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Abstract

In reinforcement learning, Reverse Experience Replay (RER) is a recently proposed
algorithm that attains better sample complexity than the classic experience replay
method. RER requires the learning algorithm to update the parameters through
consecutive state-action-reward tuples in reverse order. However, the most recent
theoretical analysis only holds for a minimal learning rate and short consecutive
steps, which converge slower than those large learning rate algorithms without RER.
In view of this theoretical and empirical gap, we provide a tighter analysis that
mitigate the limitation on the learning rate and the length of consecutive steps.
Furthermore, we show theoretically that RER converges with a larger learning rate
and a longer sequence.

1 Introduction

Reinforcement Learning (RL) is highly successful for a variety of practical problems in the realm of
long-term decision-making. Experience Replay (ER) of historical trajectories plays a vital role in
RL algorithms (Lin, 1992; Mnih et al., 2015). The trajectory is a sequence of transitions, where each
transition is a state, action, and reward tuple. The memory space used to store these experienced
trajectories is noted as the replay buffer. The methods to sample transitions from the replay buffer
determine the rate and stability of the convergence of the learning algorithms.

Recently, Reversed Experience Replay (RER) (Florensa et al., 2017; Rotinov, 2019; Lee et al., 2019;
Agarwal et al., 2022) is an approach inspired by the hippocampal reverse replay mechanism in human
and animal neuron (Foster & Wilson, 2006; Ambrose et al., 2016; Igata et al., 2021). Theoretical
analysis shows that RER improves the convergence rate towards optimal policies in comparison
with ER-based algorithms. Unlike ER, which samples transitions uniformly (van Hasselt et al.,
2016) (known as classic experience replay) or weightily (Schaul et al., 2016) (known as prioritized
experience replay) from the replay buffer, RER samples consecutive sequences of transitions from
the buffer and reversely fed into the learning algorithm.

However, the most recent theoretical analysis on RER with @Q-learning only holds for a minimal
learning rate and short consecutive steps (Agarwal et al., 2022), which converges slower than classic
Q-learning algorithm (together with ER) with a large learning rate. We attempt to bridge the gap
between theory and practice for the newly proposed reverse experience replay algorithm.

In this paper, we provide a tighter analysis that relaxes the limitation on the learning rate and the
length of the consecutive transitions. Our key idea is to transform the original problem involving a
giant summation (shown in Equation 3) into a combinatorial counting problem (shown in Lemma 2),
which greatly simplifies the whole problem. We hope the new idea of transforming the original prob-
lem into a combinatorial counting problem can enlighten other relevant domains. Furthermore, we
show in Theorem 2 that RER converges faster with a larger learning rate 7 and a longer consecutive
sequence L of state-action-reward tuples.
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2 Preliminaries

Markov Decision Process We consider a Markov decision process (MDP) with discounted re-
wards, noted as M = (S, A, P,r,7v). Here S C R? is the set of states, A is the set of actions, and
v € (0,1) indicates the discounting factor. We use P : S x Ax S — [0, 1] as the transition probability
kernel of MDP. For each pair (s,a) € S x A, P(s'|s,a) is the probability of transiting to state s’
from state s when action a is executed. The reward function is r : § x A — [—1, 1], such that (s, a)
is the immediate reward from state s when action a is executed (Puterman, 1994). The policy =
is a mapping from states to a distribution over the set of actions: w(s) : A — [0,1], for s € S. A
trajectory is noted as {(s¢, ar,74)}52, where s; (respectively a;) is the state (respectively the action
taken) at time ¢, 1, = r(sy, a;) is the reward received at time ¢, and (s, a¢, 7, Se41) is the t-step
transition.

