
DiffTORI: Differentiable Trajectory Optimization for
Deep Reinforcement and Imitation Learning

Weikang Wan1∗, Ziyu Wang2∗, Yufei Wang3∗,
Zackory Erickson3, David Held3

1 Computer Science and Engineering Department, University of California San Diego
2 Institute for Interdisciplinary Information Sciences, Tsinghua University

3 Robotics Institute, Carnegie Mellon University
w2wan@ucsd.edu, ziyu-wan21@mails.tsinghua.edu.cn

yufeiw2@andrew.cmu.edu, zackory@cmu.edu, dheld@andrew.cmu.edu

Abstract

This paper introduces DiffTORI, which utilizes Differentiable Trajectory
Optimization as the policy representation to generate actions for deep
Reinforcement and Imitation learning. Trajectory optimization is a powerful
and widely used algorithm in control, parameterized by a cost and a dynamics
function. The key to our approach is to leverage the recent progress in differen-
tiable trajectory optimization, which enables computing the gradients of the loss
with respect to the parameters of trajectory optimization. As a result, the cost and
dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI
addresses the “objective mismatch” issue of prior model-based RL algorithms, as
the dynamics model in DiffTORI is learned to directly maximize task performance
by differentiating the policy gradient loss through the trajectory optimization pro-
cess. We further benchmark DiffTORI for imitation learning on standard robotic
manipulation task suites with high-dimensional sensory observations and compare
our method to feed-forward policy classes as well as Energy-Based Models (EBM)
and Diffusion. Across 15 model-based RL tasks and 35 imitation learning tasks
with high-dimensional image and point cloud inputs, DiffTORI outperforms prior
state-of-the-art methods in both domains.

1 Introduction

Recent works have shown that the representation of a policy can have a substantial impact on
the learning performance [1; 2; 3; 4]. Prior works have explored the use of feed-forward neural
networks [4], energy-based models [2], or diffusion [1; 5] as the policy representation. In this paper,
we propose to use differentiable trajectory optimization [3; 6; 7; 8; 9] as the policy representation
to generate actions for deep reinforcement learning (RL) and imitation learning (IL) with high-
dimensional sensory observations (images/point clouds).

Trajectory optimization is an effective and widely used algorithm in control, defined with a cost
function and a dynamics function. It can be viewed as a policy [3; 6], where the parameters of the
policy specify the cost function and the dynamics function. Given the learned cost and dynamics
functions as well as the input state (e.g., images, point clouds, robot joint states), the policy then
computes the actions by solving the trajectory optimization problem. Trajectory optimization can
also be made to be differentiable, which allows back-propagating through the trajectory optimization
process [3; 8; 10; 6; 9; 11; 12; 13]. In prior work, differentiable trajectory optimization has been

∗Equal contribution. This work was performed when Weikang Wan and Ziyu Wang were interning at CMU.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

applied to system identification [3; 6; 9], inverse optimal control [6], imitation learning [3; 6; 8; 14; 7]
and control/planning for robotics problems with low-dimensional states [3; 6; 8; 15].

In this paper, we propose to combine differentiable trajectory optimization with deep model-based
RL algorithms. Because we use differentiable trajectory optimization to generate actions [10], we
are able to compute the policy gradient loss on the generated actions to learn the dynamics and cost
functions to optimize the reward. This approach addresses the “objective mismatch” issue [16; 17] of
current model-based RL algorithms, i.e. models that achieve better training performance (e.g., lower
MSE) in learning a dynamics model are not necessarily better for control. Our method addresses this
issue, as the latent dynamics and reward models are both optimized to maximize the task performance
by back-propagating the policy gradient loss through the trajectory optimization process. We show
that our method outperforms prior state-of-the-art model-based RL algorithms on 15 tasks from the
DeepMind Control Suite [18] with high-dimensional image inputs.

We further benchmark our method for imitation learning on standard robotic manipulation task suites
with high-dimensional sensory observations and compare our method to feed-forward policy classes
as well as Energy-Based Models (EBM) [2] and Diffusion [1], and term our method DiffTORI
(Differentiable Trajectory Optimization for Reinforcement and Imitation Learning). We observe
that our training procedure using differentiable trajectory optimization leads to better performance
compared to the EBM approach used in prior work, which can suffer from training instability due
to the requirement of sampling high-quality negative examples [1]. We also outperform diffusion-
based approaches [1] due to our procedure of learning a cost function that we optimize at test time.
We show DiffTORI achieves state-of-the-art performance across 35 different tasks: 5 tasks from
Robomimic [19] with image inputs, 9 tasks from Maniskill1 [20] and Maniskill2 [21] with point
cloud inputs, and 22 tasks from MetaWorld [22] with point cloud inputs.

Our work is closely related to prior work [3; 8; 6] in employing differentiable trajectory optimization
as a policy representation. Compared to these prior work, we are the first to show how differentiable
trajectory optimization can be combined with deep model based RL algorithms, training dynamics,
reward, Q function, and the policy end-to-end using task loss. In contrast, prior work either focuses
on imitation learning [3; 8], assumes known dynamics and reward structures and learns only a few
parameters [3], or first learns the dynamics model with the dynamics prediction loss (instead of the
task loss), and then uses the fixed learned dynamics for control [8]. We are also the first to show that
the policy class represented by differentiable trajectory optimization can scale up to high-dimensional
sensory observations like images and point clouds, achieving state-of-the-art performances in standard
RL and imitation learning benchmarks. In contrast, prior works [3; 8; 6] only test their methods
in customized tasks with ground-truth low-level states, and do not report performance on standard
benchmarks with more complex tasks and high-dimensional observations.

In summary, the contributions of our paper are as following:

• We introduce DiffTORI, which uses differentiable trajectory optimization as the policy representa-
tion for deep reinforcement learning and imitation learning.

• We conduct extensive experiments to compare DiffTORI against prior state-of-the-art methods
on 15 tasks for model-based RL and 35 tasks for imitation learning in standard benchmarks with
high-dimensional sensory observations, and show that DiffTORI achieves superior performances.

• We perform analysis and ablations of DiffTORI to provide insights into its performance gains.

2 Related Works

Differentiable optimization and implicit policy representation: Our work follows the line of
research on differentiable optimization, which embeds optimization problems as a layer in neural
networks for end-to-end learning. Early works focus on differentiating through convex optimization
problems [23; 24]. Recent works extend the range of optimization problems that can be made
differentiable [11; 12; 6; 8; 9; 10]. The mostly related prior work to ours are Amos et al. [3]
and Jin et al. [6], which first proposed to treat trajectory optimization as an implicit policy and
demonstrated its effectiveness in the setting of behavior cloning, system identification, and control
for robotics problems with low-dimensional states. Another closely related recent work is Romero et
al. [15], where they embed a differentiable quadratic program with learnable cost matrices and known
dynamics into the last layer of the actor in PPO, with applications for quadcopter flying. Ours differ

2

from this work as we learn non-linear costs parameterized by a full neural network, and we also learn
the dynamics instead of assuming it is known. We also show our method work with high-dimensional
sensory inputs such as images and point clouds. Cheng et al. [25; 26] proposes to learn the parameters
of a PID controller by unrolling the controller and system dynamics into a computation graph and
optimizing the controller parameters via gradient descent with respect to the task loss, assuming
known dynamics. DiffTORI does not assume any prior knowledge on the dynamics or policy class;
Instead of representing the policy as a predefined controller, our policy is represented as performing
trajectory optimization with the learned dynamics, reward and Q functions represented as neural
networks. Sacks et al. [27] proposes to learn the update rule in MPPI, represented as a neural network,
using reinforcement learning, with known dynamics and cost functions. Instead of learning the
update rule, we learn the dynamics, reward, Q function used in trajectory optimization to generate the
actions. We perform differentiable trajectory optimization instead of RL to optimize the parameters
of these functions. Differentiable optimization has also been applied in other robotics domains
such as autonomous driving [14; 28; 29], navigation [7; 30], motion planning [31; 12], and state
estimation [32]. We are the first to show how differentiable trajectory optimization can be combined
with deep model-based RL.

Model-based reinforcement learning: Compared to model-free RL, model-based RL usually has
higher sample efficiency as it is solving a simpler supervised learning problem when learning the
dynamics model. Recently, researchers have identified a fundamental problem for model-based RL,
known as “objective mismatch” [16]. Recent works have proposed a single objective which is a lower
bound on the true return of the policy, for joint model and policy learning in model-based RL [17; 33].
Our approach also addresses the objective mismatch problem. In contrast to these two prior work
which only optimizes a lower bound on the true return, our approach directly optimizes the task reward.
Further, these approaches are only demonstrated using low-dimensional state-based observations
whereas our approach is able to handle high-dimensional image or point cloud observations. In
contrast to these works, we use Theseus [10] to analytically compute the gradient of the true objective
for updating the model. Another related work, Nikishin et al. [34] proposes to learn a dynamics and
reward model in model-based RL, and derive an implicit policy as the softmax policy associated with
the optimal Q function under the learned dynamics and reward, learned by back-propagating the RL
loss via implicit function theorem. In contrast, we derive the implicit policy as the optimal solution
from performing trajectory optimization with the learned dynamics, reward and Q function.

