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Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do
not detail the information flowing through them. We investigate syntactic information. Does brain activ-
ity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a
Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing
models. We compare processing-complexity predictions from these states against fMRI timecourses from
regions that have been implicated in sentence comprehension. We find that hierarchical grammars inde-
pendently predict timecourses from left anterior and posterior temporal lobe. Markov models are predic-
tive in these regions and across a broader network that includes the inferior frontal gyrus. These results
suggest that while linear effects are wide-spread across the language network, certain areas in the left
temporal lobe deal with abstract, hierarchical syntactic representations.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

The neural bases of syntactic processing remain elusive, despite
intensive study. Current models catalog the network of regions and
connections involved in various sentence-related computations,
including syntax, but do not specify the kind of information that
flows through this network (see e.g. Friederici & Gierhan, 2013;
Hagoort & Indefrey, 2014; Hickok & Poeppel, 2007; Turken &
Dronkers, 2011). As Poeppel (2012) notes, it is the information
encoded during incremental stages of language comprehension
that is critical for mapping between the vocabulary of neurobiol-
ogy and the vocabulary of linguistics. This study examines what
kind of syntactic information is manipulated by brain regions
involved in sentence comprehension by correlating the complexity
of different syntactic structures with brain activity recorded using
fMRI while participants listen to a naturalistic narrative.

The proper conception of syntactic structure is debated across
the language sciences. The available models range across many dif-
ferent levels of detail. There are models based on word-to-word
dependencies, models based on abstract, hierarchical grammars,
and many alternatives in between. While mathematical linguists
are in agreement regarding the level of expressive power needed
for adequate natural language grammars (Joshi, Shanker, & Weir,
1990; Shieber, 1985; Stabler, 2013a) there remains a debate over
the need for more abstract representations in every-day language
performance (Frank & Bod, 2011; Sanford & Sturt, 2002). To
address this debate, we quantify, word-by-word, the cognitive
states that are implied by parsing models that assign compara-
tively more or less detailed syntactic analyses. We evaluate alter-
native theories of syntactic structure and parsing by fitting these
models to brain activity from regions that have been traditionally
associated with sentence comprehension. By relying on brain data
collected while participants simply listen to a story, we aim to bet-
ter understand the role of syntax in every-day language
comprehension.
1.1. Brain regions involved in syntactic processing

The spatio-temporal characteristics of brain activity that is sen-
sitive to sentence structure have been examined using a wide vari-
ety of experimental techniques (see Hagoort & Indefrey, 2014 for a
recent review). One common approach has been to vary whether
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syntactic structure is present or not by comparing phrases or sen-
tences with lists of words. Sentence structure reliably leads to
greater activation in the anterior portion of the temporal lobes
(ATL) across multiple techniques and stimulus modalities
(Brennan & Pylkkänen, 2012; Friederici, Opitz, & von Cramon,
2000; Humphries, Binder, Medler, & Liebenthal, 2006; Jobard,
Vigneau, Mazoyer, & Tzourio-Mazoyer, 2007; Rogalsky & Hickok,
2009; Snijders et al., 2009; Stowe et al., 1998; Vandenberghe,
Nobre, & Price, 2002; Xu, Kemeny, Park, Frattali, & Braun, 2005).
Many studies also show sensitivity in a broader network as well,
which includes the left inferior frontal gyrus (IFG; ‘‘Broca’s Area”)
and the posterior temporal lobe (PTL; ‘‘Wernicke’s Area”) in the
vicinity of the temporal-parietal junction (Brennan & Pylkkänen,
2012; Friederici et al., 2000; Jobard et al., 2007; Pallier,
Devauchelle, & Dehaene, 2011; Snijders et al., 2009;
Vandenberghe et al., 2002; Xu et al., 2005).

These studies reveal a network of regions that are sensitive to
sentence structure, with a focus on the ATL, the IFG and the PTL.
Evidence suggests that these regions subserve different functions
that relate to identifying or perhaps interpreting phrases, though
debate is far from settled. In several of these studies, the ATL, but
not the IFG or PTL, is activated even for simple sentences
(Rogalsky & Hickok, 2009; Stowe et al., 1998), though others show
broader activations (e.g. Pallier et al., 2011; Snijders et al., 2009).
Further work using Magnetoencephalography (MEG) has shown
that simple two-word phrases lead to increased ATL activation
within 200–400 ms of word onset in both visual and auditory pre-
sentation (Bemis & Pylkkänen, 2011; Bemis & Pylkkänen, 2013).
This effect generalizes across languages and phrase types
(Westerlund, Kastner, Al Kaabi, & Pylkkänen, 2015). Shetreet,
Friedmann, and Hadar (2009) report a similar sensitivity to con-
stituent structure type in the anterior temporal lobe: more com-
plex hierarchical structure (phrasal vs. nominal verb
complements) increased activation in this region. Brennan et al.
(2012) build on these observations by testing for sensitivity to
incremental, word-by-word, phrase-structure complexity. In this
study, the ATL is the only brain area whose activity correlates pos-
itively with phrase-structure complexity. Some models suggest
that the ATL may subserve constituent structure processes, a con-
clusion consistent with the morphosyntactic deficits due to ante-
rior lesions observed by Dronkers, Wilkins, Van Valin, Redfern,
and Jaeger (2004) (e.g. Friederici & Gierhan, 2013). However, more
recent evidence from magnetoencephalography (Westerlund &
Pylkkänen, 2014; Zhang & Pylkkänen, 2015) and patient studies
of Primary Progressive Aphasia (Wilson et al., 2014) point towards
a more nuanced function that relates to the semantic interpreta-
tion of composed structures.

Turning to the functional role of the PTL, it has been reported
to be modulated by the presence or absence of basic phrase struc-
ture in some studies (e.g. Bemis & Pylkkänen, 2013; Pallier et al.,
2011), but does not uniformly show such effects across the liter-
ature. There is also evidence from neurodegenerative disorders
that posterior temporal and inferior parietal atrophy is associated
with syntactic deficits (Wilson et al., 2011). Some theorists have
hypothesized that this region may play a role in discourse-level
comprehension (e.g. Ferstl, Neumann, Bogler, & Yves von
Cramon, 2008), though note also that nodes within this broad
area, specifically along the posterior middle temporal gyrus, have
long been implicated in lexical processing that is sensitive to sen-
tence and discourse context (see Hickok & Poeppel, 2007, for
discussion). Bornkessel-Schlesewsky, Schlesewsky, Small, and
Rauschecker (2015) argue that posterior and dorsal regions,
which include the PTL and extend through the inferior parietal
lobule (IPL) to premotor cortex, are involved in sentence process-
ing that is sensitive to linear order. These order-sensitive regions
contrast with ventral anterior regions like the ATL, discussed
above, which are associated with hierarchical processes. It
remains unknown whether sentence-related activation in PTL is
best attributed to a single function, such as order-related, lexical,
or discourse computations, or to some combination of these or
other functions.

