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Abstract001

The accurate trust assessment of large lan-002
guage models (LLMs), which can enable se-003
lective prediction and improve user confidence,004
is challenging due to the diverse multi-modal005
input paradigms. We propose Functionally006
Equivalent Sampling for Trust Assessment007
(FESTA), an input sampling technique for mul-008
timodal models, which generates an uncertainty009
measure based on the equivalent and comple-010
mentary input sampling. The sampling ap-011
proach expands the input space to measure012
the consistency (through equivalent samples)013
and sensitivity (through complementary sam-014
ples) properties of the model. These two un-015
certainty measures are combined to form the016
final FESTA estimate. Our approach only re-017
quires black-box access, and is unsupervised.018
The experiments are conducted with various019
off-the-shelf multi-modal LLMs, on visual and020
audio reasoning tasks. The proposed FESTA021
approach is shown to significantly improve022
(33.3% relative improvement for vision-LLMs023
and 29.6% relative improvement for audio-024
LLMs) the area-under-receiver-operating-curve025
(AUROC) metric on these reasoning tasks.026

1 Introduction027

Large language models (LLMs) have achieved re-028

markable performance across a wide array of natu-029

ral language processing tasks (Brown et al., 2020;030

Touvron et al., 2023; OpenAI, 2023), yet their pre-031

dictive uncertainty, especially in multimodal rea-032

soning scenarios, remains poorly understood and033

inadequately quantified (Hendrycks et al., 2022;034

Li et al., 2023). Selective prediction (SP) is an035

area of work that attempts to prevent a model from036

making wrong predictions. In safety-critical scenar-037

ios like finance, medicine and autonomous driving,038

incorrect predictions are very expensive and selec-039

tive prediction algorithms are highly sought after040

as part of building safe AI deployment (Amodei041

et al., 2016; Hendrycks et al., 2021). An efficient042

SP algorithm helps in providing low selective risk 043

(high accuracy) with high coverage (the subset of 044

questions for which the model chooses to answer). 045

Further, trust assessment of models is important 046

to increase the user confidence of large models in 047

sensitive applications. 048

One of the most common approaches to SP is based 049

on uncertainty measures like output entropy. The 050

model predictions with high uncertainty are more 051

prone to errors, and hence abstained from predic- 052

tion. Several prior works have proposed entropy 053

computation approaches for uncertainty estima- 054

tion (Kuhn et al., 2023a; Farquhar et al., 2024; 055

Ling et al., 2024). 056

The SP algorithms are critical when the LLM is 057

operated on out-of-domain or low-resource regions 058

of the input space, as the models have a higher ten- 059

dency for erroneous generation. Previous studies 060

have demonstrated that calibration typically deteri- 061

orates as model performance declines (Guo et al., 062

2017; Wang et al., 2023b; Kürbis et al., 2024). In 063

some cases, the inaccurate predictions by multi- 064

modal LLMs may arise from their insensitivity to 065

the input (referred as mode collapse). Such predic- 066

tions have low predictive entropy and low accuracy. 067

With the advent of multimodal LLMs such as 068

large vision language models (LVLM) (Liu et al., 069

2023; Agrawal et al., 2024; Bai et al., 2025) and 070

large audio language models (LALM) (Chu et al., 071

2024; Tang et al., 2023), we make the following 072

observations: (O1) The existing output entropy- 073

based measures are largely developed for text- 074

based LLMs, (O2) Such measures have limited 075

abstention capabilities, especially for challenging 076

tasks like reasoning, (O3) The prior works may fail 077

to abstain from low-entropy mis-predictions. 078

In this paper, we propose functional equivalence 079

sampling and functional complementary sampling 080

for multimodal LLMs, that generate samples based 081

on their equivalence/complementarity to the origi- 082

nal input and task objective. We assume the exis- 083

1



Figure 1: Schematic illustration of the proposed FESTA uncertainty quantification approach. Given a multimodal
MCQ input, we generate functional equivalent samples (FES) and functional complementary samples (FCS). We
compute divergence of model predictive uncertainty from an ideally consistent model (for FES) and sensitive model
(for FCS) and combine these measure to generate the FESTA uncertainty score.

tence of such a functional space and explore their084

utility in quantifying uncertainty. We restrict this085

work to multiple-choice reasoning tasks involving086

audio/visual prompts. The key contributions are:087

• We propose functional equivalence sampling088

(FES) and functional complementary sampling089

(FCS) to identify the consistency and sensitivity090

of model outputs - components which contribute091

to the uncertainty metric that are measurable for092

unsupervised and black-box model settings.093

• Mathematical quantification of the proposed094

FESTA score as a KL-divergence from an ide-095

ally consistent and sensitive model, that improves096

over the standard entropy based measures.097

• Effective uncertainty estimation for low uncer-098

tainty hallucinations, where the other baselines099

fail, through complementary sampling.100

• Extensive performance benchmarking with vari-101

ous other prior works on audio/visual reasoning102

tasks with multiple open-source LLMs to illus-103

trate the effectiveness of FESTA.104

The schematic illustration of the proposed FESTA 1105

approach is shown in Figure 1.106

2 Problem statement107

Let X = [XO,XT] ∈ X denote a multi-108

modal input instance (e.g., an audio/image + tex-109

tual prompt) to a large language model (LLM)110

with ground-truth response ytarget, and let S111

denote the finite set of possible model outputs.112

While the FESTA approach is applicable to general113

1The code and evaluation pipeline will be released upon
paper acceptance.

multi-modal outputs, we restrict our discussion to 114

the purely textual output case, in a multi-choice 115

question-answering (MCQA) setting. Further, it is 116

also assumed that the LLM is quite competitive in 117

instruction following and generation capabilities, 118

which limits the output sample space in MCQA 119

settings. The LLM defines a predictive distribution 120

over fixed set of outputs : q(y|X) ∈ ∆|S|. The 121

model’s prediction is (greedy sampling): 122

ŷ := argmax
y∈S

q(y|X). 123

Problem statement: Given multi-modal in-
put X and predictive distribution q(y|X),
estimate the predictive uncertainty of ŷ =
argmaxy∈S q(y|X) in a black-box setting.