Policy architecture for deep imitation learning: Imitation learning can be formulated as the
supervised regression task of learning to map observations to actions from demonstrations. Some
recent work explores different policy architectures (e.g., explicit policy, implicit policy [2], diffusion
policy [1]) and different action representations (e.g., mixtures of Gaussian [35; 19], spatial action
maps [36], action flow [4], or parameterized action spaces [37]) to achieve more accurate learning
from demonstrations, to model the multimodal distributions of demonstrations, and to capture
sequential correlation. Our method outperforms explicit or diffusion policy approaches due to our
procedure of learning a cost function that we optimize at test time. In comparison with the implicit
policy, which also employs test-time optimization with a learned obective, we use a different and
more stable training procedure via differentiable trajectory optimization.

3 Background

3.1 Differentiable Trajectory Optimization

In robotics and control, trajectory optimization solves the following type of problems:

min
a0,...,aT

T−1∑
t=0

c(st, at) + C(sT)

s.t. st+1 = d(st, at)

(1)

where c(st, at) and C(sT) are the cost functions, and st+1 = d(st, at) is the dynamics function.
In this paper, we consider the case where the cost function and the dynamics functions are neural
networks parameterized by θ: cθ(st, at), Cθ(sT), and dθ(st, at).

Let a0(θ), ..., aT (θ) be the optimal solution to the trajectory optimization problem, which is a function
of the model parameters θ. Differentiable trajectory optimization is a class of method that enables

3

Inference
Training

TD-MPC DiffTORI (Ours)

Figure 1: Overview of DiffTORI for model-based RL. In contrast to prior work in model-based
RL [38] that uses non-differentiable MPPI (left), we utilize differentiable trajectory optimization to
generate actions (right). DiffTORI computes the policy gradient loss on the generated actions and
back-propagates it through the optimization process, to optimize the encoder as well as other latent
space models (latent reward predictor and latent dynamics function) to maximize task performance.

computation of the gradient of the actions with respect to the model parameters ∂at(θ)
∂θ . Specifically,

in this paper we use Theseus [10], which is an efficient application-agnostic open source library for
differentiable nonlinear least squares optimization. Theseus works well with high-dimensional states,
e.g., images or point clouds, along with using neural networks as the cost and dynamics functions.

3.2 Model-Based RL preliminaries

We use the standard MDP formulation: ⟨S,A,R, T , γ⟩ where S is the state space, A is the action
space, R(s, a) is the reward function, T (·|s, a) is the transition dynamics function, and γ ∈ [0, 1)
is the is the discount factor. The goal is to learn a policy π to maximize the expected return:
Est,at∼π[

∑∞
t=1 γ

tR(st, at)]. In this paper we work on problems where the state space S are high-
dimensional sensory observations, e.g., images or point clouds. Model-based RL algorithms first
learn a dynamics model, and then use it for learning a policy. When applied to model-based RL, our
method builds upon TD-MPC [38], a recently proposed model-based RL algorithm which we review
briefly here. We choose TD-MPC for its simplicity and state-of-the-art performance. However, our
method is compatible with any model-based RL algorithm that learns a dynamics model and a reward
function. TD-MPC consists of the following components: first, an encoder hθ, which encodes the
high-dimensional sensory observations, e.g., images, into a low-dimensional state zt = hθ(st). In the
latent space, a latent dynamics model dθ is also learned: zt+1 = dθ(zt, at). A latent reward predictor
Rθ is learned which predicts the task reward r: r̂ = Rθ(zt, at). Finally, a value predictor Qθ learns to
predict the Q value: Q̂ = Qθ(zt, at). Note that we use θ to denote all learnable parameters including
the encoder, the latent dynamics model, the reward predictor, and the Q value predictor. These models
are trained jointly using the following objective:

LTD-MPC(θ; τ) =

t+H∑
i=t

λ
i−tLTD-MPC(θ; τi), (2)

where τ ∼ B is a trajectory (st, at, rt, st+1)t:t+H sampled from a replay buffer B, λ ∈ R+ is a
constant that weights near-term predictions higher, and the single-step loss is:

LTD-MPC(θ; τi) =c1∥Rθ(zi, ai) − ri∥2
2︸ ︷︷ ︸

reward

+ c2∥Qθ(zi, ai) −
(
ri + γQθ− (zi+1, πθ(zi+1))

)
∥2
2︸ ︷︷ ︸

value

+ c3∥dθ(zi, ai) − hθ− (si+1)∥2
2︸ ︷︷ ︸

latent state consistency

(3)

where θ− are parameters of target networks that are periodically updated using the parameters of
the learning networks. As shown in (3), the parameters θ is optimized with a set of surrogate losses
(reward prediction, value prediction, and latent consistency), rather than directly optimizing the task
performance, known as the objective mismatch issue [16]. At test time, model predictive path integral
(MPPI) [39] is used for planning actions that maximize the predicted rewards and Q functions in
the latent space. A policy πψ is further learned in the latent space using the latent Q-value function,
which is used to generate action samples in the MPPI process.

4

4 Method

4.1 Overview

The core idea of DiffTORI is to use trajectory optimization as the policy πθ, where θ parameterizes
the dynamics and cost functions. Given a state s, DiffTORI generates the actions a(θ) by solving
the trajectory optimization problem in (1) with s0 = s. To optimize the policy parameters θ, we use
differentiable trajectory optimization to compute the gradients of the loss L(a(θ)) with respect to the
policy parameters: ∂L(a(θ))

∂θ , where the exact form of the loss depends on the problem setting.

An overview of applying DiffTORI to model-based RL is shown in Figure 1. Existing model-based
RL algorithms such as TD-MPC suffer from the objective mismatch issue: the latent dynamics
and reward (cost) functions are learned to optimize a set of surrogate losses (as in (3)), instead of
optimizing the task performance directly. DiffTORI addresses this issue: by computing the policy
gradient loss on the optimized actions from trajectory optimization and differentiating through the
trajectory optimization process, the dynamics and cost functions are optimized directly to maximize
the task performance. We describe DiffTORI for model-based RL in Section 4.2.

We also apply DiffTORI to imitation learning; an overview is shown in Figure 2. In contrast to explicit
policies that generate actions at test-time by forward passes of the policy network, DiffTORI generates
the actions via test-time trajectory optimization with a learned cost function. This is in the same spirit
of implicit behaviour cloning [2] which learns an energy function and optimizes with respect to it to
generate actions at test-time. However, we observe that our training procedure using differentiable
trajectory optimization leads to better performance compared to the EBM approach used in prior
work, which can suffer from training instability due to the requirement of sampling high-quality
negative examples [1]. We describe DiffTORI for imitation learning in detail in Section 4.3.

4.2 Differentiable trajectory optimization applied to model-based RL

We build DiffTORI on top of TD-MPC for model-based RL. Similar to TD-MPC, DiffTORI consists
of an encoder hθ, a latent dynamics model dθ, a reward predictor Rθ, and a Q-value predictor Qθ

(see Sec. 3.2). We use θ to denote all learnable parameters to be optimized in DiffTORI. As shown
in Figure 1, the key to DiffTORI is to change the non-differentiable MPPI planning algorithm in
TD-MPC to a differentiable trajectory optimization, and include the policy gradient loss on the
generated actions to optimize the model parameters θ directly for task performance.

Formally, given a state st, we use the encoder hθ to encode it to the latent state zt, and then construct
the following trajectory optimization problem in the latent space:

a(θ) = argmax
at,...,at+H

H−1∑
l=t

γl−tRθ(zt, at) + γHQθ(zH , aH)

s.t. zt+1 = dθ(zt, at)

(4)

where H is the planning horizon. In this paper we leverage Theseus [10] to solve (4) in a differentiable
way. Since Theseus only supports solving non-linear least-square optimization problems without
constraints, we remove the dynamics constraints in the above optimization problem by manually
rolling out the dynamics into the objective function. For example, with a planning horizon of H = 2,
we turn the above optimization problem into the following one:

a(θ) = argmax
at,at+1,at+2

Rθ(zt, at) +Rθ(dθ(zt, at), at+1) +Qθ(dθ(dθ(zt, at), at+1), at+2) (5)

We set the values of H following the schedule as in TD-MPC, and we use the Levenberg–Marquardt
algorithm in Theseus to solve the optimization problem. Following TD-MPC, we also learn a policy
πψ in the latent space using the learned Q-value predictor Qθ, and the output from the policy is used
as the action initialization for solving (4).