Evidence for a functional division specifically between temporal
lobe processing and the IFG comes from studies that compare pro-
cessing of sentence types which differ in their constituent struc-
ture or dependency properties. Studies that compare sentences
which differ in memory-load demands, such as subject and object
relative clauses, yield differential activation in IFG, with variation
in the precise localization (Ben-Shachar, Hendler, Kahn, Ben-
Bashat, & Grodzinsky, 2003; Ben-Shachar, Palti, & Grodzinsky,
2004; Caplan, Chen, & Waters, 2008; Just, Carpenter, Keller, Eddy,
& Thulborn, 1996; Santi & Grodzinsky, 2007a; Santi &
Grodzinsky, 2007b; Santi & Grodzinsky, 2010; Stromswold,
Caplan, Alpert, & Rauch, 1996;). This result is consistent with
deficit-lesion studies suggesting that frontal lobe damage most
strongly impacts the processing of syntactically complex sentences
(Caramazza & Zurif, 1976; Grodzinsky, 2000; Zurif, 1995). One pos-
sibility is that the IFG is implicated in the processing of more com-
plex syntactic operations, such as the formation of long-distance
dependencies, however, the literature has yet to settle on a func-
tional explanation that captures the broader range of observations
(see Rogalsky & Hickok, 2010, for a critical review). While some
models take the IFG to be implicated only in more complex syntac-
tic operations (e.g. Grodzinsky & Friederici, 2006), in others it is
positioned as a central hub for basic combinatoric processing
(Hagoort, 2013). This latter view contrasts with that described
above in which basic combinatorics is attributed to the ATL (e.g.
Friederici & Gierhan, 2013). One avenue of current research is
whether these disparate results may be reconciled in terms of
fine-grained functional divisions within sub-parts of the IFG. For
example, Zaccarella and Friederici (2015) report sensitivity in a
sub-part of the Pars Opercularis of the IFG to very simple phrases.
Similarly, different argument structure configurations have been
associated with differences in IFG activation that form a spatial
cline (Bornkessel-Schlesewsky & Schlesewsky, 2009).

Despite the lack of consensus about the functional division of
anterior-frontal and posterior-dorsal structures in sentence com-
prehension, a common thread across this broad literature is that
the mental representations whose processing is implicated in var-
ious regions are described at a relatively coarse-grain, for example,
at the level of separating syntactic and compositional semantic
representations (Westerlund & Pylkkänen, 2014) or hierarchical
from non-hierarchical processing (Bornkessel-Schlesewsky et al.,
2015). The level of detail of these representations remains largely
underspecified.
1.2. Sensitivity to syntactic structure during incremental processing

While neural studies have become increasingly tuned to fine-
grained linguistic differences between sentence and phrase types
(e.g. Bornkessel, Zysset, Friederici, von Cramon, & Schlesewsky,
2005; Shetreet et al., 2009; Westerlund et al., 2015), the relation-
ship between detailed linguistic grammars and language compre-
hension remains controversial. On one view, the abstract
hierarchical grammars that have been developed to explain offline
judgments and typological patterns should also serve to explain
online comprehension (Berwick & Weinberg, 1983; Bresnan &
Kaplan, 1982; Lewis & Phillips, 2015; Miller & Chomsky, 1963;
Steedman, 2000). This is the competence hypothesis

an explanatory model of human language performance will
incorporate a theoretically-justified representation of the native
speaker’s linguistic knowledge



J.R. Brennan et al. / Brain & Language 157–158 (2016) 81–94 83
designated as such by Kaplan and Bresnan (1982, page 173), who
offer the formulation quoted above as a restatement of Chomsky’s
original suggestion (1965, p. 9). Alternatively, interpretive short-
cuts relying on surface patterns and extragrammatical heuristics
might be the best characterization of on-line processing. This
grammar-free alternative seems more plausible in circumstances
that encourage rapid but not especially deep processing (Ferreira
& Patson, 2007; Ferreira, Bailey, & Ferraro, 2002; Sanford & Sturt,
2002). On the other hand, by postulating two cognitive faculties
to explain two distinct types of data, this latter view is more com-
plex. Defenders have traditionally appealed to patterns of fallibility,
such as garden path sentences, to motivate the additional heuristic
system (Bever, 1970). We review evidence for both of these
positions.

Evidence for the competence hypothesis comes from behavioral
and event-related potential (ERP) studies involving syntactically
unexpected stimuli. For example, Xiang, Dillon, and Phillips
(2009) probe the processing of words whose use is licensed only
in particular hierarchical configurations. Words like ‘‘any” or
‘‘ever”, so-called negative polarity items, can only be used in con-
texts where they are embedded under phrases with restricted
entailment properties, such as those that contain a negation (see
(1-a)–(1-c)) (e.g. Giannakidou, 1998, but cf. Vasishth, Brüssow,
Lewis, & Drenhaus, 2008).1 Using ERPs, Xiang et al., 2009 found that
such words elicited an immediate early evoked negativity in sen-
tences like (1-b), where negation is not in the correct hierarchical
position to license the negative polarity item. This contrasts with
the pattern for well-formed Examples (1-a), (1-c) and indicates that
the relevant hierarchical relationships are made available within a
few hundred milliseconds after encountering the unlicensed target
word.
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[No students [would ever say that.]]

b.
 ⁄[A professor [with no students] [would ever say

that.]]

c.
 [A professor [with no students] [would definitely say

that.]]
The ERP response to unlicensed polarity items is but one exam-
ple of the human parser’s sensitivity to hierarchical structure dur-
ing online comprehension, as predicted by the competence
hypothesis. Related support for the competence hypothesis comes
from behavioral studies that show differences in incremental read-
ing times when a variety of structure-dependent rules are violated,
such as those governing the distribution of reflexive pronouns
(Sturt & Lombardo, 2005; Yoshida, Dickey, & Sturt, 2012), bound-
variable pronouns (Kush, Lidz, & Phillips, 2015), and filled gaps
(Phillips, 2006); see Lewis and Phillips (2015) for extensive
discussion.

Further evidence for the competence hypothesis comes from
eye-tracking measures collected while participants read natural
texts, such as newspaper stories. In these studies, word-category
expectations based on hierarchical grammars have been found to
predict eye-fixation measures (Boston, Hale, Kliegl, Patil, &
Vasishth, 2008; Boston, Hale, Vasishth, & Kliegl, 2011; Demberg
& Keller, 2008; Fossum & Levy, 2012; Roark, Bachrach, Cardenas,
& Pallier, 2009; van Schijndel & Schuler, 2015). These findings
are particularly relevant to the present study, since they indicate
that hierarchical structure subserves every-day comprehension.
ssel-Schlesewsky and Schlewswsky (2009, p. 23–24) and Xiang et al.
point out, it remains controversial whether NPI licensing conditions
ght of as being syntactic, semantic or pragmatic. What matters for the
is that the conditions reflect, at least in part, hierarchical relationships
cterized by the competence grammar.
On the other hand, there is also evidence for a two-system view
that minimizes the role of hierarchical syntactic structure in com-
prehension. One type of evidence comes from experiments where
comprehenders seem to ignore syntactic structure when syntactic
cues conflict with other information (see Ferreira & Patson, 2007;
Sanford & Sturt, 2002, for reviews). Another type is based on eye-
tracking corpora. For instance, Frank and Bod (2011) compare pre-
dictors that are based on hierarchical grammars to those based
solely on word-to-word dependencies. In this study, syntactic
structure did not improve models of eye-fixation measures. This
result, like the eye-tracking data described above, relies on reading
data from newspaper text. Using similar models, Frank, Otten,
Galli, and Vigliocco (2015) report that ERP indices of syntactic
expectations are similarly insensitive to hierarchically-based
predictions.