Value Function and @-Function The value function of a policy 7 is noted as V™ : § — R.
For s € S, V™ (s) :=E[Y ;2 7'7(st, at|so = s)], which is the expected discounted cumulative reward
received when 1) the initial state is sp = s, 2) the actions are taken based on the policy =, i.e., a; ~
m(s¢), for t > 0. 3) the trajectory is generated by the transition kernel, i.e., s¢41 ~ P(:|s¢, aq), for
all t > 0. Similarly, let Q™ : S x A — R be the action-value function (also known as the @Q-function)
of a policy 7. For (s,a) € S x A, it is defined as Q™ (s,a) :== E[> ;= v'r(st, ar|so = s, a0 = a)].

There exists an optimal policy, denoted as 7* that maximizes Q™ (s, a) uniformly over all state-action
pairs (s,a) € § x A (Watkins, 1989). We denote @* as the Q-function corresponding to 7*, i.e.,
Q* = Q™ . The Bellman operator 7 on a @-function is defined as: for (s,a) € S x A,

T(QU(s.0) = (5:0) 4 7By 15 Q0601

The optimal @Q-function @* is the unique fixed point of the Bellman operator (Bertsekas & Yu,
2012).

Q-learning The Q-learning algorithm is a model-free algorithm to learn Q* (Watkins & Dayan,
1992). The high-level idea is to find the fixed point of the Bellman operator. Given the trajectory
{(s¢t, at,r4)}22, generated by some underlying behavior policy 7/, the asynchronous Q-learning algo-
rithm estimates a new @Q-function Q¢+ : S x A — R at each time. At time ¢ > 0, given a transition
(8¢, at, 7, St+1), the algorithm update as follow:

Qir1(s¢,a1) = (1 =10)Q¢(5¢,a¢) + nTi41(Q1) (5141, ar),
Qi11(8,a) = Q+(s,a), for all (s,a) # (s¢, at).

Here n € (0,1) is the learning rate and T;41 is the empirical Bellman operator: Tii1(Q:)(St,at) :=
r(sg, ar) +ymaxgea Qi(st+1,a’). Under mild conditions, @; will converge to the fixed point of the
Bellman operator and hence to @*. When the state space S is small, a tabular structure cab be
used to store the values of Q;(s,a) for (s,a) € S x A.

(1)

@-learning with Function Approximation When the state space S is large, the asynchronous
Q-learning in Equation (1) cannot be applied since it needs to loop over a table of all states and
actions. In this case, function approximation is brought into @-learning. Let Q% : S x A — R be an
approximated @-function, which is typically represented with a deep neural network (Mnih et al.,
2015) and w denotes the parameters of the neural network. Q" is often called the @Q-network. Given
a batch of transitions {(s,, ar,, 7+, ,5t,41)}™,, we define 3, as the image of Q" (s, , ar,) under the
empirical Bellman operator, that is:

Y, =Ty + 7 max Q" (s4,41,a"), for1<i<m
a’'€

where w’ represents the parameters in target neural network. Parameters w’ are synchronized to
w every Tigrger Steps of Stochastic Gradient Descent (SGD). Since Q* is the fixed point of the
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Bellman operator, y:, should match Q™ (s¢,, at,) when Q™ converges to @*. Hence, learning is done
via minimizing the following objective using SGD: £(w) = L 3" ||y, — Q% (s, ax,) I3

Experience Replay For the Q-learning with function approximation, the new trajectories are
generated by executing a behavioral policy, which are then saved into the replay buffer, noted as B.
When learning to minimize ¢(w), SGD is performed on batches of randomly sampled transitions from
the replay buffer. This process is often called Experience Replay (ER) (Lin, 1992; Li et al., 2022). To
improve the stability and convergence rate of ()-learning, follow-up works sample transitions from
the replay buffer with non-uniform probability distributions. Prioritized experience replay favors
those transitions with a large temporal difference errors (Schaul et al., 2016; Saglam et al., 2023).
Discor (Kumar et al., 2020) favors those transitions with small Bellman errors. LaBER, proposes a
generalized TD error to reduce the variance of gradient and improve learning stability (Lahire et al.,
2022). Hindsight experience replay uses imagined outcomes by relabeling goals in each episode,
allowing the agent to learn from unsuccessful attempts as if they were successful (Andrychowicz
et al., 2017).