Let a(θ) be the solution of the above trajectory optimization problem, obtained using Theseus as
described above. DiffTORI is learned with the following objective, which jointly optimizes the
encoder, latent dynamics model, latent reward model, and the Q-value predictor:

LRL
DiffTORI(θ; τ) =

t+H∑
i=t

λi−t (LTD−MPC(θ; τi) + c0LPG(θ; τi))

LPG(θ; τi) = −Q̃ϕ(si, a(θ))

(6)

5

𝑜

𝑎

Explicit Policy

𝜋𝜃(𝑜)

𝑜

𝑎

Implicit Policy

𝑎𝑖𝑛𝑖𝑡

argmin
𝑎

𝐸𝜃(𝑜, 𝑎)

𝑜

𝑎

Diffusion Policy

𝜀𝜃(𝑜, 𝑎)

∇ 𝐸(𝑎)

𝑎

𝐾
iter

𝑜

𝑎

DiffTORI (Ours)

𝑎𝑖𝑛𝑖𝑡

argmin
𝑎

𝐸𝜃(𝑜, 𝑎)

differentiable trajectory
optimization

Figure 2: Overview of our method on Imitation Learning. DiffTORI (right) learns a cost function
via differentiable trajectory optimization and performs test-time optimization with it, which is
different from prior work (left) that uses an explicit policy or diffusion without test-time optimization.
Although implicit policy shares the same spirit as DiffTORI, we observe that the training procedure
of DiffTORI using differentiable trajectory optimization leads to better performance compared to the
EBM approach used in prior work [2], which can suffer from training instability.

where Q̃ϕ is the Q function learned via Bellman updates [40] which is used to compute the detemi-
nistic policy gradient [41], and c0 is the weight for this loss term. Q̃ϕ is learned in the original state
space S instead of the latent space to provide accurate policy gradients. The key idea here is that we
can backpropagate through the policy gradient loss LPG, which backpropagates through a(θ) and
then through the differentiable trajectory optimization procedure of Equation 4 to update θ.

4.3 Differentiable Trajectory Optimization applied to imitation learning

We also use DiffTORI for model-based imitation learning. A comparison of DiffTORI to other types
of policy classes used in prior work is shown in Figure 2. In this approach, DiffTORI consists of an
encoder hθ and a latent dynamics function dθ, as before. However, in the setting of imitation learning,
we do not assume access to a reward function R(s, a). Instead, we generate actions by solving the
following trajectory optimization problem:

a(θ) = argmax
at,...,at+H

H∑
l=t

γl−tfθ(zt, at)

s.t. zt+1 = dθ(zt, at),

(7)

in which fθ(zt, at) is a function over the latent state zt and actions at that we will optimize using the
imitation learning loss, as described below. Similarly, We use θ to denote all learnable parameters to
be optimized in DiffTORI, including the parameters of the encoder hθ, the latent dynamics model dθ,
and the function fθ in the imitation learning setting.

In imitation learning, we assume access to an expert dataset D = {(si, a∗i)}Ni=1 of state-action pairs
(si, a

∗
i). In the most basic form, the loss L for DiffTORI can be the mean square error between the

the expert actions a∗i and the actions a(θ) returned from solving (7):

LBC(θ) =

N∑
i=1

||a(θ)− a∗
i || (8)

The key idea here is that we can backpropagate through the imitation loss LBC , which backpropagates
through a(θ) and then through the differentiable trajectory optimization procedure of Equation 7
to update θ. This enables us to learn the function fθ(zt, at) used in the optimization Equation 7
directly by optimizing the imitation loss LBC(θ). Because this loss is optimized through the
trajectory optimization procedure (Equation 7), we will learn a function fθ(zt, at) such that optimizing
Equation 7 returns actions that match the expert actions.

Multimodal DiffTORI: The loss in Equation 8 will not be able to capture multi-modal action
distributions in the expert demonstrations. To address this, we use a Conditional Variational Auto-
Encoder (CVAE) [42] as the policy architecture, which has the ability to capture a multi-modal
action distribution [43]. The CVAE encoder encodes the state si and the expert action a∗i into a
latent state vector zi. The key idea in our approach is that the decoder in CVAE takes the form of a
trajectory optimization algorithm, given by Equation 7. It takes as input the sampled latent z̃ from
the Gaussian Prior, and the state si and uses differentiable trajectory optimization to decode the

6

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Average

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 cartpole-swingup-sparse

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 cheetah-run

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 cup-catch

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

finger-spin

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 finger-turn-easy

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 finger-turn-hard

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 hopper-stand

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

pendulum-swingup

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 quadruped-run

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 quadruped-walk

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000 reacher-easy

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x1e6)

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

reacher-hard

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x1e6)

0

200

400

600

800

1000 walker-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x1e6)

0

200

400

600

800

1000 walker-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x1e6)

0

200

400

600

800

1000 walker-walk

SAC DrQ-v2 TD-MPC DiffTORI + TD-MPC (Ours)

Figure 3: Performance of DiffTORI, in comparison to 4 prior state-of-the-art model-based and
model-free RL algorithms, on 15 tasks from DeepMind control suite. DiffTORI achieves the best
performance when averaged across all tasks. Results are averaged with 4 seeds, and the shaded
regions represent the 95% confidence interval.

action a(θ). Because this trajectory optimization is differentiable, we can backpropagate through it
to learn the parameters θ for the encoder, dynamics dθ, and the function fθ used in Equation 7. See
Appendix D for further details.

Action refinement: We note that DiffTORI provides a natural way to perform action refinement on
top of a base policy. Given an action from any base policy, we can use this action as the initialization
of the action variables for solving the trajectory optimization problem; the trajectory optimizer will
iteratively refine this action initialization with respect to the optimization objective of Equation 7. In
our experiments, we find DiffTORI always outperforms the base policies when using their actions as
the initialization and other ways of performing action refinement, such as residual learning.

5 Experiments

5.1 Model-based Reinforcement Learning

We conduct experiments on 15 DeepMind Control suite tasks, which involve simulated locomotion
and manipulation tasks, such as making a cheetah run or swinging a ball into a cup. All tasks use
image observations and the control policy does not have direct access to the underlying states.

We compare to the following baselines: SAC [44], a commonly used off-policy model-free RL
algorithm. DrQ-v2 [45], a state-of-the-art model-free RL algorithm for image observations that adds
data augmentation on top of SAC . TD-MPC [38], a state-of-the-art model-based RL algorithm,
which DiffTORI builds on. All training details such as hyper-parameters, and pysudo-code can be
found in Appendix B. All experiments use NVIDIA 2080 Ti GPUs.

7

Figure 3 shows the learning curves for all methods on all tasks. The top-left subplot shows the
normalized performance averaged across all 15 tasks, which is computed as the achieved return
divided by the max return from any algorithm. As shown, DiffTORI (red curve) outperforms all
compared baselines by a noticeable margin. On 14 out of the 15 tasks (except Quadruped-walk),
DiffTORI achieves the highest performance among compared algorithms. We especially note that the
performance of DiffTORI is much higher than TD-MPC, which DiffTORI builds on, showing the
benefit of adding the policy gradient loss and directly differentiating through it to optimize the learned
latent spaces. Although DiffTORI achieves higher sample efficiency, one limitation of DiffTORI
is that it requires more wall-clock time for training, due to the need for solving and differentiating
through the trajectory optimization process. We show detailed results on computational efficiency
(return vs wall-clock time) of DiffTORI in Appendix A.1.2. We also perform ablation studies to
examine how each loss term in (6) contributes to the final performance of DiffTORI in Figure 6 in
Appendix A.1.3.

Table 1: Success rates (↑) of DiffTORI, DP3 and Residual + DP3 on 22 MetaWorld tasks. DiffTORI
consistenly achieves higher or on-par success rates on all 22 tasks.

MetaWorld (Medium)
Soccer Push Wall Peg Insert Side Bin Picking Basketball Box Close Coffee Pull

DP3 32.3±3.5 42.0±2.6 57.3±10.3 13.0±1.0 88.0±5.3 62.0±2.0 65.0±3.6
Residual + DP3 33.0±2.6 43.3±3.1 59.3±4.2 13.3±3.1 87.3±3.1 67.3±5.0 59.3±1.5

DiffTORI (Ours) + DP3 40.7±1.2 50.0±2.0 64.7±4.2 22.0±5.3 88.0±4.0 73.3±4.6 70.7±7.0

Metaworld (Medium) Metaworld (Hard)
Coffee Push Hammer Sweep Sweep Into Assemble Hand Insert Pick out of Hole Pick Place

DP3 53.0±3.6 32.3±3.5 74.7±3.1 30.3±11.2 68.7±1.5 18.3±2.1 55.0±4.6 56.7±2.5

Residual + DP3 49.3±4.2 31.3±1.2 71.3±3.0 45.7±3.8 64.7±3.1 19.7±2.1 61.3±2.3 52.0±2.0

DiffTORI (Ours) + DP3 60.7±5.0 37.3±3.1 90.7±3.1 45.3±6.1 74.0±4.0 24.7±1.2 63.3±6.1 61.3±6.3

Metaworld (Hard) Metaworld (Very Hard) AveragePush Push Back Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall
DP3 21.3±7.5 55.3±4.9 27.7±2.9 34.0±4.6 53.0±6.9 94.3±2.1 38.3±5.7 48.8

Residual + DP3 20.0±3.5 55.3±4.2 35.3±4.2 35.3±1.2 56.0±2.0 91.3±2.3 44.7±4.2 49.8
DiffTORI (Ours) + DP3 30.0±3.5 64.7±3.1 42.0±8.0 40.7±3.1 59.3±6.1 94.0±3.5 44.7±2.3 56.5

Table 2: Failure rates (↓) of all methods on the Robomimic tasks. DiffTORI achieves the lowest
failure rates on all tasks with diffusion policy as the base policy.