124

We resort to the following directions to develop 125

the uncertainty estimator, 126

• Using functionally equivalent sampling to esti- 127

mate the epistemic uncertainty (consistency). 128

• Using functionally complementary sampling to 129

measure counterfactual uncertainty (sensitivity). 130

• Combining the two measures to compute the 131

FESTA measure. 132

3 FESTA Uncertainty Estimator 133

3.1 Functional equivalent samples (FES) 134

Given an input–output pair (X,y), let T (·) denote 135

the task that the model must solve to generate the 136

expected response, and let Mideal denote the hypo- 137

thetical model which has the ideal behavior. 138
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Def: A transformation X̃ = E(X) is said
to be a functionally equivalent sample of X
if:

T (X̃) = T (X) andMideal(X̃) = Mideal(X)
139

We define a distribution PFES(X̃|X) over all140

possible equivalent transformations ({Ei(X)}i)141

and denote the sampling process as:142

X̃ ∼ PFES(X̃|X) or X̃ ∼E X143

Proposition 3.1. The relation ∼E defined over144

inputs X ∼E X̃ such that T (X) = T (X̃) and145

Mideal(X) = Mideal(X̃) is an equivalence rela-146

tion on the input space.147

Proof. The detailed proof is outlined in Ap-148

pendix A.1.149

3.2 Functional complementary samples (FCS)150

We formally define FCS below based on previously151

defined notations:152

Def: A transformation X′ = C(X) is a
functionally complementary sample of X if
it is task-equivalent but functionally diver-
gent, i.e.,

T (X′) = T (X) andMideal(X
′) ̸= Mideal(X)

153

Similarly, we define a second distribution154

PFCS(X
′|X) over all complementary transforma-155

tions ({Ci(X)}i). For example, negations or156

counter-factual transformations of the original in-157

puts constitute the FCS, which should alter the158

ideal model prediction. We sample X′ as,159

X′ ∼ PFCS(X
′|X) orX′ ∼C X160

Although a complementary sample is not equiva-161

lent to original input, it can be shown, similar to162

Proposition 3.1, that all complementary samples X′163

have formal equivalence among multiple samples164

generated from PFCS (proof in Appendix A.2).165

3.3 Ideal behavior under FES and FCS166

Before uncertainty quantification, we first intro-167

duce the notion of a consistent and sensitive model,168

Mcons. and Msens., respectively, which do not rely169

on the underlying labels (unsupervised).170

• Consistency under FES: The model Mcons. gen- 171

erates predictions that remain consistent and un- 172

altered under FES. We define the consistency 173

entropy, UFES, based on the deviation of a given 174

model M from Mcons.. 175

• Sensitivity to FCS: The model Msens. is sensi- 176

tive to counterfactual negations and its predic- 177

tions for FCS are complementary to the original 178

predictions, i.e., (y ̸= ŷ). We define the comple- 179

mentary sensitivity entropy, UFCS, based on the 180

deviation of a given model M from Msens.. 181

Note that, Mideal ⊂ Msens. and Mideal ⊂ Msens., 182

i.e., an ideal model is both consistent and sensitive, 183

while the converse is not true. 184

3.4 Uncertainty Estimation from FES 185

Given a specific input X = x, consider a set of its 186

functional equivalent inputs: {x̃1, x̃2, . . . , x̃K1}, 187

drawn from x̃k ∼ PFES. Let q(y|x̃k) denote the 188

predictive probability distribution of model M . 189

Note that, the response y is a random sequence 190

which can be sampled using stochastic decoding 191

of LLMs. The uncertainty measure of the model 192

M is measured as the deviation from the grounded 193

model Mcons.. 194

195

• Predictive distribution of Mcons.: In our prob- 196

lem setting, the definition of Mcons. implies that 197

its predictive distribution is a Kronecker delta 198

function with respect to equivalent sampling. 199

qcons.(y | x̃k,x) = δyŷ ∀ x̃k ∼E X, y ∈ S 200

• Predictive distribution of M : This is given as: 201

qFES(y | x) = Ex̃k∼PFES
q(y | x̃k,x) ,y ∈ S 202

Now, we pose the uncertainty of model M as the 203

deviation of it’s predictive distribution from that of 204

Mcons., i.e., 205

UFES(M |x) = DKL(qcons.(y | x)||qFES(y | x)) 206

Proposition 3.2. The KL divergence from the con- 207

sistent model Mcons. to qFES simplifies to (y ∈ S): 208

UFES(M | x) := − log qFES(y = ŷ | x). 209

Proof. The proof follows from the definition of KL 210

divergence, as shown in the Appendix A.3. 211

It is interesting to note that, resorting to Mcons. 212

makes the uncertainty quantification solely based 213

on model predictions, and makes it an unsupervised 214

approach. 215
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3.5 Uncertainty Estimation from FCS216

We can formally conclude the properties with217

respect to the predictive distribution for comple-218

mentary samples: {x′
1,x

′
2, . . . ,x

′
K2

}, drawn from219

x′
k ∼ PFCS as below:220

221

• Predictive distribution of Msens.: Based on222

the definition of FCS, they alter the predictions223

- Msens.(x
′) ̸= Msens.(x). Clearly, under the224

original support S, the predictive distribution225

q(y | x′
k,x) can be any distribution. But, we226

restrict the support to have only two members as227

S ′ = {ŷ, ŷc} where ŷc = {y : y ∈ S,y ̸= ŷ}.228

Now, the predictive distribution becomes a Kro-229

necker delta with entire mass on ŷc.230

qsens.(y | x′
k,x) = δyŷc ∀x′

k ∼C X, y ∈ S ′231

• Predictive distribution of M : In this case,232

qFCS(y | x) = Ex′
k∼PFCS

q(y | x′
k,x) ,y ∈ S ′233

Finally, similar to the case of equivalent samples234

(FES), we pose the uncertainty of model M com-235

puted from complementary samples (FCS) as:236

UFCS(M |x) = DKL(q
′
sens.(y | x)||qFCS(y | x))237

Proposition 3.3. The KL divergence simplifies to:238

UFCS(M | x) := − log

(∑
y

qFCS(y ̸= ŷ | x)

