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Abstract

Reinforcement learning (RL) deployment in real-
world, safety-critical systems remains a signifi-
cant challenge despite advancements in the field.
This work analyzes practical obstacles to deploy-
ing RL for HVAC systems through a case study on
residential heat pump control, utilizing real-world
data to apply and extend a model-based RL algo-
rithm. To enhance interpretability and safety, we
incorporated a physics-informed system model
and faced challenges in parameter estimation due
to local minima, even in idealized settings with
sufficient exploration. Given the complexities of
reward shaping without a simulator, inverse RL
was employed to learn cost parameters from an
existing controller. We then introduced two cali-
bration strategies to impose user-defined control
characteristics via a simple, generic reward func-
tion with a single thermal discomfort price param-
eter. Ultimately, this research aims to advance
the practical application of RL in safety-critical
systems, offering insights for bridging the gap
between simulation and real-world deployment.

1. Introduction
Despite reinforcement learning’s (RL) success in simulated
domains (Schrittwieser et al., 2020; Plaat et al., 2023; An
et al., 2023), its deployment in safety-critical real-world
systems like HVAC control is hindered by safety, reliabil-
ity, and interpretability concerns, particularly without high-
fidelity simulators (Berkenkamp et al., 2017; Tran et al.,
2019; Zanon & Gros, 2020). Real-world HVAC applica-
tions demand occupant comfort, equipment protection, and
energy efficiency, yet understanding of RL’s practical ob-
stacles in such physical environments is limited due to the
rarity of actual deployments (Nagy et al., 2023), with most
research confined to high-fidelity simulators (An et al., 2023;
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Ding et al., 2019; Zhang et al., 2022; Chen et al., 2021) or
small-scale lab setups (Chen et al., 2019). As a result, the
practical limitations of RL in real-world settings – not only
in terms of algorithmic performance, which varies across
systems, but also the challenges faced prior to deployment,
such as model mismatch, reward design, and behavior align-
ment – are not yet well-understood.

In this work, we conduct preliminary experiments for those
nuances by demonstrating the challenges of transitioning
from imitation learning to online fine-tuning for real-world
HVAC controls, using data from a residential building with
a heat pump system. We apply and extend a state-of-the-
art RL algorithm for HVAC control (Gnu-RL (Chen et al.,
2019)), which leverages Differentiable Model Predictive
Control (MPC) policy (Amos et al., 2018). Our experiments
revealed key challenges. With respect to the learned sys-
tem dynamics, we found that fitting a 2R1C thermal circuit
model with Gnu-RL to yield physically plausible parameters
proved difficult, with optimization often settling on local
minima even in simplified simulation environments. We
found that action space explorations improved parameter
convergence for action-related parameters but, critically, not
for all physical parameters of the model; this partial suc-
cess, even in our idealized settings, challenges the common
assumption that sufficient exploration would enable accu-
rate system identification. Regarding behavior1, traditional
reward shaping is impractical for real-world systems. We ini-
tially used imitation learning to derive cost parameters from
an existing controller for a safe starting point, but this failed
to replicate desired behavior despite low loss values. Conse-
quently, we developed two calibration strategies – initial and
online – employing a simple, generic reward function with
a single user-defined “discomfort price.” These strategies
successfully imposed user-desired characteristics, especially
via online learning, offering a scalable and intuitive alterna-
tive to manual reward shaping for HVAC controls.

While our observations stem from experiments with a spe-
cific RL algorithm in the context of a single real building,
they shed light on the complex path towards practical, inter-
pretable model-based RL for HVAC systems. And although

1‘Behavior’ here indicates the system’s operational outcomes in
achieving user-defined objectives (e.g., comfort-energy trade-offs),
as dictated by the differentiable MPC’s learned cost parameters.
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we propose strategies to ameliorate some of the real-world
deployment challenges we observed, our main goal is to
characterize these challenges well enough to incite critical
discussion by the community.

