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Abstract:
Intelligent driving assistance can alert drivers to objects in their environment; how-
ever, such systems require a model of drivers’ situational awareness (SA) (what
aspects of the scene they are already aware of) to avoid unnecessary alerts. More-
over, collecting the data to train such an SA model is challenging: being an inter-
nal human cognitive state, driver SA is difficult to measure, and non-verbal signals
such as eye gaze are some of the only outward manifestations of it. Traditional
methods to obtain SA labels rely on probes that result in sparse, intermittent SA
labels unsuitable for modeling a dense, temporally correlated process via machine
learning. We propose a novel interactive labeling protocol that captures dense,
continuous SA labels and use it to collect an object-level SA dataset in a VR driv-
ing simulator. Our dataset comprises 20 unique drivers’ SA labels, driving data,
and gaze (over 320 minutes of driving) which will be made public. Additionally,
we train an SA model from this data, formulating the object-level driver SA pre-
diction problem as a semantic segmentation problem. Our formulation allows all
objects in a scene at a timestep to be processed simultaneously, leveraging global
scene context and local gaze-object relationships together. Our experiments show
that this formulation leads to improved performance over common sense baselines
and prior art on the SA prediction task.
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1 Introduction

Future Advanced Driving Assistance Systems (ADAS) might include driver assistance systems that
warn users about objects in their environment that they should pay attention to. Imagine a system
that runs on your intelligent vehicle while you drive, tracking important traffic objects like vehicles
and pedestrians [1]. Such a system could conceivably warn you about objects that are likely to be
in your path or are otherwise dangerous, improving safety for everyone on the road. However, you
are not very likely to adopt such a system if it alerts you about every object on the road regardless of
your awareness of it — a well documented phenomenon known as “alert fatigue” [2]. To address
this gap, we tackle the real-time object-level modeling of drivers’ Situational Awareness (SA) [3],
specifically the set of traffic objects (vehicles, pedestrians, and two-wheelers) in the world that the
driver is aware of at any given time.

Drivers’ eye gaze is closely linked to their situational awareness [4, 5, 6]. However, inferring situa-
tional awareness from eye gaze is not as simple as just counting gazed-at objects, since we regularly
use our peripheral vision and memory to build and maintain situational awareness while driving [4].

Our code and dataset are available at https://HARPLab.github.io//DriverSA
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Figure 1: We collect drivers’ object-level situational awareness (SA) data via a novel interactive
protocol in a VR driving simulator. We use the generated data to train a driver SA predictor from
visual scene context and driver eye gaze. Casting this as a semantic segmentation problem allows
our model to use global scene context and local gaze-object relationships together, processing the
whole scene at once regardless of the number of objects present.

Additionally, drivers can ostensibly “gaze” at objects without gaining situational awareness of them,
due to effects like inattentional blindness or saccading over objects without fixating on them [7].

Thus, we aim to learn a supervised model for predicting a driver’s situational awareness from their
eye gaze and the scene context. However, training such a model requires a driving dataset with
explicitly labeled drivers’ object-level situation awareness. This dataset should be a collection of
sequences of driving events comprising the scene context, the driver eye gaze history over the scene,
and labels of the drivers’ situational awareness over each traffic object.

To be useful for machine learning and the downstream assistance tasks, there are a few key desiderata
for these awareness labels: 1. Labels should explicitly denote the start of the drivers’ awareness over
each object and hence be continuous. This is important since the transition of driver awareness is
crucial for determining when it is appropriate to alert the driver to the object. 2. Labels should be
dense over the set of traffic objects, i.e. we want a label for every traffic object that enters the driver’s
field of view. 3. Labels should be collected in a way that does not affect the normal gaze behavior
of the driver to avoid distribution shift between training and deployment gaze behavior.

Obtaining object-level awareness labels with all the aforementioned properties simultaneously is
challenging for a few reasons. Most current SA labeling efforts collect data either intermittently
or sparsely [8, 9, 10, 11, 12]. For instance, the common Situation Awareness Global Assessment
Technique (SAGAT) [13, 6] involves freezing and blanking the screen during occasional pauses in
simulated driving, followed by probing the driver about traffic objects present in the scene. These
collected labels are intermittent — they are valid for the moment when the simulation was paused,
but do not tell us when a driver first becomes aware of an object. Furthermore, these labels are
sparse, as the driver is only probed about objects within certain parts of the scene.