)
239

Proof. The predictive distributions can be used in240

the definition of KL divergence and follows from241

the steps similar to Appendix A.3.242

Although the prior works on uncertainty based243

SP work under the hypothesis that incorrect pre-244

dictions are associated with high uncertainty,245

LLMs are sometimes associated with biased mis-246

predictions. As a naive example, if a model predicts247

the same choice as the answer to MCQA, stochastic248

decoding or equivalence sampling does not provide249

the right framework for quantifying this misbehav-250

ior. However, UFCS helps to abstain from such251

low-uncertainty mis-predictions. when the model252

predictions show no sensitivity to the complemen-253

tary sampling. We formally show this for a single254

attention block in Appendix A.4.255

Algorithm 1 FESTA Uncertainty Estimator

Require: Input X , predictive distribu-
tion q(y|X), original prediction
ŷ = argmaxy q(y|X), number of sam-
ples K = K1 +K2.

1: FES Sampling:
2: Generate K1 functionally equivalent samples:

{x̃k}K1
k=1 ∼ PFES(x̃|X) by sampling text and

non-text modalities (XT ,XO) for (K11,K12)
times and using all combinations (K1 = K11×
K12).

3: Compute predictive distribution qFES(y|X) us-
ing {x̃k}K1

k=1

4: Compute FES uncertainty for prediction ŷ:

UFES = − log qFES(y = ŷ|X)

5: FCS Sampling:
6: Generate K2 functionally complementary sam-

ples: {x′
k}

K2
k=1 ∼ PFCS(x

′|X) by comple-
mentary sampling either of the text or non-
text modalities (e.g. XT ) for K21 times and
equivalent sampling the other (e.g. XO) for
K22 times, and finally using all combinations
(K2 = K21 ×K22).

7: Compute predictive distribution qFCS(y|X)
for complementary samples {x′

k}
K2
k=1.

8: Compute FCS uncertainty:

UFCS = − log

∑
y ̸=ŷ

qFCS(y|X)


9: FESTA: UFESTA = UFES+ UFCS

3.6 FESTA uncertainty estimate 256

The FESTA uncertainty estimate finally combines 257

the two axes of uncertainty quantification - UFES , 258

which measures the model response consistency 259

across equivalent sampling, and UFCS , which 260

measures the model sensitivity to complementary 261

sampling, by taking their sum. The combination 262

helps to abstain from both high uncertainty and 263

low uncertainty mis-predictions, as evident in Sec- 264

tion 6. The FESTA approach is summarized in 265

Algorithm 1. 266

4 Related Prior Work 267

White-box Uncertainty Estimation: Uncertainty 268

estimation methods for Large Language Models 269

(LLMs) can broadly be categorized into white- 270

box and black-box approaches (Gawlikowski et al., 271
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2023). White-box methods leverage direct access272