1.1. Background

Offline RL followed by online fine-tuning has been effec-
tive in robotics and HVAC control, where methods like
Conservative Q-Learning (Kumar et al., 2020) have shown
success (Zhang et al., 2022). Offline RL can be model-free
or model-based. While model-free RL has been applied to
HVAC (e.g., (Zhang et al., 2018), (Ding et al., 2019)), it
often demands extensive online data, requiring simulation
with a reasonably accurate model. Some offline approaches
use historical data to mimic existing controllers (Li et al.,
2019; Jia et al., 2019), but model-free RL generally remains
sample-inefficient. Model-based RL typically surpasses
model-free methods in sample and energy efficiency and
occupant comfort for HVAC (Nagy et al., 2018), as it learns
system dynamics for planning – crucial for energy efficiency,
demand response, and comfort. Examples include MPC
variants with neural networks (Ding et al., 2020; Zhang
et al., 2022) and Gaussian process models (An et al., 2023).
Despite simulation success, these models are often black-
box, lacking interpretability, requiring substantial training
data, and facing scalability and expert trust challenges for
real-world deployment (Nagy et al., 2023).

Thus, to avoid the pitfalls of purely black-box or model-free
methods while leveraging historical data, we adopt a model-
based RL strategy centered on Differentiable MPC policy
(Amos et al., 2018), which enables end-to-end learning of
cost and system dynamics in imitation learning. Gnu-RL
(Chen et al., 2019) improved this for online learning in
HVAC. Differentiable MPC learns parameters defining a
nonconvex cost function and state transitions by iteratively
linearizing dynamics and forming quadratic cost approx-
imations around a fixed point. It differentiates implicitly
through the Karush-Kuhn-Tucker (KKT) conditions of this
solution, reducing computational load compared to back-
propagation through optimization iterations. This allows
end-to-end learning of cost and dynamics, with a Linear
Quadratic Regulator (LQR)-based policy solving the locally
linearized problem. More background in Differentiable
MPC and Gnu-RL is provided in the Appendix Section A.

2. Methodology
Before discussing deployment challenges, this section out-
lines extensions made to Gnu-RL (Chen et al., 2019) and
Differentiable MPC (Amos et al., 2018) for our controller.
Gnu-RL typically fits a simple linear model for its system
dynamics function, without explicitly mapping the param-
eters to physical phenomena, thus limiting interpretability.

We address this by using a function structure with the first
law of thermodynamics as the prior to fitting physically rele-
vant parameters θstate. Secondly, Gnu-RL assumes manual
configuration of the LQR cost parameters (θcost), hindering
scalability. We first learn θcost from existing controller data
(inverse RL) for a safe initial policy, then refine them via
calibration strategies using a non-quadratic reward function.

Physics-Based 2R1C Model for System Dynamics. To en-
hance interpretability, we integrated a physics-based 2R1C
thermal resistance-capacitance (RC) model into the Gnu-RL
policy, replacing its default linear dynamics model. This
2R1C architecture (see Appendix B.1 for full equations, e.g.,
Eq. (3)) was chosen for consistency with a prior study on
the same testbed. The model describes the indoor temper-
ature (xk) dynamics based on inputs from the heat pump
and backup heater (uk), as well as disturbances like outdoor
temperature and solar gain (dk). The model is discretized
using the Zero-Order Hold (ZOH) method, assuming inputs
are piecewise constant over each time step. The resulting
discrete-time state-space model is detailed by Eq. (5) in
Appendix B.1).

