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Abstract

Federated reinforcement learning (FedRL) enables multiple agents to collaboratively
learn a policy without sharing their own local trajectories collected during agent-
environment interactions. However, in practice, the environments faced by different
agents are often heterogeneous, leading to poor performance by the single policy
learned by existing FedRL algorithms on individual agents. In this paper, we
take a further step and introduce a personalized FedRL framework (PFedRL) by
taking advantage of possibly shared common structure among agents in heterogeneous
environments. Specifically, we develop a class of PFedRL algorithms named PFedRL-
Rep that learns (1) a shared feature representation collaboratively among all agents
and (2) an agent-specific weight vector personalized to its local environment. We
analyze the convergence of PFedTD-Rep, a particular instance of the framework
with temporal difference (TD) learning and linear representations. To the best of
our knowledge, we are the first to prove a linear convergence speedup with respect
to the number of agents in the PFedRL setting. To achieve this, we show that
PFedTD-Rep is an example of the federated two-timescale stochastic approximation
with Markovian noise. Experimental results demonstrate that PFedTD-Rep, along
with an extension to the control setting based on deep Q-networks (DQN), not only
improve learning in heterogeneous settings, but also provide better generalization to
new environments.

1 Introduction

Federated reinforcement learning (FedRL) Nadiger et al. (2019); Liu et al. (2019); Xu et al. (2021);
Zhang et al. (2022a); Jin et al. (2022); Khodadadian et al. (2022); Yuan et al. (2023) has recently
emerged as a promising method via blending the distributed nature of federated learning (FL)
McMahan et al. (2017) with the sequential decision-making nature of reinforcement learning (RL)
Sutton & Barto (2018). In FedRL, multiple agents collaboratively learn a single policy without
sharing their individual trajectories that are collected during the agent-environment interactions,
which protect privacy embedded in their local experiences.

One key challenge of FedRL is the issue of environment heterogeneity among agents, where the
collected trajectories among agents may vary to a large extent. To illustrate, consider a few existing
applications of FL. These include on-device NLP applications (e.g., next word prediction, web query
suggestions, and speech recognition) from internet companies (Hard et al., 2018; Yang et al., 2018;
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Table 1: Comparison of settings with existing FedRL frameworks.

Algorithm Noise Environment Representation Timescale Local
update Personalization Linear

speedup
FedTD & FedQ Khodadadian et al. (2022) Markovian Homogeneous ✗ Single ✓ ✗ ✓

FedTD Dal Fabbro et al. (2023) Markovian Homogeneous ✗ Single ✗ ✗ ✓
FedTD Wang et al. (2023a) Markovian Heterogeneous ✗ Single ✓ ✗ ✓

QAvg & PAvg Jin et al. (2022) i.i.d. Heterogeneous ✗ Single ✗ ✗ ✗
FedQ Woo et al. (2023) Markovian Heterogeneous ✗ Single ✗ ✗ ✓
A3C Shen et al. (2023) Markovian Homogeneous ✗ Two ✗ ✗ ✓

FedSARSA Zhang et al. (2024) Markovian Heterogeneous ✗ Single ✓ ✗ ✓

PFedRL-Rep (this work) Markovian Heterogeneous ✓ Two ✓ ✓ ✓

Wang et al., 2023b), on-device recommender or ad prediction systems (Maeng et al., 2022; Krichene
et al., 2023), and Internet of Things applications like smart healthcare or smart thermostats (Nguyen
et al., 2021; Imteaj et al., 2022; Zhang et al., 2022b; Boubouh et al., 2023). Note that all of them
exist in settings with environment heterogeneity (heterogeneous users, devices, patients, or homes).

As a result, if all agents collaboratively learn a single policy, which most existing FedRL frameworks
do, the learned policy might perform poorly on individual agents. This calls for the design of a
personalized FedRL (PFedRL) framework that can provide personalized policies for agents in different
environments. Nevertheless, despite the recent advances in FedRL, the design of PFedRL and its
performance analysis remains, to a large extent, an open question. Motivated by this, the first inquiry
we aim to answer in this paper is:

Can we design a PFedRL framework for agents in heterogenous environments to not only
collaboratively learn a useful global model without sharing local trajectories, but also provide a
personalized policy in each environment?

We address this question by viewing the PFedRL problem in heterogeneous environments as N parallel
RL tasks with possibly shared common structure. This is inspired by observations in centralized
learning Bengio et al. (2013); LeCun et al. (2015) and federated/decentralized learning Collins
et al. (2021); Xiong et al. (2023); Tziotis et al. (2023), whose success in training multiple tasks
simultaneously can be enlarged by leveraging a common (low-dimensional) representation in various
machine learning tasks (e.g., image classification).

From a theoretical point of view, questions of the benefits of leveraging such shared representations
among heterogeneous agents have received an increased recent emphasis owing to their practical
significance, especially in federated/decentralized supervised learning framework Collins et al. (2021);
Xiong et al. (2023); Tziotis et al. (2023). However, a theoretical analysis of PFedRL with shared
representations is more subtle due to the fact that each agent in PFedRL collects data by following its
own Markovian trajectory and simultaneously updates its model parameters, while data is collected
before training begins in standard FL paradigm. These considerations motivate the second question
we aim to address:

How do the shared representations affect the convergence performance of PFedRL under
Markovian noise, and is it possible to achieve an N -fold linear convergence speedup?

Despite some recent progress in federated/decentralized supervised learning framework Collins et al.
(2021); Xiong et al. (2023); Tziotis et al. (2023), to the best of our knowledge, this question is
still open in the context of learning personalized policies in FedRL under Markovian noise (see
Table 1). Motivated by these open questions, we introduce a new PFedRL framework with shared
representations, and analyze a class of associated algorithms. Our main contributions are summarized
in the following.

• PFedRL-Rep Algorithm. We propose PFedRL-Rep, a new PFedRL framework with shared
representations by leveraging representation learning theory. PFedRL-Rep learns a global shared
feature representation collaboratively among all agents through the aid of a central server, and an
agent-specific weight vector that is personalized to its local environment. We note that our PFedRL-
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Rep framework can be paired with a wide range of RL algorithms, including both value-function
based and policy-gradient based methods with arbitrary feature representation.

• Linear Speedup for TD Learning. Within the PFedRL-Rep framework, we further introduce
PFedTD-Rep, i.e., the PFedRL-Rep version of TD learning, and analyze its convergence perfor-
mance in a linear representation setting. We prove that the convergence rate of PFedTD-Rep is
Õ
(

1
N2/3(T +2)2/3

)
, where N is the number of agents and T is the number of communication rounds.

This implies a linear convergence speedup for PFedTD-Rep with respect to the number of agents.
To our best knowledge, this is the first linear speedup result for PFedRL with shared representations
under Markovian noise, and provides a theoretical answer to empirical observations in Mnih et al.
(2016) that federated versions of RL algorithms yield faster convergence. This property is highly
desirable since it implies that one can efficiently leverage massive parallelism in large-scale systems.
To achieve this, we show PFedTD-Rep is an example of the federated two-timescale stochastic
approximation, and its convergence analysis is intricate under Markovian noise. We address this
challenge by leveraging a Lyapunov drift approach to capture the evolution of two coupled parameters,
fundamentally improving upon prior work.

2 Problem Formulation

Notation. Let N and T be the number of agents and communication rounds. Denote [N ] as the set
of integers {1, . . . , N} and ∥ · ∥ as the l2-norm. We use boldface to denote matrices and vectors.

2.1 Preliminaries: Federated Reinforcement Learning

We consider a FedRL system with N agents interacting with N independent heterogeneous environ-
ments. We model the environment of agent i as a MDP, Mi = ⟨S,A, Ri, P i, γ⟩,∀i ∈ [N ], where S
and A are finite state and action sets, Ri is the reward function, P i is the transition kernel, and
γ ∈ (0, 1) is the discount factor. At each time step k, agent i is in state si

k and takes action ai
k

according to a policy πi(·|si
k) in hand, which results in reward Ri(si

k, ai
k). In the next time step, the

environment transitions to a new state si
k+1 according to the state transition probability P i(·|si

k, ai
k).