IBC BC-RNN Residual
+BC-RNN

DiffTORI (Ours)
+ BC-RNN Diffusion IBC

+ Diffusion
Residual
+ Diffusion

DiffTORI (Ours)
+ Diffusion

Square 0.96±0.00 0.18±0.00 0.16±0.01 0.10±0.02 0.12±0.03 0.32±0.05 0.12±0.02 0.08±0.01

Transport 1.00±0.00 0.28±0.03 0.26±0.03 0.17±0.02 0.07±0.04 0.92±0.03 0.08±0.01 0.04±0.01

ToolHang 1.00±0.00 0.33±0.04 0.28±0.03 0.18±0.00 0.10±0.00 0.94±0.01 0.10±0.00 0.08±0.01

Push-T 0.89±0.01 0.30±0.02 0.28±0.02 0.25±0.02 0.09±0.00 0.92±0.01 0.09±0.00 0.09±0.01

Average 0.96 0.27 0.25 0.18 0.10 0.78 0.10 0.07

5.2 Imitation Learning

Below we show results of DiffTORI on 3 commonly used imitaiton learning benchmarks: Meta-
World [22], RoboMimic [19], ManiSkill [20], and the comparison to state-of-the-art methods on these
three benchmarks. We also compare to one closely related prior work [3] on one of their customized
tasks in Appendix A.3.

5.2.1 MetaWorld

MetaWorld [22] is a large-scale benchmark that includes 100 robotic manipulation tasks, and has
been recently used for evaluating different imitation learning algorithms [46]. The policy observation
is point clouds of the scene, and the action is the 3d translation of the robot end-effector. We test
on 22 tasks with different levels of difficulties: Medium, Hard, and Very Hard (See Table 1 for all
the tasks). 10 demonstrations are used for all tasks [46]. We compare DiffTORI with the following
baselines: DP3 [46], a 3D version of diffusion policy that achieves state-of-the-art performances on
this benchmark, outperforming other algorithms such as the original diffusion policy [1] with 2d
image inputs. Residual + DP3: Since DiffTORI refines the actions from a base pre-trained DP3
policy, we additionally compare to this baseline that also leverages the actions from a base pre-trained
DP3 policy. Specifically, we learn a residual policy on top of the base pre-trained policy, which takes

8

Table 3: On Maniskill tasks, DiffTORI consistently achieves higher success rates (↑) on all tasks.

PickCube Fill Hang Excavate Pour OpenCabinet
Drawer

OpenCabinet
Door PushChair MoveBucket Average

BC 0.19±0.03 0.72±0.04 0.76±0.02 0.25±0.02 0.13±0.01 0.47±0.03 0.35±0.04 0.12±0.01 0.10±0.01 0.34
BC + residual 0.21±0.04 0.75±0.02 0.75±0.02 0.27±0.03 0.12±0.01 0.49±0.02 0.36±0.03 0.15±0.02 0.10±0.01 0.36

DiffTORI (Ours) + BC 0.32±0.02 0.82±0.01 0.85±0.03 0.29±0.01 0.17±0.02 0.53±0.02 0.45±0.02 0.20±0.02 0.15±0.02 0.42

as input the action from the base policy, and outputs a delta action that is added to the base action.
This is the most standard and simple way of doing residual learning. All training details such as
hyper-parameters and pseudo-code can be found in Appendix B.

Table 1 presents the task success rates, averaged over 50 evaluation episodes, of all compared
algorithms. As shown, DiffTORI consistently achieves higher (or on par) success rates than the other
2 compared baselines. The improvement in success rates is larger on tasks where the original DP3
policy struggles, e.g., a 15% improvement on the task of Shelf Place and Sweep Into; and as expected,
when the base DP3 policy is already doing well on the task, there is not much room of improvement
left for DiffTORI, e.g., on Basketball and Stick Push. The simple way of learning a residual policy
on top of the DP3 policy does not always improve the performance of the base policy, and even
leads to lower success rates. This demonstrates that DiffTORI is a more effective way to leverage
a pre-trained policy. On average, the success rates of DiffTORI is 7.7% higher than that of DP3, a
substantial improvement with only 10 demonstrations.

5.2.2 Robomimic

Robomimic [19] is another commonly used benchmark designed to study imitation learning for robot
manipulation. The benchmark encompasses a total of 5 tasks with two types of demonstrations:
collected from proficient humans (PH) or a mixture of proficient and non-proficient humans. We use
the PH demonstrations, and evaluate on three of the most challenging tasks: Square, Transport, and
ToolHang. We use image-based observations and the default velocity controller for all the tasks. In
addition to Robomimic, we compare to another task, Push-T from the diffusion policy [1] task set, to
demonstrate that we can learn multimodal cost functions by using the CVAE training loss.

We compare to the following baselines: IBC [2]: An implicit policy that learns an energy function
conditioned on both action and observation using the InfoNCE loss [47]. BC-RNN [19]: A variant
of BC that uses a Recurrent Neural Network (RNN) as the policy network to encode a history of
observations. This is the best-performing baseline in the original Robomimic [19] paper. Residual
+ BC-RNN: We use a pretrained BC-RNN as the base policy, and learn a residual policy on top
of it. The residual policy takes as input the action from the base policy, and outputs a delta action
which is added to the base action. Diffusion Policy [1]: A policy that uses the diffusion model
as the policy class. It refines noise into actions via a learned gradient field. IBC + Diffusion: A
version of IBC that uses the action from a pre-trained Diffusion Policy as the action initialization
in the test-time optimization process. Residual + Diffusion: Similar to Residual + BC-RNN, but
using a pre-trained Diffusion Policy as the base policy. For DiffTORI, we compare two variants of
it: DiffTORI + BC-RNN and DiffTORI + Diffusion Policy, which uses a pre-trained BC-RNN or
a pre-trained diffusion policy as the base policy to generate the initialization action for solving the
trajectory optimization problem. In Appendix A.2, we also present results of DiffTORI with zero
initialization or random initialization, instead of initializing the action from a base policy.

The results are shown in Table 2. We find that DiffTORI+Diffusion Policy achieves the lowest failure
rates consistently across all tasks. Even though Diffusion Policy has almost saturated on these tasks
with very low failure rates, DiffTORI can still further reduces it. Furthermore, irrespective of the
base policy used — whether BC-RNN or Diffusion Policy — DiffTORI always brings noticeable
improvement in the performance over the base policy. While learning a residual policy does lead
to improvements upon the base policy, DiffTORI shows a significantly greater performance boost.
In addition, by comparing DiffTORI+Diffusion Policy with IBC+Diffusion Policy, we find that
using the same action initialization for IBC is considerably less effective than using the same action
initialization in DiffTORI. In many tasks, even when the base Diffusion Policy already exhibits low
failure rates, IBC+Diffusion Policy still results in poor performances, indicating the training objective
used in IBC actually deteriorates the base actions.

We also show the benefit of using a CVAE architecture for DiffTORI, which enables DiffTORI
to capture multimodal action distributions. With different latent samples from CVAE, we get

9

Goal
Object

Figure 4: By using a CVAE, DiffTORI can learn multimodal objectives functions via sampling
different latent vectors from CVAE (right). By performing trajectory optimization with these two
different objective functions, DiffTORI can generate multimodal actions (left).

different objective functions fθ(z, a) and dynamics functions dθ(z, a), allowing DiffTORI to generate
different actions from the same state. Figure 4 illustrates the multimodal objective function learned by
DiffTORI (right), and the resulting multimodal actions (left). The left subplot shows that when starting
from the same action initialization ainit, with two different latent samples, DiffTORI optimizes ainit
into two different actions, â1 and â2 that move in distinct directions. The trajectory optimization
procedure that iteratively updates the action is represented by dashed lines transitioning from faint
to solid. From these two actions, two distinct trajectories are subsequently generated to push the
T-shape object towards its goal. The middle and right subplots show the objective function landscapes
for the 2 different samples, as well as the initial action ainit, and the final optimized action â1 and â2.
We note the two landscapes are distinct from each other with different optimal solutions, showing
that DiffTORI can generate multimodal objective functions and thus capture multimodal action
distributions. We note that the learned objective function f is not necessarily a “reward” function
as those learned via inverse RL [48]. It is just a learned “objective function”, such that optimizing
it with trajectory optimization would yield actions that minimize the imitation learning loss with
respect to the expert actions in the demonstration. We leave exploring the connections with inverse
RL for future work.