This formulation allows fitting physically meaningful pa-
rameters θstate = {C,Rm, Rout, Tm, η, α} (thermal ca-
pacitances, resistances, etc.). The Differentiable MPC
framework uses an internal LQR to track a target tem-
perature setpoint, xk,target, with learnable cost parameters
θcost = {O,R1, R2} for state and control efforts. The
overall parameters θ = {θstate, θcost} are learned by mini-
mizing an imitation learning loss (see Eq. (6) in Appendix
B.1) that penalizes Mean Squared Error (MSE) deviations
in predicted states (Lstate) and actions (Laction) from his-
torical data. Within this Differentiable MPC framework,
θstate is thus learned via system identification (minimizing
Lstate), while θcost is adapted (as detailed below and in
Appendix B.2) to optimize overall control behavior against
the non-quadratic reward. It also enforces box constraints
on control inputs (e.g., Pmin/max

HP ).

Further Calibration of Cost Parameters. As discussed
in Section 3.2, fitting LQR cost parameters (θcost) solely
through imitation learning from the existing (suboptimal)
controller failed to yield a reasonable control behavior. Thus,
we introduce a non-quadratic reward function designed to
capture user preferences regarding energy cost and thermal
comfort more effectively. This reward function2, detailed
in Appendix B.2 (Eq. (7)), primarily requires a single user-
defined parameter: the thermal discomfort price (wc), which
allows intuitive specification of the trade-off between energy
savings and comfort. Other components include monetary
cost for energy consumption (we) and peak power charge
(wd), which can be retrieved from local utilities.

2It aims to minimize peak power, energy consumption and
temperature deviations.
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We employ two strategies to calibrate the LQR’s θcost to
align with this non-quadratic generic reward. First, On-
line Calibration updates both system dynamics parameters
(θstate) and cost parameters (θcost) concurrently during de-
ployment. θstate is learned by minimizing state prediction
errors against real-world observations, while θcost is up-
dated by maximizing the proposed reward function (Eq. (7))
via gradient ascent through the Differentiable MPC policy,
which leverages its internal (differentiable) system model
based on the current θstate. Second, Initial Calibration
updates θcost before deployment (or when cost coefficients
wd, we, wc change) by iteratively solving the Differentiable
MPC policy with an initial condition and maximizing the
cumulative reward over its predicted trajectory (generated
using its internal differentiable model). During subsequent
deployment, θstate adapts online, but θcost remains fixed
unless a recalibration is triggered. These calibration strate-
gies aim to bridge the gap between the LQR’s quadratic cost
and more complex, user-defined objectives. The detailed
procedures are provided in Appendix B.2.

3. Results
Imitation learning was done using one month of operational
data (Nov/01–Nov/29/2023) and validated on two weeks of
data (Dec/15–Dec/30/2023) collected from the -Anonymous
Location- testbed. This data was recorded while the build-
ing was under the control of a reactive controller. The raw
5-minute resolution data, which includes indoor/outdoor
temperatures and power consumption for the heat pump and
backup heat, was resampled to an hourly resolution. Figure
5 illustrates temperature measurements of the training data.
In the rest of this section, we look into the two major com-
ponents of Gnu-RL (system dynamics and behavior), and
propose potential directions for the observed challenges.

3.1. System Dynamics

In RL and differentiable control, hyperparameter tuning
is often guided by minimizing a predefined loss function,
with the assumption that achieving the lowest validation
loss corresponds to a well-generalized model. However, in
the context of system identification for thermal networks,
this assumption often does not hold (Atam & Helsen, 2016),
given issues such as limited operational excitations and
inherent model non-convexities. To validate this further, we
examined the hyperparameters (lr=0.05, λ=0.001) yielding
the lowest state loss (an MSE of 0.048 ◦C2), even lower
than the more complex model used in the prior MPC study.
However, these small loss values can be misleading, as
they corresponded to learned parameters that lack physical
plausibility (see Appendix C.1 for more details), mainly
because of the existence of many local minima where not
all of them are physically valid.

Online learning in a simple environment. This challenge
led us to investigate whether online learning could drive the
learned parameters toward their true values under idealized
conditions: in an environment with the same underlying
system dynamics function structure but different parameter
values. To explore this, we conducted experiments in a
simulated 2R1C network where ground-truth parameters
were predefined, and online learning was performed with
real-world external inputs (i.e., Tout and Qsol).
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Figure 1. Parameter trajectory during online learning in a simple
2R1C environment; parameters of which shown in dashed lines.