The sequence of states and actions constructs a Markov chain, which is the source of Markovian
noise. In this paper, this Markov chain is assumed to be unichain, which is known to asymptotically
converge to a steady state. We denote the stationary distribution as µi,πi .

The state-value function agent i in environment Mi under policy πi are defined as V i,πi(s) =
Eπi

[∑∞
k=0 γkRi(si

k, ai
k)|si

0 = s
]
. When the state and action spaces are large, it is computationally

infeasible to store V i,πi(s) for all states or state-action pairs. One way to deal with is to approximate
the value function as V i,πi(s) ≈ ΦΦΦ(s)θθθ, where ΦΦΦ ∈ R|S|×d is a feature representation corresponding
to states, and θθθ ∈ Rd is a low-dimensional unknown weight vector. When ΦΦΦ is given and known, this
falls under the paradigm of RL or FedRL with function approximation.

One intermediate goal in RL is to estimate the value function corresponding to a particular policy π
using the trajectory collected from the environment. This task is called policy evaluation, and one
widely used approach to accomplish this is the Temporal Difference (TD) learning Sutton (1988).
Under the FedRL framework, the goal of policy evaluation, or specifically, FedTD Khodadadian et al.
(2022); Dal Fabbro et al. (2023); Wang et al. (2023a) is to let N agents collaboratively evaluate a
single policy π ≡ πi,∀i ∈ [N ], or precisely, collaboratively learn a common (non-personalized) weight
vector θθθ ≡ θθθi,∀i ∈ [N ] using trajectories collected from N different environments when the feature
representation ΦΦΦ(s),∀s are given. This can be formulated as the following optimization problem:

L(θθθ) := min
θθθ

1
N

N∑
i=1

Es∼µi,π

∥∥ΦΦΦ(s)θθθ − V i,π(s)
∥∥2

. (1)

Due to space constraint, we are going to first focus on the policy evaluation problem in RL. Note
that policy evaluation is an important part of RL and control, since it is a critical step of policy
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Algorithm 1 PFedRL-Rep: A General Description
Input: Sampling policy πi,∀i;

1: Initialize the global feature representation ΦΦΦ0 and local weight vector θθθi
0, ∀i ∈ [N ] randomly;

2: for round t = 0, 1, . . . , T − 1 do
3: for agent 1, . . . , N do
4: θθθi

t+1 = RL_ update(ΦΦΦt, θθθ
i
t, αt, K);

5: ΦΦΦi
t+1/2 = RL_update(ΦΦΦt, θθθ

i
t+1, βt);

6: end for
7: Server computes the new global feature representation ΦΦΦt+1 = 1

N

∑N
i=1 ΦΦΦi

t+1/2.
8: end for

improvement algorithms. However, our proposed framework (e.g., Algorithm 1) can be directly
applied to control problem as well, and we relegate the discussions to Section 5 and Appendix C.

2.2 Personalized FedRL with Shared Representations

Since the local environments are heterogeneous across N agents, the aforementioned FedRL methods
(in Section 2.1) that aim to learn a single policy or a common weight vector θθθ may perform poorly
on many individual agents. This necessitates the search for more personalized policies {πi,∀i ∈ [N ]}
or personalized local weight vectors θθθi that can be learned collaboratively among N agents in N
heterogeneous environments without sharing their locally collected trajectories. To achieve this, we
propose to learn a common representation among agents in heterogeneous environments by viewing
the personalized FedRL (PFedRL) problem as N parallel RL tasks with possibly shared common
structure. Specifically, the value function of agent i can be approximated as V i,πi ≈ f i(θθθi,ΦΦΦ), where
ΦΦΦ is the shared feature representation among all agents, θθθi is the local unique weight vector, and
f i(·, ·) is a general function parameterized by these two unknown parameters.

Using these notions, the policy evaluation problem in (1) can be reformulated as:

L(ΦΦΦ, {θθθi,∀i}) := min
ΦΦΦ

1
N

N∑
i=1

min
{θθθi,∀i}

Es∼µi,πi

∥∥∥f i(θθθi,ΦΦΦ(s))−V i,πi

(s)
∥∥∥2

, (2)

where N agents collaboratively learn a shared feature representation ΦΦΦ via a server, and a personalized
local weight vector {θθθi,∀i} using local trajectories at each agent.
Remark 2.1. Our approximation function f i(θθθi,ΦΦΦ) is general and can take on various forms, such
as linear or neural networks. For instance, it can be represented as a linear combination of ΦΦΦ and
θθθi, i.e., f i(θθθi,ΦΦΦ) := ΦΦΦθθθi in TD Bhandari et al. (2018) or Q-learning Chen et al. (2019) with linear
function approximation. To further increase the representation capability, f i(θθθi,ΦΦΦ) can represent a
deep neural network, e.g., as for DQN (Q-learning with deep neural networks) Mnih et al. (2015)
(see more discussions in Section 5 and Appendix C).

Comparison with Standard FedRL. In FedRL, N agents simultaneously evaluate one policy π
over N heterogeneous environments, and the objective in (1) is to collaboratively learn a common
weight vector θθθ for all agents i. In contrast, consider TD learning with a linear representation under
our new PFedRL framework with shared representations. Here, the goal is to collaboratively learn a
personalized weight vector θθθi for each agent i via the optimization problem (2) with f i(θθθi,ΦΦΦ) := ΦΦΦθθθi,
leading to a personalized solution for each agent. Since the environments P i,∀i are heterogeneous,
the learned common weight vector θθθ in conventional FedRL is inevitably suboptimal compared with
the personalized weight vector θθθi in environment P i for agent i.

3 PFedRL-Rep Algorithms
We now propose a class of algorithms called PFedRL-Rep that realize PFedRL with shared
representations. Specifically, PFedRL-Rep alternates between three steps among all agents at each
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Φ𝑡+1Φ𝑡+1/2

2

Φ𝑡+1/2
3

Figure 1: An illustrative example of PFedRL-Rep for 3 agents. (a) At the beginning of round t,
each agent i = 1, 2, 3 has a local weight vector θθθi

t and a global feature representation ΦΦΦt. (b) Local
Weight Vector Update: With (ΦΦΦt, θθθ

i
t), agent i performs a K-step update to obtain θθθi

t+1 as in (3). Note
that ΦΦΦt remains unchanged at this step. (c) Local and Global Feature Representation Update: Agent
i updates the feature representation by executing a one-step update to obtain ΦΦΦi

t+1/2 as in (4), which
depends on both θθθi

t+1 and ΦΦΦt. Then, agent i shares ΦΦΦi
t+1/2 with the server, which then executes

an averaging step as in (5) to produce the next global feature representation ΦΦΦt+1. We highlight
the updated parameters in each step in red, and the shared parameters (only the global feature
representation) between agents in blue.

communication round: (a) a local weight vector update; (b) a local feature representation update;
and (c) a global feature representation update via the server.

θθθi
t+1 = RL_update(ΦΦΦt, θθθ

i
t, αt, K), (3)Local Weight Vector Update. At round t, agent

i performs a RL_update on its local weight vector
given the current global feature representation ΦΦΦt and local weight vector θθθi

t. In other words, agent
i updates its local weight vector as in (3), where RL_update is a generic notation for an update
of the local weight vector θθθ using any specific RL algorithm (e.g., TD, Q-learning, DQN, policy
gradients, etc, see Appendix D for illustrative examples), and αt is the learning rate for the local
weight vector. To speed up the learning process, we allow each agent to perform K steps local weight
vector update based on its local collected trajectory.