In this work, we introduce a novel SA labeling protocol (Sec. 3) that produces continuous and dense
object-level SA labels. As a part of our protocol, drivers indicate their awareness of all objects in
their field-of-view, by pressing directional buttons on the steering wheel controller (Fig. 1). We
collect a dataset of 80 episodes using our protocol. In each episode, drivers are instructed to drive to
an in-world goal inside a VR driving simulator [14] while following the SA labeling protocol. We
record their driving actions, eye gaze, and SA labeling button presses along with the simulator state.
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Further, we use the aforementioned dataset to learn a model that predicts a drivers’ object-level SA
status given the scene context and a history of the driver’s eye gaze (Sec. 4). We cast this problem
as a semantic segmentation problem and show that it performs better than a common-sense gaze-
intersection baseline and prior work that uses handcrafted features [6]. Our formulation allows us to
process a variable number of objects in the scene in a single inference step as opposed to prior work
which processes each object in a scene separately, repeating global computations.

In summary, our contributions (Fig. 1) are the following:

- SA Labeling Protocol: an interactive protocol for obtaining continuous and dense SA labels
for on-road agents in a driving scene, without disrupting the driving task

- SA Data Collection: a driving dataset with continuous object-level SA labels, traffic object
states, and driver eye gaze collected using our protocol in a VR driving simulator with 20
drivers

- SA Prediction Model: a learned gaze-based driver situational awareness model which predicts
SA over the scene on an object-level basis

Our code and dataset will be released publicly upon acceptance.

2 Related Work
Measuring Situational Awareness: Determining a driver’s internal awareness of the environment
and traffic objects (vehicles, two-wheelers and pedestrians) is challenging due to our use of periph-
eral vision and behaviors like intentional blindness or saccading [15]. Prior approaches for extracting
information about a driver’s internal awareness involve collecting data intermittently or sparsely. An
example of this is the Situation Awareness Global Assessment Technique (SAGAT), used by prior
work to collect dense object-level SA labels from drivers [6]. This involved periodically pausing
the simulated driving scenario, blanking the screen, and then asking the driver a series of ques-
tions about their awareness of individual objects in the scene. Another approach, called Daze [16],
mitigates some SAGAT issues by posing real-time queries about recent events without pausing the
simulation. However, it does not yield dense object-level labels and requires looking away from
the driving scene to answer affecting natural eye-gaze behavior. An influential indirect technique
is the Situation Present Assessment Method (SPAM) [9], which uses real-time verbal probes about
past, present, and future situations to indirectly measure SA based on response accuracy and latency.
SPAM importantly also uses response times as an index of how readily this information is available.
For our requirements, verbal queries have the same label sparsity issue as Daze as well as requiring
manual post-processing to get machine readable annotations from verbal responses.

Driver Situational Awareness Models: Using eye gaze to infer driver attention and awareness are
not new ideas, with preliminary studies having been around since at least the 1906s [17]. However,
using these signals together with outward scene context for driver assistance is a relatively new
area enabled by advances in sensor quality, form factors, and onboard computation —with the first
papers appearing in the late-2000s [18]. Initial work used signals such as gaze direction in discrete
traffic-facing zones as a crude proxy for driver attention to determine if traffic objects were causing
distracted gaze. More recently, the paradigm has been to match driver gaze to objects in the traffic
scene to determine whether the driver has noticed them and raise an alert when necessary [15].

We will focus our discussion on the process of matching gaze to traffic objects to determine which
ones the driver is aware of. A naive solution is to simply count objects whose bounding boxes
contain driver gaze points [19]. However objects can be perceived without being directly gazed at
and 3D gaze direction estimation can have errors [20]. More recently, hand-designed feature based
learning methods have emerged [13] that predict the driver’s attention given a history of their gaze
relative to traffic objects. Some such methods even account for concepts of working memory from
psychology [6]. However, evaluating these methods against one another is challenging. Some of
these methods were evaluated qualitatively without any objective ground truth being present (SA
ground truth is hard to collect as discussed in the previous section) [21]. Other methods have only
been evaluated offline and on data collected using SAGAT, meaning they are evaluated on singular
snapshots rather than a stream of driving data [13, 6] which prevents important aspects like aware-
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Figure 2: Example sequence of right hand turn with object-level driver responses. The top row
shows the scene from the driver view and the bottom row shows the same scene via a birds-eye
view. Labels are shown as colored arrows above the respective traffic object. Labels correspond to
buttons on the steering wheel (right). Blue corresponds to vehicle labels and red to pedestrian labels.

ness transition points to be represented in the data. Their data and models are also not publicly
available, making comparative evaluation difficult. To help mitigate this issue for future research,
we will release our continuously-labeled SA dataset publicly.

3 Situational Awareness Data Collection
We collected our driver object-level SA dataset in a VR driving simulator (DReyeVR [14]). Drivers
were asked to drive safely following a series of directional goal signs (see RGB image in Fig. 1)
along scripted routes. The drives were instructed to simultaneously follow the SA labeling protocol
to record object-level SA labels.

