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Abstract

The accurate trust assessment of large lan-
guage models (LLMs), which can enable se-
lective prediction and improve user confidence,
is challenging due to the diverse multi-modal
input paradigms. We propose Functionally
Equivalent Sampling for Trust Assessment
(FESTA), an input sampling technique for mul-
timodal models, which generates an uncertainty
measure based on the equivalent and comple-
mentary input sampling. The sampling ap-
proach expands the input space to measure
the consistency (through equivalent samples)
and sensitivity (through complementary sam-
ples) properties of the model. These two un-
certainty measures are combined to form the
final FESTA estimate. Our approach only re-
quires black-box access, and is unsupervised.
The experiments are conducted with various
off-the-shelf multi-modal LLMs, on visual and
audio reasoning tasks. The proposed FESTA
approach is shown to significantly improve
(33.3% relative improvement for vision-LLMs
and 29.6% relative improvement for audio-
LLMs) the area-under-receiver-operating-curve
(AUROC) metric on these reasoning tasks.

1 Introduction

Large language models (LLMs) have achieved re-
markable performance across a wide array of natu-
ral language processing tasks (Brown et al., 2020;
Touvron et al., 2023; OpenAl, 2023), yet their pre-
dictive uncertainty, especially in multimodal rea-
soning scenarios, remains poorly understood and
inadequately quantified (Hendrycks et al., 2022;
Li et al., 2023). Selective prediction (SP) is an
area of work that attempts to prevent a model from
making wrong predictions. In safety-critical scenar-
ios like finance, medicine and autonomous driving,
incorrect predictions are very expensive and selec-
tive prediction algorithms are highly sought after
as part of building safe Al deployment (Amodei
et al., 2016; Hendrycks et al., 2021). An efficient

SP algorithm helps in providing low selective risk
(high accuracy) with high coverage (the subset of
questions for which the model chooses to answer).
Further, trust assessment of models is important
to increase the user confidence of large models in
sensitive applications.

One of the most common approaches to SP is based
on uncertainty measures like output entropy. The
model predictions with high uncertainty are more
prone to errors, and hence abstained from predic-
tion. Several prior works have proposed entropy
computation approaches for uncertainty estima-
tion (Kuhn et al., 2023a; Farquhar et al., 2024;
Ling et al., 2024).

The SP algorithms are critical when the LLM is
operated on out-of-domain or low-resource regions
of the input space, as the models have a higher ten-
dency for erroneous generation. Previous studies
have demonstrated that calibration typically deteri-
orates as model performance declines (Guo et al.,
2017; Wang et al., 2023b; Kiirbis et al., 2024). In
some cases, the inaccurate predictions by multi-
modal LLMs may arise from their insensitivity to
the input (referred as mode collapse). Such predic-
tions have low predictive entropy and low accuracy.

With the advent of multimodal LLMs such as
large vision language models (LVLM) (Liu et al.,
2023; Agrawal et al., 2024; Bai et al., 2025) and
large audio language models (LALM) (Chu et al.,
2024; Tang et al., 2023), we make the following
observations: (O1) The existing output entropy-
based measures are largely developed for text-
based LLMs, (O2) Such measures have limited
abstention capabilities, especially for challenging
tasks like reasoning, (O3) The prior works may fail
to abstain from low-entropy mis-predictions.

In this paper, we propose functional equivalence
sampling and functional complementary sampling
for multimodal LLMs, that generate samples based
on their equivalence/complementarity to the origi-
nal input and task objective. We assume the exis-
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Figure 1: Schematic illustration of the proposed FESTA uncertainty quantification approach. Given a multimodal
MCAQ input, we generate functional equivalent samples (FES) and functional complementary samples (FCS). We
compute divergence of model predictive uncertainty from an ideally consistent model (for FES) and sensitive model
(for FCS) and combine these measure to generate the FESTA uncertainty score.

tence of such a functional space and explore their

utility in quantifying uncertainty. We restrict this

work to multiple-choice reasoning tasks involving
audio/visual prompts. The key contributions are:

* We propose functional equivalence sampling
(FES) and functional complementary sampling
(FCS) to identify the consistency and sensitivity
of model outputs - components which contribute
to the uncertainty metric that are measurable for
unsupervised and black-box model settings.

* Mathematical quantification of the proposed
FESTA score as a KL-divergence from an ide-
ally consistent and sensitive model, that improves
over the standard entropy based measures.

* Effective uncertainty estimation for low uncer-
tainty hallucinations, where the other baselines
fail, through complementary sampling.

» Extensive performance benchmarking with vari-
ous other prior works on audio/visual reasoning
tasks with multiple open-source LLMs to illus-
trate the effectiveness of FESTA.

The schematic illustration of the proposed FESTA !

approach is shown in Figure 1.

2 Problem statement

Let X = [Xo,XT1] € X denote a multi-
modal input instance (e.g., an audio/image + tex-
tual prompt) to a large language model (LLM)
with ground-truth response ytarget, and let S
denote the finite set of possible model outputs.
While the FESTA approach is applicable to general

'The code and evaluation pipeline will be released upon
paper acceptance.

multi-modal outputs, we restrict our discussion to
the purely textual output case, in a multi-choice
question-answering (MCQA) setting. Further, it is
also assumed that the LLM is quite competitive in
instruction following and generation capabilities,
which limits the output sample space in MCQA
settings. The LLM defines a predictive distribution
over fixed set of outputs : ¢(y|X) € AlSl. The
model’s prediction is (greedy sampling):

y = X).
y argr;lggQ(Yl )

Problem statement: Given multi-modal in-
put X and predictive distribution ¢(y|X),
estimate the predictive uncertainty of y =
arg maxycs ¢(y|X) in a black-box setting.