to internal model parameters, gradients, or interme-273

diate activations to quantify uncertainty (Kadavath274

et al., 2022; Wang et al., 2024). Such approaches,275

although potentially precise and informative, re-276

quire internal model details, which are unavailable277

for closed-source models (Xiao et al., 2023).278

Black-box Uncertainty Estimation: Black-box279

methods do not assume any access to model in-280

ternals and typically rely on externally observable281

behaviors such as output distributions under varied282

prompts or input perturbations (Xiao et al., 2023;283

Jiang et al., 2024). One popular paradigm involves284

employing input paraphrases or perturbations and285

observing variations in the model’s output distri-286

bution to estimate uncertainty (Kuhn et al., 2023b;287

Xiong et al., 2024b; Wang et al., 2023a). For in-288

stance, Kuhn et al. (Kuhn et al., 2023b) introduced289

input clarification ensembling, generating multiple290

clarified versions of the same input to measure pre-291

dictive entropy and mutual information, effectively292

decomposing uncertainty into aleatoric and epis-293

temic components. Similarly, Xiong et al. (Xiong294

et al., 2024b) proposed generating uncertainty esti-295

mates through paraphrasing queries.296

Another line of work focuses on semantic en-297

tropy, quantifying uncertainty based on semantic298

coherence across generated responses. Tian et299

al. (Tian et al., 2023b) leveraged semantic entropy300

as an effective metric to detect hallucinations in301

model outputs. Wang et al. (Wang et al., 2023a) cal-302

ibrated model predictions using augmented prompt303

ensembles, reducing overconfidence and enhancing304

the reliability of black-box LLMs without needing305

access to their internal structures. Likewise, Jiang306

et al. (Jiang et al., 2024) proposed a perturbation-307

based uncertainty estimation framework that sys-308

tematically perturbs inputs and evaluates the model309

response variability.310

Most of the prior works are purely based on311

text-only settings. Recently, uncertainty estimation312

for multimodal large language models (MLLMs)313

has gained attention. Huang et al. (Huang et al.,314

2023; Li et al., 2024) empirically analyzed un-315

certainty under multimodal scenarios, especially316

highlighting cases with misleading visual or tex-317

tual cues, finding that multimodal integration can318

introduce unique dynamics that require separate319

evaluation. However, critical gaps remain regard-320

ing interpretability, robustness against adversarial321

perturbations, and efficient sampling strategies to322

maintain computational feasibility (Gawlikowski323

et al., 2023; Yin et al., 2023; Mielke et al., 2022). 324

5 Experimental Setup 325

5.1 Tasks and Datasets 326

We use 3 datasets on positional reasoning - 2 327

for vision-LLMs (BLINK, VSR) and 1 for audio- 328

LLMs (TREA). 329

BLINK: The BLINK dataset (Fu et al., 2024) 330

points out to the limitations of modern vision- 331

language models with binary questions, where rela- 332

tive positions between different objects in an image 333

are queried. The spatial reasoning samples from 334

the validation split are chosen for evaluation con- 335

taining 143 samples. 336

VSR: The VSR dataset (Liu et al., 2023) is analo- 337

gous to the BLINK dataset, with binary questions. 338

This is a dataset entirely focused on diverse spatial 339

reasoning samples. The validation partition with 340

100 randomly samples are used for evaluation. 341

TREA: The Temporal Reasoning Evaluation of Au- 342

dio (TREA) dataset (Bhattacharya et al., 2025) is a 343

comprehensive audio-reasoning dataset, focused on 344

audio-temporal reasoning on which audio-LLMs 345

perform poorly (Kuan and Lee, 2025). It has MCQ 346

with four answer choices. It further divides the 347

temporal reasoning task into 3 main sub-categories 348

- ordering, duration, and event counting. We use a 349

subset of 300 samples (100 per task) for the evalu- 350

ations in this paper. 351

5.2 Multimodal LLMs 352

Visual spatial reasoning: We use large vi- 353

sion language models (LVLM)- Gemma-3 (Team 354

et al., 2025), LLaVA-1.6 (Liu et al., 2023), 355

Qwen-2.5 (Yang et al., 2025), Phi4 (Abdin et al., 356

2024) and Pixtral (Agrawal et al., 2024) for the 357

evaluation. All of these models show significantly 358

lower performance compared to humans perfor- 359

mance of > 95% (Fu et al., 2024). The model 360

accuracies are reported in Table 1. 361

Audio temporal reasoning: We have evalu- 362

ated using Qwen2-audio (Chu et al., 2024) and 363

SALMONN (Tang et al., 2023), two open-source 364

audio-LLMs. We observe that their temporal rea- 365

soning performance is relatively weak for the tasks. 366

We have also experimented with generating audio 367

captions using the audio-LLMs and then passing 368

the text captions to an LLM (Qwen 2.5 (Bai et al., 369

2025)) along with the MCQ prompt. This approach 370

shows an improvement in accuracy for all three 371

TREA tasks. Model accuracies are reported in Ta- 372

5



ble 2.373

5.3 Comparison with Baseline Systems374

• Output entropy (OE): The predictive dis-375

tribution of the models is estimated using376

stochastic decoding, and the entropy is mea-377

sured (Kuhn et al., 2023a) as: H (q(y|x)) =378

−
∑

y q(y|x) log q(y|x).379

• Verbalized confidence (VC): LLMs are good380

estimators of their own confidence (Tian et al.,381

2023a), when verbalized through prompting.382

• Input augmentations (IA): Based on the ap-383

proach in (Bahat and Shakhnarovich, 2020) to384

obtain predictions using input augmentations and385

computing entropy from the ensemble. Apart386

from image augmentations (IA-I), we performed387

text augmentations (IA-T), using paraphrasing.388

Finally, we report performance of combined aug-389

mentations (IA-IT).390

• Rephrase uncertainty (RU): This sys-391

tem (Xiong et al., 2024b) uses text rephrasing392

and measures the answer consistency.393

• Black-box uncertainty (BU): The work reported394

in (Xiong et al., 2024a) is reproduced for compar-395

ison. The results show that using a combination396

of top-K prompting and random sampling yields397

the most stable performance. We have used top-4398

prompting with outputs sampled 5 times.399

5.4 Evaluation metric400

An uncertainty measure should correlate with the401

probability of incorrect predictions. The perfor-402

mance of uncertainty methods is evaluated using403

Area-Under-Receiver-Operating-Curve (AUROC),404

defined as:405

AUROC = AUC

(
1

U
,1{ŷ=ytarget}

)
406

where U is the uncertainty, ytarget denotes the407

ground-truth, ŷ denotes the model outputs.408

5.5 Equivalent Sample Generation409

For the audio tasks, equivalent samples are410

transformations on the original input that main-411

tain the task and functional equivalence. The412

transformations are done on both modalities:413

audio input and textual question. While some414

equivalence transformations such as adding noise,415

varying loudness of the audio, paraphrasing the416

textual question, etc, are generic, equivalence417

transformations can be task-specific too. For418

example, for the order task, where the goal is to 419

answer which audio event occurred after the event 420

A in the audio, changing the duration of event A is 421

an equivalence transformation. However, this is not 422

a valid equivalence transformation with respect to 423

the event duration task. Similarly, for vision tasks, 424

task-invariant transformations include adding noise 425

to image, and task-specific transformations include 426

RGB to grayscale transform or changes in object 427

orientation. The complete description of equivalent 428

sampling transforms used along with examples are 429

detailed in Appendix A.5 and Figure 6. 430

431

5.6 Complementary samples (FCS) 432

By definition, the complementary transformation 433

samples inputs which should alter the model pre- 434

dictions. For example, for audio tasks, a comple- 435

mentary transform can be the addition of a new 436

audio event at the start or end of the input audio 437

clip for the event counting task. The complemen- 438

tary transformations used along with examples are 439

detailed in in Appendix A.5 and Figure 6. 440

6 Results 441

6.1 FESTA uncertainty evaluation 442

The performance of FESTA and other baselines on 443

vision-LLMs and audio-LLMs are reported in Ta- 444

bles 1 and 2. We make the following observations: 445

• FESTA based uncertainty measure outperforms 446

all the black-box baselines approaches signif- 447

icantly, achieving 24.6% and 41.9% relative 448

improvements over second best approaches on 449

BLINK and VSR datasets, respectively, averaged 450

over different models. Also, for audio-LLMs, it 451

achieves 25.4%, 30.5% and 32.8% relative im- 452

provements for order, duration and count tasks, 453

respectively, averaged over different models. 454

• Although the audio-LLM performances were 455

poor for temporal reasoning (accuracy: order 456

- 52%, duration - 43% and count - 30%), the AU- 457

ROC achieved by FESTA of 0.89, 0.77 and 0.77 458

respectively, shows its effectiveness for challeng- 459

ing reasoning tasks. 460

• For vision-LLMs, FESTA shows effectiveness 461

across low and high accuracy models. The 462

largest improvements were observed for Phi-4 463

(the model with the least size of 5.6B). 464

• For both audio-LLMs and vision-LLMs, the base- 465

line systems perform inconsistently. None of 466
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Dataset Model
Pred. Baseline Results (AUROC) Ours (AUROC)