Reverse Experience Replay is a recently proposed variant of experience replay (Goyal et al.,
2019; Bai et al., 2021; Agarwal et al., 2022). RER samples consecutive sequences of transitions from
the replay buffer. The @Q-learning algorithm updates its parameters by performing in the reverse
order of the sampled sequences. Compared with ER, RER converges faster towards the optimal
policy empirically (Lee et al., 2019) and theoretically (Agarwal et al., 2022), under tabular and
linear MDP settings. One intuitive explanation of why RER works is to consider a sequence of
consecutive transitions s; —5 so 2% s4. Incorrect Q-function estimation of Q(s2, az) will affect
the estimation of Q(s1,a1). Hence, reverse order updates allow the Q-value updates of Q(s1,a1) to
use the most up-to-date value of Q(s2, as), hence accelerating the convergence.

2.1 Problem Setups for Reverse Experience Replay

Linear MDP Assumption In this paper, we follow the definition of linear MDP from Zanette
et al. (2020), which states that the reward function can be written as the inner product of the
parameter w and the feature function ¢. Therefore, the @) function depends only on w and the
feature vector ¢(s,a) € R? for state s € S and action a € A.

Assumption 1 (Linear MDP setting from Zanette et al., 2020). There exists a vector w € RY
such that R(s,a;w) = (w, ¢(s,a)), and the transition probability is proportional to its corresponding
feature P(-|s,a) < ¢(s,a). Therefore, the optimal Q-function is Q*(s,a; w*) = (w*, ¢(s,a)) for every
se€S,a€ A

The assumption 1 is the current popular Linear MDP assumption that allows us to quantify the
convergence rate (or sample complexity) for the @-learning algorithm (Zanette et al., 2020; Agarwal
et al., 2022). We need the following additional assumptions to get the final convergence rate result.
Assume the sequence of consecutive transitions is of length L and the constant learning rate in the
gradient descent algorithm is 7.

Assumption 2 (from Zanette et al. (2020)). The MDP has zero inherent Bellman error
and ¢(s,a) ¢(s,a) < 1 for all (s,a) € S x A. There ewists constant x > 0, such that
E(s,a)~pn®(8,a)9(s, a)" =1/k. Here u is the stationary distribution over all the state-action pairs of
the Markov chain determined by the transition kernel and the policy.

Remark 1. Suppose we pick a set of state-action tuples L = {(s,a)|(s,a) € S x A}, which may
contains duplicated tuples. By linearity of expectation, we have: E, (Z(s a)eL ¢(s,a)¢(5,a)T> =
> Eissayop (0(s,a)p(s,a)T) = ‘%I. Here |L| indicates the number of state-action tuples in this
set.

Definition 1. Given the feature function ¢ : S x A — R?%. Denote the largest inner product between
parameter w and the feature function ¢ as [|wl|y = sup ;4 [(6(s, a), w)].
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Definition 2. Let 1 be an identity matriz of dimension d x d and n € R as the learning rate. Define
matriz I'; recursively as follow:

T - I forl =0,
1=
(I=n¢rs1-10] 1) Ticr for 1 <1< L,

where we use the simplified notation ¢r11_; to denote ¢(spy1—1,ar+1-1). The explicit form for T'p,
18:

L
Ty =(1=n616]) (1= nd203)... (1= nérer) = [ (1 nowd/)
=1

The semantic interpretation of I'y, in Definition 2 is that it represents the coefficient of the bias term
in the error analysis of the learning algorithm’s parameter (as outlined in Lemma 4). This joint
product arises because the RER algorithm updates the parameter over a subsequence of consecutive
transitions of length L. The norm of I'y, is influenced by both the sequence length L and the learning
rate 7. When the norm of I'y, is small, the parameters of the learning model converge more rapidly
to their optimal values.