Figure 1 illustrates system identification performance. The
top plot shows SysID loss (LSysID = ∥θstate,true −
θstate,pred∥22), comparing predicted model parameters
(θstate,pred) to true environment parameters (θstate,true,
dashed lines in bottom plots). The second plot shows state
prediction MSE (Lstate) loss, while other plots track select
2R1C parameters. We compare three conditions: ‘Imitation
Learning’ (parameters initialized by an imitation agent, then
updated via environment interaction but no exploration),
‘Imitation + Exploration’ (adds decaying Gaussian noise to
actions for exploration), and ‘Seeds’ (randomly initialized
parameters from reasonable bounds).

Online fine-tuning rapidly reduces Lstate (next-state pre-
diction error). However, inferred parameters often diverge
from true values, with LSysID increasing as models reach
local minima. For instance, η becomes negative (implying
heating cools) and solar aperture becomes negatively large
(implying solar gain cools), despite low state prediction
error. The ‘Imitation + Exploration’ condition improves
convergence for parameters directly related to actions (C
and η), reducing LSysID, though Lstate is slightly higher.
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Note that convergence is only observed for parameters in-
teracting multiplicatively with the explored actions. Thus,
while control and RL literature commonly assumes that ex-
ploration (or system excitation) can enable accurate system
dynamics fitting, our work demonstrates that, even in these
idealized settings, only parameters directly related to actions
consistently converge to their true values.

3.2. Behavior

Differentiable MPC assumes that trajectories to fit θ come
from an expert controller, but in HVAC systems, such an
expert is unavailable. Instead, prior work like Gnu-RL used
data from a suboptimal existing controller to fit state dy-
namics and manually configured the cost function θcost.
However, manual configuration of a quadratic cost function
is not scalable and biases the fitting of the system dynamics
model. In this work, we investigate whether initially fitting
θcost using data from an existing controller can provide a
safe yet suboptimal policy that serves as a baseline for fur-
ther refinement through online learning, reducing reliance
on manual cost tuning.

Our attempts at behavior cloning of the existing controller,
even under idealized assumptions of perfect system dynam-
ics, proved challenging. Despite achieving a low loss in
matching the expert actions (MSE of 0.11 (in kW2)), the
resulting imitation learning agent failed to replicate the base-
line controller’s behavior, leading to large user discomfort.
A detailed analysis of this is provided in Appendix C.2.

Imposing user-defined control characteristics. To ad-
dress this challenge, we explored methods to represent the
efficiency-comfort trade-off more interpretably and adapt-
ably. We proposed using a reward function to guide the
learning of θcost, as detailed in Section 2. While reward
shaping is a known challenge in RL, our approach requires
only one user-defined parameter: the thermal discomfort
price wc, enabling users to intuitively specify their preferred
trade-off between energy savings and comfort. We tested
two calibration strategies – initial calibration and online cal-
ibration – to map the reward function characteristics to θcost.
To isolate these from state dynamics fitting challenges, we
evaluated them in a simulated 2R1C environment, with pa-
rameters derived from imitation learning (lr = 0.05, λ = 1
for equal state-action loss weighting).

The results in Figure 2 illustrate distinct control behaviors
with statistics such as Predicted Percentage Dissatisfied
(PPD) (ASHRAE, 2004) and energy consumption. The im-
itation learning agent fails by causing significant thermal
discomfort. Initial calibration rapidly achieves and main-
tains the setpoint, while online calibration gradually adjusts
over several days to user-specified preferences. It is cru-
cial that in the final cycle, both methods apply a stepped
increase, minimizing backup heat usage when adjusting to
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Figure 2. Simulation with varying cost parameters under assump-
tion of perfect state dynamics modeling.

the shift in setpoints under colder weather, providing greater
efficiency. Each approach has trade-offs: online calibra-
tion continuously adapts to system variations (though no
deviation is observed here due to zero state loss) but may
introduce early discomfort, whereas initial calibration pre-
vents early discomfort but risks long-term deviation from
user preferences as system dynamics evolve. These findings
highlight the importance of selecting calibration strategies
based on application-specific control objectives.