In summary, then, the literature draws conflicting conclusions
regarding the role of syntactic structure in comprehension. Dis-
agreements may reflect differences in tasks and techniques in prior
work. While ERP studies and behavioral experiments have found
support for the competence hypothesis, they have typically done
so in a way that relies on stimuli that sharply violate syntactic
expectations. By contrast, results based on naturalistic texts, such
as the eye-tracking corpora mentioned above, have been mixed,
with Frank and Bod (2011) coming down on the ‘‘con” side and
Fossum and Levy (2012) on the ‘‘pro” side. Differences between
these latter studies may reflect alternative modeling choices. In
addition, behavioral measures which integrate over many stages
of processing may challenge efforts to separate out effects of syn-
tactic hierarchy from word-to-word expectations. Likewise, the
ERP signatures sensitive to syntactic violations that were probed
by Frank et al. (2015) have not been directly linked with sentence
processing in non-violational every-day contexts. On balance, the
field remains uncertain about the competence hypothesis.

1.3. Examining syntactic structure during naturalistic story listening

To better characterize the role of syntactic structure in every-
day language comprehension, we examine several different types
of structure. These structure types can be viewed as points on a
cline of increasing syntactic detail. Each type of structure implies
different partial products of the comprehension process. We focus
on three levels that have received significant attention in psy-
cholinguistics. At one end are Markov models that use linear,
word-to-word, surface dependencies. These are ‘‘string-level” lan-
guage models. One step further along the cline are context-free
grammars (CFG). These are ‘‘tree-level” models that directly derive
the sorts of immediate-constituency relationships that linguists
traditionally hold up as a central part of sentence structure. The
particular grammars that we use at this point in the cline are free
from empty categories and lack any systematic treatment of move-
ment. Proceeding one more step, to the deep end of the cline, are
Minimalist Grammars (Stabler, 1997) (MGs). These grammars gen-
erate X-Bar structures (see e.g. Haegeman, 1999) which encode
movement and make extensive use of empty categories in a drive
towards greater regularity in the analysis of typologically diverse
languages.

Of course, there are other formal grammars that could have
been chosen to represent each distinct level of this cline. For exam-
ple, certain forms of Tree-Adjoining Grammars and Categorial
Grammars are weakly-equivalent to MGs (see Stabler, 2013a, and
references cited therein). But such equivalences pose no particular
problems for the present study. Our investigation is not intended
to decide between alternative accounts of syntactic competence
at any one specific level of expressivity. Rather, it probes the level
of syntactic detail that is processed by the brain, using the cline as
a yardstick whose notches are classes of formalisms.
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We link properties of these grammars, word-by-word, with
hemodynamic data collected while participants listen to a story.
This linking is accomplished using two different complexity met-
rics. One quantifies the degree of expectation for a particular sym-
bol, given the syntactic left-context; this is ‘‘surprisal” in the sense
of Hale (2001). The second metric quantifies syntactic complexity
by counting the number of tree nodes that would be visited by a
surface-structure parser (Frazier, 1985, chap. 4; Miller &
Chomsky, 1963).

Throughout, we focus on naturalistic sentence comprehension,
since this has been an important pivot in the debate over the role
of abstract structures. The passive story listening task we use does
not lend itself to clearly delineated conditions and the traditional
‘‘subtraction” approach to neuroimaging analysis. Instead, we
adapt the methodology of Just and Varma (2007) to construct a
model of the expected hemodynamic response (see also Brennan
et al., 2012; Willems, Frank, Nijhof, Hagoort, & van den Bosch,
2015). This expected response is what an experimenter should
observe if a brain region were doing the work implied by each lan-
guage model—as seen through the lens of the complexity metric.
We evaluate these models by testing the fit between the expected
hemodynamic responses and those observed in the data.

1.4. Summary

Previous work suggests that the ATL, left PTL, and left IFG form
the core of a network involved in sentence comprehension, and the
ATL in particular has been linked with basic constituent-level pro-
cessing. The syntactic structures manipulated within this network
have not been identified. We examine the nature of the syntactic
structures computed by these circuits. To do so, we derive predic-
tions of word-by-word processing complexity from a range of syn-
tactic models, from string-level Markov models to hierarchical
CFGs and MGs. These models are tested against neural timecourses
recorded using fMRI while participants passively listen to a natural
story. If hierarchical structures are computed during passive natu-
ralistic listening, we predict that syntactic complexity estimates
based on hierarchical language models will correlate with fMRI sig-
nal fluctuations above and beyond those derived from non-
hierarchical, string-level models.
2. Methods

2.1. Participants

Twenty-nine college-age volunteers participated for pay (17
women and 12 men, 18–24 years old). All qualified as right-
handed on the Edinburgh handedness inventory Oldfield, 1971.
They self-identified as native English speakers and gave their
informed consent. As detailed below, we excluded from our analy-
ses data from one participant due to excessive head movement and
data from two participants due to poor behavioral performance,
leaving twenty-six datasets for our analyses (15 women, 11 men).

2.2. Stimuli & procedure

The audio stimulus was Kristen McQuillan’s reading of the first

chapter of Lewis Carroll’s Alice in Wonderland from librivox.org.
We chose this text because of its enjoyability, its use in prior imag-
ing work (Brennan et al., 2012), and because of available fine-
grained syntactic annotations (VanWagenen, Brennan, & Stabler,
2014). The chapter we used does not include significant word-
play, such as the famous Jabberwocky poem that appears else-
where in the story. To improve comprehensibility in the noisy
scanner, the audio was normalized to 70 dB and slowed by 20%
with the pitch-preserving PSOLA algorithm implemented in Praat
software. This moderate amount of time-dilation did not introduce
recognizable distortion and was judged by an independent rater to
sound natural and to be easier to comprehend than the raw audio
recording. The audio presentation lasted 12.4 min. The stimulus is
available as Supplementary Material.

After giving their informed consent, participants were familiar-
ized with the MRI facility and assumed a supine position on the
scanner gurney. Auditory stimuli were delivered through MRI-
safe, high-fidelity headphones (Confon HP-VS01, MR Confon,
Magdeburg, Germany) inside the head coil. The headphones were
secured against the plastic frame of the coil using foam blocks.
Using a spoken recitation of the US Constitution, an experimenter
increased the volume stepwise until participants reported that
they could hear clearly. Participants then listened passively to
the audio storybook. Upon emerging from the scanner, participants
completed a twelve-question multiple-choice questionnaire con-
cerning events and situations described in the story. The entire ses-
sion lasted less than an hour.

2.3. Modeling syntactic effort

We constructed nine models which quantified word-by-word
syntactic processing effort. These models spanned three different
levels of syntactic detail and drew from two different complexity
metrics.

2.3.1. Two complexity metrics
For probabilistic language models, we linked the probability of a

word in its left-context to the BOLD signal using the log-reciprocal
of the probability of the next word. This is ‘‘surprisal” in the sense
of Hale (2001).

With non-probabilistic grammars, we linked the syntactic
structure of a sentence to the BOLD signal it evokes by counting
the number of tree nodes between successive words (Frazier,
1985, chap. 4; Hawkins, 1994; Miller & Chomsky, 1963). Counts
included ‘‘empty” nodes such as the traces of movement. If one
thinks of nodes as consuming stack cells, this becomes a kind of
depth hypothesis in the sense of Yngve (1960). We considered
two parsing strategies: top-down and bottom-up (see e.g. Hale,
2014, chap. 3). The top-down traversal that we used enumerates
nodes in a depth-first, left to right order analogous to an LL parser.
The bottom-up traversal that we used enumerates daughters
before mothers in the manner of a shift-reduce LR parser. Taking
the story stimulus to be largely unambiguous for native English-
speaking listeners, we assume that the parser enumerates nodes
of just the correct structure when faced with temporary ambigui-
ties (i.e. a ‘‘perfect” oracle).