3 Methodology

3.1 Motivation

Let i denote the stationary distribution of the state-action pairs in the MDP, 1 be the learning rate
of the gradient descent algorithm, and L the length of consecutive transitions processed by the RER
algorithm. Previous work (Agarwal et al., 2022, Lemma 8 and Lemma 14) established that when
nL < %, the following inequality holds:

L
L
E(s,a)Nu [FZFL] =I- UZE(s,a)Np, [¢l¢lT] = (1 - 7][{) L (2)

=1

where the matrix I';, € R%*4 ig defined in Definition 2 and serves as a “coefficient” in the conver-
gence analysis, as outlined in Lemma 4. The positive semi-definite relation < between two matrices
is defined in Definition 4. Here, I represents an identity matrix of dimension d x d, and the co-
efficient x > 0 is introduced in Assumption 2. The matrix I';, was mentioned in (Agarwal et al.,
2022, Appendix E, Equation 5), but we provide a formal definition here and streamline the original
expression by removing unnecessary variables.

The condition in Equation (2) was further incorporated into the convergence requirement in (Agarwal
et al., 2022, Theorem 1). It suggests that the RER algorithm cannot handle sequences of consecutive
transitions that are too long (corresponding to a large L) or use a learning rate that is too large (i.e.,
7n). This presents a major limitation between the theoretical justification and real-world application
of the RER algorithm. In this work, we address this gap by providing a tighter theoretical analysis
that relaxes the constraint nL < 1/3.

We begin by explaining the main difficulty in upper-bounding the term E(, 4)~, [FZI‘ L] . According
to Definition 2, we can expand I'] as I'] = (I — ngchz)z) (I - 77¢1¢1T). Using the linearity of
expectation, we expand the entire joint product I‘—L'—I‘ 1 under the expectation as follows:

]E(s,a)wu [FEFL] = ]E(s,a)wu [(I - 77¢L¢2) e (I - T](]Sl(bir) (I - TI¢1¢1T) e (I - 77¢L¢I)]

2L
B | D0 Y e - dudr |- (3)

k=2 I,k

L
=1- 277E(s,a)wp, [Z ¢l¢l—r

=1

In the third term on the right-hand side (RHS) of the second line, the summation is over all valid
combinations of the indices (I1,la,...,1;), where ly,1ls,...,lx € {1,2,..., L}. This is determined by
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first selecting the index l; from the index sequence [L,L —1,...,2,1,1,2,...,L — 1, L], as seen in
the first row of the equation above. The second index [l is then chosen, ensuring that [ lies to the
right of I;. The valid combination constraint requires the entire sequence Iy, ...,[l; to satisfy the

condition that I;_; must appear to the left of I;.

The main challenge to upper-bound the entire product F—LFF 1, under expectation lies in upper-bound
the combinatorially many high-order terms. Our approach leverages the high-level idea that the
RHS of Equation (3) can be upper-bounded by a form of E(, q)~,, [Zle (blgblT] with an appropriate

coefficient. Specifically, we demonstrate that the third term on the RHS, which contains a large
number of combinatorial terms of the form ¢;, (bl—: RN (bl—Zv can be bounded by terms involving only
1] (with 1 <1 < L) through the use of a proposed combinatorial counting method.

Theorem 1. Let p be the stationary distribution of the state-action pair in the MDP. The following
matriz inequalities, which are positive semi-definite, hold for n € (0,1):

(n4—20)— Q- ' —n*+ 1)L) I

Blaar [1372] = (1 - .

where the matrix I'y, is defined in Definition 2. The relation < between the matrices on both sides
is defined in Definition 4, referring to the positive semi-definite property.