ΦΦΦi
t+1/2 = RL_update(ΦΦΦt, θθθ

i
t+1, βt), (4)

Local Feature Representation Update. Once
the updated local weight vector θθθi

t+1 is obtained, each
agent i executes a one-step local update on their feature representations as in (4), where βt is the
learning rate for the feature representation.

ΦΦΦt+1 = 1
N

N∑
i=1

ΦΦΦi
t+1/2. (5)Server-based Global Feature Representation Update. The

server computes an average of the received local feature representation
update ΦΦΦi

t+1/2 from all agents ∀i to obtain the next global feature representation ΦΦΦt+1 as in (5).

PFedRL-Rep alternates between (3), (4) and (5) at each round, and the entire procedure is
summarized in Algorithm 1. An example of PFedRL-Rep is illustrated in Figure 1.
Remark 3.1. Similar frameworks by leveraging shared representations have been investigated in
federated/decentralized supervised learning (Collins et al., 2021; Xiong et al., 2023; Tziotis et al.,
2023). However, in these standard supervised learning frameworks, data is collected before training
begins and is often assumed to be i.i.d. In contrast, in our PFedRL framework, each agent collects
data by following its own Markovian trajectory, while simultaneously updates its model parameters.

4 PFedTD-Rep with Linear Representation

We present PFedTD-Rep, an instance of PFedRL-Rep paired with TD learning (see its pseudocode
in Appendix B), and analyze its convergence performance in a linear representation setting.

4.1 PFedTD-Rep: Algorithm Description

Here, the goal of N agents is to collaboratively solve problem (2) when the underlying RL algorithm
is TD learning. To this end, we need to specify the notation of RL_update in PFedRL-Rep
(Algorithm 1) on how to update the local weight vectors θθθi and global feature representation ΦΦΦ
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using TD. We first consider the notation of RL_update from the perspective of agent i. At time
step k, the state of agent i is si

k, and its value function can be denoted as V (si
k) = ΦΦΦ(si

k)θθθi in a
linear representation setting. By one-step Monte Carlo approximation, we approximate V (si

k) as
V̂ (si

k) ≈ ri
k + γΦΦΦ(si

k+1)θθθi. The TD error is defined as

δi
k := V̂ (si

k)−V (si
k)=ri

k +γ ΦΦΦ(si
k+1)θθθi−ΦΦΦ(si

k)θθθi. (6)

The goal of agent i is to minimize the following loss function for every si
k ∈ S, Li(ΦΦΦ(si

k), θθθi) =
1
2
∥∥V (si

k)− V̂ (si
k)
∥∥2

, with V̂ (si
k) treated as a constant. We now denote the Markovian observations

of agent i at the k-th time step of communication round t as Xi
t,k := (si

t,k, ri
t,k, si

t,k+1). Note that
the observation sequences {Xi

t,k,∀t, k} can differ across agents in heterogeneous environments. We
assume that {Xi

t,k,∀t, k} are statistically independent across all agents.

Local Weight Vector Update: As in Algorithm 1 (i.e., (3)), given the current global feature
representation ΦΦΦt, agent i makes K-step local update on its local weight vector θθθi

t as
θθθi

t,k = θθθi
t,k−1 + αt g(θθθi

t,k−1,ΦΦΦt, Xi
t,k−1), (7)

for k ∈ [K], where αt is the learning rate for the local weight vectors, satisfying
∑∞

t=0 αt = ∞
and

∑∞
t=0 α2

t <∞, and g(θθθi
t,k−1,ΦΦΦt, Xi

t,k−1) is the negative stochastic gradient of the loss function
Li(ΦΦΦt(si

t,k−1), θθθi
t,k−1) with respect to θθθ, given the current feature representation ΦΦΦt:

g(θθθi
t,k−1,ΦΦΦt, Xi

t,k−1) := −∇θθθLi(ΦΦΦt(si
t,k−1), θθθi

t,k−1) = δi
t,k−1ΦΦΦt(si

t,k−1)⊺. (8)

We allow each agent to perform K-step local updates, and for ease of presentation, we denote
θθθi

t+1 := θθθi
t,K . Since the observations are Markovian, we further add a norm-scaling step for the

updated weight vectors θθθi
t+1, i.e., enforcing ∥θθθi

t+1∥ ≤ B, to stabilize the update. This is essential for
finite-time convergence analysis (see Section 4.2), and this technique is widely used in conventional
TD learning with linear function approximation Bhandari et al. (2018).

Local Feature Representation Update. As in Algorithm 1 (i.e., (4)), given the updated local
weight vector θθθi

t+1, agent i executes one-step local update on the global feature representation on its
end as

ΦΦΦi
t+1/2 = ΦΦΦt + βth(θθθi

t+1,ΦΦΦt, {Xi
t,k−1}K

k=1), (9)

where βt is the learning rate for global feature representation, satisfying
∑∞

t=0 βt =∞,
∑∞

t=0 β2
t <∞,

βt/αt is non-increasing in t and limt→∞ βt/αt = 0, and h(θθθi
t+1,ΦΦΦt, {Xi

t,k−1}K
k=1) is the set of

negative stochastic gradient of the loss function Li(ΦΦΦt(si
t,k−1), θθθi

t+1) w.r.t. the current global feature
representation ΦΦΦt, satisfying

h(θθθi
t+1,ΦΦΦt, Xi

t,k−1) := −∇ΦΦΦLi(ΦΦΦt(si
t,k−1), θθθi

t+1) = δi
t,k−1θθθi

t+1
⊺
. (10)

Server-based Global Feature Representation Update. As in Algorithm 1 (i.e., (5)), the server
computes an average of the received local feature representation updates in (9) to obtain the next
global feature representation as

ΦΦΦt+1 = ΦΦΦt + βt ·
1
N

N∑
j=1

h(θθθj
t+1,ΦΦΦt, {Xi

t,k−1}K
k=1). (11)

4.2 Convergence Analysis

The coupled updates in (7) and (11) pose a general form as a federated nonlinear two-timescale
stochastic approximation (2TSA) Doan (2021) with Markovian noise, with θθθi

t updating on a faster
timescale and ΦΦΦt on a slower timescale. We aim to establish the finite-time convergence rate of the
2TSA in (7) and (11). This is equivalent to finding a solution pair (ΦΦΦ∗, {θθθi,∗,∀i}) such that1

Esi
t∼µi,si

t+1∼P i

πi
(·|si

t)[g(θθθi,∗,ΦΦΦ∗, Xi
t)] = 0, Esi

t∼µi,si
t+1∼P i

πi
(·|si

t)[h(θθθi,∗,ΦΦΦ∗, Xi
t)] = 0, (12)

1The root (ΦΦΦ∗, {θθθi,∗, ∀i}) of the nonlinear 2TSA in (7) and (11) can be established by using ODE method following
the solution of suitably defined differential equations Doan (2021; 2020); Chen et al. (2019) as in (12).
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hold for all Markovian observations Xi
t . In particular, µi is a unknown stationary distribution over

state si
t of agent i at t, and P i

πi is the transition kernel of agent i under policy πi.

Tsitsiklis & Van Roy (1996) proved that the standard TD iterates converge asymptotically to a vector
θθθ∗ given a fixed feature representation ΦΦΦ almost surely, which is the unique solution of the projected
Bellman equation2 ΠDTµ(ΦΦΦθθθ∗)) = ΦΦΦθθθ∗. Hence, for agent i, to study the stability of θθθi when the
feature representation ΦΦΦ is fixed, there is a mapping θθθi = yi(ΦΦΦ) to be the the unique solution to
Esi

t∼µi,si
t+1∼P i

πi
(·|si

t)[g(θθθi,ΦΦΦ, Xi
t)] = 0.