Overall, a fundamental duality complicates the joint identifi-
cation of θstate and θcost: system identification requires ex-
citation outside nominal operating regimes (Atam & Helsen,
2016), while fitting cost parameters requires stable con-
troller data. Our work suggests that exploration in actions
does not result in convergence to true system dynamics.
Further, the proposed way of imposing user-defined control
characteristics may serve as an alternative to manual-reward
engineering, which is typically necessary in many RL prob-
lems yet not practical in deployment.

4. Conclusions
In this work, we investigate the challenges of applying Dif-
ferentiable MPC to real-world HVAC control, focusing on
system identification and behavior alignment. Our results
reveal that minimizing loss functions alone is insufficient
for learning physically plausible system dynamics, as pa-
rameters often converge to unrealistic values despite low
prediction errors. Online fine-tuning fails to drive all param-
eters toward realistic physical values even in simple settings.
Furthermore, we demonstrate that imitation learning fails
to replicate the behavior of the existing controller. We pro-
posed two calibration strategies for successfully introducing
user-defined control characteristics with minimal reward
shaping. These findings underscore the challenges in de-
ploying scalable and interpretable solutions to bridge the
gap between theoretical advancements in model-based RL
and practical deployment in real-world systems.
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A. Background in Differentiable MPC and Gnu-RL
Though Differentiable MPC policy allows for nonconvex dynamics, Gnu-RL fits the following linear state-space model:

xk+1 = Axk +Buuk +Bddk =
[
A Bu

]︸ ︷︷ ︸
F

[
xk

uk

]
︸ ︷︷ ︸
τk

+Bddk︸ ︷︷ ︸
fk

. (1)

In the context of applying Differentiable MPC to policy learning in HVAC controls, Gnu-RL uses the following quadratic
cost function:

Ck(xk, uk) =
1

2
xT
kOkxk + pTk xk +

1

2
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=
1

2

[
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k uT
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τT
k

[
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0 Rk
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[
xk
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τk

+
[
pTk s

T
k
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cTk

[
xk

uk

]
︸ ︷︷ ︸
τk

, (2)

The dynamics function (Eq. 1) and cost function (Eq. 2) use the following variables. The system considers a scalar state xk,
representing the thermostat temperature, and a control action uk, defined as the difference between the supply and the mixed
air temperature. In addition, it accounts for uncontrollable disturbances dk, such as weather conditions and internal thermal
gains. The model learns scalar parameters A and Bu that form the matrix F =

[
A Bu

]
in the dynamics equation. Lastly,

Gnu-RL only learns the parameter Bd, using disturbances (dk) by weather forecasts.

B. Details of Our Approach
B.1. Physics-Based 2R1C Model and System Dynamics

The system dynamics are represented by a physics-based 2R1C thermal RC model. The continuous-time energy balance for
the indoor temperature T is given by:

C
dT

dt
=

Tm − T

Rm
+

Tout − T

Rout
+ COP

(
Tout

)
PHP + ηPBH︸ ︷︷ ︸
Q̇c

+αQsol︸ ︷︷ ︸
Q̇e

(3)

where:

• C: Thermal capacitance of the indoor air.

• T : Indoor air temperature.

• Tm: Effective thermal mass temperature (assumed constant).

• Tout: Outdoor air temperature.

• Rm: Thermal resistance between indoor air and the thermal mass.

• Rout: Thermal resistance between indoor air and the outdoor environment.