These complexitymetrics could not both be applied at each level
of syntactic detail. As described below, only the surprisalmetricwas
defined for the least abstract Markov models, and only the node
count metric was applied at the most abstract MG level of detail.

2.3.2. String-level: Markov models
Word-to-word surface dependencies were modeled using n-

gramMarkov models; these models involve a minimal level of syn-
tactic abstraction. Rather, they define the probability of a word at
position j, denoted wj, in terms of the preceding n� 1 words. A
2-gram model considers Pðwjjwj�1Þ while a 3-gram model consid-
ers Pðwjjwj�1;wj�2Þ and so-forth. Lexicalized models define proba-
bilities of actual words, while unlexicalized models define the
probability of part-of-speech tags (POS).

We used OpenGRM to fit Markov models of various orders
(Allauzen, Riley, Schalkwyk, Skut, & Mohri, 2007). Linguistic
expectations have been shown to be highly sensitive to

http://librivox.org
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experiment- and genre-specific idiosyncrasies (e.g. Fine, Jaeger,
Farmer, & Qian, 2013). To best approximate such expectations,
these models were trained on the entire text of Alice in Wonderland
that is distributed by Project Gutenberg, etext # 11. As a prepro-
cessing step, chapter headings were removed and all words con-
verted to lowercase. Note that the test data for our models was
fMRI signals, not corpus occurrences, and thus no circularity was
introduced by including the text that corresponded to our stimulus
within the training set.

Four models in total were constructed for this class. Models dif-
fered in order (2 or 3) and whether they were lexicalized or unlex-
icalized. These models do not allow for the representation of
syntactic nodes and so only the surprisal complexity metric is
defined. We identify these models as 2gram.l, 2gram.p, 3gram.l,
and 3gram.p.
2.3.3. Hierarchical: Context-free phrase structure
Context-free phrase structure grammars (CFGs, defined on page

6) model sentence structure as a hierarchy of phrases. In this sense,
they are more abstract than the Markov models discussed above.
Although CFGs are inadequate to characterize natural languages
in certain key respects—for instance, cross-serial dependencies
(Joshi et al., 1990; Shieber, 1985; Stabler, 2013a)—they are very
commonly used in broad-coverage parsing systems.

We constructed a family of models based on treebank CFGs.2 In
these grammars, many constructions that are syntactically similar
end up being listed separately; this lack of abstraction highlights
the positioning of these CFGs at a middle point on the cline of struc-
ture types. An example phrase structure, in the style of the Penn
Treebank, is illustrated in Fig. 1 (top).

We used the EarleyX implementation of Stolcke’s probabilistic
Earley parser to compute surprisal values (Luong, Frank, &
Johnson, 2013; Stolcke, 1995). Rules were read off the output of
the Stanford parser (Klein & Manning, 2003b) and probabilities
were trained using the entire Alice in Wonderland text, just as with
the Markov models described above. Punctuation was removed.
The node count predictors were based on the same Penn Treebank
structures as in Brennan et al. (2012).

Three models were constructed for this class, differing in terms
of the complexity metric used to derive effort: Surprisal, bottom-
up node count, and top-down node count. We denote these models
cfg.surp, cfg.bu, cfg.td, respectively.
2.3.4. Dependency-capable: Minimalist Grammar
At the most abstract level of syntactic detail, we used Minimal-

ist Grammars (MG; Stabler, 1997; Stabler, 2011). This formalism
derives binary-branching ‘‘X-bar” structural descriptions that
integrate constituency, dependency and movement information.
The particular syntactic analyses that we used extend those in
Hale (2003, chap. 4) along the lines of Sportiche, Koopman, and
Stabler (2013). Fig. 1 (bottom) illustrates one such tree in which
the representation of a long-distance ‘‘movement” relationship
leads to node counts that are different from those derived by a
context-free analysis of the same sentence (Fig. 1, top). While
MGs are not the only grammar formalism that adequately covers
long-distance dependencies (see e.g. Müller, 2015) the fact that
they include a nonconcatenative rule, one that goes beyond the
mechanisms of context-free grammar, is a key part of the ‘‘hidden
consensus” among the many formal approaches to grammar in
modern linguistics (see e.g. Stabler, 2013a, §17.2).

The current study examines MGs only through the lens of node
count linking hypotheses. While information-theoretical complex-
2 A treebank is a collection of hand-analyzed syntactic representations, see e.g.
Marcus, Santorini, and Marcinkiewicz (1993) or Jurafsky and Martin (2009, chap. 12).
ity metrics like surprisal are well-defined for MGs (Hale, 2003;
Hunter & Dyer, 2013; Yun, Chen, Hunter, Whitman, & Hale,
2015), computing their values from wide-coverage grammars
requires approximations analogous to those typically applied with
CFGs (Charniak, Goldwater, & Johnson, 1998; Klein & Manning,
2003a). Such techniques are a current focus of MG parsing research
(e.g. Stabler, 2013b), but are not available for our application. As
they mature, we expect to be able to deploy them in future model-
ing efforts. We identify the two models in this class mg.bu, mg.td
based on top-down and bottom-up enumeration, respectively.

2.4. Data collection and analysis

Imaging was performed using a 3T MRI scanner (Discovery
MR750, GE Healthcare, Milwaukee, WI) with a 32-channel head
coil at the Cornell MRI Facility.

Blood Oxygen Level Dependent (BOLD) signals were collected
from twenty-nine participants. Thirteen participants were scanned
using a T2⁄-weighted echo planar imaging (EPI) sequence with: a
repetition time of 2000 ms, echo time of 27 ms, flip angle of 77�,
image acceleration of 2X, field of view of 216 � 216 mm, and a
matrix size of 72 � 72. Under these parameters we obtained 44
oblique slices with 3 mm isotropic voxels. Sixteen participants
were scanned with a three-echo EPI sequence where the field of
view was 240 � 240 mm resulting in 33 slices with an in-plane res-
olution of 3.75 mm2 and thickness 3.8 mm. This multi-echo
sequence was used for reasons that are not related to the present
study. For our purposes, analyses of this second group were based
exclusively on images from the second EPI echo, where the echo
time was 27.5 ms. All other parameters were exactly the same. This
selection of the second-echo images renders the two sets of func-
tional images as comparable as possible.

2.4.1. fMRI preprocessing
Preprocessing was done with SPM8 (Friston, Ashburner, Kiebel,

Nichols, & Penny, 2007), Data were spatially realigned based on 6-
parameter rigid body transformation using the 2nd degree B-spline
method. Functional (EPI) and structural (MP-RAGE) images were
co-registered via mutual information and functional images were
smoothed with a 3 mm isotropic gaussian filter. We used the ICBM
template provided with SPM8 to put our data into MNI stereotaxic
coordinates. The data were high pass filtered at 1/128 Hz and we
discarded the first 10 functional volumes. Data from one partici-
pant was excluded at this stage due to head movement that
exceeded an absolute threshold of 1 mm.

2.4.2. Deriving estimated BOLD signals from syntactic models
Via the models described in Section 2.3 above, we predicted the

level of syntactic processing effort at each word in the stimulus
text. Specifically, we defined point events at the offset of each
word, whose intensity is proportional to this predicted effort. The
predicted effort from each model is illustrated for three example
sentences in Supplementary Fig. S1. This yields a time series of the-
oretical predictions for each point along the cline of syntactic
structures. Following Just and Varma (2007), we convolved these
time series with a canonical hemodynamic response function
(HRF). Such a procedure yields an expected BOLD signal for each
syntactic predictor under the assumption that the BOLD signal
reflects the output of a linear system (Boynton, Engel, Glover, &
Heeger, 1996). Fig. 2(A)–(E) summarizes this methodology graphi-
cally and illustrates how values derived from different models
yield distinct predictors for brain activity.