Inspired by Doan (2020), the finite-time analysis of a 2TSA boils down to the choice of two step
sizes {αt, βt,∀t} and a Lyapunov function that couples the two iterates in (7) and (11). Thus, we
first define the following two error terms:

Φ̃ΦΦt = ΦΦΦt −ΦΦΦ∗, θ̃θθ
i

t = θθθi
t − yi(ΦΦΦt), ∀i ∈ [N ], (13)

which characterize the coupling between {θθθi
t+1,∀i} and ΦΦΦt. If {θ̃θθi

t+1,∀i} and Φ̃ΦΦt go to zero
simultaneously, the convergence of ({θθθi

t+1,∀i},ΦΦΦt) to ({θθθi,∗,∀i},ΦΦΦ∗) can be established. Thus, to
prove the convergence of ({θθθi

t+1,∀i},ΦΦΦt) of the 2TSA in (7) and (11) to its true value (ΦΦΦ∗, {θθθi,∗,∀i}),
we define the following weighted Lyapunov function to couple the fast and slow iterates

M({θθθi
t+1,∀i},ΦΦΦt) := ∥ΦΦΦt −ΦΦΦ∗∥2 + βt−1

αt
· 1

N

N∑
i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2. (14)

To this end, our goal is to characterize the finite-time convergence of E[M({θθθi
t+1,∀i},ΦΦΦt)], the

Lyapunov function in (14), which is shown in the following theorem.

Theorem 4.1. For any T ≥ 2τδ, and set αt = α0/(t + 2)5/6 and βt = β0/(t + 2) with β0 ≤ ω/2 and
α0 ≤ 1

2L
√

2(1+L2)
, where L is a constant, we have

M({θθθi
T +2},ΦΦΦT +1) ≤ M({θθθi

1},ΦΦΦ0)
(T + 2)2 + C1(T + 2)−2/3

(
E[∥ΦΦΦ0 −ΦΦΦ∗∥2] + 1

N
E

N∑
i=1
∥θθθi

1 − yi(ΦΦΦ0)∥2
)

+ C2(T + 2)−2/3, (15)

where C1 = (144τ2
δ K2L2δ2 + 4L2/N)α0β0 and C2 = (4α0β0K2(3δ2(1 + B2) + L2B2) + 2α2

0(3K2B2 +
3K2δ2 + 2L2K2B2) + 8α0β0δ2).

Remark 4.2. The first term of the right-hand side of (15) corresponds to the bias due to initialization,
which goes to zero at a rate O(1/T 2). The second term corresponds to the accumulated estimation
error of the two-timescale update. The third term stands for the variance of Markovian noise. The
second and third terms decay at a rate O(1/T 2/3), and dominate the overall convergence rate in (15).
We leverage a Lyapunov drift approach to capture the evolution of two coupled parameters under
Markovian noise, and the characterization of impacts of a norm-scaling step distinguishes our work.

Corollary 4.3. If β0 = o(N−2/3) and T 2 > N , we have M({θθθi
t+2},ΦΦΦt+1) ≤ O

(
1

(T +2)2 +
1

N2/3(T +2)2/3 + 1
K2N5/3(T +2)2/3 + 1

K2N2/3(T +2)2/3

)
, which is dominated by O

(
1

N2/3(T +2)2/3

)
.

Remark 4.4. Corollary 4.3 indicates that to attain an ϵ accuracy, it takes O
( 1

ϵ3/2

)
steps with a

convergence rate O
( 1

T 2/3

)
, while O

( 1
Nϵ3/2

)
steps with a convergence rate O

( 1
N2/3T 2/3

)
(the hidden

constants in O(·) are the same). In this sense, we prove that PFedTD-Rep achieves a linear
convergence speedup w.r.t. the number of agents, i.e., we can proportionally decrease T as N increases
while keeping the same convergence rate. To our best knowledge, this is the first linear speedup result
for personalized FedRL with shared representations under Markovian noise, and is highly desirable
since it implies that one can efficiently leverage the massive parallelism in large-scale systems.

2D is a diagonal matrix with entries given by elements of the stationary distribution µπ of the Markov matrix.
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(a) Value function estimates.
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Figure 2: Comparisons in a CliffWalking Environment with 3 agents.
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(a) Cartpole environment.
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(b) Acrobot environment.
Figure 3: Comparisons in control problems.

4.3 Numerical Evaluation

We empirically evaluate the performance of PFedTD-Rep. In particular, we consider a tabular
CliffWalking environment Brockman et al. (2016) with a 4× 12 grid world, where 3 agents evaluate 3
different policies. The dimension for the feature representation and weight vector is set to be 6. We
compare PFedTD-Rep with (i) “TD”: each agent independently leverages the conventional TD with-
out communication; and (ii) “FedTD” without personalization Khodadadian et al. (2022); Dal Fabbro
et al. (2023) as listed in Table 1. As shown in Figure 2a, PFedTD-Rep ensures personalization among
all agents while FedTD tends to converge uniformly among all agents. Furthermore, PFedTD-Rep
attains values much closer to the ground-truth achieved by TD for each agent compared to FedTD;
and PFedTD-Rep converges much faster than TD. For instance, agent 1 only needs 50 episodes
to converge under PFedTD-Rep, while it takes more than 150 episodes to converge under TD, as
illustrated in Figure 2b. The improved convergence performance of PFedTD-Rep further supports
our theoretical findings that leveraging shared representations not only provides personalization
among agents in heterogeneous environments but yield faster convergence.

5 Application to Control Problems

We evaluate the performance PFedDQN-Rep (see Appendix B) in a modified CartPole environment
Brockman et al. (2016). Similar to Jin et al. (2022), we change the length of pole to create different
environments. Specifically, we consider 10 agents with varying pole length from 0.38 to 0.74 with a
step size of 0.04. We compare PFedDQN-Rep with (i) a conventional DQN that each agent learns
its own environment independently; (ii) a federated version DQN (FedDQN) that allows all agents to
collaboratively learn a single policy (without personalization), and (iii) two personalized algorithms
in state of the arts, i.e., PerDQNAvg Jin et al. (2022) and FedAsynQ-ImAvg Woo et al. (2023). We
randomly choose one agent and present its performance in Figure 3a(a). Again, we observe that
our PFedDQN-Rep achieves the maximized return much faster than the conventional DQN due to
leveraging shared representations among agents; and obtains larger reward than FedDQN, thanks to
our personalized policy. We further evaluate the effectiveness of shared representation learned by
PFedDQN-Rep when generalizes it to a new agent. As shown in Figure 3a(b), our PFedDQN-Rep
generalizes quickly to the new environment. Finally, similar observations can be made from Figure 3b
using Acrobot environments (see details in Appendix G).
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6 Conclusion and Future Work

In this paper we proposed a novel personalized federated reinforcement learning framework with
shared representations. We proved the first linear convergence speedup for PFedTD-Rep, an instance
of this framework with TD learning and linear representations. Experimental results demonstrate
the superior performance of our proposed framework over existing ones. Several future directions are
worth pursuing. First, whether we can provide a finite-time convergence analysis of PFedTD-Rep
with neural network feature representation remains an important research direction. Second, giving
the promising experimental results on control, whether we can provide a bound for PFedQ-Rep,
an instance of our framework with Q-learning, either with linear or neural feature representations
remains an open problem.
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A Related Work

Single-Agent Reinforcement Learning. RL is a machine learning paradigm that trains agents
to make sequences of decisions by rewarding desired behaviors and/or penalizing undesired ones
in a given environment Sutton & Barto (2018). Starting from Temporal Difference (TD) Learning
Sutton (1988), which introduced the concept of learning from the discrepancy between predicted
and actual rewards through episodes, the widely used Q-Learning Watkins & Dayan (1992) emerged,
advancing the field with an off-policy algorithm that learns action-value functions and enables
policy improvement without needing a model of the environment. Later on, the introduction of
Deep Q-Networks (DQN) Mnih et al. (2015) marked a significant leap, integrating deep neural
networks with Q-Learning to handle high-dimensional state spaces, thus enabling RL to tackle
complex problems. Subsequently, policy-based algorithms such as Proximal Policy Optimization
(PPO) Schulman et al. (2017) and deep Deterministic Policy Gradients (DDPG) Silver et al. (2014),
leverage the Actor-Critic framework to provide more stable and robust ways to directly optimize the
policy, overcoming challenges related to action space and variance.