Situational Awareness Labeling Protocol: Under our proposed SA labeling protocol, drivers are
instructed to push a button on their steering wheel as soon as they perceive a vehicle, pedestrian,
or two-wheeler (collectively, traffic objects). For each new traffic object they perceive, they are
instructed to press one of four buttons to indicate their awareness (see Fig. 2). The button to be
pressed is determined by the relative position of the target object to the ego-vehicle. For instance, if
there is an object in front of the vehicle, the forward button should be pressed. The steering wheel
used has two sets of four buttons; the set of buttons on the left is used for vehicles and the right one
is used for 2-wheelers+pedestrians. An example sequence of traffic objects and their corresponding
button presses is shown in Fig. 2.

The awareness labels are generated by associating button clicks with target objects. The direction
is used to associate button presses with target objects. An object in a scene is considered ‘unaware’
until it is associated with a button press, after which it’s status is flipped to ‘aware’. More details
about how the awareness labels are generated can be found in the supplementary material.

Route & traffic design: Each route consists of a predefined source, destination, and path. Each
route also contains in-world navigational goal signs to direct the drivers along the path. Routes were
designed to have an average drive time of about 4 minutes. Each route was driven by a maximum of
8 drivers and a minimum of 4 drivers and there were a total of 15 unique routes. Participants were
pre-assigned routes so each route would be seen equally but some chose to terminate early due to
VR-induced nausea, causing an imbalance in the final number of routes.

At least one safety critical scenario such as a jaywalking pedestrian was included in each route. We
did so to ensure that driver gaze before and during safety critical scenarios was also represented in the
dataset. More details on the scenarios can be found in the supplementary material. The traffic along
each route was randomly generated. However, multiple objects appearing in the scene from any
single direction could lead to ambiguities in associating objects with button clicks. Hence, we limit
the number of new objects of each type appearing simultaneously at intersections in each direction
to one. Note that having different sets of buttons for vehicles and pedestrians(+two wheelers) allows
us to disambiguate between object types appearing in the same direction.
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Figure 3: Object-wise SA prediction algorithm. A history of raw driver gaze is filtered to exclude
saccades and then transformed to 2D pixels in the current camera position. These are used to create
a gaze history map which is input together with an object segmentation of the scene (or optionally,
RGB). The Feature Pyramid Network (FPN) then produces a 3 class segmentation (unaware, aware,
background). During training, loss is ignored for objects which entered into the driver awareness
prior to the gaze history window.

Data collection details: We ran our SA protocol with 20 participants, each with 1+ year of holding
a valid US or international driver’s license. Each participant was given a set of scripted instructions
and were first given time to interact and familiarize themselves with the interface and the simulator.
Once they were comfortable with driving in the simulator, they were introduced to the secondary
labeling task and asked to perform it while completing a trial route. Participants saw a maximum
5 non-trial routes each, but some participants did not complete all 5 routes due to the onset of
discomfort from VR cybersickness. We collected a total of 80 routes worth of data which resulted
in about 340 minutes of recorded driving time. The data collection was approved by the university’s
IRB. Some additional details about the data collection are provided in the supplementary material.

4 Modeling Driver SA
In modeling driver situational awareness, our goal is to predict a driver’s awareness status over all
dynamic traffic objects in the scene at a given time using scene information in conjuction with the
driver’s gaze. Specifically, for any given traffic object obj, we would like to produce a prediction of
the binary awareness status Aobj where Aobj ∈ {aware, unaware}.

Problem formulation: We cast the problem of driver SA modeling as a segmentation problem,
where the input is a visual representation of the scene in front of the user and the user’s gaze, and
the output is a prediction of the objects in the scene that the driver is aware of.

The scene is represented by a binary object mask indicating the location of objects in the scene (see
“Visual scene representation” below for details); the user’s eye-gaze history is input as an additional
channel in the same spatial coordinates (see “Gaze history map” in Figure 3). Under our formulation,
each timestep t represents a data point where the observations are an object mask of the scene and a
gaze map: Ot = (Iobjt ∈ R600×800, Igazet ∈ R600×800). The output of our model is a segmentation
map with 3 classes: aware, unaware, & background. Object-level awareness labels are then derived
from the output segmentation by taking the mode class of the pixels corresponding to each object
while ignoring the background class, giving us Aobj for each object that is visible in Ot.

Alternative formulations could see this posed as a classification problem, where each object is a data
point and the neural network is trained to predict a single object-level awareness label instead. In
contrast, our formulation requires one forward pass per timestep, rather than once per target object
in a timestep. This avoids repeated computations since the objects share their global context.
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Gaze representation: The gaze history map Igazet is obtained from a sequence of 3D gaze over a
historical window of length W seconds. If we sample gaze at a rate of s Hz over this window, we
obtain Ng = s × W samples of gaze. Each gaze sample is a 3D ray Gi pointing in the direction
of the driver’s gaze, which we project into the camera coordinates to convert to a 2D pixel location.
The 3D point on this ray we project into 2D is the first point of intersection with the world while
ignoring the ego vehicle mesh (since the ego-vehicle windshield is not the point of interest). We
transform the gaze into 2D pixel coordinates gi = MtGi ∀ i ∈ {1, 2, ..., Ng}, where Mt represents
a transform from world coordinates to the coordinates of the camera used at timestep t. Note that this
transformation accounts for the current pose of the ego-vehicle at time t such that the historical 3D
gaze points are transformed into pixels corresponding to their location at that previous timestep. This
means that sometimes older gaze points are out of the frame due to the traffic object’s subsequent
motion. In our experiments, we use a gaze window of W = 10 s.