5.2.3 ManiSkill

ManiSkill [20; 21] is a benchmark for learning generalizable robotic manipulation skills with 2D &
3D visual input. It includes a series of rigid body tasks and soft body tasks. We choose 9 tasks (4 soft
body tasks and 5 rigid body tasks) from ManiSkill1 [20] and ManiSkill2 [21] and use 3D point cloud
input for all the tasks. We use the end-effector frame as the observation frame [49] and use the PD
controller with the end-effector delta pose as the action.

We build our method on top of the strongest imitation learning baseline in ManiSkill2 released by the
authors, which is a Behavior Cloning (BC) policy with PointNet [50] as the encoder. Again, we also
compare to BC+residual, which learns a residual policy that takes as input the action from the BC
policy and outputs a delta correction. The results are shown in Table 3. As shown, DiffTORI + BC
consistently achieves higher success rates than both baselines on all tasks, demonstrating the strong
effectiveness of using differentiable trajectory optimization as the policy class.

6 Conclusion and Discussion

We introduce DiffTORI that uses differentiable trajectory optimization to generate the policy actions
for deep reinforcement learning and imitation learning. The key is to utilize the recent progress
in differentiable trajectory optimization to compute the gradients of the loss with respect to the
parameters of the cost and dynamics function of trajectory optimization, and learn them end-to-end.
When applied to model-based reinforcement learning, DiffTORI addresses the “objective mismatch”
issue of prior methods. We also test DiffTORI for imitation learning on standard robotic manipulation
task suites with high-dimensional sensory observations and compare it to feed-forward policy classes
as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35
imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms
prior state-of-the-art methods.

10

References
[1] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and

Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

[2] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on Robot Learning, pages 158–168. PMLR, 2022.

[3] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc
for end-to-end planning and control. Advances in neural information processing systems, 31,
2018.

[4] Daniel Seita, Yufei Wang, Sarthak J Shetty, Edward Yao Li, Zackory Erickson, and David Held.
Toolflownet: Robotic manipulation with tools via predicting tool flow from point clouds. In
Conference on Robot Learning, pages 1038–1049. PMLR, 2023.

[5] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[6] Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Pontryagin differentiable
programming: An end-to-end learning and control framework. Advances in Neural Information
Processing Systems, 33:7979–7992, 2020.

[7] Xuesu Xiao, Tingnan Zhang, Krzysztof Choromanski, Edward Lee, Anthony Francis, Jake
Varley, Stephen Tu, Sumeet Singh, Peng Xu, Fei Xia, et al. Learning model predictive controllers
with real-time attention for real-world navigation. arXiv preprint arXiv:2209.10780, 2022.

[8] Ming Xu, Timothy Molloy, and Stephen Gould. Revisiting implicit differentiation for learning
problems in optimal control. arXiv preprint arXiv:2310.14468, 2023.

[9] Wanxin Jin, Shaoshuai Mou, and George J Pappas. Safe pontryagin differentiable programming.
Advances in Neural Information Processing Systems, 34:16034–16050, 2021.

[10] Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky TQ
Chen, Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, et al. Theseus: A library
for differentiable nonlinear optimization. Advances in Neural Information Processing Systems,
35:3801–3818, 2022.

[11] Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(8):3988–4004, 2021.

[12] Benoit Landry, Zachary Manchester, and Marco Pavone. A differentiable augmented lagrangian
method for bilevel nonlinear optimization. arXiv preprint arXiv:1902.03319, 2019.

[13] Stephen Tu, Roy Frostig, and et al. trajax, 2021.

[14] Jatan Shrestha, Simon Idoko, Basant Sharma, and Arun Kumar Singh. End-to-end learning of
behavioural inputs for autonomous driving in dense traffic. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 10020–10027. IEEE, 2023.

[15] Angel Romero, Yunlong Song, and Davide Scaramuzza. Actor-critic model predictive control.
arXiv preprint arXiv:2306.09852, 2023.

[16] Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

[17] Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mis-
matched no more: Joint model-policy optimization for model-based rl. Advances in Neural
Information Processing Systems, 35:23230–23243, 2022.

[18] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

11

[19] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning
from offline human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298,
2021.

[20] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang,
Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

[21] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang,
Stone Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable
manipulation skills. arXiv preprint arXiv:2302.04659, 2023.

[22] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

[23] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[24] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico
Kolter. Differentiable convex optimization layers. Advances in neural information processing
systems, 32, 2019.

[25] Sheng Cheng, Minkyung Kim, Lin Song, Chengyu Yang, Yiquan Jin, Shenlong Wang, and
Naira Hovakimyan. Difftune: Auto-tuning through auto-differentiation. IEEE Transactions on
Robotics, 2024.

[26] Sheng Cheng, Lin Song, Minkyung Kim, Shenlong Wang, and Naira Hovakimyan. Difftune
Θ+: Hyperparameter-free auto-tuning using auto-differentiation. In Learning for Dynamics and
Control Conference, pages 170–183. PMLR, 2023.

[27] Jacob Sacks, Rwik Rana, Kevin Huang, Alex Spitzer, Guanya Shi, and Byron Boots. Deep model
predictive optimization. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pages 16945–16953. IEEE, 2024.

[28] Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv. Differentiable integrated motion
prediction and planning with learnable cost function for autonomous driving. IEEE transactions
on neural networks and learning systems, 2023.

[29] Christopher Diehl, Tobias Klosek, Martin Krueger, Nils Murzyn, Timo Osterburg, and Torsten
Bertram. Energy-based potential games for joint motion forecasting and control. In Conference
on Robot Learning, pages 3112–3141. PMLR, 2023.

[30] Christopher Diehl, Tobias Klosek, Martin Krüger, Nils Murzyn, and Torsten Bertram. On a
connection between differential games, optimal control, and energy-based models for multi-
agent interactions. arXiv preprint arXiv:2308.16539, 2023.

[31] Mohak Bhardwaj, Byron Boots, and Mustafa Mukadam. Differentiable gaussian process motion
planning. In 2020 IEEE international conference on robotics and automation (ICRA), pages
10598–10604. IEEE, 2020.

[32] Brent Yi, Michelle A Lee, Alina Kloss, Roberto Martín-Martín, and Jeannette Bohg. Differ-
entiable factor graph optimization for learning smoothers. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1339–1345. IEEE, 2021.

[33] Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhut-
dinov. Simplifying model-based rl: learning representations, latent-space models, and policies
with one objective. arXiv preprint arXiv:2209.08466, 2022.

[34] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. Control-oriented
model-based reinforcement learning with implicit differentiation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 7886–7894, 2022.

12

[35] Christopher M Bishop. Mixture density networks. 1994.

[36] Jimmy Wu, Xingyuan Sun, Andy Zeng, Shuran Song, Johnny Lee, Szymon Rusinkiewicz,
and Thomas Funkhouser. Spatial action maps for mobile manipulation. arXiv preprint
arXiv:2004.09141, 2020.

[37] Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action
space. arXiv preprint arXiv:1511.04143, 2015.

[38] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

[39] Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou.
Aggressive driving with model predictive path integral control. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 1433–1440. IEEE, 2016.

[40] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[41] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[42] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. Advances in neural information processing systems, 28,
2015.

[43] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[44] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[45] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[46] Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d
diffusion policy: Generalizable visuomotor policy learning via simple 3d representations, 2024.

[47] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[48] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2, 2000.

[49] Minghua Liu, Xuanlin Li, Zhan Ling, Yangyan Li, and Hao Su. Frame mining: a free lunch for
learning robotic manipulation from 3d point clouds. arXiv preprint arXiv:2210.07442, 2022.

[50] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[51] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral
control using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

13

A Additional results

A.1 Model-based Reinforcement Learning

A.1.1 DiffTORI without policy gradient loss

In model-based reinforcement learning, the key distinctions between DiffTORI and TD-MPC [38] are:
1) TD-MPC employs the Model Predictive Path Integral (MPPI [51]) in the planning stage, whereas
we utilize trajectory optimization. 2) In addition to the original loss used in TD-MPC, we use an
additional policy gradient loss and back-propagate it through the differentiable trajectory optimization
process to update the model parameters. Figure 5 shows that the improvement of DiffTORI over
TD-MPC comes from the addition of the policy gradient loss, instead of purely changing MPPI to
trajectory optimization. To be more specific, we compare TD-MPC with DiffTORI (w/o backward),
a variant of DiffTORI that removes the policy gradient loss for updating the model parameters.
The results indicate that TD-MPC and the DiffTORI (w/o backward) variant perform comparably,
suggesting that using MPPI or trajectory optimization at test-time for action generation have similar
performances. With the inclusion of the policy gradient loss, DiffTORIsignificantly outperforms both
TD-MPC and the DiffTORI (w/o backward) variant, demonstrating the efficacy of adding the policy
gradient loss in DiffTORI.