Acc. OE VC IA-I IA-T IA-IT RU BU FESTA

BLINK

Gemma-3 0.80 0.53 0.61 0.55 0.68 0.63 0.71 0.69 0.81 (14.1%)

LLaVA-1.6 0.71 0.67 0.56 0.47 0.62 0.63 0.62 0.51 0.77 (14.9%)

Qwen-2.5-VL 0.88 0.86 0.65 0.77 0.78 0.80 0.77 0.60 0.93 (8.1%)

Phi-4 0.71 0.63 0.49 0.56 0.60 0.64 0.58 0.38 0.87 (35.9%)

Pixtral 0.78 0.72 0.59 0.75 0.70 0.73 0.75 0.58 0.90 (20.0%)

Avg. 0.78 0.68 0.58 0.62 0.68 0.69 0.69 0.55 0.86 (24.6%)

VSR

Gemma-3 0.74 0.53 0.56 0.60 0.58 0.63 0.59 0.66 0.88 (33.3%)

LLaVA-1.6 0.60 0.57 0.52 0.57 0.58 0.66 0.56 0.53 0.74 (12.1%)

Qwen-2.5-VL 0.95 0.65 0.47 0.61 0.65 0.61 0.63 0.59 0.92 (41.5%)

Phi-4 0.68 0.58 0.49 0.48 0.50 0.60 0.50 0.56 0.94 (56.7%)

Pixtral 0.76 0.57 0.59 0.55 0.62 0.60 0.68 0.61 0.91 (33.8%)

Avg. 0.75 0.58 0.53 0.56 0.59 0.62 0.59 0.59 0.88 (41.9%)

Table 1: Results for vision-LLMs. The final column in green (%) reports the relative improvement of FESTA
approach over the best baseline result (underlined).

Dataset Model
Pred. Baseline Results (AUROC) Ours (AUROC)

Acc. OE VC IA-A IA-T IA-AT RU BU FESTA

TREA-O
Qwen2-Audio 0.51 0.66 0.67 0.65 0.68 0.63 0.70 0.53 0.91 (30.0%)
SALMONN 0.31 0.54 0.54 0.55 0.55 0.66 0.64 0.39 0.86 (30.3%)
Capt. + LLaMa 0.75 0.68 0.74 0.83 0.64 0.85 0.68 0.65 0.90 (5.8%)

Avg. 0.52 0.63 0.65 0.68 0.62 0.71 0.67 0.52 0.89 (25.4%)

TREA-D
Qwen2-Audio 0.45 0.61 0.75 0.55 0.62 0.59 0.66 0.56 0.75 (0.0%)
SALMONN 0.35 0.54 0.48 0.50 0.56 0.50 0.54 0.50 0.76 (35.7%)
Capt. + LLaMa 0.49 0.57 0.49 0.67 0.55 0.69 0.56 0.54 0.80 (15.9%)

Avg. 0.43 0.57 0.57 0.57 0.58 0.59 0.59 0.53 0.77 (30.5%)

TREA-C
Qwen2-Audio 0.21 0.49 0.68 0.48 0.47 0.45 0.47 0.50 0.83 (22.1%)
SALMONN 0.20 0.34 0.40 0.46 0.29 0.32 0.27 0.43 0.66 (43.5%)
Capt. + LLaMa 0.50 0.61 0.66 0.54 0.54 0.45 0.55 0.62 0.81 (22.7%)

Avg. 0.30 0.48 0.58 0.49 0.43 0.41 0.43 0.52 0.77 (32.8%)

Table 2: Results for audio-LLMs using Qwen-2 audio (Chu et al., 2024), SALMONN (Tang et al., 2023) and audio
captions generated by SALMONN followed by text-based Qwen-2.5 model. The final column in green (%) reports
the relative improvement of FESTA approach over the best baseline result (underlined).

them consistently provide second-best perfor-467

mance across models and tasks.468

6.2 Ablations469

To probe the performance of FESTA uncertainty470

measure, we conduct the following analyses.471

• FESTA uncertainty is a quantification of both472

equivalent and complementary input sam-473

plings. We separately analyze the AUROCs474

from equivalent (FES) and complementary 475

(FCS) samples, as shown in Figures 2 and 3. 476

For the order and duration tasks in audio rea- 477

soning, AUC for Qwen2 is more influenced 478

by the FCS, but SALMONN and SALMONN 479

desc.+LLM models are more influenced by 480

the FES. It shows the complementary nature 481

of FES and FCS inputs under different scenar- 482

ios. For the challenging event count task, FCS 483

uncertainty contributes the most, showing it’s 484

7



Figure 2: AUROC for uncertainty based on FES, FCS and FESTA on (a) TREA-O, (b) TREA-D, and (c) TREA-C.