Gaze pixel locations are represented as a fixed size dot (see “Gaze history map” in Figure 3). We
also perform an ablation with a heatmap-based representation as is common with other literature
(e.g. [22]) but found this to perform worse (see Sec. 5). To include a sense of temporality in the
gaze, we fade the value of the gaze dot linearly from 255 to 10 across the window so that the most
recent gaze dots are the brightest. Additionally, since drivers cannot gain new awareness during gaze
saccades (see saccadic suppression, Ch 2. [23]), we perform gaze event detection using the I-BMM
classifier [24] and exclude saccades from the gaze map.

We also use an additional “ignore mask” to zero out losses from traffic objects that entered the user’s
awareness more than W seconds ago. Consider a vehicle that entered the user’s awareness 15 s prior
to the current timestep. If we use a history window W = 10 s, the driver gaze correlated with
awareness of that vehicle is no longer represented, though the vehicle is still labeled as aware. If we
penalize the network during training for mis-classifying that object, we are penalizing a prediction
for which the network has incomplete information.

Visual scene representation: The visual scene representation uses a binary object mask to represent
the scene; the mask indicates the location of relevant dynamic traffic objects: vehicles, pedestrians,
and two-wheelers. We choose to use a fixed size (600×800) image representation from a viewpoint
in front of the ego-vehicle to control the scope of experiments. However, due to our formulation as
a segmentation problem, our model can deal with arbitrarily sized inputs. This can be useful, for
instance, when using wider aspect ratio visual inputs to represent the wide field of view that human
drivers naturally have. The binary object mask was obtained directly from CARLA, but could be
replaced by any off-the-shelf vehicle/pedestrian segmentation algorithm.

Model and training details: We used a Feature Pyramid Network [25] segmentation model with
a MobileNetV2 [26] backbone (pre-trained on ImageNet). The backbone was chosen for its low
number of parameters (2M ) and runtime efficiency. While our dataset contained a similar number
of aware to unaware objects, unaware objects usually were further from the ego-vehicle and occu-
pied much smaller portions of the input images. We calculated the ratio of the unaware pixels to
aware pixels in the label masks as about 1:20 and used an unaware class weight of 20 (background
weight=10−5). We trained with the Dice loss due to its ability to handle class imbalanced data [27].

5 Evaluation & Discussion

Baselines: We compare our method to three baselines: the majority class, a common-sense gaze
intersection baseline, and a prior art baseline using handcrafted features. The “majority class”
baseline simply predicts the majority class in the test set (“unaware”: 53% share). The “gaze inter-
section” baseline performs a simple check: if the driver’s gaze is within the segmentation mask of a
traffic object (vehicle, pedestrian, or 2-wheeler) in the past T seconds, it assigns the aware label to
it (others assigned unaware). We use T = 10, matching the other baselines.

The prior art baseline (“handcrafted features”) is an SVM model that takes several handcrafted
features as input and produces a binary label output [6]. We re-implemented their model based on
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Model inf. Acc. Prec. Recall
cmplx. (↑) (↑) (↑)

Majority
class 1 52.99% 0.53 1

Gaze
intersection 1 46.87% 0.41 0.54

Handcrafted
features [6] N 65.47% 0.66 0.69

Ours 1 72.33% 0.73 0.77

(a) Performance of our model & baselines

Model Ablation Acc. Prec. Recall

No ignore mask 69.04% 0.80 0.58
Raw gaze 66.67% 0.76 0.57
Gaze heatmap 69.30% 0.77 0.62
No gaze fading 69.73% 0.76 0.66
Gaze 20s hist. 69.27% 0.78 0.57
Gaze 5s hist. 64.79% 0.68 0.68
RGB 54.31% 0.71 0.29