DiffTORI (Ours)TD-MPC DiffTORI (w/o backward)

Cartpole Swingup Sparse Cheetah Run Cup CatchAverage

Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6)

E
pi

so
d

e
 r

e
tu

rn

Pendulum Swingup Quadruped Run Quadruped Walk Reacher Easy

Reacher Hard Walker Run Walker Stand Walker Walk

Finger Spin Finger Turn Easy Hopper StandFinger Turn Hard

E
pi

so
d

e
 r

e
tu

rn
E

pi
so

d
e

 r
e

tu
rn

E
pi

so
d

e
 r

e
tu

rn

Figure 5: Performance of DiffTORI, in comparison to TD-MPC and DiffTORI (w/o backward) on 15
tasks from DeepMind control suite.

A.1.2 Computational efficiency of DiffTORI

In addition to comparing the sample efficiency of DiffTORI to prior methods, we also compare
the computational efficiency of DiffTORI versus TD-MPC on some of the environments. This is
shown in Figure 7, where the y-axis is the return, and the x-axis is the wall-clock time (tested on a
NVIDIA RTX 2080 Ti GPU) used to train DiffTORI and TD-MPC for 1M environment steps. As
shown, it takes more wall-clock time for DiffTORI to finish the training. In terms of computational
efficiency, the results are environment-dependent. DiffTORI achieves better computational efficiency
on reacher-hard and cup-catch. On pendum-swingup, TD-MPC converges to a sub-optimal value
in the early training stage and DiffTORI outperforms it within 24 hours of training time. DiffTORI

14

has similar computational efficiency on cartpole-swingup-sparse, reacher-easy, and finger-spin, and
slightly worse computational efficiency on cheetah-run and walker-stand compared to TD-MPC.
The gap is larger on hopper-stand. The major reason for DiffTORI to take longer time for training
is that solving and back-propagating through the trajectory optimization problem in (4) is slower
than doing MPPI as used in TD-MPC. As a reference, to infer the action at one time step, it takes
0.052 second to use Theseus to solve and differentiate through the trajectory optimization problem
in (4), and 0.0092 second for using MPPI in TD-MPC. However, we also want to note that the
community is actively developing better and faster algorithms/software libraries for differentiable
trajectory optimization, which could improve the computation efficiency of DiffTORI. For example,
in all our experiments, we used the default CPU-based solver in Theseus. Theseus also provides
a more advanced solver named BaSpaCho, which is a batched sparse Cholesky solver with GPU
support. When we switch from the default CPU-based solver to BaSpaCho, the time cost of solving
the trajectory optimization problem in (4) is reduced by 22% from 0.052 second to 0.041 second.
With better libraries/algorithms in the future for differentiable trajectory optimization, we believe the
computational efficiency of DiffTORI would further improve.

DiffTORI (Ours)w/o action initializationw/o dynamic loss w/o reward loss

Cheetah Run Cup Catch Finger Turn Easy Reacher Easy

Environment steps (×1e6)

E
p

is
o

d
e

 r
e

tu
rn

Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6)

Figure 6: Ablation study of DiffTORI to examine the contribution of each loss terms towards the
final performance, on a subset of 4 tasks. We find the reward prediction loss, action initialization, and
dynamics prediction loss are all essential for DiffTORI to achieve good performance.

A.1.3 Ablation study on the loss terms

We also perform ablation studies to examine how each loss term in (6) contributes to the final
performance of DiffTORI, as shown in Figure 6. We find that removing the reward prediction loss
causes DiffTORI to completely fail. Removing the dynamics loss, or not using the action initialization
from the learned policy πψ for solving the trajectory optimization, both lead to a decrease in the
performance. These shows the necessity of using all the loss terms in DiffTORI for learning a good
latent space to achieve strong performance.

A.2 Imitation Learning

A.2.1 DiffTORI with zero and random action initialization

We also present results of DiffTORI with zero initialization or random initialization, where instead of
initializing the action from a base policy, the action is initialized to be 0, or randomly sampled from
N (0, 1), on RoboMimic and Maniskill.

The results on RoboMimic is shown in Table 4. We notice a drop in performance of DiffTORI with
zero or randomly-initialized actions, possibly due to the convergence to bad local minima during
nonlinear trajectory optimization without a good action initialization. We note this would not be a
drawback of applying DiffTORI in practice for imitation learning: one could always first learn a base
policy using any behavior cloning algorithm, and then use DiffTORI to further refine the actions.

The results on Maniskill is shown in Table 5. Again, if we use zero or random action initialization
with DiffTORI, the performance drops to be similar to or slightly worse than vanilla BC. Therefore,
we think a good practice of using DiffTORI for imitation learning would be to always try to provide
it with a good action initialization, e.g., by first training a BC policy and use its action as the
initialization in DiffTORI.

A.2.2 Results of positional controller on RoboMimic

Note that for the three tasks in Table 2 from Robomimic, we use the default velocity controller from
Robomimic. We note the use of the velocity controller leads to a small decline in the performance of

15

DiffTORI (Ours)TD-MPC

Figure 7: Return vs wall-clock time of DiffTORI and TD-MPC on some of the RL environments.
The x-axis is the training time in days (24 hours), and the y-axis is the return. Both methods are
trained for 1M environments steps. The training takes a long time (a few days on some environments)
because the policy observation is high-dimensional images.

Table 4: Failure rates (↓) of DiffTORI and all other mehtods on the Robomimic tasks. DiffTORI
achieves the best performances on all tasks when using diffusion policy as the base policy. If zero or
random initialization are used in DiffTORI, the performance drops, possibly due to the convergence
to bad local minima during nonlinear trajectory optimization without a good action initialization.

IBC BC-RNN Residual
+BC-RNN

DiffTORI (Ours)
+ BC-RNN Diffusion IBC

+ Diffusion
Residual
+ Diffusion

DiffTORI (Ours)
+ Diffusion

DiffTORI (Ours)
+ zero init.

DiffTORI (Ours)
+ random init.

Square 0.96±0.00 0.18±0.00 0.16±0.01 0.10±0.02 0.12±0.03 0.32±0.05 0.12±0.02 0.08±0.01 0.16±0.02 0.20±0.00
Transport 1.00±0.00 0.28±0.03 0.26±0.03 0.17±0.02 0.07±0.04 0.92±0.03 0.08±0.01 0.04±0.01 0.58±0.01 0.64±0.04
ToolHang 1.00±0.00 0.33±0.04 0.28±0.03 0.18±0.00 0.10±0.00 0.94±0.01 0.10±0.00 0.08±0.01 1.00±0.00 1.00±0.00

Push-T 0.89±0.01 0.30±0.02 0.28±0.02 0.25±0.02 0.09±0.00 0.92±0.01 0.09±0.00 0.09±0.01 0.38±0.04 0.43±0.02

the Diffusion Policy compared to its performance in the original paper where a positional controller
is used. The Push-T task still uses the default position controller as in the diffusion policy paper.
Below we evaluate the performance of DiffTORI and Diffusion Policy with the positional controller.

In the original Diffusion Policy [1] paper, it was observed that the use of positional controllers yielded
superior results for Diffusion Policy compared to the default velocity controller on Robomimic [19]
tasks. We evaluate Diffusion Policy, which is the strongest baseline, and DiffTORI on the most
difficult three tasks with ph (proficient-human demonstration) and mh (multi-human demonstration)
demonstrations using positional controller. The results with the positional controller are presented
in Table 6. Diffusion Policy already achieves nearly the maximal possible performance on most
tasks with the positional controller. DiffTORI, however, is able to achieve similar or even higher
performances on most of these tasks.

A.2.3 Ablation on planning horizon H

Additionally, we do ablation experiments on the planning horizon H for imitation learning, with the
results presented in Table 7. We observe that simply increasing the planning horizon H in imitation
learning does not necessarily enhance performance. As the horizon increases from H = 1 to H = 3,

16

Table 5: Success rates (↑) of all methods on the Maniskill benchmark. DiffTORI consistently
outperforms both baselines on all tasks with action initialization from the BC policy. If zero or
random initialization are used in DiffTORI, the performance drops, possibly due to the convergence
to bad local minima during nonlinear trajectory optimization without a good action initialization.

PickCube Fill Hang Excavate Pour OpenCabinet
Drawer

OpenCabinet
Door PushChair MoveBucket

BC 0.19±0.03 0.72±0.04 0.76±0.02 0.25±0.02 0.13±0.01 0.47±0.03 0.35±0.04 0.12±0.01 0.10±0.01
BC + residual 0.21±0.04 0.75±0.02 0.75±0.02 0.27±0.03 0.12±0.01 0.49±0.02 0.36±0.03 0.15±0.02 0.10±0.01

DiffTORI(Ours) + BC 0.32±0.02 0.82±0.01 0.85±0.03 0.29±0.01 0.17±0.02 0.53±0.02 0.45±0.02 0.20±0.02 0.15±0.02
DiffTORI (Ours)

+ zero init. 0.20±0.03 0.76±0.03 0.72±0.02 0.25±0.01 0.04±0.00 0.50±0.04 0.34±0.04 0.04±0.01 0.06±0.00

DiffTORI (Ours)
+ random init. . 0.18±0.02 0.68±0.03 0.67±0.01 0.19±0.04 0.04±0.00 0.39±0.04 0.30±0.02 0.00±0.00 0.05±0.01

Table 6: Failure rates (↓) of DiffTORI and Diffusion Policy using Positional Controllers on
Robomimic Tasks.