• PHP : Electrical power consumed by the heat pump.

• PBH : Electrical power consumed by the backup heater.

• COP (Tout): Coefficient of Performance of the heat pump, a function of Tout, taken from -AnonymousPublication-.

• η: Efficiency of the backup heater.

• Qsol: Solar irradiance.

• α: Solar aperture coefficient (effective window area).

• Q̇c: Controlled heat input.
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• Q̇e: Uncontrolled heat input from solar gains.

The continuous-time dynamics (Eq. (3)) are first represented in a state-space form:

ẋ(t) = Acx(t) +Buc(Tout,t)u(t) +Bdcd(t) (4)

where x(t) = T (t) is the indoor temperature. The continuous-time system matrix Ac, the continuous-time input matrix
Buc(Tout,t) (which depends on the outdoor temperature Tout,t due to the Coefficient of Performance COP ), and the
continuous-time disturbance matrix Bdc are defined based on the physical parameters as:

Ac =

[
− 1

RmC
− 1

RoutC

]
Buc(Tout,t) =

[
COP (Tout,t)

C
η
C

]
Bdc =

[
1

RmC
1

RoutC
α
C

]
This continuous-time system is then discretized using the ZOH method, assuming that the control inputs uk and disturbances
dk are constant over each sampling interval of duration ∆t. This results in the discrete-time linear state-space model
xk+1 = Axk +Bu[Tout,k]uk +Bddk, where xk denotes x(k∆t):

Tk+1︸ ︷︷ ︸
xk+1

= A︸︷︷︸
A

Tk︸︷︷︸
xk

+Bu[Tout,k]︸ ︷︷ ︸
Bu[Tout,k]

[
PHP,k

PBH,k

]
︸ ︷︷ ︸

uk

+ Bd︸︷︷︸
Bd

 Tm

Tout,k

Qsol,k


︸ ︷︷ ︸

dk

(5)

The discrete-time matrices A, Bu[Tout,k], and Bd are derived from the continuous-time matrices Ac, Buc(Tout,k), and Bdc

as follows:

A = exp(Ac)

Bu[Tout,k] = (Ac)
−1(exp(Ac)− I)Buc(Tout,k)

Bd = (Ac)
−1(exp(Ac)− I)Bdc

where I is the identity matrix (a scalar 1 in this single-state case) and exp(·) denotes the matrix exponential (scalar
exponential here). It is noteworthy that the time step ∆t is involved in the practical computation of these discrete matrices
within the model’s implementation. Specifically, intermediate matrices are typically formed using parameters scaled by
∆t (e.g., an intermediate system matrix equivalent to Ac/∆t is formulated from the model parameters Rm, C,Rout and
∆t). The final discrete matrices A,Bu, Bd are then obtained by applying transformations (such as A = exp((Ac/∆t)∆t)),
which mathematically simplify to the forms A = exp(Ac), etc., shown above.

The state vector xk comprises the indoor temperature Tk at discrete time step k. The control inputs uk are the heat pump
power PHP,k and backup heat power PBH,k. The disturbance vector dk includes the thermal mass temperature Tm (assumed
constant), outdoor air temperature Tout,k, and solar gains Qsol,k. Since COP (Tout,k) varies with the outdoor temperature,
the input matrix Bu is recomputed at each time step k based on predicted Tout,k values.

The parameters fitted for the system dynamics model, denoted θstate, are: {C,Rm, Rout, Tm, η, α}.