Ours (Full) 72.21% 0.73 0.77

(b) Ablations for our model

Table 1: Prediction performance of models and baselines on the SA prediction task. Our model out-
performs the non-trivial baselines on all 3 metrics and scales better as objects in the scene increase.
[inf. cpmlx. = inference time complexity with N objects, Acc. = Accuracy, Prec. = Precision]

the paper description (authors’ code or data were not publicly available). The original work lists
5 sets of features, computed across a 10s analysis window (similar to the gaze history window in
our method): Gaze point-based, Human visual sensory dependent, Object spatial-based, Object
property-based, and Human short-term memory-based. We implemented the first 3 of these feature
sets and the object type feature (vehicle vs pedestrian) from the “Object property-based” set. Most
of the “Object property-based” features were excluded since they were difficult to compute and
required privileged scene information (e.g. one feature required the state of the corresponding traffic
light for every traffic object in scene; another was manually annotated). Human short-term memory-
based features were also excluded since they were difficult to compute and did not contribute much
(< 1% point) to overall performance in the original evaluation [6]. The original SVM was trained
on 1078 training samples. Since neither the trained model nor code were available, we trained our
implementation of the SVM on a subset of our training data. We trained the SVM on 10 episodes in
our train set, which is about 3× the training data used in the original work. SVM implementations
generally cannot handle very large datasets since the entire dataset is loaded into memory during
training and mini-batch SVM training is non-trivial. To train the SVM, we used a machine with
128GB RAM but could only use 15% of the training set.

Experimental settings: Our dataset contains 80 episodes of which we used 64 (80%) for training.
10% of the training episodes were used as the validation set. The test set was a separately held out
set of 16 episodes. It was partitioned so that participants were disjoint between the train and test set.
This is important since we want to test the generalization to new users; it would be impractical to
put every new driver through the SA protocol when deploying such a system.

We use 3 metrics to evaluate and compare methods: object-level accuracy, precision, and recall.
For precision and recall, the positive class is the “unaware” class. This is because downstream
applications such as driver assistance systems which alert the driver will care about how well our
system can predict which traffic objects the driver is not aware of. “Precision” is thus a measure
of how often our prediction of an object being unaware is correct — errors are “aware” objects
classified as “unaware.” This type of error can lead to alert fatigue for an end-user [2]. “Recall,” on
the other hand, indicates how many of the “unaware” objects in the dataset were correctly predicted
— these are objects that the driver wasn’t aware of but our system predicted that they were.

Results & Discussion Our quantitative evaluation results can be found in Table 1. The naive gaze-
intersection baseline, as expected, performs the worst, confirming that it is not enough to simply
count which objects were “gazed-at”. The prior art handcrafted features baseline performs better
but significantly worse than our method. In terms of runtime, the prior art baseline has 2 expensive
parts: computing features per object and doing SVM inference (this can be batched across objects).
On average each part takes 5 ms, resulting in a total average runtime of (5N + 5)ms on an AMD
5955WX CPU (for N objects in scene). In contrast, our network takes 11ms total for a forward pass
(on a 4090 GPU) and does not scale with the number of scene objects. Some qualitative comparisons
of model outputs can be seen in Fig. 4.
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Figure 4: Qualitative results for our model and baselines. Each row represents an independent
driving scene. The RGB image shows the most recent 10s of gaze overlaid as red dots.

Our ablations (Table 1, right) show the performance impact of several design choices described in
Sec. 4. In terms of gaze representation, the ignore mask (used to avoid penalizing mispredictions
of awareness transitions outside the gaze history window) was the most important during training
— responsible for an 8% accuracy drop when removed. Using saccade filtered gaze instead of raw
gaze was the next most important. We also investigated the use of gaze heatmaps as the gaze repre-
sentation similar to previous work [22, 28], in which each gaze point is represented by an isometric
2D Gaussian that could accumulate in weight at fixations; this performed about 3% worse than us-
ing fixed sized dots. This is similar to the issue of representing corrective clicks in an interactive
segmentation task, where a similar result has been found [29]. The results indicate that the use of
gaze fading was only responsible for about 2% of the model’s performance. This suggests that the
presence and location of a gaze point within the gaze history window contains most of the informa-
tion about awareness rather than the exact temporal order of the gaze. Finally, using an RGB image
as input resulted in 20% worse accuracy with the same model size (except the initial layer), as the
model now has to simultaneously perform segmentation and SA modeling.

Limitations: Our proposed SA labeling protocol is mainly limited by the fact that some traffic
configurations can lead to ambiguity in assigning a button — whenever there is more than one
new object of the same type (vehicle or pedestrian) from the same cardinal direction relative to the
driver. We created an interface for manual annotation to resolve ambiguities post-hoc. The biggest
limitation of our model is its static, memoryless nature. Since SA is inherently a temporal signal,
improvements can probably be achieved by performing temporal modeling. Currently, our method
treats each timestep as independent and would require an external module to implement memory.