Square (ph) Square (mh) Transport (ph) Transport (mh) ToolHang (ph)

Diffusion 0.02±0.01 0.03±0.02 0.00±0.00 0.12±0.02 0.05±0.02
DiffTORI + Diffusion 0.02±0.01 0.04±0.02 0.00±0.00 0.09±0.01 0.04±0.01

the performance remains nearly the same; however, when H is increase to 5, we observe a slight
decline in the performance.

Table 7: Failure rates (↓) of different planning horizon H for DiffTORI on RoboMimic tasks.
Square (ph) Transport (ph) ToolHang (ph) Push-T

H = 1 0.08±0.01 0.04±0.01 0.08±0.01 0.09±0.01
H = 3 0.08±0.01 0.06±0.02 0.08±0.00 0.12±0.02
H = 5 0.09±0.01 0.06±0.01 0.10±0.00 0.12±0.01

A.3 Comparison to prior work Amos et al. [3]

In our main paper, we did not compare to [3; 6; 8] because we target different experiments. These
related works all conduct experiments on customized tasks with ground-truth low-level states. In
contrast, we test our method on standard RL and robotic imitation learning benchmarks, with high-
dimensional sensory observations like images and point clouds. As these prior works have not been
demonstrated on high-dimensional observations or more complex tasks, we originally compared to
more recent state-of-the-art methods on these benchmarks, e.g., 3D Diffusion Policy [46].

We have now included a comparison with Amos et al. [3] in one of their tasks (pendulum swing-up
with ground-truth low-level states) under imitation learning settings. Unlike Amos et al. [3], who
assumes known dynamics and reward structures and only learns 10 parameters, our method uses
neural networks to represent both dynamics and reward functions without such assumptions. The
metric is the cost of the learned policy. As in Amos et al., we test in two settings, pendulum without
damping and with damping. Following Amos et al., their method does not model the damping effect
in the assumed dynamics, so the ground-truth dynamics model is not realizable in the damping case.
We also compared to an additional baseline in Amos et al., which uses a LSTM to predict the expert
action. The results in Table 8 show our method performs slightly worse in the no damping case
but noticeably better in the damping case. This is because Amos et al. assumes correct dynamics
in the no damping case and learns only 10 unknown parameters, whereas the assumed dynamics
structure is incorrect in the damping case; we use fully-connected neural networks to represent the
dynamics function, avoiding such assumptions. It is generally difficult to know the exact correct
dynamics function structure, especially for tasks with complex dynamics (e.g., with contacts) and
high-dimensional observations (images and point clouds).

17

Table 8: Cost of different algorithms on the Pendulum swingup tasks from Amos et al. As in Amos et
al., we test in two settings, pendulum without damping and with damping. Lower cost means the
better performance. DiffTORI performs slightly worse in the no damping case but noticeably better
in the damping case.

Expert Policy Amos et al. LSTM policy DiffTORI(ours)

Pendulum w/o damping 13.126 13.576 ± 0.012 15.962 ± 0.164 14.603 ± 0.190
Pendulum with dampling 10.132 14.874 ± 0.600 12.098 ± 0.031 10.644 ± 0.029

B Implementation Details

In this section, we describe the implementation details of DiffTORI for the model-based RL ex-
periments. For the imitation learning part, the code structure is very similar to this model-based
RL implementation. For more detailed information, please refer to the code we will release upon
acceptance of the paper. We implement DiffTORI on top of the open-source implementation of
TD-MPC [38] from the authors. Below we show the pseudo-code of the training function in DiffTORI.

def train():
"""
Training code
"""
for step in range(total_steps):

obs = env.reset()
Differentiable trajectory optimization and update model
action, info = agent.plan_theseus_update(obs)
Env step
obs, reward, done, _ = env.step(action.cpu().numpy())
collect data in buffer and update model (TD-MPC loss)
replay_buffer += (obs, action, reward, done)
agent.update(replay_buffer)

Then, we demonstrate how the policy gradient loss is computed by differentiable trajectory optimiza-
tion in DiffTORI with PyTorch-like pseudocode:

def plan_theseus_update(obs):
"""
Differentiable trajectory optimization and update model using policy
gradient loss.
h, R, Q, d: model components.
c0: loss coefficients.
"""
import theseus as th

Encode first observation
z = self.model.h(obs)

Get initialization action from pi
init_actions = self.model.pi(z)

Theseus variable
actions = th.Vector(tensor=actions, name="actions")
obs = th.Variable(obs, name="obs")

Cost Function and Objective
cost_function = th.AutoDiffCostFunction([obs], [action]

,value_cost_fn)
objective = th.Objective().add(cost_function)

Trajectory optimization optimizer
theseus_optim = th.TheseusLayer(th_optimizer)

Theseus layer forward

18

theseus_inputs = {"actions": init_actions, "obs": obs}
updated_inputs, info = theseus_optim.forward(theseus_inputs)
updated_actions = updated_inputs['actions']

Update model using policy gradient losss
a_loss = - torch.min(*self.model.Q_s(obs, updated_actions[0]))*c0
a_loss.backward()
optim_a.step()

-For model-based reinforcement learning, We provide the network details for the added networks
we used upon TD-MPC, which are the twin Q networks Q̃ϕ learned in the original state space for
computing the deterministic policy gradient.

(Q_s1) : S e q u e n t i a l (
(0) : L i n e a r (i n _ f e a t u r e s =S , o u t _ f e a t u r e s =256)
(1) : ELU(a l p h a = 1 . 0)
(2) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =Z))
(3) : L i n e a r (i n _ f e a t u r e s =Z+A, o u t _ f e a t u r e s =512)
(4) : LayerNorm ((5 1 2 ,) , e l e m e n t w i s e _ a f f i n e =True)
(5) : Tanh ()
(6) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512)
(7) : ELU(a l p h a = 1 . 0)
(8) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s = 1))

(Q_s2) : S e q u e n t i a l (
(0) : L i n e a r (i n _ f e a t u r e s =S , o u t _ f e a t u r e s =256)
(1) : ELU(a l p h a = 1 . 0)
(2) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =Z))
(3) : L i n e a r (i n _ f e a t u r e s =Z+A, o u t _ f e a t u r e s =512)
(4) : LayerNorm ((5 1 2 ,) , e l e m e n t w i s e _ a f f i n e =True)
(5) : Tanh ()
(6) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512)
(7) : ELU(a l p h a = 1 . 0)
(8) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s = 1))

For Imitation Learning, The default network details are as follows. Note that for Robomimic [19]
and Push-T tasks, we use the RNN-encoder from Robomimic; for ManiSkill [20; 21] tasks, we use
the PointNet encoder from ManiSkill2 [21].

(ho) : S e q u e n t i a l (
(0) : L i n e a r (i n _ f e a t u r e s =S , o u t _ f e a t u r e s =256)
(1) : ELU(a l p h a = 1 . 0)
(2) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =256)
(3) : ELU(a l p h a = 1 . 0)
(4) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =Zs))

(ha) : I d e n t i t y
(h l) : S e q u e n t i a l (

(0) : L i n e a r (i n _ f e a t u r e s =Zs+A, o u t _ f e a t u r e s =256)
(1) : ELU(a l p h a = 1 . 0)
(2) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =256)
(3) : ELU(a l p h a = 1 . 0)
(4) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =128))

(R) : S e q u e n t i a l (
(0) : L i n e a r (i n _ f e a t u r e s =Zs+A+64 , o u t _ f e a t u r e s =512)
(1) : ELU(a l p h a = 1 . 0)
(2) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512)
(3) : ELU(a l p h a = 1 . 0)
(4) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s = 1))

(d) : S e q u e n t i a l (
(0) : L i n e a r (i n _ f e a t u r e s =Zs+A+64 , o u t _ f e a t u r e s =512)
(1) : ELU(a l p h a = 1 . 0)
(2) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512)

19

(3) : ELU(a l p h a = 1 . 0)
(4) : L i n e a r (i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =Zs + 6 4))

Hyperparameters used for DiffTORI for both model-based RL and imitation learning are shown in
Tab 9. In model-based RL, we use the same parameters with TD-MPC [38] whenever possible.

Table 9: Hyperparameters used in DiffTORI.
Hyperparameter Value

Model-based RL

Max planning iterations 100 (50)
Planning step size 1e-4 (5e-3)
Discount factor 0.99
Action loss coefficient (c0) 1
optimizer Adam(β1 = 0.9, β2 = 0.999)
Gradient Norm 10
Planning horizon schedule 1 → 5 (25k steps)
Batch size 256
Latent dimension 50
Sampling technique PER(α = 0.6, β = 0.4)
Learning rate 1e-3

Imitation Learning

Max planning iterations 100
Planning step size 1e-4
Planning horizon schedule 1
Latent dimension 50
Posterior Gaussian dimension 64
KL coefficien 1
Learning rate 3e-4
Learning rate (MetaWorld) 3e-3
GMM Num Modes 5
RNN Seq Len 16
RNN Hidden Dim 1000
Point Cloud Sampled Points (ManiSkill) 1200
Point Cloud Sampled Points (MetaWorld) 512

C Environment Details

For model-based reinforcement learning evaluation, we use 15 visual continuous control tasks from
Deepmind Control Suite (DMC). For imitation learning, we use 13 tasks (detailed information can be
found in Table 10) from Robomimic [19], IBC [2], ManiSkillp [20], and ManiSkill2 [21].