For trajectory tracking within the Differentiable MPC framework, the quadratic cost function minimized by the LQR at
each step is shown in Eq. 2 in its general form. We set pk = −Okxk,target to track a target setpoint xk,target, and sk = 0.
This simplifies the cost parameters to be learned, θcost, to three values: O ∈ R (state cost weight) and R = diag(R1, R2),
where R1, R2 ∈ R are the control cost weights for PHP and PBH respectively, forming the diagonal elements of the control
weighting matrix Rk in Eq. (2). The imitation learning loss function is:

Limit(θ) =
1

M

M∑
k

∥xk+1 − x∗
k+1∥22 + λ∥uk − u∗

k∥22 (6)

where x∗
k+1 and u∗

k are the Differentiable MPC policy’s predicted states and actions, respectively, xk+1 and uk are from
the historical data, M is the batch size, and λ weights the action imitation error relative to the state prediction error.
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It penalizes deviations in both predicted next states (Lstate = 1
M

∑M
k ∥xk+1 − x∗

k+1∥22) and chosen control actions
(Laction = 1

M

∑M
k ∥uk − u∗

k∥22).

Differentiable MPC supports box constraints on control inputs: Pmin
HP ≤ PHP,k ≤ Pmax

HP and Pmin
BH ≤ PBH,k ≤ Pmax

BH .

B.2. Cost Parameter Calibration Details

To move beyond direct imitation and allow for user-defined control objectives, we introduce a non-quadratic reward function
to guide the learning of the LQR cost parameters θcost = {O,R1, R2}. This reward function evaluates the Differentiable
MPC policy’s planned trajectory over a lookahead horizon L = 24 hours: x∗

k+1, . . . , x
∗
k+L and u∗

k, . . . , u
∗
k+L−1. The

reward function is defined as:

Rk = −wd max
ℓ∈[0,L−1]

(P ∗
HP,k+ℓ + P ∗

BH,k+ℓ)

−∆t

L−1∑
ℓ=0

[
we(P

∗
HP,k+ℓ + P ∗

BH,k+ℓ) + wc

∣∣x∗
k+ℓ+1 − xtarget,k+ℓ+1

∣∣] (7)

where:

• wd: Peak power demand price ($/kW), set to $0.8/kW. This term considers the maximum of the total power (sum of
heat pump and backup heat power) over the lookahead horizon.

• we: Electrical energy price ($/kWh), set to $0.15/kWh, applied to the total power consumed.

• wc: Thermal discomfort price ($/◦C/h), set to $0.2/◦C/h, the primary user-defined parameter.

• P ∗
HP,k+ℓ + P ∗

BH,k+ℓ is the total power input at future time step k + ℓ in the planned trajectory from u∗
k+ℓ.

• ∆t: Duration of a single control interval (e.g., in hours), ensuring consistent units for energy calculation.

Online Calibration Procedure: During online calibration, both system dynamics parameters θstate and cost parameters
θcost are updated.

1. θstate are optimized by minimizing the state prediction loss Lstate =
1
M

∑M
k ∥xk+1 − x∗

k+1∥22 based on interactions
with the real environment. This is a non-convex least squares problem.

2. θcost are adjusted by maximizing the reward Rk (Eq. (7)) using gradient ascent. The gradients are computed with
respect to θcost through the Differentiable MPC policy.

This ensures the quadratic LQR cost function (used internally by Differentiable MPC) gradually aligns with the objectives
of the non-quadratic reward function.

Initial Calibration Procedure: This offline process calibrates θcost using initial system conditions before deployment or
when cost coefficients (wd, we, wc) change.

1. Using the current (or initial) θstate, the Differentiable MPC policy is solved to obtain a planned trajectory
(x∗

k+1, . . . , x
∗
k+L and u∗

k, . . . , u
∗
k+L−1).

2. The cumulative reward (Eq. (7)) for this trajectory is evaluated.

3. Gradients of this cumulative reward with respect to θcost are computed, and θcost is updated via gradient ascent, with
gradients flowing through the MPC’s internal model and decision process.