6 Conclusion & Future Work
We proposed a new interactive protocol to record human drivers’ object-level situational awareness
that produces continuous and dense awareness labels. We use it to record a SA dataset with 20
drivers in a VR driving simulator. Additionally, we use this dataset to train a driver object-level SA
model by casting it as a semantic segmentation problem. Our model outperforms baselines and prior
work while scaling better to arbitrary numbers of objects in the scene. In the future, we plan to use
our driver SA model in the inner loop of a driver assistance system that provides intelligent alerts or
interventions in safety-critical situations and evaluate this in a simulator-based user study. We also
commit to releasing our code and data publicly upon acceptance in the hope that it will facilitate
more work in the domain.
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A Additional Related Work

A.1 Situational Awareness: definitions from aviation to driving

First popularized by Mica Endsley’s work in aviation, pilots’ SA was defined as “the perception
of the elements in the environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future” [8]. According to Endsley, SA reflects
the extent to which the operator knows what is going on in their environment and is the product
of mental processes including attention, perception, memory, and expectation [30]. This definition
laid out three levels of SA: (1) perception (of situational elements) , (2) comprehension (of their se-
mantics), and (3) projection (of their futures states). In the original aviation context, these elements
comprised instruments and instrument panels that pilots needed to maintain SA over in order to per-
form the aviation task safely and successfully. However, in the driving context these scene elements
not only comprise similar in-vehicle instruments such as the speedometer and rear-view mirrors, but
also outside-the-vehicle elements such as other vehicles, bicycles, pedestrians etc. For tracking with
respect to pilot/driver eye gaze, a functionally challenging difference among these elements is that
the driving elements constantly change position relative to the vehicle while the aviation instruments
are fixed and their locations are known. This difference makes is difficult to apply techniques (for
grounding, evaluation etc.) from aviation directly to the driving case.

A.2 Situational Awareness labeling methods

At a high level, situation awareness (SA) grounding methods can be classified into direct (e.g.
queries about objects for which SA is estimated) and indirect (SA inferred from secondary task
measures such as response time to probes). As we discuss these, we will comment on the suitability
of these techniques to generate per-object labels for learning a gaze-based per-object SA model.

SA Label-
ing Method

Capture
Awareness
Transition

Dense
Object
Labels

Doesn’t Affect
Natural Gaze
Behaviour

SAGAT [8] × ✓ ✓
DAZE [16] ✓ × ×
SPAM [9] ✓ × ×

Ours ✓ ✓ ✓

Table 2: Our SA labeling protocol allows us to capture the transition in the driver’s awareness of
objects in the scene, allows labels for all objects in the scene without affecting the natural gaze
behaviour of the driver.

A.2.1 Direct methods

Within direct methods, we may classify grounding techniques into objective or subjective based
on whether the probes involve questions about directly measureable quantities (e.g. number of red
vehicles around you) or self-rated ones (e.g. perceived task load). We will first discuss objective
measures. Perhaps the most well known and used direct objective method of Situational Awareness
grounding is the Situation Awareness Global Assessment Technique (SAGAT) [31]. The SAGAT
involves operators performing a simulated version of a real task such as driving. Intermittently, the
simulation is paused (the screen can be blanked or only the background is presented) and the opera-
tors are asked several questions about the situation right before the pause. Accuracy of responses to
these questions determines the operators’ SA. SAGAT was first designed for aviation but has been
adapted to driving [6]. Despite its popularity, SAGAT has its limitations mainly associated with
the mandatory simulation pauses required. There are cognitive process modifications to the normal
task because of removal from the task during the probe as well as intermittent task resumption de-
viations [12]. For generating ground truth data for per-object SA, we also have some issues. One,
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(a) SAGAT freezes simulations or videos being watched (top) and then asks participants the location
of traffic elements (bottom). Image from [6].

(b) DAZE does not require pauses. It asks participants if they noticed particular types of traffic
elements and to mark their locations on an overhead GPS map. Image from [16].

Figure 5: Examples of SA labeling methods used in previous work. These methods produce inter-
mittent labels (SAGAT/DAZE) or sparse ones (DAZE —not every object is labeled).

we only get SA labels per queried object at the time of the probe —SAGAT probes do not give us
the starting point of the operators’ SA for each queried object. Second, SAGAT querying requires
pauses hence limiting the number of labels per drive that could be collected while maintaining the
flow of simulation.

Another direct objective measure that mitigates some of these issues is Daze [16] which uses real-
time in situ questions that resemble queries drivers are already familiar with (such as traffic queries
from apps like Waze). In particular, shortly after an on-road event such as an accident has passed, it
raises an alert asking a question such as “Traffic accident reported. Did you notice any emergency
vehicles?”. While this method avoids pausing the simulation (an indeed can also be used for on-road
driving), it does not provide dense, per-object labels in the way we require. Additionally, answering
the query involves looking away from the driving scene and at a tablet or screen which undesirably
modifies gaze behavior.