Federated Reinforcement Learning. Jin et al. (2022) introduced a FedRL framework with N
agents collaboratively learning a policy by averaging their Q-values or policy gradients. Khodadadian
et al. (2022) provided a convergence analysis of federated TD (FedTD) and Q-learning (FedQ) when
N agents interact with homogeneous environments. A similar FedTD was considered in Dal Fabbro
et al. (2023), and expanded to heterogeneous environments in Wang et al. (2023a). Woo et al. (2023)
analyzed (a)synchronous variants of FedQ in heterogeneous settings, and an asynchronous actor-critic
method was considered in Shen et al. (2023) with linear speedup guarantee only under i.i.d. samples.
Zhang et al. (2024) provided a finite-time analysis of FedSARSA with linear function approximation
(i.e., fixed feature representation). To facilitate personalization in heterogeneous settings, Jin et al.
(2022) proposed a heuristic personalized FedRL method where agents share a common model, but
make use of individual environment embeddings.

Personalized Federated Learning (PFL). In contrast to standard FL where a single model is
learned, PFL aims to learn N models specialized for N local datasets. Many PFL methods have been
developed, including but not limited to multi-task learning Smith et al. (2017), meta-learning Chen
et al. (2018), and various personalization techniques such as local fine-tuning Fallah et al. (2020),
layer personalization Arivazhagan et al. (2019), and model compression Bergou et al. (2022). Another
line of work Collins et al. (2021); Xiong et al. (2023) leveraged the common representation among
agents in heterogeneous environments to guarantee personalized models for federated supervised
learning.

Representation Learning in MDP. Representation learning aims to transform high-dimensional
observation to low-dimensional embedding to enable efficient learning, and has received increasing
attention in Markov decision processs (MDP) settings, such as linear MDPs Jin et al. (2020), low-rank
MDPs Modi et al. (2021); Agarwal et al. (2020) and block MDPs Zhang et al. (2022c). However,
it is open in the context of leveraging representation learning in PFedFL. In this work, we prove
that representation augmented PFedFL forms a general framework as a federated two-timescale
stochastic approximation with Markovian noise, which differs significantly from existing works, and
hence necessitates different proof techniques.

Multi-Agent Reinforcement Learning vs. Federated Reinforcement Learning. The advent
of Multi-Agent Reinforcement Learning (MARL) expanded RL’s applications, allowing multiple agents
to learn from interactions in cooperative, competitive, or mixed settings, opening new avenues for
complex applications and research Zhang et al. (2021). Multi-agent Reinforcement Learning (MARL)
addresses scenarios where multiple agents operate within a shared or interrelated environment,
potentially engaging in both cooperative and competitive behaviors. The complexity arises from each
agent needing to consider the strategies and actions of others, making the learning process highly
dynamic. Federated Reinforcement Learning (FedRL)Qi et al. (2021), contrasts with MARL by
focusing on privacy-preserving, distributed learning across agents that do not share their raw data.
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Algorithm 2 PFedTD-Rep
1: Input: Sampling policy πi,∀i ∈ [N ];
2: Initialize θθθi

0 = 000, Si
0,∀i ∈ [N ], and randomly generate ΦΦΦ ∈ R|S|×d with each row being unit-norm

vector;
3: for t = 0, 1, ..., T − 1 do
4: for i = 1, . . . , N do
5: for k = 1, . . . , K do
6: Sample observations Xi

t,k−1;
7: Set θθθi

t,k = θθθi
t,k−1 + αtg(θθθi

t,k−1,ΦΦΦt, Xi
t,k−1);

8: end for
9: Scale ∥θθθi

t+1∥ to B if ∥θθθi
t+1∥ > B, otherwise keep it unchanged;

10: Set ΦΦΦi
t+1/2 = ΦΦΦt + βth(θθθi

t+1,ΦΦΦt, {Xi
t,k−1}K

k=1);

11: Normalize ΦΦΦi
t+1/2 as ΦΦΦi

t+1/2 ←
ΦΦΦi

t+1/2
∥ΦΦΦi

t+1/2∥ ;
12: end for
13: ΦΦΦt+1 = 1

N

∑N
i=1 ΦΦΦi

t+1/2.
14: end for

Instead, these agents might contribute towards a centralized learning model without compromising
individual data privacy, addressing the unique challenges of learning from decentralized data sources.

B Pseudocode of PFedTD-Rep

In this section, we present the pseudocode of PFedQ-Rep as summarized in Algorithm 2.

C Application to Control Tasks in RL

The Q-function of agent i in environment Mi under policy πi are defined as Qi,πi(s, a) =
Eπi

[∑∞
k=0 γkRi(si

k, ai
k)|si

0 = s, ai
0 = a

]
. When the state and action spaces are large, it is com-

putationally infeasible to store Qi,πi(s, a) for all states or state-action pairs. One way to deal
with is to approximate the Q-function as Qi,πi(s, a) ≈ ΦΦΦ(s, a)θθθ, where ΦΦΦ ∈ R|S|×|A|×d is a feature
representation corresponding to states or state-actions, and θθθ ∈ Rd is a low-dimensional unknown
weight vector. When ΦΦΦ is given and known, this falls under the paradigm of RL or FedRL with
function approximation.

C.1 Preliminaries: Control in Federated Reinforcement Learning

Another task in RL is to search for an optimal policy, which is called a control problem, and one
commonly used approach is Q-learning Watkins & Dayan (1992). Under the FedRL framework, the
goal of a control problem is to let N agents collaboratively learn a policy π∗ that performs uniformly
well across N different environments, i.e., π∗ = arg maxπ

1
N

∑N
i=1 Eπi

[
V i,πi(si

0)|si
0 ∼ d0

]
, where d0 is

the common initial state distribution in these N environments. Similar to (1), this can be formulated
as the optimization problem in (16) to collaboratively learn a common (non-personalized) weight
vector θθθ ≡ θθθi,∀i ∈ [N ] when the feature representation ΦΦΦ(s, a),∀s, a are given.

L(θθθ) := min
θθθ

1
N

N∑
i=1

E
s∼µi,π∗

a∼π∗(·|s)

∥∥∥ΦΦΦ(s, a)θθθ −Qi,π∗
(s, a)

∥∥∥2
. (16)

Again, we use the superscript i to highlight heterogeneous environments P i among agents.



Published as a conference paper at RLC 2024

C.2 Control in Personalized FedRL with Shared Representations

The control problem in (16) aims to learn ΦΦΦ and {θθθi,∀i} simultaneously among all N agents via
solving the following optimization problem:

L(ΦΦΦ, {θθθi,∀i}) := min
ΦΦΦ

1
N

N∑
i=1

min
{θθθi,∀i}

E
s∼µi,πi,∗

a∼πi,∗(·|s)

∥∥∥f i(θθθi,ΦΦΦ(s, a))−Qi,πi,∗
(s, a)

∥∥∥2
. (17)

C.3 Algorithms

In this section, we present two realizations of our proposed PFedRL-Rep in Algorithm 1, one is
PFedQ-Rep as summarized in Algorithm 3, federated Q-learning with shared representations, and
the other is PFedDQN-Rep as outlined in Algorithm 4, federated DQN with shared representations.

Algorithm 3 PFedQ-Rep
Input: Sampling policy πi,∀i ∈ [N ].