We resort to the following directions to develop
the uncertainty estimator,
» Using functionally equivalent sampling to esti-
mate the epistemic uncertainty (consistency).

* Using functionally complementary sampling to
measure counterfactual uncertainty (sensitivity).

* Combining the two measures to compute the
FESTA measure.

3 FESTA Uncertainty Estimator

3.1 Functional equivalent samples (FES)

Given an input-output pair (X ,y), let 7'(-) denote
the task that the model must solve to generate the
expected response, and let M 4e,1 denote the hypo-
thetical model which has the ideal behavior.



Def: A transformation X = £(X) is said
to be a functionally equivalent sample of X
if:

T(X) = T(X) and Mideal (X) = Mideal(X)

We define a distribution Pprg(X|X) over all
possible equivalent transformations ({&;(X)};)
and denote the sampling process as:

X ~ Prgs(X|X)or X ~g X

Proposition 3.1. The relation ~¢ defined over
inputs X ~g X such that T(X) = T(X) and

Migea1(X) = Migea1(X) is an equivalence rela-
tion on the input space.

Proof. The detailed proof is outlined in Ap-
pendix A.1. O
3.2 Functional complementary samples (FCS)

We formally define FCS below based on previously
defined notations:

Def: A transformation X' = C(X) is a
functionally complementary sample of X if
it is task-equivalent but functionally diver-
gent, i.e.,

T(Xl) = T(X) and Mideal(X/) i Mideal(X)

Similarly, we define a second distribution
Prcs(X'|X) over all complementary transforma-
tions ({C;(X)};). For example, negations or
counter-factual transformations of the original in-
puts constitute the FCS, which should alter the
ideal model prediction. We sample X' as,

X' ~ Ppes(X'|X) or X' ~¢ X

Although a complementary sample is not equiva-
lent to original input, it can be shown, similar to
Proposition 3.1, that all complementary samples X’
have formal equivalence among multiple samples
generated from Prcg (proof in Appendix A.2).

3.3 Ideal behavior under FES and FCS

Before uncertainty quantification, we first intro-
duce the notion of a consistent and sensitive model,
Meons. and Mens., respectively, which do not rely
on the underlying labels (unsupervised).

* Consistency under FES: The model M q,s. gen-
erates predictions that remain consistent and un-
altered under FES. We define the consistency
entropy, Uggs, based on the deviation of a given
model M from M ons. .

¢ Sensitivity to FCS: The model Mges. is sensi-
tive to counterfactual negations and its predic-
tions for FCS are complementary to the original
predictions, i.e., (y # y). We define the comple-
mentary sensitivity entropy, Urcs, based on the
deviation of a given model M from Mgeps. .
Note that, Migeal C Msens. and Migear C Msens. »
i.e., an ideal model is both consistent and sensitive,
while the converse is not true.

3.4 Uncertainty Estimation from FES

Given a specific input X = x, consider a set of its
functional equivalent inputs: {Xi,X2,...,Xx, },
drawn from X, ~ Prgs. Let ¢(y|Xy) denote the
predictive probability distribution of model M.
Note that, the response y is a random sequence
which can be sampled using stochastic decoding
of LLMs. The uncertainty measure of the model
M is measured as the deviation from the grounded
model Mcons. -

¢ Predictive distribution of M ,,s.: In our prob-
lem setting, the definition of M o, implies that
its predictive distribution is a Kronecker delta
function with respect to equivalent sampling.

QCons.(y | )ch,X) = 5yy Vxp~e X, y€S8
* Predictive distribution of )M : This is given as:
QFES(y | X) = EikN'PFEs q(y | ikvx) Y € S

Now, we pose the uncertainty of model M as the
deviation of it’s predictive distribution from that of
Mcons.» 1.€.,

Ures(M|x) = Dir.(qeons. (¥ | X)|lares(y | X))

Proposition 3.2. The KL divergence from the con-
sistent model Mcons. to qrgs simplifies to (y € S):

Ures(M | x) := —log qres(y = ¥ | ).
Proof. The proof follows from the definition of KL,
divergence, as shown in the Appendix A.3. O

It is interesting to note that, resorting to Mops.
makes the uncertainty quantification solely based
on model predictions, and makes it an unsupervised
approach.



3.5 Uncertainty Estimation from FCS

We can formally conclude the properties with
respect to the predictive distribution for comple-
mentary samples: {x},Xy,. .., X}, }, drawn from
X}, ~ Prcs as below:

¢ Predictive distribution of M., : Based on
the definition of FCS, they alter the predictions
- Msens. (X') # Msens. (x). Clearly, under the
original support S, the predictive distribution
q(y | x},,x) can be any distribution. But, we
restrict the support to have only two members as
8 = {§.5°} where 3° = {y : y € S,y # ¥}.
Now, the predictive distribution becomes a Kro-
necker delta with entire mass on y.

QSens.(y | X;gax) = 5y$lc VX% ~c X, y€ S

¢ Predictive distribution of M : In this case,
qFCS(y ‘ X) = EX%NPFCS Q(y | X;c’ X) 7y € Sl

Finally, similar to the case of equivalent samples
(FES), we pose the uncertainty of model M com-
puted from complementary samples (FCS) as:

UFC'S(M‘X) = DKL(q;ens.(y ‘ X)HQFCS(y ‘ X))

Proposition 3.3. The KL divergence simplifies to:

Urcs(M | x) := —log (Z ares(y # 9 | X))

y

Proof. The predictive distributions can be used in
the definition of KL divergence and follows from
the steps similar to Appendix A.3. O

Although the prior works on uncertainty based
SP work under the hypothesis that incorrect pre-
dictions are associated with high uncertainty,
LLMs are sometimes associated with biased mis-
predictions. As a naive example, if a model predicts
the same choice as the answer to MCQA, stochastic
decoding or equivalence sampling does not provide
the right framework for quantifying this misbehav-
ior. However, Urcg helps to abstain from such
low-uncertainty mis-predictions. when the model
predictions show no sensitivity to the complemen-
tary sampling. We formally show this for a single
attention block in Appendix A.4.