Left alone, the resulting estimate for brain activity is dominated
by the narrator’s speech rate. Higher estimates appear for words in
rapid succession and smaller estimates for segments where words
are more widely spaced. Following Brennan et al. (2012), we define



Fig. 1. Less-detailed CFG analysis (top) versus more-detailed MG analysis (bottom) of the same sentence. Numbers beneath each word (purple) are estimates of syntactic
‘‘effort” which is used to derive BOLD signal predictors from a node count based on a bottom-up enumeration. Node count reflects the presence of empty nodes in the MG but
not the CFG. This aspect of the structure impacts estimates of processing effort, for example, at the word ‘‘by” which is highlighted in red.
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a baseline Word Rate predictor with a value of one at the offset of
each word and zero otherwise. We orthogonalize all syntactic pre-
dictors against this baseline, after it has been convolved with the
HRF, in order to isolate the truly syntactic aspect of the predictor.
Panel E of Fig. 2 illustrates this step.

2.4.3. Regions of interest
Models were evaluated against fMRI timecourses from six

regions of interest (ROIs). We followed the theory-driven ROI anal-
ysis with an exploratory whole brain analysis that is described in
the next section.

We defined ROIs on a per-participant basis using both func-
tional and anatomical criteria (Fedorenko, Hsieh, Nieto Castanon,
Whitfield-Gabrieli, & Kanwisher, 2010). The functional criteria
were based on an a-theoretical language localizer using the Word
Rate predictor introduced in Section 2.4.2. This predictor identifies
brain regions whose BOLD signal increases each time a word is pre-
sented. Such a pattern is expected to be found in regions sensitive
to any activation that is time-locked to word presentation, includ-
ing those involved in incremental sentence processing as well as
regions sensitive to lexical, sub-lexical, and auditory processes.
Analyses at the single-participant and group levels verified that
this localizer activated a broad set of temporal and frontal perisyl-
vian regions with a left-hemisphere bias (see Figs. 3 and 5).
Anatomical criteria were added to narrow our focus to brain
regions associated specifically with sentence-level processing.
Each ROI was a sphere with radius 10 mm centered on a peak t-
value of at least 2.0 for the language localizer within the anatom-
ical constraints that are described below. Data from every voxel
within each sphere was averaged into a single timecourse per
ROI. We discuss the (in)sensitivity of our results to size and inclu-
sion criteria used to define the ROIs in Section S.3 of the Supple-
mentary Materials.
Peaks that fell bilaterally within the superior, middle, or inferior
temporal gyri with greater than 50% probability in the Harvard-
Oxford Brain Atlas, and were anterior to Heschl’s Gyrus, served
to define the center of left and right anterior temporal regions
(LATL; RATL) (cf. Rademacher, Galaburda, Kennedy, Filipek, &
Caviness, 1992). In some participants, multiple peaks with similar
statistical values fit these criteria. In these cases, anteriority
(including the temporal pole) and non-contiguity with posterior
temporal activity were included as additional criteria. Anterior
temporal lobe has shown sensitivity to the presence vs. absence
of hierarchical constituent structure (e.g. Bemis & Pylkkänen,
2011; Humphries et al., 2006; Pallier et al., 2011; Snijders et al.,
2009; Stowe et al., 1998; Vandenberghe et al., 2002). Several stud-
ies report bilateral activation (Rogalsky & Hickok, 2009; Stowe
et al., 1998, but cf. Humphries, Love, Swinney, & Hickok, 2005 for
the role of prosody in the right hemisphere). Further, anterior tem-
poral brain damage to this region correlates with deficits in mor-
phosyntax (Dronkers et al., 2004) and anterior temporal atrophy
has been associated with deficits in combinatorial semantics
(Wilson et al., 2014). These data, and others, have led to the pro-
posal that the anterior temporal lobe is involved in basic composi-
tional processes (Friederici & Gierhan, 2013).

Maxima of the language localizer that fell with greater than 50%
probability in the left superior temporal or middle temporal gyri,
and were posterior to Heschl’s Gyrus, defined a left posterior tem-
poral region of interest (LPTL). This region shows sensitivity to the
presence and complexity of phrase structure (e.g. Bemis &
Pylkkänen, 2013; Pallier et al., 2011); though the functional role
of this region remains poorly understood, one recent proposal links
it with order-related processing (Bornkessel-Schlesewsky et al.,
2015).

Peaks of the language localizer that fell within the left Inferior
Frontal Gyrus with greater than 50% probability in the Harvard-



Fig. 2. Deriving an expected BOLD signal from linguistic structure: (A) The spoken
narrative is segmented into words. (B) A complexity metric such as node count
defines the intensity of point events at the offset of each word according to a
particular grammar; examples from a context-free grammar (red) and Minimalist
Grammar (blue) derived using bottom-up enumeration are shown (see Fig. 1). Panel
(C) illustrates the same complexity counts over a longer interval. (D) The points are
then convolved with the canonical HRF (only one grammar is illustrated in this
panel). (E) Results are summed to yields estimated BOLD responses (dotted) which
are then made orthogonal to the Word Rate covariate (solid) and, finally, sampled at
0.5 Hz to match the sampling rate of the collected data (open circles). The two solid
lines in panel (E) illustrate how different grammatical representations yield
diverging estimates for BOLD signals associated with syntactic processing.
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Oxford Brain Atlas defined the center of our left inferior frontal
gyrus region (LIFG). In cases where multiple peaks fit these criteria,
proximity to the Pars Opercularis was included as an additional cri-
terion. Numerous findings from lesion-induced syntactic deficits
(Caramazza & Zurif, 1976; Grodzinsky, 2000) and neuroimaging
of brain activations for syntactically complex sentences (inter alia
Just et al., 1996; Santi & Grodzinsky, 2007b; Snijders et al., 2009;
Stowe et al., 1998; Stromswold et al., 1996) have implicated this
region in various aspects of grammatical processing (see
Rogalsky & Hickok, 2010 for a critical review). Recent research
points to a locus in the Pars Opercularis, specifically, for hierarchi-
cal composition (Zaccarella & Friederici, 2015).
Maxima that fell within either the Angular Gyrus or Supra-
marginal Gyrus with greater than 50% probability defined an infe-
rior parietal region (LIPL). Finally, maxima that fell within the
posterior aspect of the Middle Frontal Gyrus region of the left
hemisphere with greater than 50% probability defined a premotor
region (LPreM). Both of these regions have been implicated in
sentence-level processing that is sensitive to linear order (see
Bornkessel et al., 2005 for functional imaging evidence and
Wilson et al., 2011 for evidence from neurodegenerative disor-
ders). Bornkessel-Schlesewsky et al. (2015) propose a model which
contrasts order-sensitive processing in these posterior-dorsal
regions with hierarchy-sensitive processing in ventral-anterior
regions such as the ATL.