Proof Sketch. By the linearity of expectation, we can upper-bound the second part of Equation (3)
as follows:

L L
2nL
_277]E(s,a)~u lz ¢l¢l—r‘| = _2UZE(S,(1)~H [d)ld)l—r] = _QnL]E(s,a)Nu [¢¢T] = _nT

=1 =1

L

Based on the new analysis from Lemma (2), the third part in Equation (3) is upper-bounded as:
2L 2L

E(s,a)~u Z(—W)k Z L - b | =2 Esayen Z(—n)k Z %(¢11¢I+¢lk¢l)

k=2 Iyeln k=2 Uyl

L
< (=" 0 +0(2L = 2) = 1) E(s ) [Z WJ]
=1

(=)' +n*+n2L—-2)-1)L

< 1.

Combining these two inequalities, we arrive at the upper bound stated in the theorem. A detailed
proof can be found in Appendix B. O

Theorem 1 is established based on the new analysis in Lemma (2), which is introduced in Section 3.2.
It serves as a key component in the final convergence proof of the RER algorithm, which will be
presented in Section 4.

Numerical Justification of the Tighter Bound We provide a numerical evaluation of the
derived bound and the original bound in Agarwal et al. (2022, Lemma 8) in Figure 1'. For a fixed
value of sequence length L, we compare the value (n(4 —2L) — (1 —n)?~! — 7% + 1)L in our derived
upper bound and the original value nnL. For all the different sequence lengths, our derived expression
value is numerically higher than the original expression, which implies our bound (in Lemma 3) is
tighter than the original one in Agarwal et al. (2022, Lemma 8).

IThe code implementation for the numerical evaluation of the equalities and inequalities in this paper is available
at https://github.com/jiangnanhugo/RER-proof.
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Figure 1: For all the different sequence lengths, our derived expression value is numerically higher
than the original expression, which implies our bound (in Lemma 3) is tighter than the original one
in Agarwal et al. (2022, Lemma 8).

3.2 Relaxing the Requirement nL < 1/3 through Combinatorial Counting

Lemma 1. Let x € R? be any non-zero d-dimensional vector. For ly,....l; € {1,2,...,L} and
2 < k < 2L, consider a high-order term gbll(bI . qﬁlng)lTk in Equation (3). By Assumption 1, we can
relax this high-order term as follows:

1
[x"on o), -t x| < oxT (o8] + b dl,) x.

The proof of this inequality can be found in Appendix A.1.

This result implies that, after relaxation, only the first term qbllqbl—z (indexed by 1) and the last term
qblkgbl—'; (indexed by i) determine the upper bound of the high-order term ¢l1¢l—[ . (;Slkqbl—';. This
relaxation simplifies the original complex summation problem Z1§11,...,lk <1, to count how many
valid [; and [; can be selected at each possible position in the sequence of transitions.

Lemma 2. Based on the relaxation provided in Lemma 1, the third part in Equation (3) can be
expanded combinatorially as follows:

iwﬁ > iwwlwlksﬁ?;):23n>kl§;((ﬁf]2)+(,§_‘j)+(§jjj>)¢l¢7 @)

l1yeenlie

sum over combinatorially many terms

Sketch of Proof. As depicted in Figure 2, we consider two arrays of length L. The indices in these
arrays are symmetrical: the left array decreases from L to 1, while the right array increases from
1 to L. These arrays represent the indices of the matrix products in the first line of Equation (3).
The left array simulates I',, and the right array simulates F—L'—. The key idea is to count the number
of combinations of [y and I that can produce ¢l¢l‘r for a fixed [ (where 1 <1< L).

In the first case, illustrated in Figure 2, we fix [; in the left I-th slot. For i, it cannot choose any of
the slots in the left array with indices L,...,l + 1 due to the sequential ordering constraint, which
requires that [;_; must be to the left of [;. Additionally, to avoid double counting, we also exclude
the right [-th slot for [;. Consequently, there are L 4 [ — 2 available slots for assigning the remaining
sequence ls,...,lr. This results in (L}ﬁf) contributions for this case, as shown on the right-hand

side.

For the remaining cases, detailed in Figure 3 and analyzed in Appendix A.2, they contribute to the
second and last terms in Equation (4). O
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“////” indicates this slot cannot be chosen.