Algorithm 1 FESTA Uncertainty Estimator

Require: Input X, predictive  distribu-
tion  ¢(y|X), original  prediction
y = argmaxy ¢(y|X), number of sam-

ples K = K; + Kos.

1: FES Sampling:

2: Generate K functionally equivalent samples:
{ik}kK:ll ~ Prps(Xx| X)) by sampling text and
non-text modalities (X 7, X o) for (K11, K19)
times and using all combinations (K; = K X
Ki2).

3: Compute predictive distribution gggs(y|X) us-
ing {ik}£(:11

4: Compute FES uncertainty for prediction y:

Ures = — log gres(y = ¥|X)

5: FCS Sampling:

6: Generate K5 functionally complementary sam-
ples: {x} 152 ~ Prcs(x/|X) by comple-
mentary sampling either of the text or non-
text modalities (e.g. X 1) for Ko times and
equivalent sampling the other (e.g. X ) for
K9 times, and finally using all combinations
(Ko = Ko1 X K99).

7: Compute predictive distribution gpcs(y|X)
for complementary samples {xﬁc}kKjl

8: Compute FCS uncertainty:

Urcs = —log | D ares(y|X)
y#y

9: FESTA: UFESTA = UFES+ UFCS

3.6 FESTA uncertainty estimate

The FESTA uncertainty estimate finally combines
the two axes of uncertainty quantification - Urgg,
which measures the model response consistency
across equivalent sampling, and Urcg, which
measures the model sensitivity to complementary
sampling, by taking their sum. The combination
helps to abstain from both high uncertainty and
low uncertainty mis-predictions, as evident in Sec-
tion 6. The FESTA approach is summarized in
Algorithm 1.

4 Related Prior Work

White-box Uncertainty Estimation: Uncertainty
estimation methods for Large Language Models
(LLMs) can broadly be categorized into white-
box and black-box approaches (Gawlikowski et al.,



2023). White-box methods leverage direct access
to internal model parameters, gradients, or interme-
diate activations to quantify uncertainty (Kadavath
et al., 2022; Wang et al., 2024). Such approaches,
although potentially precise and informative, re-
quire internal model details, which are unavailable
for closed-source models (Xiao et al., 2023).

Black-box Uncertainty Estimation: Black-box
methods do not assume any access to model in-
ternals and typically rely on externally observable
behaviors such as output distributions under varied
prompts or input perturbations (Xiao et al., 2023;
Jiang et al., 2024). One popular paradigm involves
employing input paraphrases or perturbations and
observing variations in the model’s output distri-
bution to estimate uncertainty (Kuhn et al., 2023b;
Xiong et al., 2024b; Wang et al., 2023a). For in-
stance, Kuhn et al. (Kuhn et al., 2023b) introduced
input clarification ensembling, generating multiple
clarified versions of the same input to measure pre-
dictive entropy and mutual information, effectively
decomposing uncertainty into aleatoric and epis-
temic components. Similarly, Xiong et al. (Xiong
et al., 2024b) proposed generating uncertainty esti-
mates through paraphrasing queries.

Another line of work focuses on semantic en-
tropy, quantifying uncertainty based on semantic
coherence across generated responses. Tian et
al. (Tian et al., 2023b) leveraged semantic entropy
as an effective metric to detect hallucinations in
model outputs. Wang et al. (Wang et al., 2023a) cal-
ibrated model predictions using augmented prompt
ensembles, reducing overconfidence and enhancing
the reliability of black-box LL.Ms without needing
access to their internal structures. Likewise, Jiang
et al. (Jiang et al., 2024) proposed a perturbation-
based uncertainty estimation framework that sys-
tematically perturbs inputs and evaluates the model
response variability.

Most of the prior works are purely based on
text-only settings. Recently, uncertainty estimation
for multimodal large language models (MLLMs)
has gained attention. Huang et al. (Huang et al.,
2023; Li et al., 2024) empirically analyzed un-
certainty under multimodal scenarios, especially
highlighting cases with misleading visual or tex-
tual cues, finding that multimodal integration can
introduce unique dynamics that require separate
evaluation. However, critical gaps remain regard-
ing interpretability, robustness against adversarial
perturbations, and efficient sampling strategies to
maintain computational feasibility (Gawlikowski

et al., 2023; Yin et al., 2023; Mielke et al., 2022).

5 Experimental Setup

5.1 Tasks and Datasets

We use 3 datasets on positional reasoning - 2
for vision-LLMs (BLINK, VSR) and 1 for audio-
LLMs (TREA).

BLINK: The BLINK dataset (Fu et al., 2024)
points out to the limitations of modern vision-
language models with binary questions, where rela-
tive positions between different objects in an image
are queried. The spatial reasoning samples from
the validation split are chosen for evaluation con-
taining 143 samples.

VSR: The VSR dataset (Liu et al., 2023) is analo-
gous to the BLINK dataset, with binary questions.
This is a dataset entirely focused on diverse spatial
reasoning samples. The validation partition with
100 randomly samples are used for evaluation.
TREA: The Temporal Reasoning Evaluation of Au-
dio (TREA) dataset (Bhattacharya et al., 2025) is a
comprehensive audio-reasoning dataset, focused on
audio-temporal reasoning on which audio-LLMs
perform poorly (Kuan and Lee, 2025). It has MCQ
with four answer choices. It further divides the
temporal reasoning task into 3 main sub-categories
- ordering, duration, and event counting. We use a
subset of 300 samples (100 per task) for the evalu-
ations in this paper.