In conjunction with objective methods, subjective measurements can be useful. For example, oper-
ators’ perceived estimate of their own SA may important in determining their actions or interactions
with an SA enhancing system. Here, we will only discuss the most commonly used subjective mea-
sure: Situational Awareness Rating Technique (SART). SART is administered as a 14-part post-hoc
questionnaire in which, operators rate on a series of bipolar scales the degree to which they perceive
(1) a demand on their resources, (2) supply of operator resources and (3) understanding of the situ-
ation. These are combined to provide an overall SART score [11]. However, there are limitations to
SART as a measure of the operators’ SA. For example, consider unknowingly unknown scene ele-
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ments: operators cannot rate their SA on all scene elements if they didn’t know they missed some.
Other factors are the influence of performance on SART, as well as confounding with workload [32].

A.2.2 Indirect methods

Within indirect SA grounding techniques, the most widely accepted protocol is the Situation Present
Awareness Method (SPAM) [9]. SPAM involves a real-time probe (usually a verbal query about
the past, present, and future aspects of the situation) while the operator is performing their primary
task. While direct measures such as response accuracy are collected, SPAM importantly also uses
response times as an index of how readily this information is available. For our requirements, verbal
queries have the same label sparsity issue as Daze as well as requiring manual post-processing to
get machine readable annotations from verbal responses.

A.2.3 Physiological methods

For the sake of completeness we must mention the use of physiological methods in the literature
to measure operator SA. These signals have the benefit of being continuous variables rather than
isolated or posthoc probes mentioned above. These methods have employed physiological signals
such as EEG [33], respiratory rate [34], and heart rate [35] to measure SA. Of these methods, EEG
has the most predictive power, while respiratory measures were found to have a negative correlation
with SA [36].

The most commonly used physiological technique was based on eye tracking. This included signals
as blink rates, pupil dilation, but also behavioral characteristics such as fixation rates, dwell times,
and saccade frequency to measure SA [36].

However, physiological methods are noisy, show small correlations with SA, and only provide an
overall impression of SA rather than per-object SA. The most promising physiological modality was
eye gaze, with eye tracking based features forming the best performing predictors of SA. For a full
treatment of this topic we refer the reader to Zhang et al. [36].

B Situational Awareness Data Collection

We use DReyeVR [14] as the VR-driving simulator. DReyeVR extends the Carla [37] simulator to
add virtual reality integration, a first-person maneuverable ego-vehicle, eye tracking support, and
several immersion enhancements such as mirrors and sounds. Our physical setup includes a HTC
Vive Pro Eye as the head-mounted VR device, which has built-in eye tracking, and an available eye
tracking SDK. For our driving hardware we use a Logitech G29 wheel and pedals kit. For driving
routes, we use custom routes from several virutal towns shipped with CARLA. Furthermore, we
control the traffic in the simulation such that only a single vehicle or two-wheeler enters the FoV
of the driver from a single direction at an intersection. If multiple objects enter the driver’s FoV
from the same direction at the same time, even if the user presses the corresponding directional
buttons multiple times, we use manual post-hoc annotation to resolve ambiguities for button press
assignment to objects.

B.1 Instructions provided to participants:

The following prompt was read to participants before they underwent the first trial route. “Drive
safely while following signs to the goal destination. Your main objective is to arrive at the destination
as quickly as possible while driving safely. While doing so, you will also perform a secondary task by
pushing buttons to indicate which vehicles, pedestrians or two-wheelers (collectively, traffic objects)
you have perceived in the environment around you. Anytime you see a new vehicle please press one
of the four arrow key on the left side of your steering corresponding to the direction in which they
first appeared in your field of view. Similarly, for pedestrians and two-wheelers use the 4 buttons on
the right. For each new traffic object you should only press the button once.”
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Figure 6: Sectors corresponding to the directions of the button presses. The objects in each sector
are target objects for button presses corresponding to the direction of the sector.

B.2 SA label inference from button presses

Our SA protocol as described in Sec 3 of the paper, allows users to indicate their awareness of
objects in the scene using directional button presses. The direction of the button corresponds to the
direction of the object. Additionally, there are two sets of directional buttons for the users to choose
from. One set corresponds to vehicles and the other set corresponds to pedestrians (+ two-wheelers).
For example, when a user first becomes aware of a pedestrian on their left, they would press the left
directional button from the button set corresponding to pedestrians.

Our protocol provides us with button clicks, to convert these into awareness labels for object we
need to associate button clicks with objects in the scene. We rely on the direction and the set of
the button press to associate button presses with objects. We divide the entire scene into 4 sectors
corresponding to the 4 directional buttons (Fig. 6). The top sector corresponds to the area between
+30 and -30 degree from the ego vehicle. The left sector corresponds to the area between -60 and
-120 degree, the right sector corresponds to the area between +60 and +120 degree. The back sector
lies between -120 and +120 degrees. The sector between +30 and +60 is considered both forward
and right, similarly the sector between -30 and -60 is considered both forward and left.

