showing that our
justification module accurately presents important
aspects of each suggestion. The usefulness and
adaptiveness criteria capture how models help the
user achieve their end goal (i.e. finding the most
relevant item in as few turns as possible). Bot-
play models are judged to be more useful than
alternatives and follow critiques more consistently
when adapting their recommendations. Our frame-
work allows us to train conversational agents that
are useful and engaging for human users: evalu-
ators overwhelmingly judged the models trained
via bot-play to be more useful, informative, knowl-
edgeable, and adaptive compared to CE-VAE and
ablated variants.

Cold-Start User Study We conduct a user study
using the Books dataset to evaluate if our model is a
useful real-time conversational recommender. We
recruited 64 human users—half interacting with
BPR-Bot and half with the ablation (no bot-play).
We initialize each session with the mean of all
learned user embeddings. At each turn, the user

| Useful  Informative Adaptive | Like
NoBot | 0.67£0.24  0.75+0.21 0.64+0.27 | 41%
Ours 0.79+0.24  0.88+0.18 0.78+0.23 | 69%

Table 4: Turn- and session-level feedback from cold-
start user study. Statistically significant results in bold.

sees the three top-ranked items with justifications
(aspects) and can critique multiple aspects. On
average, users critiqued two aspects per turn.

At each turn, we again ask users if the gener-
ated jutifications are informative, useful in help-
ing to make a decision, and whether our system
adapted its suggestions in response to the user’s
feedback. We provide four options for each ques-
tion: no/weak-no/weak-yes/yes, mapping these val-
ues to a score between 0 and 1 (Kayser et al., 2021),
with normalized aggregated scores for each ques-
tion in Table 4. BPR-Bot significantly out-scores
the ablation in all three metrics (p < 0.01), show-
ing that fine-tuning via our bot-play framework
instills a stronger ability to respond to critiques and
provide meaningful justifications—even for unseen
users. At the end of a session, we additionally
ask the user how frequently (if at all) they would
choose to engage with our interactive agent in their
daily life. Users preferred BPR-Bot by significant
margins—69% indicated they would “often” or “al-
ways” use BPR-Bot to find books compared to 41%
for the ablation.

7 Conclusion

In this work we develop conversational recom-
menders that can engage with users over multi-
ple turns, justifying suggestions and incorporating
feedback about item aspects. We present a model-
agnostic framework for training conversational rec-
ommenders in this modality via self-supervised
bot-play in any domain with only review data. We
use two popular underlying recommender systems
to train the BPR-Bot and PLRec-Bot agents us-
ing our framework, showing quantitatively on three
datasets that our models 1) offer superior multi-
turn recommendation performance compared to
current SOTA methods; 2) can be effectively com-
bined with query refinement to quickly converge
on suitable items; and 3) can effectively refine sug-
gestions in real-time, as shown in user studies. In
future work, we aim to adapt our framework to nat-
ural language critiques (i.e. utterances), allowing
users to more flexibly express feedback.
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A Additional Experimental Details

All experiments were conducted on a machine with
a 2.2GHz 40-core CPU, 132GB memory and one
RTX 2080Ti GPU. We use PyTorch version 1.4.0
and optimize our models using the Rectified Adam
(Liu et al., 2020) optimizer. Best hyperparam-
eters for each base recommender system model
are shown in Table 6. We perform hyperparame-
ter search over a coarse sweep of: h € [2,500],
LR € [le—5,1e—2], A € [le—5, 1e —2]. Model
parameter sizes are a function of the hidden dimen-
sionality i and number of items || and users |U
and is dominated by h - (|I| + |U]).

As mentioned in Section 4, we re-use the authors’
publicly code with relevant citations following in-
tended usage (academic research). This includes
usage of the NLTK package? to extract unigrams
and bigrams from natural text reviews. We will
release our code under the MIT license.’

All code and reviews in this dataset are in En-
glish. We hope to extend our work to identify re-
lated aspects in multi-lingual reviews in the future.

’

B Time Complexity

In Table 5, we report the mean and standard error of
time taken per turn for LLC-Score, CE-VAE, BPR-
Bot, and PLRec-Bot. As baseline code does not
leverage the GPU, we also critique with PLRec-Bot
and BPR-Bot on the CPU only. We observe LLC-
Score and PLRec-Bot to be an order of magnitude
slower per critiquing cycle compared to CE-VAE
and BPR-Bot. BPR-Bot shows acceptable latency
for real-world applications (sub-10 ms), and we ob-
serve empirically in our cold-start user study that
we can host BPR-Bot as a real-time recommenda-
tion service. Time trials were conducted with batch
size of 1; production throughput can be improved
further with parallel processing. Each model exe-
cutes using a different framework (numpy for LLC-
Score, Tensorflow for CE-VAE, and Pytorch
for PLRec-Bot/BPR-Bot), which may contribute to
differences in inference speed.

C Human Evaluation

The datasets we used have been processed to re-
move offensive words and phrases before present-
ing them to human evaluators and users. We per-
form our human evaluation via the Amazon Me-

2https ://www.nltk.org/
3https://opensource.org/licenses/MIT
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chanical Turk (MTurk) platform, recruiting crowd-
workers with a historical 99% acceptance rate on
their work to ensure quality, and no other limi-
tations. Crowd-workers were paid in excess of
Federal minimum wage in the United States given
the average time taken to complete an evaluation.
Participants in the user study were recruited from
Universities in the United States.