Fig. 3 illustrates each of these ROIs in four representative partic-
ipants. Supplementary Table S1 lists MNI coordinates and peak
activation values for the center of each ROI for all participants.
2.5. ROI statistical analysis using stepwise model comparison

To provide an overview of which models correlate with mea-
sured brain activity, we first constructed a family of mixed-
effects regression models using non-syntactic control predictors,
described below, together with one syntax predictor drawn from
each model. Fitted beta coefficients with a 95% confidence interval
that did not include zero were taken to be ‘‘statistically significant”
(Gelman & Hill, 2007). This first step is limited, however, as it does
not take into account the relationships between the different mod-
els. Indeed, bivariate correlations between each syntactic predictor
and also with non-syntactic control predictors showed non-trivial
effects (Supplementary Fig. S2). Of the target syntactic predictors,
2gram.p and 3gram.p were highly correlated with each other
(r ¼ 0:84). The cfg.surp model was anti-correlated with unigram
frequency (r ¼ �0:54), and positively correlated with 2gram.p
and 3gram.p (r � 0:45). The node count models were moderately-
to-highly correlated with each other: r(cfg.td, cfg.bu) = 0.43;
r(mg.bu, mg.td) = 0.9.

To evaluate the unique contribution made by each type of syn-
tactic structure, we conducted step-wise model comparisons using
likelihood ratio tests. The models were ordered both by amount of
syntactic detail (ngram � cfg � mg),X and by a rough-and-ready
characterization of the number of parsing assumptions in the com-
plexity metric (surp � bu � td). Judging the number of parsing
assumptions is subjective, and so we conducted an auxiliary anal-
ysis to test the sensitivity of any results to this parameter by
reversing the ordering by complexity metric (see Supplementary
Table S3). The list of fixed effects for each model entered into this
comparison is given on the left-hand side of Table 1.

All models included fixed effects for sound power, Word Rate
(defined in Section 2.4.3, above), word frequency (log-
transformed values from the HAL corpus via the English Lexicon
Project; Balota et al., 2007), and six parameters representing esti-
mated head movements. A fixed effect for prosodic breaks was also
included to control for correlations between acoustic variance and
syntactic structure. This predictor is a perceptual judgment of
break index strength made in light of ToBI annotation guidelines
(Beckman, Hirschberg, & Shattuck-Hufnagel, 2005) by two inde-
pendent raters. All predictors except for those representing head
movements were converted to z-scores. Each model also included
a random intercept by participant and a random slope for the base-
line Word Rate predictor.

Statistical significance was evaluated against an alpha level of
0.05 that was corrected for multiple comparisons across six ROIs
with the bonferroni method (raw p-values, which are reported in
the Supplementary Materials, should be evaluated against an
adjusted alpha-level of 0:008�3).
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Fig. 3. Regions of interest (columns) from four representative participants (rows). Regions were defined by conjoining activation peaks based on the language localizer Word
Rate predictor with anatomical definitions for each sentence-related region (see Methods). Integers indicate the MNI location of the sagittal slice shown in each frame.
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2.6. Whole brain analysis

As a follow-up to the theory-driven analysis, we conducted an
exploratory analysis of the whole brain using a subset of our pre-
dictors. This analysis permits us to test for activations that may fall
outside of regions traditionally implicated in sentence-level pro-
cessing. However doing so necessarily sacrifices power to detect
possibly subtle differences between models.

A first-level General Linear Model (GLM) was fit for each voxel
of each individual participant.3 The non-syntactic predictors were
sound power, word rate, word frequency, prosodic breaks, and six
head movement predictors. We added to this baseline model three
syntactic predictors to represent each of the three levels of syntactic
detail. We selected the most robust predictor from each level based
on the ROI results. As detailed in the Results section, below, the most
robust predictors were 2gram.p, cfg.surp, and mg.td (see Fig. 4 and
Table 1). To align the whole brain analysis with the model
comparison-based ROI analysis, the three syntactic predictors were
first residualized against all lower-level predictors according to the
ordering of models shown in Table 1. For example, 2gram.p was
residualized against 2gram.l, 3gram.l, and all non-syntactic predic-
tors. By residualizing the predictors in this way, the whole brain
analysis is sensitive to the unique contribution of each predictor
independent of the contribution from lower-level predictors.

At the second, group, level, beta values from the first-level
GLMs from each participant were evaluated with one-sampled
t-tests. We report as ‘‘statistically significant” voxels with a
p-value of at least 0.001 in clusters of at least 50 voxels that were
reliable at p < 0:05 after correcting for the number of comparisons
and the estimated smoothness of the data according to Random
Field Theory (Worsley et al., 1996).
3. Results

3.1. Behavioral results

The quiz comprised twelve questions, each with four possible
answers. Under the cumulative binomial distribution,
3 We used a mask that includes all voxels within the envelope of the MNI 152-brain
average. The default masks calculated by SPM8 for each participant exclude some
voxels in the orbito-frontal cortex and from the anterior temporal lobes.
Pðscore � 7Þ ¼ 0:014. Two participants who scored lower than this
threshold were discarded from further analysis. The remaining 26
participants had a median score of 10 with a range of [7 12]. This
means that all participants whose data were analyzed scored
higher than would be expected by chance.

3.2. fMRI Region of interest results

Fig. 4 shows the estimated coefficients and 95% confidence
intervals for each of the syntax predictors when included alone
in a model with only non-syntactic and physiological ‘‘nuisance”
predictors. Treated independently of each other, significant corre-
lations were observed for unlexicalized 2- and 3-gram models in
LATL, RATL, LIFG and LPTL. CFG surprisal estimates were significant
in all six ROIs. Node count CFG predictors were significant in the
LATL and LPTL but not in any other region. Node counts derived
from the MG were significant predictors in the LATL, RATL, LIFG
and LPTL. Estimated parameters for all of the linguistic coefficients
for each model are shown for each ROI in Supplementary Fig. S3.

These results suggest a role for both word-to-word and hierar-
chical dependencies in characterizing BOLD signal across the ROIs.
The most abstract aspects of sentence structure were most predic-
tive in the temporal lobe. However, this first analysis does not take
into account co-dependencies between these different syntactic
predictors. Accordingly, model comparison was used to evaluate
the independent contribution of the more abstract models, above
and beyond any effects due to more concrete string-level
dependencies.

This model comparison evaluated a family of nested models,
identified by the letters A through I in Table 1. The main result is
that predictors based on MG and CFG each improved a mixed-
effects model of the neural time course in the temporal lobe during
naturalistic story comprehension.

Table 1 column 3 summarizes the model comparison in LATL.
Surprisal based on word trigrams and POS bigrams improved the
fit of a regression over the null model. Additional improvements
were found for surprisal based on the CFG, node counts based on
a top-down traversal of CFG structures, and for node counts based
on a top-down traversal of X-Bar structures generated by MGs. In
other words, even the most abstract grammars led to significant
improvements in explaining the timecourse of the LATL response,
above and beyond the variance explained by Markov models.
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Fig. 4. Fitted coefficients for all syntax predictors across six ROIs. Coefficients show the estimated change in BOLD signal per unit change in the syntactic predictor (x-axis).
The nine models are ordered in descending order along the y-axis based on syntactic detail and complexity metric. Error bars show 95% confidence intervals based on Wald’s
approximation. Filled points indicate models that made a statistically significant contribution in a descending step-wise comparison against simpler models (see Table 1).

Table 1
Summary of results for nested model comparison from six ROIs. Only timecourses from ROIs where the per-participant functional localizer had a peak t � 2:0 were included for
analysis; these are counted in the last row. p-Values are corrected for multiple comparisons across ROIs. Statistical details for each ROI are given in Supplementary Table S2.

J.R. Brennan et al. / Brain & Language 157–158 (2016) 81–94 89
Detailed model comparison statistics for this region and for the
regions discussed below are given in Supplementary Table S2.