5.2 Multimodal LLMs

Visual spatial reasoning: We use large vi-
sion language models (LVLM)- Gemma-3 (Team
et al, 2025), LLaVA-1.6 (Liu et al., 2023),
Qwen-2.5 (Yang et al., 2025), Phi4 (Abdin et al.,
2024) and Pixtral (Agrawal et al., 2024) for the
evaluation. All of these models show significantly
lower performance compared to humans perfor-
mance of > 95% (Fu et al., 2024). The model
accuracies are reported in Table 1.

Audio temporal reasoning: We have evalu-
ated using Qwen2-audio (Chu et al., 2024) and
SALMONN (Tang et al., 2023), two open-source
audio-LLMs. We observe that their temporal rea-
soning performance is relatively weak for the tasks.
We have also experimented with generating audio
captions using the audio-LLMs and then passing
the text captions to an LLM (Qwen 2.5 (Bai et al.,
2025)) along with the MCQ prompt. This approach
shows an improvement in accuracy for all three
TREA tasks. Model accuracies are reported in Ta-



ble 2.

5.3 Comparison with Baseline Systems

* Output entropy (OE): The predictive dis-
tribution of the models is estimated using
stochastic decoding, and the entropy is mea-
sured (Kuhn et al., 2023a) as: H (¢(y|x)) =
=2y a(y[x)log g(y[x).

* Verbalized confidence (VC): LLMs are good
estimators of their own confidence (Tian et al.,
2023a), when verbalized through prompting.

* Input augmentations (IA): Based on the ap-
proach in (Bahat and Shakhnarovich, 2020) to
obtain predictions using input augmentations and
computing entropy from the ensemble. Apart
from image augmentations (IA-I), we performed
text augmentations (IA-T), using paraphrasing.
Finally, we report performance of combined aug-
mentations (IA-IT).

* Rephrase uncertainty (RU): This sys-
tem (Xiong et al., 2024b) uses text rephrasing
and measures the answer consistency.

* Black-box uncertainty (BU): The work reported
in (Xiong et al., 2024a) is reproduced for compar-
ison. The results show that using a combination
of top-K prompting and random sampling yields
the most stable performance. We have used top-4
prompting with outputs sampled 5 times.

5.4 Evaluation metric

An uncertainty measure should correlate with the
probability of incorrect predictions. The perfor-
mance of uncertainty methods is evaluated using
Area-Under-Receiver-Operating-Curve (AUROC),
defined as:

1
AUROC = AUC <U7 IL{}A':ytar‘get}>

where U is the uncertainty, ytarget denotes the
ground-truth, y denotes the model outputs.

5.5 Equivalent Sample Generation

For the audio tasks, equivalent samples are
transformations on the original input that main-
tain the task and functional equivalence. The
transformations are done on both modalities:
audio input and textual question. While some
equivalence transformations such as adding noise,
varying loudness of the audio, paraphrasing the
textual question, etc, are generic, equivalence
transformations can be task-specific too. For

example, for the order task, where the goal is to
answer which audio event occurred after the event
A in the audio, changing the duration of event A is
an equivalence transformation. However, this is not
a valid equivalence transformation with respect to
the event duration task. Similarly, for vision tasks,
task-invariant transformations include adding noise
to image, and task-specific transformations include
RGB to grayscale transform or changes in object
orientation. The complete description of equivalent
sampling transforms used along with examples are
detailed in Appendix A.5 and Figure 6.

5.6 Complementary samples (FCS)

By definition, the complementary transformation
samples inputs which should alter the model pre-
dictions. For example, for audio tasks, a comple-
mentary transform can be the addition of a new
audio event at the start or end of the input audio
clip for the event counting task. The complemen-
tary transformations used along with examples are
detailed in in Appendix A.5 and Figure 6.

6 Results

6.1 FESTA uncertainty evaluation

The performance of FESTA and other baselines on
vision-LLMs and audio-LLMs are reported in Ta-
bles 1 and 2. We make the following observations:
* FESTA based uncertainty measure outperforms
all the black-box baselines approaches signif-
icantly, achieving 24.6% and 41.9% relative
improvements over second best approaches on
BLINK and VSR datasets, respectively, averaged
over different models. Also, for audio-LLMs, it
achieves 25.4%, 30.5% and 32.8% relative im-
provements for order, duration and count tasks,
respectively, averaged over different models.

Although the audio-LLM performances were
poor for temporal reasoning (accuracy: order
- 52%, duration - 43% and count - 30%), the AU-
ROC achieved by FESTA of 0.89, 0.77 and 0.77
respectively, shows its effectiveness for challeng-
ing reasoning tasks.

¢ For vision-LLMs, FESTA shows effectiveness
across low and high accuracy models. The
largest improvements were observed for Phi-4
(the model with the least size of 5.6 B).