We keep a track of all the objects that enter each sector, and associate objects with the button clicks
pertaining to each sector. The object in each sector, which has not been associated with any button
clicks can be associated with a new button click. Objects are considered aware once they are asso-
ciated with a button click, however once they re-enter of the field-of-view of the driver after leaving
it for a certain amount of time, they are again considered unaware and can be associated with button
clicks again.

We control the traffic to ensure that there are only a single object of each type (vehicle, pedestrian)
in each sector. However, to add randomness we also add a very small number of randomly spawned
objects in the scene. Due to this, in certain situations participants’ button press inputs can be am-
biguous relative to the traffic scene. One common scenario involved multiple potential target objects,
in one sector. Additionally, there could also be human errors while pressing buttons, i.e incorrect
button type, incorrect direction, or unintentional repeat button presses.To address these ambiguities,
we developed a systematic approach to manually evaluate button press instances where the corre-
sponding object was not immediately clear. We examined frames both before and after the button

15



press, as well as the participant’s gaze history, to identify the most likely object associated with the
button press.

Currently, our labeling method cannot automatically disambiguate between button presses for can-
didate objects of the same type that appear at the same time from the same direction. We deal with
this issue using human intervention for label correction, in which we asked human observers to re-
view the dataset at points of ambiguity and correct these ambiguous labels, making use of the object
masks, RGB, and gaze history. Importantly, these human observers are not solving the same problem
as our model later. Instead, they are able to use contextual cues such as preceding button clicks (and
assignments), future button clicks (which can make it easier to jointly reason) and future gaze. In
contrast to our model, they did not perform awareness inference for every object in the scene, rather
they resolved ambiguity within a small number of candidate objects to create a corrected dataset. In
the future, experimenters may consider adding an additional requirement of participants providing a
small verbal object description accompanying button presses (red vehicle, gray shirt pedestrian) as
a disambiguation, especially in very cluttered scenes. We did not consider this labeling approach as
asking for these audio descriptions has the potential to influence the gaze away from its natural be-
havior during driving. Identifying and naming colors may require different cognitive processes (and
hence gaze) than simply knowing a vehicle exists towards a given direction. For instance, drivers
may fixate on new objects more when they observe them in order to gather information required to
generate a description. Furthermore, we found that, in our study, these disambiguations were not
very necessary since our scenes were not overly cluttered

B.3 Route & traffic design:

At least one safety critical scenario such as a jaywalking pedestrian was included in each route. We
did so to ensure that driver gaze before and during safety critical scenarios was also represented in
the dataset. These types of critical scenarios were included:

1. Visible jaywalking pedestrian: A pedestrian visible without occlusions jaywalks into the
ego vehicles path.

2. Simultaneous vehicle turning and jaywalking pedestrian: A vehicle turns left or right while
entering at an intersection opposite the ego-vehicle. A pedestrian jaywalks behind the
turning vehicle.

3. Occluding object jaywalking pedestrian: A pedestrian, visible from afar but occluded as
the ego-vehicle nears, jaywalks into the ego vehicles path.

4. Bicycle crossing after turn: Right after the ego-vehicle makes a right turn, a bicyclist
crosses the road in front of the ego vehicle

5. Emergency vehicles distracting from pedestrians: Emergency vehicles are parked near a
residence. A policeman, partially occluded by a vehicle, jaywalks to the residence.

See the attached video for examples of critical scenarios.

C Modeling Driver SA

Data representation details: The virtual camera used to generate visual sensor data for our model
was fixed to be 1.3m above and 1.3m in front of the ego vehicle (measured from the center of the
vehicle base). The camera had a 90◦ field of view and produced 800× 600 images.

Model and training details: We used a Feature Pyramid Network [25] segmentation model with
a MobileNetV2 [26] backbone (pre-trained on ImageNet). The backbone was chosen for its low
number of parameters (2M ) and runtime efficiency. Our training procedure used the Adam optimizer
with a starting learning rate of 10−4. The learning rate was scheduled to drop every 5 epochs by a
factor of 5.
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Figure 7: The Precision-Recall curve for our method and the handcrafted-baseline [6]. For our
method, we take the mode of predictions over all pixels pertaining to the object, to get the final
prediction for the object. To generate the PR curve, our predictions can be thresholded at two levels.
First on the raw pixel-level predictions, and second on the ratio of the predicted aware and unaware
pixels for a object. Thus, the first threshold level decides what should be the predicted score of a
pixel inorder to classify it as aware or unaware. The second level decides how many pixels should
be classified as aware inorder to classify this object as aware. To generate this curve we vary the
threshold of the raw-pixel level predictions and the second level threshold is fixed at 1. Due to these
two levels of thresholds, our method does not have precision = 1 or recall = 1.

D Additional Results

A PR curve corresponding to the results in Table 1 in the main paper is shown in Fig. 7.
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