We visualize the keyframes of the imitation learning tasks in Fig 8 and Fig 9.

D More implementation details on using CVAE for imitation learning

We provide more details on how we instantiate DiffTORI with CVAE in imitation learning, in which
the goal is to reconstruct the expert actions conditioned on the state. The CVAE encoder is composed
of three networks: the first network is a state encoder hoθ that encodes the state into a latent feature
vector zs = hoθ(si), which is the conditional information in our case. The second is an action encoder
haθ that encodes the expert action into a latent feature vector za = haθ(a

∗
i). The last is a fusing encoder

hlθ(z
s, za) that takes as input the concatenation of the state and action latent features, and outputs the

mean µ and variance σ2 of the posterior Gaussian distribution N (·|µ, σ2). During training, the final
latent state z for state si used in (7) is the concatenation of a sampled vector z̃ from the posterior
Gaussian distribution N (·|µ, σ2), and the latent state feature vector zs: z = [z̃, zs], z̃ ∼ N (·|µ, σ2).

20

Table 10: Imitation Learning Tasks Summary.
Task Source Obs. Type Ac Dim Object Demo Task Description

Square Robomimic Img 7 Rigid 200 Pick a square nut and place it on a rod.
Transport Robomimic Img 14 Rigid 200 Transfer a hammer from a container to a bin
ToolHang Robomimic Img 7 Rigid 200 assemble a frame consisting of a base and hook
Push-T IBC Img 2 Rigid 200 Push a T-shaped object to a specified position
OpenCabinetDrawer ManiSkill1 Point Cloud 13 Rigid 300/obj. Open a specific drawer of the cabinet
OpenCabinetDoor ManiSkill1 Point Cloud 13 Rigid 300/obj. Open a specific door of the cabinet
PushChair ManiSkill1 Point Cloud 22 Rigid 300/obj. Push the swivel chair to the target position
MoveBucket ManiSkill1 Point Cloud 22 Rigid 300/obj. Move a bucket and lift it onto a platform
PickCube ManiSkill2 Point Cloud 7 Rigid 1000 Pick up a cube and move it to a goal position
Fill ManiSkill2 Point Cloud 7 Soft 200 Fill clay from a bucket into the target beaker
Hang ManiSkill2 Point Cloud 7 Soft 200 Hang a noodle on a target rod
Excavate ManiSkill2 Point Cloud 7 Soft 200 Lift a amount of clay to a target height
Pour ManiSkill2 Point Cloud 7 Soft 200 Pour liquid from a bottle into a beaker
Soccer MetaWorld (medium) Point Cloud 4 Rigid 10 Kick a soccer into the goal
Push Wall MetaWorld (medium) Point Cloud 4 Rigid 10 Bypass a wall and push a puck to a goal
Peg insert side MetaWorld (medium) Point Cloud 4 Rigid 10 Insert a peg sideways
Bin picking MetaWorld (medium) Point Cloud 4 Rigid 10 Grasp the puck from one bin and place it into another bin
Basketball MetaWorld (medium) Point Cloud 4 Rigid 10 Dunk the basketball into the basket
Box close MetaWorld (medium) Point Cloud 4 Rigid 10 Grasp the cover and close the box with it
Coffee pull MetaWorld (medium) Point Cloud 4 Rigid 10 Pull a mug from a coffee machine
Coffee push MetaWorld (medium) Point Cloud 4 Rigid 10 Push a mug under a coffee machine
Hammer MetaWorld (medium) Point Cloud 4 Rigid 10 Hammer a screw on the wall
Sweep MetaWorld (medium) Point Cloud 4 Rigid 10 Sweep a puck off the table
Sweep into MetaWorld (medium) Point Cloud 4 Rigid 10 Sweep a puck into a hole
Assemble MetaWorld (hard) Point Cloud 4 Rigid 10 Pick up a nut and place it onto a peg
Hand insert MetaWorld (hard) Point Cloud 4 Rigid 10 Insert the gripper into a hole
Pick out of hole MetaWorld (hard) Point Cloud 4 Rigid 10 Pick up a puck from a hole
Pick place MetaWorld (hard) Point Cloud 4 Rigid 10 Pick and place a puck to a goal
Push MetaWorld (hard) Point Cloud 4 Rigid 10 Push the puck to a goal
Push back MetaWorld (hard) Point Cloud 4 Rigid 10 Pull a puck to a goal
Shelf place MetaWorld (very hard) Point Cloud 4 Rigid 10 pick and place a puck onto a shelf
Disassemble MetaWorld (very hard) Point Cloud 4 Rigid 10 pick a nut out of the a peg
Stick pull MetaWorld (very hard) Point Cloud 4 Rigid 10 Grasp a stick and pull a box with the stick
Stick push MetaWorld (very hard) Point Cloud 4 Rigid 10 Grasp a stick and push a box using the stick
Pick place wall MetaWorld (very hard) Point Cloud 4 Rigid 10 Pick a puck,bypass a wall and place the puck

The latent state z will then be used as input for the decoder, which consists of the reward function Rθ,
and the dynamics function dθ. Trajectory optimization is performed with the reward and dynamics
function in the decoder to solve (7) to generate the reconstructed action a∗(θ; si). The loss for training
the CVAE is the evidence lower bound (ELBO) on the demonstration data:

LILDiffTORI(θ) =
N∑
i=1

||a(θ; si)− a∗i ||22 − β · KL(N (·|µ, σ2)|N (0, I)), (9)

where KL(P ||Q) denotes the KL divergence between distributions P and Q. At test time, only the
decoder of the CVAE is used for generating the actions. Given a state s, the latent state z is the
concatenation of the encoded latent state feature zs, and a sampled vector z̃ from the prior distribution
N (0, 1).

21

Sq
ua
re

Tr
an

sp
or

t
To

ol
 H

an
g

Pu
sh

 T
O

pe
nC

ab
in

et
D

oo
r

O
pe

nC
ab

in
et

D
ra

w
er

Pu
sh

 C
ha

ir
M

ov
e

Bu
ck

et
Pi

ck
 C

ub
e

Fi
ll

H
an

g
Ex

ca
va

te
Po

ur

Figure 8: Visualization of the tasks for imitation learning in RoboMimic and ManiSkill.

22

Soccer

Push wall

Peg insert
side

Bin
picking

Basketball

Box close

Coffee pull

Coffee
push

Hammer

Sweep

Sweep
into

Assembly

Hand
insert

Pick out of
hole

Pick
place

Push

Push
back

Shelf
place

Disassemble

Stick
pull

Stick
push

Pick place
wall

Figure 9: Visualization of the tasks for imitation learning in Metaworld.

23

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes] .
Justification: The main claims in the abstract and introduction are all supported by our
experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed that one limitation of DiffTORI is that it requires longer time
to train in Section 5.1, with detailed results on its computational efficiency in Figure 5 in
Appendix A.1.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24

Answer: [NA] .
Justification: This is not a theoretical paper and we did not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included all the training details, such as the hyper-parameters, training
settings, environment details, and pseudo-code of our experiments in the main paper and
appendix B & C, in order for others to reproduce our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are still cleaning our code and will release it soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all the training and test details in the main paper and
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For every experiment introduced, we run with multiple random seeds and
reported both mean and std (or confidence interval) averaged over these multiple random
seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in the main paper, we used NVIDIA RTX 2080Ti for the
experiments. We suggest running our experiments with a GPU of at least 12G VRAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are strictly following NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of this work. Our paper proposes a new policy
representation for reinforcement learning and imitation learning, and the authors do not feel
there would be any direct social impact of the works performed.

Guidelines:

27

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the creators or original owners of assets mentioned in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

29

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Works
	Background
	Differentiable Trajectory Optimization
	Model-Based RL preliminaries

	Method
	Overview
	Differentiable trajectory optimization applied to model-based RL
	Differentiable Trajectory Optimization applied to imitation learning

	Experiments
	Model-based Reinforcement Learning
	Imitation Learning
	MetaWorld
	Robomimic
	ManiSkill

	Conclusion and Discussion
	Additional results
	Model-based Reinforcement Learning
	DiffTORI without policy gradient loss
	Computational efficiency of DiffTORI
	Ablation study on the loss terms

	Imitation Learning
	DiffTORI with zero and random action initialization
	Results of positional controller on RoboMimic
	Ablation on planning horizon H

	Comparison to prior work Amos et al. amos2018differentiable

	Implementation Details
	Environment Details
	More implementation details on using CVAE for imitation learning