¢ For both audio-LLMs and vision-LLMs, the base-
line systems perform inconsistently. None of



Pred. Baseline Results (AUROC) Ours (AUROC)

Dataset Model

Ace. OE VC

IA-1

IA-T IA-IT RU BU FESTA

Gemma-3 0.80 0.53 0.61
LLaVA-1.6 0.71 0.67 0.56
BLINK Qwen-2.5-VL 0.88 0.86 0.65

0.55
0.47
0.77

0.68 0.63 0.71 0.69 0.81 (14.1%)
0.62 0.63 0.62 0.51 0.77 (14.9%)
0.78 0.80 0.77 0.60  0.93 (8.1%)

Phi-4 0.71 0.63 049 0.56 0.60 0.64 0.58 0.38 0.87(35.9%)
Pixtral 0.78 0.72 059 0.75 0.70 0.73 0.75 0.58 0.90 (20.0%)
Avg. 0.78 0.68 0.58 0.62 0.68 0.69 0.69 0.55 0.86 (24.6%)

Gemma-3 0.74 0.53 0.56
LLaVA-1.6 0.60 0.57 0.52
VSR Qwen-2.5-VL 0.95 0.65 0.47

0.60
0.57
0.61

058 0.63 059 0.66 0.88(33.3%)
058 0.66 056 0.53 0.74 (12.1%)
0.65 0.61 0.63 0.59 0.9241.5%)

Phi-4 0.68 0.58 049 048 050 0.60 0.50 0.56 0.94(56.7%)
Pixtral 0.76 0.57 059 0.55 0.62 0.60 0.68 0.61 0.91(33.8%)
Avg. 0.75 0.58 0.53 0.56 059 0.62 0.59 059 0.88(41.9%)

Table 1: Results for vision-LLMs. The final column in green (%) reports the relative improvement of FESTA

approach over the best baseline result (underlined).

Pred. Baseline Results (AUROC) Ours (AUROC)

Dataset Model

Ace. OE VC

IA-A

IA-T IA-AT RU BU FESTA

Qwen2-Audio 0.51 0.66 0.67
TREA-O SALMONN 0.31 0.54 0.54
Capt. + LLaMa 0.75 0.68 0.74

0.65
0.55
0.83

0.68 0.63 0.70 0.53 0.91 (30.0%)
055 0.66 0.64 039 0.86(30.3%)
0.64 0.85 0.68 0.65 0.90 (5.8%)

Avg. 0.52 0.63 0.65

0.68

0.62 71 0.67 052 0.89 (25.4%)

Qwen2-Audio 045 0.61 0.75
TREA-D SALMONN 0.35 0.54 048
Capt. + LLaMa 0.49 0.57 0.49

0.55
0.50
0.67

062 059 0.66 0.56 0.75(0.0%)
0.56 050 0.54 0.50 0.76 (35.7%)
055 0.69 056 0.54 0.80 (15.9%)

Avg. 043 057 057

0.57

0.58 0.59 0.59 0.53 0.77 (30.5%)

Qwen2-Audio 0.21 049 0.68
TREA-C SALMONN 020 0.34
Capt. + LLaMa 0.50 0.61

0.48

0 046

0.54

047 045 047 050 0.83(22.1%)
029 032 027 043 0.66 (43.5%)
054 045 055 0.62 0.81(22.7%)

0.
0.66
Avg. 0.30 0.48 0.58

0.49

043 041 043 052  0.77 (32.8%)

Table 2: Results for audio-LLMs using Qwen-2 audio (Chu et al., 2024), SALMONN (Tang et al., 2023) and audio
captions generated by SALMONN followed by text-based Qwen-2.5 model. The final column in green (%) reports
the relative improvement of FESTA approach over the best baseline result (underlined).

them consistently provide second-best perfor-
mance across models and tasks.

6.2 Ablations

To probe the performance of FESTA uncertainty
measure, we conduct the following analyses.

* FESTA uncertainty is a quantification of both
equivalent and complementary input sam-
plings. We separately analyze the AUROCs

from equivalent (FES) and complementary
(FCS) samples, as shown in Figures 2 and 3.
For the order and duration tasks in audio rea-
soning, AUC for Qwen?2 is more influenced
by the FCS, but SALMONN and SALMONN
desc.+LLM models are more influenced by
the FES. It shows the complementary nature
of FES and FCS inputs under different scenar-
ios. For the challenging event count task, FCS
uncertainty contributes the most, showing it’s



FES W FCS M FESTA

AUROC

SALMONN SAL. des.+LLM

(a)

Qwen2-audio Qwen2-audio

SALMONN  SAL. des.+LLM
(b) (e

Qwen2-audio SALMONN SAL. des.+LLM

Figure 2: AUROC for uncertainty based on FES, FCS and FESTA on (a) TREA-O, (b) TREA-D, and (c) TREA-C.

FES W FCS M FESTA

AUROC

Gemma3 LLaVA1.6 Qwen2.5VL Phi4 Pixtral

AUROC

LLaVA1.6 Pixtral

Gemma3

Qwen2.5VL Phi4
(b)

Figure 3: AUROC for uncertainty based on FES, FCS
and FESTA on (a) BLINK, (b) VSR data.

robustness in low accuracy scenarios.

* Appendix Figure 4 shows the scatter plot of

the confidence scores (W) for a model
choice. Figure 5 shows the scatter plot of
the detection scores for the output sampling
baseline approach for the same model. It is ev-
ident that baseline AUCs for these models are
affected by low uncertainty mis-predictions

which are majorly detected using FESTA.

* We also compare the effectiveness of our
proposed uncertainty quantification method,
which uses the KL-divergence distance from
the predictive distribution of an ideally certain
model. To compare, we compute the AUCs by

replacing the KL-divergence with the standard
entropy measure and the results are reported
in Appendix Tables 9 and 10. These results
highlight the superiority of the K. measure
over the entropy.

6.3 Number of equivalent samples

For the vision tasks, the value of K was varied
from 8 to 112, including FES and FCS samples,
while for audio tasks, K was varied from 10 to
120 (Appendix Tables 4, 5, 6, 7 and 8). The results
from this analysis highlight that, even with K = 16
samples for vision tasks and K = 20 for audio
tasks, the proposed FESTA can provide a robust
estimate of model uncertainty.