Figure 3: AUROC for uncertainty based on FES, FCS
and FESTA on (a) BLINK, (b) VSR data.

robustness in low accuracy scenarios.485

• Appendix Figure 4 shows the scatter plot of486

the confidence scores ( 1
uncertainty ) for a model487

choice. Figure 5 shows the scatter plot of488

the detection scores for the output sampling489

baseline approach for the same model. It is ev-490

ident that baseline AUCs for these models are491

affected by low uncertainty mis-predictions492

which are majorly detected using FESTA.493

• We also compare the effectiveness of our494

proposed uncertainty quantification method,495

which uses the KL-divergence distance from496

the predictive distribution of an ideally certain497

model. To compare, we compute the AUCs by498

replacing the KL-divergence with the standard 499

entropy measure and the results are reported 500

in Appendix Tables 9 and 10. These results 501

highlight the superiority of the KL measure 502

over the entropy. 503

6.3 Number of equivalent samples 504

For the vision tasks, the value of K was varied 505

from 8 to 112, including FES and FCS samples, 506

while for audio tasks, K was varied from 10 to 507

120 (Appendix Tables 4, 5, 6, 7 and 8). The results 508

from this analysis highlight that, even with K = 16 509

samples for vision tasks and K = 20 for audio 510

tasks, the proposed FESTA can provide a robust 511

estimate of model uncertainty. 512

7 Conclusion 513

The proposed multimodal uncertainty estimation 514

algorithm, FESTA, is presented as a principled and 515

formally grounded framework for trust assessment 516

of LLMs. It introduces a novel input sampling 517

paradigm based on functional equivalence and com- 518

plementarity, a previously unexplored space, and 519

demonstrates its effectiveness for unsupervised 520

black-box settings. The proposal enables accurate 521

abstention from incorrect predictions in both audio- 522

LLMs and vision-LLMs, elicited by improved 523

AUROC values. Given the limited grounding of 524

current multimodal LLMs (especially lightweight 525

LLMs), the models tend to produce biased, low- 526

uncertainty hallucinations. A key contribution of 527

FESTA is its ability to detect and abstain from such 528

hallucinations. This capability leads to substantial 529

improvements in selective prediction performance. 530

Building on these promising results, we plan to ex- 531

tend FESTA to support natural language generation 532

and multimodal outputs in LLMs, moving beyond 533

the current focus on MCQA tasks. 534

8



8 Limitations535

Despite its effectiveness, the current formulation536

of FESTA has a few limitations and opens several537

avenues for future work:538

• Computational Overhead: Unlike standard539

LLMs, FESTA relies on input samples from both540

text and non-text modalities, increasing computa-541

tional demand. This also means that about K ad-542

ditional inferences are made per sample, thereby,543

increasing the computational demand for com-544

puting the uncertainty metric. While the cur-545

rent implementation prioritizes predictive perfor-546

mance—suitable for high-stakes scenarios such547

as safety-critical applications—reducing latency548

using FES/FCS samples passed through quan-549

tized versions of the models may be undertaken550

as future research to further reduce the computa-551

tional demand.552

• Generation of FES and FCS: The audio and553

visual samples for FES and FCS are generated554

using standard audio/image augmentation tools555

as well as text rephrasing using LLMs. While this556

process is currently automated and performed557

seamlessly for the tasks considered in this work,558

more complex audio/image tasks might require559

careful prompting to generate the appropriate560

perturbations needed for generating the FES and561

FCS inputs.562

• Improving LLM Behavior with FES and FCS:563

In the current work, the FES and FCS were used564

to analyze the uncertainty, without attempting565

to improve the base model performance. How-566

ever, the dual-space sampling strategy (functional567

equivalence and complementarity) could also be568

incorporated as in-context prompts to nudge the569

LLMs to ensure equivalence/complementarity in570

the outputs, thereby improving base LLM ac-571

curacy. For example, one could input K FES572

and prompt the LLM to ensure that the answer573

to the original prompt should also match the re-574

sponse to all the K FES. With this constraint, the575

LLM would be forced to generate a consistent576

response that matches with the response to the577

FES, thereby improving the prediction accuracy.578

• Extension to Natural Language Generation:579

In the current work, the scope was limited580

to multi-choice question answering tasks only.581

Many real-world applications of multimodal582

LLMs require open-ended, free-form text outputs.583

A significant future direction is to extend FESTA584

beyond classification tasks, enabling uncertainty- 585

aware abstention in generative settings. Further, 586

audio and image generation tasks open up new 587

avenues for uncertainty estimation, which is not 588

addressed in this work. 589
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A Appendix 759

A.1 Equivalence of input and FES samples 760

Proof. Proof of Equivalence relation for FES - 761

We show that ∼E satisfies the three properties of 762

an equivalence relation: 763

(Reflexivity): For any input X, we have 764

T (X) = T (X), Mideal(X) = Mideal(X), 765

so X ∼E X. 766

(Symmetry): Suppose X ∼E X̃. Then, 767

T (X) = T (X̃), Mideal(X) = Mideal(X̃). 768

By symmetry of equality, this implies: 769

T (X̃) = T (X), Mideal(X̃) = Mideal(X), 770

so X̃ ∼E X. 771

(Transitivity): Suppose X ∼E X̃ and X̃ ∼E X̂. 772

Then, 773

T (X) = T (X̃), Mideal(X) = Mideal(X̃), 774

and 775

T (X̃) = T (X̂), Mideal(X̃) = Mideal(X̂). 776

By transitivity of equality, we get: 777

T (X) = T (X̂), Mideal(X) = Mideal(X̂), 778

so X ∼E X̂. 779

Hence, ∼E is reflexive, symmetric, and transi- 780

tive, and thus an equivalence relation. 781

A.2 Equivalence between different FCS 782

samples 783

Proposition A.1. Let CX := {X′ : T (X′) = 784

T (X), Mideal(X
′) ̸= Mideal(X)} denote the set 785

of functionally complementary samples of input X. 786

Define a relation ∼C over this set such that: 787

X1 ∼C X2 ⇐⇒ T (X1) = T (X2) 788

and 789

Mideal(X1) = Mideal(X2). 790

Then ∼C is an equivalence relation over the set of 791

functionally complementary samples CX. 792

Proof. We verify the three properties of equiva- 793

lence: 794

(Reflexivity): For any X1 ∈ CX, clearly 795

T (X1) = T (X1) and Mideal(X1) = Mideal(X1), 796

so X1 ∼C X1. 797
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(Symmetry): If X1 ∼C X2, then:798