Users in both our user evaluation and user study
were permitted to exit the task at any time and
have their interactions wiped from the project. We
do not collect biometrics or personally identifiable
information (PII) from users in our user study, and
users were informed that this study was part of an
academic research project and may be published.

An image of the interface presented to crowd-
workers in our human evaluation is shown in Fig-
ure 8. For the human evaluation, we presented
two user simulation traces from different models
(e.g. PLRec-Bot and CE-VAE) in a random order,
then ask users to decided which of the two models
is more useful, which is more informative, which is
more knowledgeable, and which is more adaptive.
Each user simulation trace is for the same user and
target item, to be able to fairly compare models.

An image of the interface used for our cold-start
user study is shown in Figure 9.

D Risks

As we aim to train conversational multi-turn rec-
ommendation agents, the primary risks of our ap-
proach lie in taking too long to present a user with
good items or suggesting items they dislike. This
risk is not unique to our approach and to some
extent depends on the target domain (e.g. users
may hold stronger opinions about food than they
do computer hardware). One risk surface is the
natural language aspects (and product names) that
we surface to users as part of our recommend-and-
justify approach. These could theoretically contain
offensive or uncomfortable phrasing, but this risk
can be minimized by a human-in-the-loop review
of the aspect extraction process (e.g. blacklisting
certain extracted aspects) or by applying toxic text
detection to filter user reviews as a pre-processing
step.
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Instructions (Click to collapse)

This task requires basic English language understanding.

For each model, you will have to read the full conversation between a user and an agent. We expect you to compare the two alternatives on being:
1) Useful: Which model is more useful in catering to what user wishes.

2) Informative: Which model is more informative to help the user.

3) Knowledgable: Which model is more knowledgable to provide more diverse but relevant knowledge for the user's wish.

4) Adaptive: Which model is more adaptive to modify its recommendation based on user's response.

Model A

Dialog History:

User: | want a fantasy movie.

|Agent: You might like The Eye of the World. It has fantasy and politics.
User: | don't like politics.

|Agent: You might like The Hobbit. It has fantasy and magic.

Model B

Dialog History:

User: | want a fantasy movie.

|Agent: You might like The Eye of the World. It has fantasy and politics.
User: | don't like politics.

|Agent: You might like The Harry Potter Series. It has strategy and magic.

1.1 Which model do you feel is more useful?
O Model A is better O Both are similarly useful O Model A is worse

Figure 8: User interface for user evaluation, with two placeholder conversations. Users are asked which of the two
models (presented in random order) is more useful, informative, knowledgeable, and adaptive.

LLC-Score CE-VAE BPR-Bot PLRec-Bot

Books 40.64 2046 4.61+1.16 2701395 48.84 + 14.08
Beer 1594 £1452 326£1.18 254 £236 49.43 £ 14.81
Music 4221 £21.04 336+ 137 2.2540.62 6.80 £7.53

Table 5: Mean and standard error of wall-clock time (ms) per turn of critiquing for linear (LLC-Score) and variational
(CE-VAE) baselines vs. our models (BPR-Bot, BPR-PLRec)

Dataset Model h LR ALz kP Ae B Epoch  Dropout
Books  BPR 10 0.001 0.01 0.5 - - 200 -
PLRec 50 - 80 - - - 10 -
CE-VAE 100 0.0001 0.0001 0.01 0.01 0.001 300 0.5
Beer BPR 10 0.001 0.01 0.5 - - 200 -
PLRec 50 - 80 - - - 10 -
CE-VAE 100 0.0001 0.0001 0.01 0.01 0.001 300 0.5
Music BPR 10 0.01 0.1 1.0 - - 200 -
PLRec 400 1000 10 -

CE-VAE 200 0.0001 0.0001 0.001 0.001 0.0001 600 0.5

Table 6: Best hyperparameter settings for each base recommendation model. UAC, BAC, LLC-Score, LLC-Rank
models use PLRec as a base model. BPR-Bot uses BPR as a base model.
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You might want to read

You might want to read

You might want to read

City of Ashes. Obsidian. Clockwork Prince.
Readers said this book contains: Readers said this book contains: Readers said this book contains:

« Action « Action « Action

« Adventure « Adventure « Adventure

« Battle « Emotional « Emotional

« Emotional « Funny « Funny

« Funny « Heroine « Heroine

« Magic « Mystery « Magic

« Mystery « Realistic « Mystery

« Realistic « Sad « Realistic

« Sad . Sex « Sad

« Slow « Slow « Slow

System Turn Feedback

Is the system well-informed about
the recommended items?

Does the information help you
decide what book to read?

Has your last piece of feedback
been taken into account?

O Yes O Yes ® Yes

@® Weak Yes ® Weak Yes O Weak Yes
O Weak No O Weak No O weak No
O No O No O No

End Conversation

Figure 9: User interface for user study, with turn-level feedback prompts and an example of a critiqued aspect
(“Battle")
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