7 Conclusion

The proposed multimodal uncertainty estimation
algorithm, FESTA, is presented as a principled and
formally grounded framework for trust assessment
of LLMs. It introduces a novel input sampling
paradigm based on functional equivalence and com-
plementarity, a previously unexplored space, and
demonstrates its effectiveness for unsupervised
black-box settings. The proposal enables accurate
abstention from incorrect predictions in both audio-
LLMs and vision-LLMs, elicited by improved
AUROC values. Given the limited grounding of
current multimodal LLMs (especially lightweight
LLMs), the models tend to produce biased, low-
uncertainty hallucinations. A key contribution of
FESTA is its ability to detect and abstain from such
hallucinations. This capability leads to substantial
improvements in selective prediction performance.
Building on these promising results, we plan to ex-
tend FESTA to support natural language generation
and multimodal outputs in LLMs, moving beyond
the current focus on MCQA tasks.



8 Limitations

Despite its effectiveness, the current formulation
of FESTA has a few limitations and opens several
avenues for future work:

¢ Computational Overhead: Unlike standard
LLMs, FESTA relies on input samples from both
text and non-text modalities, increasing computa-
tional demand. This also means that about K ad-
ditional inferences are made per sample, thereby,
increasing the computational demand for com-
puting the uncertainty metric. While the cur-
rent implementation prioritizes predictive perfor-
mance—suitable for high-stakes scenarios such
as safety-critical applications—reducing latency
using FES/FCS samples passed through quan-
tized versions of the models may be undertaken
as future research to further reduce the computa-
tional demand.

* Generation of FES and FCS: The audio and
visual samples for FES and FCS are generated
using standard audio/image augmentation tools
as well as text rephrasing using LLMs. While this
process is currently automated and performed
seamlessly for the tasks considered in this work,
more complex audio/image tasks might require
careful prompting to generate the appropriate
perturbations needed for generating the FES and
FCS inputs.

* Improving LLM Behavior with FES and FCS:
In the current work, the FES and FCS were used
to analyze the uncertainty, without attempting
to improve the base model performance. How-
ever, the dual-space sampling strategy (functional
equivalence and complementarity) could also be
incorporated as in-context prompts to nudge the
LLMs to ensure equivalence/complementarity in
the outputs, thereby improving base LLM ac-
curacy. For example, one could input K FES
and prompt the LLM to ensure that the answer
to the original prompt should also match the re-
sponse to all the K FES. With this constraint, the
LLM would be forced to generate a consistent
response that matches with the response to the
FES, thereby improving the prediction accuracy.

» Extension to Natural Language Generation:
In the current work, the scope was limited
to multi-choice question answering tasks only.
Many real-world applications of multimodal
LLMs require open-ended, free-form text outputs.
A significant future direction is to extend FESTA

beyond classification tasks, enabling uncertainty-
aware abstention in generative settings. Further,
audio and image generation tasks open up new
avenues for uncertainty estimation, which is not
addressed in this work.
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A Appendix
A.1 Equivalence of input and FES samples

Proof. Proof of Equivalence relation for FES -
We show that ~¢ satisfies the three properties of
an equivalence relation:

(Reflexivity): For any input X, we have

T(X), Migea(X) = Migea(X),

so X ~¢ X. .
(Symmetry): Suppose X ~¢ X. Then,

Migeat(X) = Migea(X).

T(X) = T(X),

By symmetry of equality, this implies:

Migea (X)

T(X) = T(X)7 = Mdeal(X)a

so X ~e X. } R
(Transitivity): Suppose X ~g X and X ~¢ X.
Then,

T'(X)=T(X), Miea(X) = Migea(X),
and
T(X) =T(X), Miea(X) = Migear(X).

By transitivity of equality, we get:

T(X), Migea(X) = Migear(X),

so X ~¢ X.
Hence, ~¢ is reflexive, symmetric, and transi-
tive, and thus an equivalence relation. O

A.2 Equivalence between different FCS
samples
Proposition A.1. Let Cx = {X' : T(X')
T(X), Mideal(X/) 75 Mideal(X)} denote the set
of functionally complementary samples of input X.
Define a relation ~¢ over this set such that:

X1 ~c Xy <— T(Xl) = T(Xg)

and
Migeat(X1) = Migear(X2).

Then ~¢ is an equivalence relation over the set of
Sfunctionally complementary samples Cx.

Proof. We verify the three properties of equiva-
lence:

(Reflexivity): For any X; € C(x, clearly
T(Xy) = T(X1) and Migea1(X1) = Migeal(X1),
so X; ~¢ Xj.


https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ

(Symmetry): If X; ~¢ Xo, then:

T(X1) =T(X2), Migea(X1) = Migeal(X2).

By symmetry of equality, the reverse also holds:

T(X2) =T(X1), Migea(X2) = Migeal(X1),
SO X2 ~c Xl.
(Transitivity): If X; ~¢ X5 and X5 ~¢ X3,

then:

T(X1) =T(X2) = T(X3)
and
Migea1(X1) = Migea1(X2) = Migea1(X3)
SO X1 ~c X3.

Thus, ~¢ is reflexive, symmetric, and transitive
over Cx, and therefore an equivalence relation. [

A.3 FES uncertainty closed-form expression

Proposition A.2. Then the KL divergence from the
certain model to qrgs simplifies to:

Ures(M | x) := —log qres(y = 9 | x).

Proof. Recall that KL divergence between distri-
butions qeertain (y|z) and grgs (y|x) is defined as:

Dk (qeertain (y]X) | grEs (y[x)) =

Z Geert y|x QCertam (y|X)
certain
qFES (y]x)

Substituting Geertain (¥[%) = dy 4, We have:

Zyy

= log

DKL( ?JZ/

1
qres(y = 7 | x)
—log gres(y = 9 | x)

O]

A.4 FCS for low-uncertainty hallucinations

We focus on he functional complementary sam-
pling. We show that a hallucinating model has ten-
dency to not react to the complementary transfor-
mations of the input. The proof sketch is provided
below, for a single attention head.