Indices of
theslots 1 .. [+1 [ . 2 1 ] 2 ... Il I+1 .. L
avavar s 11117
O N
fix [} =1

ly, ..., [, can be placed to L + [ — 2 many positions.

Figure 2: Case 1 in the proposed combinatorial counting procedure. This case illustrates how many
terms of the form ¢l1¢gT1 . ..gmkqbll can be reduced to qﬁld)lT for a fixed [ using Lemma 1, where
1 <1< L. If Iy is assigned to the left [-th slot, then [, cannot choose any of the left terms with
indices L, ...,l+1 due to the sequential ordering constraint /; must be to the right of [;_;. To avoid
double counting, i is also disallowed from occupying the right I-th slot. Consequently, there are
L + 1 — 2 available slots for assigning the remaining sequence lo, ..., [ of length k — 1. Therefore,

there are (L,ﬂf) such terms for this case. Further cases are illustrated in Figure 3 in the appendix.

Lemma 2 demonstrates the process of simplifying the complex summation le .1, into a more

manageable form ZlL:r This transformation significantly simplifies the task of obtaining a tighter
upper bound.

Lemma 3. Forne (0,1) and L > 1, the following holds:
R () + (D) + (B20) = A =m)P 2 ()P P (1= )2 4 (20— 2) - 2.

The proof of Lemma 3 is presented in detail in Appendix A.3, where we utilize the Binomial theorem.
To ensure that the oscillatory term (—n)* does not cause divergence, we require the learning rate 1
to lie within the interval n € (0,1).

4 Sample Complexity of Reverse Experience Replay-Based ()-Learning
on Linear MDPs

The convergence analysis assumes that every sub-trajectory of length L is almost (or asymptotically)
independent of each other with high probability. This condition, known as the mixing requirement
for Markovian data, implies that the statistical dependence between two sub-trajectories 77, and 77
diminishes as they become further apart along the trajectory (Tagorti & Scherrer, 2015; Nagaraj
et al., 2020).

Prior work (Lee et al., 2019) provided a convergence proof for the Reverse Experience Replay (RER)
approach but did not address the rate of convergence, primarily due to the challenges associated
with quantifying deep neural networks. By contrast, Linear MDPs (defined in Definition 1), which
approximate the reward function and transition kernel linearly via features, allow for an asymptotic
performance analysis of RER. Recently, Agarwal et al. (2022) presented the first theoretical proof for
RER. However, their analysis is limited by stringent conditions, notably requiring a minimal learning
rate nL < % This constraint suggests that RER may struggle to compete with plain Experience
Replay (ER) when using larger learning rates.

To address this challenge, we provide a tighter theoretical analysis of the RER method in Theorem 1.
Our analysis mitigate the constraints on the learning rate for convergence. We demonstrate that
the convergence rate can be improved with a larger learning rate and a longer sequence of state-
action-reward tuples, thus bridging the gap between theoretical convergence analysis and empirical
learning results.

Lemma 4 (Bias and variance decomposition). Let the error terms for every parameter w as the
difference between empirical estimation and true MDP: g;(w) = Q(s;,a;) — Q*(s4,a;). For the
current iteration t, the difference between current estimated parameter w and the optimal parameter
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Algorithm 1 Episodic Q-learning with Reverse Experience Replay

Require: Sequence length L of consecutive state-action tuples; Replay buffer B; Total learning
episodes T'; Target network update frequency N.
Ensure: The best-learned policy.
1: fort=1to T do
2: Act by e-greedy strategy w.r.t. policy .