1: Initialize θθθi
0 = 000, and si

0,∀i ∈ [N ], and randomly generate ΦΦΦ ∈ R|S||A|×d with each row being
unit-norm vector.

2: for t = 0, 1, ..., T − 1 do
3: for i = 1, . . . , N do
4: for k = 1, . . . , K do
5: Sample observations Xi

t,k−1 = (si
t,k, si

t,k−1, ai
t,k−1);

6: With fixed ΦΦΦt, update θθθi
t,k ← θθθi

t,k−1 + αt · (ri
t,k−1 + γ maxa ΦΦΦt(si

t,k+1, a)θθθi
t,k−1 −

ΦΦΦt(si
t,k−1)θθθi

t,k−1) ·ΦΦΦt(si
t,k−1, ai

t,k−1);
7: end for
8: Scale ∥θθθi

t+1∥ to B if ∥θθθi
t+1∥ > B, otherwise keep it unchanged.

9: if (s, a) ∈ Xi
t,k,∃k ∈ {0, . . . , K − 1} then

10: Update ΦΦΦi
t+1/2(s, a) = ΦΦΦi

t(s, a) + βt(r(s, a) + γ maxa ΦΦΦt(s′, a)θθθi
t+1 −ΦΦΦt(s, a)⊺θθθi

t+1) · θθθi
t+1;

11: else
12: ΦΦΦi

t+1/2(s, a) = ΦΦΦi
t(s, a);

13: end if
14: Normalize ΦΦΦi

t+1/2 as ΦΦΦi
t+1/2 ←

ΦΦΦi
t+1/2

∥ΦΦΦi
t+1/2∥ ;

15: end for
16: ΦΦΦt+1 ← 1

N

∑N
i=1 ΦΦΦi

t+1/2,∀i ∈ [N ].
17: end for

D Figure Illustrations

We present some figures to further highlight the proposed personalized FedRL (PFedRL) framework
with shared representations.

Schematic framework of conventional FedRL. We begin by introducing the conventional FedRL
framework Khodadadian et al. (2022), where N agents collaboratively learn a common policy (or
optimal value functions) via a server while engaging with homogeneous environments. Each agent
generates independent Markovian trajectories, as depicted in Figure 4.

Schematic framework for our proposed PFedRL with shared representations. We introduce
our proposed personalized FedRL (PFedRL) framework with shared representations in Figure 5. In
PFedRL, N agents independently interact with their own environments and execute actions according
to their individual RL component parameterized by ΦΦΦ and θθθi. Each agent i performs local update on
its local weight vector θθθi, while jointly updating the global shared feature representation ΦΦΦ through
the server. Similarly, the update follows the Markovian trajectories.
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Algorithm 4 PFedDQN-Rep
Initialize: The parameters (ΦΦΦ, θθθi) for each Q network Qi(s, a), the replay buffer Ri, and copy
the same parameter from Q network to initialize the target Q network Qi,′(s, a) for agent i,∀i ∈
[N ];

1: for episode e = 1, . . . , E do
2: Get the initial state of the environment;
3: for t = 0, 1, ..., T − 1 do
4: for i = 1, . . . , N do
5: for k = 1, . . . , K do
6: Select action at,k−1 according to ϵ-greedy policy with the current network Qi(st,k−1, a);
7: Execute action at,k−1, receive the reward r(st,k−1, at,k−1), and the environment state

transits to st,k;
8: Store the tuple (st,k−1, at,k−1, r(st,k−1, at,k−1, st,k) into the replay buffer Ri;
9: Sample N data tuples from the replay buffer Ri;

10: Update the local weight θθθi(t, k) by minimizing the loss compared with the target network
Qi,′ with fixed representation ΦΦΦt;

11: end for
12: Sample N data tuples from replay buffer Ri;
13: Update representation model locally by minimizing the loss compared with the target

network Qi,′ with fixed weights θθθt+1, and yield ΦΦΦi
t+1/2;

14: end for
15: Average the representation model from all agents, i.e., ΦΦΦt+1 := 1

N

∑N
i=1 ΦΦΦi

t+1/2;
16: end for
17: if mod(t, Ttarget) = 0 then
18: update the target network Qi,∗ be copy the up-to-date parameters of Q network Qi, ∀i ∈ [N ];
19: end if
20: end for

Figure 4: Schematic representation of FedRL, where N agents interact with homogeneous environ-
ments.

Motivation of Personalized FedRL. In the following, we also want to provide some examples
showing that the conventional FedRL framework may fail, as depicted in Figure 6. In Figure 6a, we
provide an example where three agents assess distinct policies within the same environment. In the
traditional FedRL framework, agents exchange the evaluated value functions via a central server,
leading to a unified consensus on value functions for three different policies. This enforced consensus
on value functions, despite the diversity in policies, is not optimal. In another scenario depicted in
Figure 6b, three agents each interact with their unique environments. The objective for each agent
is to learn an optimal policy tailored to its specific environment. However, within the traditional
FedRL framework, the central server mandates a uniform policy across all three agents, which clearly
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Figure 5: Our proposed PFedRL-Rep framework where N agents independently interact with
their own environments and take actions according to their individual RL component parameterized
by ΦΦΦ and θθθi. Agent i locally update weight vector θθθi while jointly updating the shared feature
representation ΦΦΦ through the central server. The update follows the Markovian trajectories.

contradicts the intended goal of achieving environment-specific optimization. This highlights the
necessity for personalized decision-making, a feature that conventional FedRL frameworks do not
accommodate.

(a) Agents evaluate difference policies in the same
environment.

(b) Agents learn optimal policies for heterogeneous
environments.

Figure 6: An illustrative example with three agents that demonstrates the conventional FedRL
framework fails to work.

Example of RL components that fit the proposed PFedRL with shared representations. In
the following, we aim to showcase examples of RL components that are compatible with our proposed
PFedRL framework featuring shared representations. An illustrative example of this framework is
presented in Figure 7. It is important to note that both the DQN architecture in Figure 7a and the
policy gradient (PG) approach in Figure 7b seamlessly integrate into our proposed framework. This
integration is achieved by designating the parameters of the feature extraction network as the shared
feature representation ΦΦΦ, and the parameters of the fully connected network, which either predict
the Q-values or determine the policy, as the local weight vector θθθ. This arrangement underscores the
adaptability of our framework to various RL methodologies, facilitating personalized learning while
maintaining a common foundation of shared representations.
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(a) When DQN meets the proposed framework. (b) When PG meets the proposed framework.
Figure 7: An illustrative example for the proposed framework. Notice that both the DQN in (a) and
policy gradient (PG) in (b) can be fitted into the proposed framework by treating the parameters of
the feature extraction network as the shared feature representation ΦΦΦ and the parameter of the fully
connected network which maps to the Q value of policy as the local weight vector θθθ.
E Assumptions, Definitions, and Lemmas

Our goal is to characterize the finite-time convergence of E[M({θθθi
t+1,∀i},ΦΦΦt)], the Lyapunov function

in (14). We start with some standard assumptions first.
Assumption E.1. Agent i’s Markov chain {Xi

t} is irreducible and aperiodic. Hence, there exists a
unique stationary distribution µi Levin & Peres (2017) and constants C > 0 and ρ ∈ (0, 1) such that
dT V (P (Xi

k|Xi
0 = x), µi) ≤ Cρk,∀k ≥ 0, x ∈ X , where dT V (·, ·) is the total-variation (TV) distance

Levin & Peres (2017).
Remark E.2. Assumption E.1 implies that the Markov chain induced by πi admits a unique stationary
distribution µi. This assumption is commonly used in the asymptotic convergence analysis of stochastic
approximation under Markovian noise Borkar (2009); Chen et al. (2019).