T (X1) = T (X2), Mideal(X1) = Mideal(X2).799

By symmetry of equality, the reverse also holds:800

T (X2) = T (X1), Mideal(X2) = Mideal(X1),801

so X2 ∼C X1.802

(Transitivity): If X1 ∼C X2 and X2 ∼C X3,803

then:804

T (X1) = T (X2) = T (X3)805

and806

Mideal(X1) = Mideal(X2) = Mideal(X3)807

so X1 ∼C X3.808

Thus, ∼C is reflexive, symmetric, and transitive809

over CX, and therefore an equivalence relation.810

A.3 FES uncertainty closed-form expression811

Proposition A.2. Then the KL divergence from the812

certain model to qFES simplifies to:813

UFES(M | x) := − log qFES(y = ŷ | x).814

Proof. Recall that KL divergence between distri-815

butions qcertain(y|x) and qFES(y|x) is defined as:816

DKL(qcertain(y|x)∥qFES(y|x)) =∑
y

qcertain(y|x) log
qcertain(y|x)
qFES(y|x)

817

Substituting qcertain(y|x) = δy,ŷ, we have:818

DKL (δy,ŷ ∥ qFES(y | x)) =
∑
y

δy,ŷ log
δy,ŷ

qFES(y | x)
819

= log
1

qFES(y = ŷ | x)
820

= − log qFES(y = ŷ | x)821

822

A.4 FCS for low-uncertainty hallucinations823

We focus on he functional complementary sam-824

pling. We show that a hallucinating model has ten-825

dency to not react to the complementary transfor-826

mations of the input. The proof sketch is provided827

below, for a single attention head.828

Theorem A.3 (Negation Invariance in Hallucinat- 829

ing Attention Blocks). Consider a single-head at- 830

tention block over input X = [XD,XN ] with at- 831

tention weights 832

αij := softmaxj

(
Q⊤

i Kj√
dk

)
, Attni :=

∑
j

αijVj . 833

Let negation act as Xneg
D := 834

fneg(XD),X
neg
N := XN . 835

Under two hallucination models: 836

(1) Missing attention:
∑

j∈D αij ≪
∑

j∈N αij , 837

(2) Over-reliance on prior: Kj ≈ K∗, Vj ≈ V ∗, 838

independent of X, 839

the attention output satisfies: 840

Attnnegi ≈ Attnorigi , 841

and thus the prediction remains unchanged under 842

negation. 843

A.5 Details of FES and FCS 844

The generic functionally equivalent transforms ap- 845

plied to image data include: 846

• Contrast: Adjusts image contrast to simulate 847

lighting variation. 848

• Blur: Applies slight blurring to the image 849

• Noise: Adding a small amount of pixel-level 850

noise 851

• Masking: Hides small number of random 852

pixels 853

• Rotate: Rotates the image slightly to simulate 854

viewpoint changes. 855

• Shift: Translates the image slightly in space. 856

• Greyscale: Removes color information while 857

preserving structure. 858

The generic functionally equivalent transforms ap- 859

plied to audio data include: 860

• Silence: Adding small duration of silence in 861

between sound events 862

• Volume: Minor adjustment to the volume of 863

different sound events 864

The generic functionally equivalent transforms ap- 865

plied to text data include: 866

• Rephrase: Paraphrasing the question such 867

that the meaning remains unchanged 868

12



Table 3: Summary of Notations Used in FESTA

Notation Description

X = [XO, XT ] Multimodal input (Non-text and text modalities)

Y Ground truth

T (X) Task to be performed to answer X

q(y|X) Predictive distribution of model outputs given X

ŷ Model’s predicted output, ŷ = argmaxy∈Y q(y|X)

X̃ ∼ PFES(X̃|X) Functionally equivalent samples (FES) from X

X ′ ∼ PFCS(X
′|X) Functionally complementary samples (FCS) from X

Mideal Ideal model achieving task objective perfectly

Mconsistent A perfectly consistent model under FES

Msensitive A perfectly sensitive model under FCS

qFES(y|X) Predictive distribution over FES samples

qFCS(y|X) Predictive distribution over FCS samples

UFES Uncertainty estimate from FES

UFCS Uncertainty estimate from FCS

UFESTA Combined FESTA uncertainty estimate

S Finite set of output sequences

S′ Modified predictive support ({ŷ, ŷc})

Functionally Complementary Transformation for869

image-text datasets is done by negating the textual870

question such that the answer changes.871

Functionally Complementary Transformation872

for audio-text datasets is done by negating the audio873

such that the answer changes. This is task-specific.874

• Count: Adding new sound events to the orig-875

inal audio876

• Duration: Replace the longest or shortest877

sound event in the audio with a sound event878

not originally present.879

• Order: Swap the positions of the sound880

events in the audio881

Examples of Functionally Equivalent Transform882

and Functionally Complementary Transform for883

both audio and image are given in 6.884

A.6 Hyperparameters885

FESTA has the minimal number of886

hyperparameters- only the number of sam-887

ples to be used. This makes it easily deployable888

and devoid of heavy tuning. We have used the same889

number of equivalent (K1) and complementary890

(K2) samples (K = K1 = K2).891

Vision-LLMs: For vision LLMs, K1 = K2 = 56892

is used. Within modalities, for each multimodal893

data point, 14 image samplings (K11 = 14) and 4 894

text samplings are used (K12 = 4). 895

Audio-LLMs: For vision LLMs, K1 = K2 = 60 896

is used. Within modalities, for each multimodal 897

data point, 15 audio samplings (K11 = 15) and 4 898

text samplings are used (K12 = 4). 899

A.7 Notations 900

The symbols and their meanings are noted in Ta- 901

ble 3. 902

A.8 Model details and License 903

The models below are used as per the suggested 904

guidelines and only for research purposes. 905

Gemma-3: The 12B model is used from https: 906

//huggingface.co/google/gemma-3-12b-it 907

with license 2. 908

LLaVa-1.6: The 7B model is used from 909

https://huggingface.co/llava-hf/llava- 910

v1.6-mistral-7b-hf with license 3. 911

Phi-4: The 5.6B model is used from 912

https://huggingface.co/microsoft/Phi- 913

4-multimodal-instruct with license 4. 914

2https://ai.google.dev/gemma/terms
3http://www.apache.org/licenses/LICENSE-2.0
4https://huggingface.co/microsoft/Phi-4-

multimodal-instruct/resolve/main/LICENSE
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Figure 4: FESTA log(score) plots for best improvement models where score is reciprocal of FESTA uncertainty.