4. Steps 1-3 are repeated iteratively until θcost converges or a set number of iterations is reached.

During actual deployment after initial calibration, θstate continues to be updated online, but θcost remains fixed unless a
recalibration is triggered by changes in wd, we, or wc.
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C. Experiments
C.1. Details of Imitation Learning

Our approach to learning a stable differentiable MPC policy involves two key components: (a) learning the system dynamics,
represented by the 2R1C thermal model in (B.1), and (b) learning the desired control behavior, represented by the cost
function in (2). We systematically tested various hyperparameters to optimize both state and action losses, as shown in
Figure 3. While the loss trajectories converge, the resulting system dynamics parameters often lack physical plausibility, and
the learned behavior fails to match the existing controller’s performance. This dual challenge highlights the limitations of
relying solely on loss minimization and underscores the need for additional constraints to ensure both physically meaningful
dynamics and behavior alignment.
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Figure 3. State and Action loss curves for different hyperparameter configurations. Dashed lines are from validation set, while solid lines
are from training data.

To account for the best scenarios, for the analysis on state dynamics, we take the results coming from the lowest validation
state loss (lr=0.05, λ=0.001) that reached the lowest state loss of MSE 0.0479 at epoch 48, note that this value is even lower
than the overengineered model used in the prior MPC study. For the analysis on the behavior, we look at the hyperparameters
that minimized action loss, ensuring we chose the agent closely mimicked the existing controller coming from lr=0.05 and
λ = 1000, achieving a minimum MSE of 0.111 at epoch 49. However, we observe that the parameters fitted are actually far
from reality, it ends up having an unusually high C, meaning really large capacitances, and a negative α, meaning solar
irradiance causes cooling.

Imitation learning with varying hyperparameters. Figure 4 shows the converged parameter values for different hyperpa-
rameters, as one can see, most of them converge to unrealistic physical parameters such as having an unusually high C,
meaning really large thermal capacitances, and a negative α, meaning solar irradiance causes cooling.

C.2. Mimicking the existing controller.

We first analyze the imitation learning agent’s performance under the assumption of a perfect system dynamics model, where
each action results in the predicted state transition (i.e., Lstate = 0). To ensure the agent closely mimicked the existing
controller, we selected hyperparameters minimizing action loss. The best-performing agent, trained with a lr = 0.05 and
λ = 1000, achieved a minimum MSE of 0.111 (in kW2) at epoch 49. This analysis mirrors behavior cloning, with minimal
state distribution shift, as the agent was tested on its training data.

Figure 5 shows the imitation learning agent’s performance in this ideal setting, alongside energy and comfort metrics.
PPD quantifies user discomfort (ASHRAE, 2004), while energy consumption is derived from power measurements. The
imitation learning agent results in significantly higher PPD, with indoor temperatures reaching 28°C, indicating considerable
discomfort and poor mimicry of the training data (blue curves). Thus, despite being trained to match the existing controller’s
actions, the imitation learning agent exhibits unstable behavior and fails to replicate the baseline controller’s performance.
This discrepancy arises from two factors: (1) Model mismatch and environmental disturbances: even in controlled settings,
modeling errors and unmodeled disturbances prevent perfect behavioral cloning, limiting the agent’s generalization; and (2)
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Figure 4. Parameter trajectories across epochs for different hyperparameters.

2023-11-04 2023-11-09 2023-11-14 2023-11-19 2023-11-24
Time

16

18

20

22

24

26

28

Te
m

pe
ra

tu
re

(°
C)

PPD: 10.3%, Energy: 377 kWh

PPD: 6.0%, Energy: 461 kWh

User Defined Setpoints
Indoor Temp. (Training Data)
Indoor Temp. (Imitation Learning)
Outdoor Temp.

Figure 5. Imitation learning agent being tested on the data it was trained on, assuming deterministic state transitions. It indicates that
imitation learning fails to mimic the behavior of the existing controller.
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Structural misalignment: the baseline controller uses a reactive PID strategy, while the imitation learning agent operates
within a differentiable MPC framework with a 24-hour lookahead. This fundamental difference makes it challenging for the
imitation learning agent to mimic the baseline while retaining the benefits of optimal control.
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