We can define the steady-state local TD update direction as

ḡ(θθθi,ΦΦΦ) := Esi
t∼µi,si

t+1∼P i

πi
(·|si

t)[g(θθθi,ΦΦΦ, Xi
t)],

h̄(θθθi,ΦΦΦ) := Esi
t∼µi,si

t+1∼P i

πi
(·|si

t)[h(θθθi,ΦΦΦ, Xi
t)]. (18)

Definition E.3 (Mixing time Chen et al. (2019)). Define τδ = maxi∈[N ] min{t ≥ 1 :
{∥E[g(θθθi,ΦΦΦ, Xi

t)|X0 = x]− ḡ(θθθi,ΦΦΦ)∥, ∥E[h(θθθi,ΦΦΦ, Xi
t)|X0 = x]− h̄(θθθi,ΦΦΦ)∥} ≤ δ(∥ΦΦΦ − ΦΦΦ∗∥+ ∥θθθi −

yi(ΦΦΦ∗)∥+1)}, ∀δ > 0.

Lemma E.4. g(θθθ,ΦΦΦ, X) in (8) is globally Lipschitz continuous w.r.t θθθ and ΦΦΦ uniformly in X, i.e.,
∥g(θθθ1,ΦΦΦ1, X)−g(θθθ2,ΦΦΦ2, X)∥ ≤ Lg(∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥),∀X ∈ X .
Lemma E.5. h(θθθ,ΦΦΦ, X) in (10) is globally Lipschitz continuous w.r.t θθθ and ΦΦΦ uniformly in X, i.e.,
∥h(θθθ1,ΦΦΦ1, X)−h(θθθ2,ΦΦΦ2, X)∥ ≤ Lh(∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥),∀X ∈ X .
Lemma E.6. yi(ΦΦΦ),∀i is Lipschitz continuous in ΦΦΦ, i.e., ∥yi(ΦΦΦ1)− yi(ΦΦΦ2)∥ ≤ Ly∥ΦΦΦ1 −ΦΦΦ2∥.
Remark E.7. The Lipschitz continuity of h guarantees the existence of a solution ΦΦΦ to the equilibrium
(12) for a fixed θθθ, while the Lipschitz continuity of g and yi ensures the existence of a solution θθθi of
(12) when ΦΦΦ is fixed.
Assumption E.8. There exists a ω > 0 such that ∀ΦΦΦ, θθθ and ∀ i:

⟨ΦΦΦ−ΦΦΦ∗, h̄(yi(ΦΦΦ),ΦΦΦ)⟩ ≤ −ω∥ΦΦΦ∗ −ΦΦΦ∥2,
〈
θθθi

t − yi(ΦΦΦt−1), ḡ(θθθi
t,ΦΦΦt−1)

〉
≤ −ω∥θθθ − yi(ΦΦΦ)∥2.

Remark E.9. Assumption E.8 guarantees the stability of the two-timescale update in (7) and (11),
and can be viewed as the monotone property of nonlinear mappings leveraged in Doan (2020); Chen
et al. (2019).
Lemma E.10. Under Assumption E.1, and Lemma E.4 and E.5, there exist constants C >
0, ρ ∈ (0, 1) and L1 = max(Lg, Lh, maxX g(θθθ∗,ΦΦΦ∗, X), maxX h(θθθ∗,ΦΦΦ∗, X)) such that τδ ≤
log(1/δ)+log(2L1Cd)

log(1/ρ) , and limδ→0 δτδ = 0.

E.1 Proof of Lemma E.4

Recall that for any observation X = (s, a, s′), the function g(θθθ,ΦΦΦ, X) defined in (8) is expressed as

g(θθθ,ΦΦΦ, X) := (r(s, a) + γΦΦΦ(s′)θθθ −ΦΦΦ(s)θθθ) ·ΦΦΦ(s)⊺,
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and hence we have the following inequality for any parameter pairs (θθθ1,ΦΦΦ1) and (θθθ2,λλλ2) with
X = (s, a, s′),

∥g(θθθ1,ΦΦΦ1, X)− g(θθθ2,ΦΦΦ2, X)∥
= ∥(r(s, a) + γΦΦΦ1(s′)θθθ1 −ΦΦΦ1(s)θθθ1) ·ΦΦΦ1(s)⊺ − (r(s, a) + γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)⊺∥
(a1)
≤ ∥(γΦΦΦ1(s′)θθθ1 −ΦΦΦ1(s)θθθ1) ·ΦΦΦ1(s)⊺ − (γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)⊺∥

+ ∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)⊺ − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)⊺∥
(a2)
≤ ∥(γΦΦΦ1(s′)θθθ1 −ΦΦΦ1(s)θθθ1)− (γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2)∥ · ∥ΦΦΦ1(s)∥

+ ∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)⊺ − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)⊺∥
(a3)
≤ (1 + γ) ∥θθθ1 − θθθ2∥+ ∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)⊺ − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)⊺∥

(a4)
≤ (1 + γ) ∥θθθ1 − θθθ2∥+ ∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)⊺ − (γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ2(s)⊺∥

+ ∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ2(s)⊺ − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)⊺∥
(a5)
≤ (1 + γ) ∥θθθ1 − θθθ2∥+

∥∥∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2)
∥∥∥ · ∥∥∥ΦΦΦ1(s)−ΦΦΦ2(s)

∥∥∥
+ ∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2)− (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2)∥ · ∥ΦΦΦ2(s)∥

(a6)
≤ (1 + γ)

∥∥∥θθθ1 − θθθ2

∥∥∥+
∥∥∥(γΦΦΦ1(s′)θθθ2 −ΦΦΦ1(s)θθθ2)

∥∥∥ · ∥ΦΦΦ1(s)−ΦΦΦ2(s)∥

+ ∥ΦΦΦ1(s′)−ΦΦΦ2(s′)∥ · ∥γθθθ2∥+ ∥ΦΦΦ1(s)−ΦΦΦ2(s)∥ · ∥θθθ2∥
≤ (1 + γ) ∥θθθ1 − θθθ2∥+ (2 + 2γ) ∥θθθ2∥ · ∥ΦΦΦ1 −ΦΦΦ2∥
(a7)
≤ Lg (∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥) ,

(a1) is due to the fact that ∥x+y∥ ≤ ∥x∥+∥y∥,∀x, y ∈ Rd, (a2) holds due to ∥x·y∥ ≤ ∥x∥·∥y∥,∀x, y ∈
Rd, (a3) comes from the fact and ∥ΦΦΦ1(s)∥ ≤ 1, ∥ΦΦΦ2(s)∥ ≤ 1∀s. (a4)− (a6) holds for the same reason
as (a1) − (a3). The last inequalty (a7) comes from the fact that θθθ is bounded by norm B and by
setting Lg := max(1 + γ, (2 + 2γ)B).