3 Save the new trajectory into the replay buffer B.

4 Retrieve a sub-trajectory 7, from buffer B, where 7, := (s, a;,7), for all 1 <[ < L.

5 for/=1to L do > reverse experience replay
6: €1 +ymaxeyes Q(sp+1-1,0";0k) — Qry1-1

7 W41 < Wi +NEV Qe n4+1—1

8 if ¢t mod N =0 then > online target update
9: Qk & We,L+1

10: k< k+1

11: 7(s) <— argmaxgec 4, Q(S, a; we,r4+1), for all s € S. > policy extraction

12: Return The converged policy 7.

w* accumulated along the L length transitions with reverse update is:

L
wr, —w* =T (w —w") +7726le—1¢1 .
[ —

Bias term =1

variance term

For clarity, T'y, in Definition 2 is a joint product of L terms involving the feature vector of the
consecutive state-action tuples. When the norm of 'y, is small, the parameter will quickly converge
to its optimal.

The first part on RHS is noted as the bias and the second part on RHS is variance along the sub-
trajectory, which we will later show with zero mean.

The proof is presented in Appendix C.1. The result is obtained by unrolling the terms for consecutive
L steps in reverse update order according to Lines 5-7 in Algorithm 1. This allows us to separately
quantify the upper bound the bias term and the variance terms.

Lemma 5 (Bound on the bias term). Let x € R? be a non-zero vector and N is the frequency for the
target network to be updated. For n € (0,1) and L > 1, the following matrix’s positive semi-definite
inequality holds with probability at least 1 — d:

2

1
4—2L)—n?>+1)NL
E| ] rex gexp((”( )= +1) >\/§||x||¢.
j=N

K
¢

The ¢-based norm is defined in Definition 1.

Sketch of proof. The result is obtained first expand the joint product over H;: n over I', and inte-
grate the result in Theorem 1. The detailed proof is presented in Appendix C.2. O

In terms of the bound for the variance term in Lemma 4, even though the term I'; is involved in the
expression, it turns out we do not need to modify the original proof and thus we follow the result in
the original work. The exact statement is presented in the Appendix C.3.

Theorem 2. For Linear MDP, assume the reward function, as well as the feature, is bounded
R(s,a) € [0,1], ||¢(s,a)ll2 <1, for all (s,a) € S x A. Let T be the mazimum learning episodes, N
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be the frequency of the target network update, n be the learning rate and L be the length of sequence
for RER described in Algorithm 1. Whenn € (0,1), L > 1, with sample complexity

T/N Tx _(_((4-20)—n* + INL nlog(55)
11—~ No(1 -7t

~
o
’ " =" )
1Qr(s,a) — Q*(s,a)|lec < e holds with probability at least 1 — 6.

Sketch of Proof. We first establish the independence of sub-trajectories of length L. We then decom-
pose the error term of the Q-value using bias-variance decomposition (as shown in Lemma 4), where
the RER method and target network help control the variance term using martingale sequences.
The upper bound for the bias term is given in Lemma 5 and the upper bound for the variance term
is presented in Lemma C.3. Finally, we summarize the results and provide the complete proof in
Lemma 6, leading to the probabilistic bound in this theorem. O

Compared to the original theorem in Agarwal et al. (2022, Theorem 1), our work provides a tighter
upper bound and relaxes the assumptions needed for the result to hold. This advancement bridges
the gap between theoretical justification and empirical MDP evaluation. Furthermore, we hope that
the new approach of transforming the original problem into a combinatorial counting problem will
inspire further research in related domains.

We acknowledge that the main structure of the convergence proof (i.e., Theorem 2) follows the
original work. Our contribution lies in presenting a cleaner proof pipeline and incorporating our
tighter bound as detailed in Theorem 1.

5 Conclusion

In this work, we gave a tighter finite-sample analysis for heuristics which are heavily used in practical
Q-learning and showed that seemingly simple modifications can have far-reaching consequences in
linear MDP settings. We provide a rigorous analysis that relaxes the limitation on the learning
rate and the length of the consecutive tuples. Our key idea is to transform the original problem
involving a giant summation into a combinatorial counting problem, which greatly simplifies the
whole problem. Finally, we show theoretically that RER converges faster with a larger learning rate
1 and a longer consecutive sequence L of state-action-reward tuples.
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