Pixtral: The 12B model is used from915

https://huggingface.co/mistralai/916

Pixtral-12B-2409 with license 5.917

Qwen-2.5VL: The 7B model is used from918

https://huggingface.co/Qwen/Qwen2.5-VL-919

7B-Instruct with license 6.920

Qwen2-Audio: The 7B model is used from921

https://huggingface.co/Qwen/Qwen2-Audio-922

7B-Instruct with license 7.923

SALMONN: The 12B model is used from924

https://github.com/bytedance/SALMONN with925

license 8.926

A.9 Computation budget and hardware927

We have used 8 Nvidia RTX A6000 GPU cards for928

all our experiments.929

A.10 Number of Equivalent and930

complementary Samples931

The results for varying the number of samples K932

are given in Tables 4, 6, 7, 8,and 5.933

A.11 Usage of AI assitants934

We have used ChatGPT, only restricted to section935

summarization and for textual rewriting of parts of936

the paper.937

5http://www.apache.org/licenses/LICENSE-2.0
6http://www.apache.org/licenses/LICENSE-2.0
7http://www.apache.org/licenses/LICENSE-2.0
8http://www.apache.org/licenses/LICENSE-2.0
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Sample_Size 2*4 2*8 2*12 2*16 2*20 2*24 2*28 2*32 2*36 2*40 2*44 2*48 2*52 2*56

Gemma-3 0.79 0.82 0.81 0.81 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

LLaVa 0.76 0.77 0.74 0.76 0.78 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.77 0.77

Phi4 0.85 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87

Pixtral 0.90 0.90 0.89 0.90 0.90 0.91 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.90

Qwen-2.5-VL 0.92 0.92 0.92 0.92 0.93 0.93 0.92 0.93 0.92 0.93 0.92 0.93 0.93 0.93

Table 4: AUC performance of different models across increasing sample sizes on BLINK dataset.

Sample_Size 2*4 2*8 2*12 2*16 2*20 2*24 2*28 2*32 2*36 2*40 2*44 2*48 2*52 2*56

Gemma-3 0.85 0.87 0.88 0.89 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

LLaVa 0.67 0.72 0.69 0.72 0.72 0.70 0.73 0.74 0.73 0.75 0.76 0.74 0.73 0.74

Phi4 0.93 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Pixtral 0.88 0.89 0.91 0.90 0.91 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91

Qwen-2.5-VL 0.91 0.88 0.93 0.92 0.92 0.92 0.91 0.93 0.91 0.91 0.92 0.92 0.92 0.92

Table 5: AUC performance of different models across increasing sample sizes on VSR dataset.

Sample_Size 2*5 2*10 2*15 2*20 2*25 2*30 2*35 2*40 2*45 2*50 2*55 2*60

Qwen2-audio 0.81 0.84 0.83 0.81 0.83 0.83 0.84 0.84 0.83 0.83 0.84 0.83

SALMONN 0.55 0.65 0.59 0.65 0.64 0.64 0.64 0.65 0.65 0.63 0.67 0.66

SALMONN desc+LLM 0.80 0.81 0.80 0.80 0.80 0.82 0.81 0.81 0.81 0.81 0.81 0.81

Table 6: AUC performance for the Audio Event Counting task.

Sample_Size 2*5 2*10 2*15 2*20 2*25 2*30 2*35 2*40 2*45 2*50 2*55 2*60

Qwen2-audio 0.73 0.75 0.77 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

SALMONN 0.74 0.72 0.76 0.79 0.74 0.76 0.77 0.75 0.74 0.77 0.77 0.76

SALMONN desc+LLM 0.79 0.80 0.80 0.80 0.79 0.80 0.79 0.79 0.79 0.79 0.79 0.80

Table 7: AUC performance for the Duration task.

Sample_Size 2*5 2*10 2*15 2*20 2*25 2*30 2*35 2*40 2*45 2*50 2*55 2*60

Qwen2-audio 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

SALMONN 0.81 0.83 0.83 0.86 0.84 0.86 0.84 0.85 0.86 0.86 0.86 0.86

SALMONN desc+LLM 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Table 8: AUC performance for the Ordering task.
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Figure 5: FESTA log(score) plots for output sampling baseline where score is reciprocal of FESTA uncertainty.

Model TREA-O TREA-D TREA-C

Entropy KL-div Entropy KL-div Entropy KL-div

Qwen2-Audio 0.59 0.91 0.67 0.75 0.38 0.83

SALMONN 0.58 0.86 0.60 0.76 0.27 0.66

SAL. des+LLM 0.76 0.90 0.73 0.80 0.63 0.81

Avg. 0.64 0.89 (39.1%) 0.67 0.77 (14.9%) 0.43 0.77 (79.1%)

Table 9: Average performance of audio-LLMs using standard entropy measure compared with the proposed KL-div
based measure.

Dataset Gemma3 LLaVA1.6 Qwen2.5VL Phi4 Pixtral Avg.

BLINK (Entropy) 0.57 0.66 0.79 0.65 0.73 0.68

BLINK (KL-div) 0.81 0.77 0.93 0.87 0.90 0.86 (26.5%)

VSR (Entropy) 0.61 0.55 0.56 0.41 0.58 0.54

VSR (KL-div) 0.88 0.74 0.92 0.94 0.91 0.88 (63.0%)

Table 10: Average performance of vision-LLMs using standard entropy measure compared with the proposed
KL-div based measure.
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Figure 6: Examples of Functionally Equivalent Transform and Functionally Complementary Transform for both
audio-text and image-text questions.
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