TheRATL (Table1 column4) showedsignificant improvements in
fit for POS bigrams and CFG surprisal but not for any other models.

In LIFG, the situation was quite different. As shown in column 5
of Table 1, we observed improved fits for word-based bigram and
trigrammodels, and also for POS-based bigrammodels, but neither
CFG nor MG hierarchical models led to a significant improvement
in regression fits. While CFG surprisal did show a significant
correlation when considered alone (see Fig. 4), this model was
not significant when variance due to n-grammodels was taken into
consideration.

Results from the LPTL were similar to those of the LATL (Table 1
column 6): we observed effects for n-gram models, additional
effects for CFG surprisals and node counts and, further, effects for
MG node counts based on both a bottom-up and a top-down
traversal.

Finally, fits against activation from the LIPL and LPreM regions
were improved only by CFG surprisals. Neither n-gram models,
nor MG models showed significant effects in these two ROIs. These
effects are shown in columns 7 and 8 of Table 1.

3.3. Whole brain fMRI results

Following the theory-driven ROI analysis, we conducted an
exploratory analysis across the whole brain with a focus on three
syntactic predictors: 2gram.p, cfg.surp, and mg.td. Whereas the
ROI analysis addresses what kind of syntactic information is
processed in brain regions involved in sentence-level processing,
the whole brain analysis explores the complementary question of
what regions are sensitive to different kinds of syntactic informa-
tion. These three syntactic predictors were, respectively, the most
robust in the ROI analysis for each level of syntactic detail. They
were entered into a whole brain GLM along with non-syntactic
control predictors, including the language localizer Word Rate pre-
dictor after being residualized against lower-level covariates. Fig. 5
illustrates a selection of the results of this analysis. Statistical maps
for all predictors are shown in Supplementary Fig. S4 along with
detailed results in Supplementary Table S8.

The Word Rate localizer predictor showed robust effects across
the temporal and frontal lobes with more reliable effects observed
in the left-hemisphere. These are shown in red on Fig. 5. This result
serves as a ‘‘sanity check” showing that the localizer predictor cor-
relates with activity across traditional language regions (e.g.
Friederici & Gierhan, 2013). This result also offers a back-drop for
more localized effects observed for other predictors.

The 2gram.p predictor, representative of string-level models,
showed significant effects in the posterior temporal lobe bilater-
ally. This pattern closely matches the results reported by
Willems et al. (2015) who applied a trigram part-of-speech lan-
guage model and used similarly naturalistic spoken narratives for
stimuli. Unlike Willems et al., we also found significant bilateral
activation in the fusiform gyrus for this predictor. These results
are shown in blue on Fig. 5.

We did not observe any statistically reliable correlations for the
cfg.surp or mg.td predictors. At an uncorrected p < 0:01 threshold,



Fig. 5. Whole brain activation maps for three predictors rendered onto the surface of a template brain (N ¼ 26). Maps for the language localizer Word Rate predictor (red) and
2gram.p predictor (blue) are thresholded at p < 0:001 with a cluster size of at least 50 voxels (family-wise p < 0:05). The cfg.surp predictor (green) is shown at a liberal
p < 0:01 threshold, illustrating non-significant trends in this analysis.

90 J.R. Brennan et al. / Brain & Language 157–158 (2016) 81–94
cfg.surp correlated with clusters of voxels in the left anterior tem-
poral lobe (pcorrected ¼ 0:423) and with a cluster of voxels in the
right hemisphere spanning the central sulcus (pcorrected ¼ 0:277;
see Supplementary Table S8). These uncorrected observations are
shown in green on Fig. 5. Even at liberal thresholds, there were
no coherent clusters of activation for mg.td (this is shown on the
bottom-right panel of Supplementary Fig. S4).

4. Discussion

Using fMRI, we evaluated alternative hypotheses regarding the
syntactic information computed by neural circuits involved in nat-
uralistic comprehension. This evaluation considered six brain
regions that have been traditionally associated with sentence pro-
cessing and was followed-up by an exploration across the entire
brain. We correlated estimates of processing effort drawn from dif-
ferent syntactic models with fMRI timecourses. Comparing the fits
of different models, we find support for abstract hierarchical struc-
ture in the left anterior and posterior temporal lobe, but not in the
left inferior frontal gyrus or in dorsal parietal and premotor
regions. These latter two regions showed sensitivity to phrase
structure, but not to the most abstract structures that we consid-
ered. A whole brain analysis did not show any significant activa-
tions elsewhere. By contrast, string-level Markov models over
part of speech tag sequences correlated with the fMRI-measured
signal in the inferior frontal gyrus, the anterior temporal lobe bilat-
erally and the left posterior temporal lobe. This pattern of results
constitutes support for the competence hypothesis that abstract
hierarchical grammars subserve real-time natural comprehension.
It also supports the characterization of the sub-parts of the tempo-
ral lobe as a kind of combinatorial hub.

4.1. Evidence for abstract hierarchy in naturalistic comprehension

Regarding the competence hypothesis, two findings in particu-
lar are significant. The first is syntactic structures generated by
CFGs are helpful in predicting timecourses from all ROIs save the
LIFG. This result obtained using the surprisal linking hypothesis.
These CFG-based surprisals were predictive after taking into
account n-gram and other predictors, such as unigram word fre-
quency and prosodic break size. This suggests that abstract hierar-
chical structure plays a role in on-line comprehension, even in a
task-free environment. This finding corroborates experimental
work showing early effects of syntactic structure on on-line pro-
cessing (Kush et al., 2015; Phillips, 2006; Sturt & Lombardo,
2005; Xiang et al., 2009; Yoshida et al., 2012). Our results also align
well with naturalistic eye-tracking studies that demonstrate sensi-
tivity to expectations based on hierarchical structure (Fossum &
Levy, 2012; van Schijndel & Schuler, 2015).

The second finding that bears on the competence hypothesis is
the pattern of fits obtained through node counts. Node counts
derived from the CFG correlated with activity from LATL and LPTL
but no other region, as shown in Fig. 4. This partially replicates
Brennan et al. (2012). The strongest support for the competence
hypothesis in this study comes from node counts in X-bar trees
that are generated by MGs. These were positive predictors of BOLD
signal in the LATL and LPTL when considered on top of CFG node
counts, string-level expectations, and non-syntactic predictors.

The simplest interpretation is that these temporal lobe regions
do a computation that is isomorphic, in some way, to the abstract
structures that MGs and CFGs strive to capture. Both node count
and surprisal seem to point toward the same sort of structure-
dependence. This suggests that while the dynamics of processing
in the temporal lobe may indeed be experience-based, as reflected
by the surprisal effects, they are also correlated with the raw
amount of syntactic structure.