QFES y ’ X)
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Theorem A.3 (Negation Invariance in Hallucinat-
ing Attention Blocks). Consider a single-head at-
tention block over input X = [Xp, X ] with at-
tention weights

Qi K;
\/@J y Attni = Zj: Olij‘/]

neg
XD

o := softmax; (

Let  negation act as

fneg(Xp) Xmeg = Xy
Under two hallucination models:

(1) Missing attention: 1, cvij < >\ Qij,

(2) Over-reliance on prior: K; ~ K*,V; = V",
independent of X,

the attention output satisfies:
Attn;*® ~ Attn;"®,

and thus the prediction remains unchanged under
negation.

A.5 Details of FES and FCS

The generic functionally equivalent transforms ap-
plied to image data include:
* Contrast: Adjusts image contrast to simulate
lighting variation.

* Blur: Applies slight blurring to the image

* Noise: Adding a small amount of pixel-level
noise

* Masking: Hides small number of random
pixels

* Rotate: Rotates the image slightly to simulate
viewpoint changes.

* Shift: Translates the image slightly in space.

* Greyscale: Removes color information while
preserving structure.
The generic functionally equivalent transforms ap-
plied to audio data include:

* Silence: Adding small duration of silence in
between sound events
* Volume: Minor adjustment to the volume of
different sound events
The generic functionally equivalent transforms ap-
plied to text data include:
* Rephrase: Paraphrasing the question such
that the meaning remains unchanged



Table 3: Summary of Notations Used in FESTA

Notation Description

X = [Xo, X7] Multimodal input (Non-text and text modalities)

Y Ground truth

T(X) Task to be performed to answer X

q(y| X) Predictive distribution of model outputs given X

7 Model’s predicted output, § = arg maxyey q(y|X)

X ~ Pres(X|X)
X" ~ Pres(X'|X)
Migeal

Monsistent
Mensitive

qres (y]X)

qres (y|X)

Urgs

Urcs

Uresta
S
S/

Functionally equivalent samples (FES) from X
Functionally complementary samples (FCS) from X
Ideal model achieving task objective perfectly
A perfectly consistent model under FES

A perfectly sensitive model under FCS
Predictive distribution over FES samples
Predictive distribution over FCS samples
Uncertainty estimate from FES

Uncertainty estimate from FCS

Combined FESTA uncertainty estimate

Finite set of output sequences

Modified predictive support ({g, §¢})

Functionally Complementary Transformation for
image-text datasets is done by negating the textual
question such that the answer changes.
Functionally Complementary Transformation
for audio-text datasets is done by negating the audio
such that the answer changes. This is task-specific.

* Count: Adding new sound events to the orig-
inal audio

e Duration: Replace the longest or shortest
sound event in the audio with a sound event
not originally present.

* Order: Swap the positions of the sound
events in the audio

Examples of Functionally Equivalent Transform
and Functionally Complementary Transform for
both audio and image are given in 6.

A.6 Hyperparameters

FESTA has the minimal number of
hyperparameters- only the number of sam-
ples to be used. This makes it easily deployable
and devoid of heavy tuning. We have used the same
number of equivalent (K7) and complementary
(K2) samples (K = K; = Kb»).

Vision-LLMs: For vision LLMs, K1 = Ko = 56
is used. Within modalities, for each multimodal
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data point, 14 image samplings (K1; = 14) and 4
text samplings are used (K12 = 4).
Audio-LLMs: For vision LLMs, K; = K> = 60
is used. Within modalities, for each multimodal
data point, 15 audio samplings (K17 = 15) and 4
text samplings are used (K12 = 4).

A.7 Notations

The symbols and their meanings are noted in Ta-
ble 3.

A.8 Model details and License

The models below are used as per the suggested
guidelines and only for research purposes.
Gemma-3: The 128 model is used from https:
//huggingface.co/google/gemma-3-12b-it
with license 2.

LLaVa-1.6: The 7B model is used from
https://huggingface.co/llava-hf/1llava-
v1.6-mistral-7b-hf with license .

Phi-4: The 5.6B model is wused from
https://huggingface.co/microsoft/Phi-

4-multimodal-instruct with license 4.

2https://ai.google.dev/gemma/terms

3http: //www.apache.org/licenses/LICENSE-2.0

4https: //huggingface.co/microsoft/Phi-4-
multimodal-instruct/resolve/main/LICENSE
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Figure 4: FESTA log(score) plots for best improvement models where score is reciprocal of FESTA uncertainty.

Pixtral: The 12B model is used from
https://huggingface.co/mistralai/
Pixtral-12B-2409 with license .
Qwen-2.5VL: The 7B model is used from
https://huggingface.co/Qwen/Qwen2.5-VL-
7B-Instruct with license °.

Qwen2-Audio: The 7B model is used from
https://huggingface.co/Qwen/Qwen2-Audio-
7B-Instruct with license .

SALMONN: The 12B model is used from
https://github.com/bytedance/SALMONN with

license 8.

A.9 Computation budget and hardware

We have used 8 Nvidia RTX A6000 GPU cards for
all our experiments.

A.10 Number of Equivalent and
complementary Samples

The results for varying the number of samples K
are given in Tables 4, 6, 7, 8,and 5.

A.11 Usage of Al assitants

We have used ChatGPT, only restricted to section
summarization and for textual rewriting of parts of
the paper.