Our findings contrast with those of Frank and Bod (2011) and
Frank et al. (2015). In these studies, processing complexity predic-
tions from hierarchical grammars turn out not to fit eye-movement
measures or evoked scalp potentials any better than predictions
based on string-level models. The positive results that we obtain
may be attributable to the use of fMRI. By measuring a spatially-
specific BOLD signal, our analysis is evidently able to detect hierar-
chical processing in just two regions. Indeed, the less abstract Mar-
kov models that we considered were predictive in a broader set of
ROIs. It could be that word-to-word effects drown out the indica-
tors of hierarchical processing in certain eye-tracking measures
and ERP components.
4.2. Incremental syntactic parsing in the temporal lobe

Existing neurobiological models of sentence comprehension are
divided as to the role of the anterior temporal lobes, posterior tem-
poral lobe and inferior frontal gyrus in performing basic
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constituent-building computations. A prominent hypothesis links
the ATL with such computations based on imaging and lesion-
based data (Friederici & Gierhan, 2013; Hickok & Poeppel, 2007).
It suggests that ATL activation ought to be sensitive to constituency
properties as they are incrementally identified. The results of the
present studies confirm this suggestion, but also show that such
a correlation holds in the posterior temporal lobe as well. This lat-
ter effect is consistent with patterns of syntactic deficits that have
been observed in patients with atrophy to posterior temporal
regions (Wilson et al., 2011). In virtue of using formal grammars,
however, we gain a more specific understanding of the operations
carried out by this neural circuit. What previous accounts have
labeled ‘‘basic syntactic processes” or ‘‘constituent-building”, our
results characterize in terms of intermediate parser states.4

As already mentioned above, the most abstract syntactic struc-
tures that we examined were only predictive in LATL and LPTL but
not in RATL, LIFG or dorsal parietal and premotor regions. In these
regions, the comparatively finer-grained X-bar structures did not
improve regression models the way they did in the temporal lobe.
This result indicates that we did not find evidence to support a role
for this most abstract level of detail outside of the left temporal
lobe. The effect is consistent with earlier findings that used node
count but not surprisal (Brennan et al., 2012). These predictors,
based on MGs, take into account movement, empty categories
and other aspects of Minimalist syntax. But they do so only
through the lens of tree nodes. The node count linking hypothesis
does not separately distinguish the formation, checking, or mainte-
nance of long-distance dependencies. It could be that the LIFG
plays a distinctive role during these operations (Grodzinsky &
Friederici, 2006). On the other hand, our results do not straightfor-
wardly support the idea that LIFG is the seat of syntactic and
semantic integration in general (Hagoort, 2013). Rather, LIFG activ-
ity correlated with string-level n-gram expectations, as well as
with unigram word frequency (see Supplementary Fig. S4 and
Table S8). This latter result extends previous findings (e.g.
Fiebach, Friederici, Muller, & Cramon, 2002) to naturalistic listen-
ing. Further work, perhaps using the unification spaces of Vosse
and Kempen (2000), with careful attention to fine-grained spatial
detail in the spirit of Zaccarella and Friederici (2015), may help
clarify what role, if any, LIFG plays in basic sentence
comprehension.

The temporal lobe results also alignwellwith results obtained by
Wehbe et al. (2014) using written (as opposed to auditory) stimuli.
Wehbe and colleagues used predictors based on the labels of the
dependency arcs, for instance SBJ for subject OBJ for direct object
or PMOD for prepositional modifier. No hierarchical relationships
entered into this labelling. However, as predictors they converge
on some of the same brain regions as in the present work. Specifi-
cally, Wehbe et al. classified short text passages on the basis of the
fMRI images they elicited in readers’ brains. In a searchlight-style
analysis, their classifier performed above chance level in both a left
hemisphereposterior temporal area anda right hemisphere anterior
temporal area. While this right hemisphere localization was unex-
pected, it coheres well with our bilateral results for CFG-based sur-
prisal. It suggests the existence of a temporal lobe language
network that normally employs both hemispheres, to some degree.

Bornkessel-Schlesewsky et al. (2015) suggest that dorsal-
posterior regions may be involved in processing related to linear
order, in contrast to hierarchy-sensitive processing in anterior
regions. Our results are not consistent with a naïve interpretation
of this proposal: we do not see robust evidence for string-levelMar-
kov models in dorsal LIPL or LPreM, and we do see robust evidence
4 Hale (2014) develops the ‘‘automaton view” of parser states as relating quite
directly to syntactic structure.
for hierarchical effects in the posterior LPTL region. However, the
notion of linear processing implied by that model, such as the map-
ping of the ordering of noun phrases to thematic roles like ‘‘agent”
and ‘‘patient”, may be of a very different sort than the notion of
string-based linear order encoded in an n-grammodel.

The results from our analysis leave open several questions
about the syntactic operations implemented in these brain regions.
One has to do with the degree to which human parsing is ‘‘predic-
tive” of upcoming words and phrases that have yet to be heard. Our
complexity metrics distinguish non-predictive bottom-up node
counts from highly predictive top-down node counts, and yet these
metrics are highly correlated after being projected through the
hemodynamic response function, especially for MG structures
(see Supplementary Fig. S2). This could reflect temporal limitations
of fMRI. Bottom-up and top-down enumeration differ not in how
much structure is built, but in the dynamics of when structure-
building takes place. Given the rapid unfolding of spoken language,
such differences may not have been sufficiently spread out to lead
to detectable effects. Future work using electrophysiological tools
may be more capable of teasing out these effects.

Details about the grammar implemented in these circuits are
also underspecified. We only contrasted a single MG with CFG
and Markov models. A very large variety of grammatical analyses
that can be described by MGs continue to be explored in theoreti-
cal linguistics (Stabler, 2011). Further, MGs are but one of a class of
grammars that are suitable for describing human language
(Stabler, 2013a). Our approach does not distinguish which particu-
lar analysis from this class of grammars best matches the mea-
sured brain signals.

Finally, our interpretation has been couched in terms of syntac-
tic structure. This framing reflects the available computational
models of incremental parsing. Interestingly, the anterior temporal
lobes have also been linked with conceptual semantic processing.
One piece of evidence for such a link is the correlation between
anterior temporal atrophy and deficits in conceptual processing
associated with Semantic Dementia (Patterson, Nestor, & Rogers,
2007). Related research has found that activation in these regions
is sensitive to uniqueness and to the conceptual specificity with
which stimuli are categorized (Gorno-Tempini & Price, 2001;
Grabowski et al., 2001; Rogers et al., 2006). These findings have
led to the hypothesis that ATL activity may reflect, in part, the
specificity of a semantic representation being processed (Martin
& Chao, 2001; Patterson et al., 2007). These conceptual and syntac-
tic functions may be related: more complex phrases could be used
to describe more specific concepts. In fact, recent work using MEG
has found that LATL sensitivity to phrase-structure is modulated by
conceptual specificity (Westerlund & Pylkkänen, 2014; Zhang &
Pylkkänen, 2015).

While intuitive, however, such a link has not yet been formal-
ized in a way that yields quantitative predictions. What we observe
is that incremental syntactic parsing models appear to provide a
good fit, quite apart from considerations of meaning. To tease apart
possible connections between syntactic and conceptual composi-
tion, we await the deployment of more sophisticated quantifiable
accounts of semantic composition. Those that rely on vector-
semantics provide one promising avenue for research (Chang,
Cherkassky, Mitchell, & Just, 2009; Mitchell & Lapata, 2008;
Mitchell et al., 2008). Another avenue might draw on algorithms
describing the incremental evaluation of logical semantic rules
(Stabler, 1991; Steedman, 2000).
5. Conclusion

This study winnows down the type of information that flows
through brain regions involved in syntactic processing. We asked
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whether abstract grammatical structures characterize fMRI-
measured neural activity associated with sentence processing dur-
ing a passive listening task. These more abstract structures indeed
correlated with brain activity in the temporal lobes, but not in infe-
rior frontal gyrus, inferior parietal lobe, or premotor areas. By con-
trast, predictors based on string-level Markov models correlated
with brain activity frontal and temporal regions. In the most gen-
eral terms, abstract linguistic structure of the sort proposed in gen-
erative grammars appears to characterize the information flowing
through the temporal lobe during naturalistic comprehension.
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