Shttp: //www.apache.org/licenses/LICENSE-2.0
®http://www.apache.org/licenses/LICENSE-2.0
"http://www.apache.org/licenses/LICENSE-2.0
8h’ctp: //www.apache.org/licenses/LICENSE-2.0
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Sample_Size 2*%4 2*8§ 2%12 2*16 2*20 2%*24 2%28 2%32 2*36 2*40 2*44 2%*48 2*52 2*56
Gemma-3 0.79 0.82 0.81 081 0.81 0.82 0.81 0.81 081 0.81 0.81 0.81 0.81 0.81
LLaVa 0.76 0.77 0.74 0.76 0.78 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.77 0.77
Phi4 0.85 0.86 0.87 087 0.87 0.87 0.87 0.87 087 0.87 0.87 0.87 0.87 0.87
Pixtral 0.90 090 0.89 090 090 091 090 091 090 0.90 0.90 0.90 090 0.90
Qwen-2.5-VLL 092 092 092 092 093 093 092 093 092 093 092 093 093 0.93
Table 4: AUC performance of different models across increasing sample sizes on BLINK dataset.
Sample_Size 2%*4 2*%*8 2*¥*12 2%¥16 2%*20 2%24 2%*28 2*32 2%36 2*40 2*44 2%*48 2*52 2*56
Gemma-3 0.85 0.87 0.88 0.89 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
LLaVa 0.67 0.72 0.69 0.72 0.72 0.70 0.73 0.74 0.73 0.75 0.76 0.74 0.73 0.74
Phid 0.93 094 093 094 094 093 094 094 094 094 094 094 094 094
Pixtral 0.88 0.89 091 0950 091 090 090 0.90 090 091 091 091 091 091
Qwen-2.5-VL. 091 0.88 0.93 092 092 092 091 093 091 091 092 092 092 0092
Table 5: AUC performance of different models across increasing sample sizes on VSR dataset.
Sample_Size 2%5 2%10 2¥15 2%20 2*25 2%30 2*35 2%4(0 2%*45 2*50 2*55 2%60
Qwen2-audio 0.81 0.84 083 0.81 0.83 0.83 0.84 084 0.83 0.83 0.84 0.83
SALMONN 0.55 065 059 0.65 064 0.64 064 065 0.65 0.63 0.67 0.66
SALMONN desc+LILM 0.80 0.81 0.80 0.80 0.80 0.82 0.81 0.81 0.81 0.81 0.81 0.81
Table 6: AUC performance for the Audio Event Counting task.
Sample_Size 2%5 2%10 2¥15 2%20 2#*25 2%30 2*35 2%40 2*45 2*50 2*55 2%60
Qwen2-audio 0.73 0.75 077 075 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
SALMONN 0.74 072 0.76 0.79 0.74 0.76 0.77 0.75 0.74 0.77 0.77 0.76
SALMONN desc+LLM 0.79 0.80 0.80 0.80 0.79 0.80 0.79 0.79 0.79 0.79 0.79 0.80
Table 7: AUC performance for the Duration task.
Sample_Size 2%5 2%10 2*15 2%20 2%*25 2%30 2*35 2%40 2*45 2*50 2*55 2%*60
Qwen2-audio 091 092 091 091 091 091 091 091 091 091 091 091
SALMONN 0.81 0.83 0.83 0.86 0.84 0.86 0.84 0.85 0.86 0.86 0.86 0.86
SALMONN desc+LLM 0.89 090 0.90 0.90 090 090 090 0.90 090 090 0.90 0.90

Table 8: AUC performance for the Ordering task.
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Figure 5: FESTA log(score) plots for output sampling baseline where score is reciprocal of FESTA uncertainty.

Model TREA-O TREA-D TREA-C

Entropy KL-div Entropy KL-div Entropy KL-div

Qwen2-Audio
SALMONN
SAL. des+LLM

0.59
0.58
0.76

0.91
0.86
0.90

0.67
0.60
0.73

0.75
0.76
0.80

0.38
0.27
0.63

0.83
0.66
0.81

Avg.

0.64

0.89 (39.1%)

0.67

0.77 (14.9%)

0.43

0.77 (79.1%)

Table 9: Average performance of audio-LLMs using standard entropy measure compared with the proposed KL-div

based measure.

Dataset

Gemma3 LLaVAl.6 Qwen2.5VL Phi4 Pixtral

Avg.

BLINK (Entropy)
BLINK (KL-div)

0.57
0.81

0.66
0.77

0.79
0.93

0.65
0.87

0.73
0.90

0.68
0.86 (26.5%)

VSR (Entropy)
VSR (KL-div)

0.61
0.88

0.55
0.74

0.56
0.92

0.41
0.94

0.58
0.91

0.54
0.88 (63.0%)

Table 10: Average performance of vision-LLMs using standard entropy measure compared with the proposed

KL-div based measure.
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Figure 6: Examples of Functionally Equivalent Transform and Functionally Complementary Transform for both
audio-text and image-text questions.

17



	Introduction
	Problem statement
	FESTA Uncertainty Estimator
	Functional equivalent samples (FES)
	Functional complementary samples (FCS)
	Ideal behavior under FES and FCS
	Uncertainty Estimation from FES
	Uncertainty Estimation from FCS
	FESTA uncertainty estimate

	Related Prior Work
	Experimental Setup
	Tasks and Datasets
	Multimodal LLMs
	Comparison with Baseline Systems
	Evaluation metric
	Equivalent Sample Generation
	Complementary samples (FCS)

	Results
	FESTA uncertainty evaluation
	Ablations
	Number of equivalent samples

	Conclusion
	Limitations
	Appendix
	Equivalence of input and FES samples
	Equivalence between different FCS samples
	FES uncertainty closed-form expression
	FCS for low-uncertainty hallucinations
	Details of FES and FCS
	Hyperparameters
	Notations
	Model details and License
	Computation budget and hardware
	Number of Equivalent and complementary Samples
	Usage of AI assitants