E.2 Proof of Lemma E.5

Recall that for any observation X = (s, a, s′), the function h(θθθ,ΦΦΦ, X) defined in (10) is expressed as

h(θθθ,ΦΦΦ, X) := (r(s, a) + γΦΦΦ(s′)θθθ −ΦΦΦ(s)θθθ) · θθθ⊺,

and hence we have the following inequality for any parameter pairs (θθθ1,ΦΦΦ1) and (θθθ2,λλλ2) with
X = (s, a, s′),

∥h(θθθ1,ΦΦΦ1, X)− h(θθθ2,ΦΦΦ2, X)∥
= ∥(r(s, a) + γΦΦΦ1(s′)θθθ1 −ΦΦΦ1(s)θθθ1) · θθθ⊺1 − (r(s, a) + γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥
(b1)
≤ ∥(γΦΦΦ1(s′)θθθ1 −ΦΦΦ1(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1∥

+ ∥(γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥
(b2)
≤ ∥(γΦΦΦ1(s′)θθθ1 −ΦΦΦ1(s)θθθ1)− (γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1)∥ · ∥θθθ1∥

+ ∥(γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥
(b3)
≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ ∥(γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥

(b4)
≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ ∥(γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺2∥
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+ ∥(γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺2 − (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥
(b5)
≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ ∥(γΦΦΦ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1)∥ · ∥θθθ1 − θθθ2∥

+ ∥(γϕϕϕ2(s′)θθθ1 −ΦΦΦ2(s)θθθ1)− (γΦΦΦ2(s′)θθθ2 −ΦΦΦ2(s)θθθ2)∥ · ∥θθθ2∥
(b6)
≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ (1 + γ)∥θθθ1∥ · ∥θθθ1 − θθθ2∥+ (1 + γ)∥θθθ2∥ · ∥θθθ1 − θθθ2∥
≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ (1 + γ)(∥θθθ1∥+ ∥θθθ2∥) · ∥θθθ1 − θθθ2∥
(b7)
≤ Lh(∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥),

(b1) is due to the fact that ∥x+y∥ ≤ ∥x∥+∥y∥,∀x, y ∈ Rd, (b2) holds due to ∥x·y∥ ≤ ∥x∥·∥y∥,∀x, y ∈
Rd, (b3) comes from the fact and ∥ΦΦΦ1(s)∥ ≤ 1, ∥ΦΦΦ2(s)∥ ≤ 1∀s. (b4)− (b6) holds for the same reason
as (b1)− (b3). The last inequalty (b7) comes from by setting Lh := max((1 + γ)B2, (2 + 2γ)B).

E.3 Proof of Lemma E.6

Due to the norm-scale step (step 9) in Algorithm 2, we have

∥yi(ΦΦΦ1)− yi(ΦΦΦ2)∥ ≤ max
(∥θθθ∥≤B,∥θθθ′∥≤B)

∥θθθ − θθθ′∥ ≤ 2B. (19)

Since the representation matrices ΦΦΦ1 and ΦΦΦ2 are of unit-norm in each row, there exists a positive
constant Ly such that

∥yi(ΦΦΦ1)− yi(ΦΦΦ2)∥ ≤ Ly∥ΦΦΦ1 −ΦΦΦ2∥. (20)

E.4 Proof of Lemma E.10

Proof. Under Lemma E.4, we have

∥g(θθθ,ΦΦΦ, X)− g(yi(ΦΦΦ∗),ΦΦΦ∗, X)∥ ≤ L(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥),∀i ∈ [N ]. (21)

Similarly, under Lemma E.5, we have

∥h(θθθ,ΦΦΦ, X)− h(yi(ΦΦΦ∗),ΦΦΦ∗, X)∥ ≤ L(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥),∀i ∈ [N ]. (22)

Let L1 = max(L, maxX g(yi(ΦΦΦ∗),ΦΦΦ∗, X), maxX h(yi(ΦΦΦ∗),ΦΦΦ∗, X)), then according to (21)-(22), we
have

∥g(θθθ,ΦΦΦ)∥ ≤ L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1),

and

∥h(θθθ,ΦΦΦ)∥ ≤ L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1).

Denote hj(θθθ,ϕϕϕ, X) as the j-th element of h(θθθ,ΦΦΦ, X). Following Chen et al. (2019), we can show that
θθθ ∈ Rd, ΦΦΦ ∈ R|S|×d, and x ∈ X ,

∥E[h(θθθ,ΦΦΦ, X)|X0 = x]− Eµ[h(θθθ,ΦΦΦ, X)]∥

≤
d∑

j=1
|E[hj(θθθ,λλλ, X)|X0 = x]− Eµ[hj(θθθ,ΦΦΦ, X)]|

≤ 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)
d∑

j=1

∣∣∣∣∣E
[

hj(θθθ,ΦΦΦ, X)
2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥λ− λ∗∥+ 1)

∣∣∣X0 = x

]

− Eµ

[
hj(θθθ,ΦΦΦ, X)

2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥λ− λ∗∥+ 1)

] ∣∣∣∣∣
≤ 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)dC1ρk

1 ,
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where the last inequality holds due to Assumption E.1 with constants C1 > 0 and ρ1 ∈ (0, 1). To
guarantee 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)dC1ρk

1 ≤ δ(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1), we have

τδ ≤
log(1/δ) + log(2L1C1d)

log(1/ρ1) . (23)

Using the same procedures we can show that

∥E[g(θθθ,ΦΦΦ, X)|X0 = x]− Eµ[g(θθθ,ΦΦΦ, X)]∥ ≤ 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)dC2ρk
2 ,

hence we have

τδ ≤
log(1/δ) + log(2L1C2d)

log(1/ρ2) . (24)

By setting τδ as the largest value in (23) and (24), we arrive at the final result in Lemma E.10.

F Proofs of Main Results

F.1 Proof of Theorem 4.1

For notational simplicity, in the proofs, we use h(θθθi
t+1,ΦΦΦt) to denote h(θθθi

t+1,ΦΦΦt, {Xi
t,k−1}K

k=1), and
g(θθθi

t,k−1,ΦΦΦt) to denote g(θθθi
t,k−1,ΦΦΦt, Xi

t,k−1). In the following, we first focus on the update of the
global representation ΦΦΦt and characterize the drift of it.

F.1.1 Drift of ΦΦΦt

The drift of ΦΦΦt is given in the following lemma.
Lemma F.1. The drift between ΦΦΦt+1 and ΦΦΦt is given by

E[∥ΦΦΦt+1 −ΦΦΦ∗∥2]

= E[∥ΦΦΦt −ΦΦΦ∗∥2] + β2
t

N2E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)

∥∥∥∥∥
2

︸ ︷︷ ︸
T erm1

+ 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(θθθi
t+1,ΦΦΦt)⟩

]
︸ ︷︷ ︸

T erm2

+ 2βtE

[
⟨ΦΦΦt −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt)⟩
]

︸ ︷︷ ︸
T erm3

. (25)

Proof. Based on the update of ΦΦΦt in (11), We have the following equation

E[∥ΦΦΦt+1 −ΦΦΦ∗∥2]− E[∥ΦΦΦt −ΦΦΦ∗∥2]
= E[∥ΦΦΦ∗∥2 + ∥ΦΦΦt+1∥2 − 2⟨ΦΦΦ∗,ΦΦΦt+1⟩]− E[∥ΦΦΦ∗∥2 + ∥ΦΦΦt∥2 − 2⟨ΦΦΦ∗,ΦΦΦt⟩]
= E[∥ΦΦΦt+1∥2]− E[∥ΦΦΦt∥2]− 2⟨ΦΦΦ∗,ΦΦΦt+1 −ΦΦΦt⟩]
= E[⟨ΦΦΦt+1 −ΦΦΦt,ΦΦΦt+1 + ΦΦΦt⟩]− 2⟨ΦΦΦ∗,ΦΦΦt+1 −ΦΦΦt⟩]
= E[⟨ΦΦΦt+1 −ΦΦΦt,ΦΦΦt+1 −ΦΦΦt⟩] + 2E[⟨ΦΦΦt+1 −ΦΦΦt,ΦΦΦt⟩]− 2⟨ΦΦΦ∗,ΦΦΦt+1 −ΦΦΦt⟩]

= β2
t

N2E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)

∥∥∥∥∥
2− 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)⟩

]
, (26)
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which directly leads to

E[∥ΦΦΦt+1 −ΦΦΦ∗∥2]

= E[∥ΦΦΦt −ΦΦΦ∗∥2] + β2
t

N2E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)

∥∥∥∥∥
2− 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)⟩

]
. (27)

Rearranging the last term yields the desired result.

In the following, we separately bound Term1 to Term3.

We first bound Term1 as follows.

Lemma F.2. For any t ≥ τ , we have

Term1 ≤ 4β2
t (L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2

t L2

N
E

[
N∑

i=1
∥θθθt+1 − yi(ΦΦΦt)∥2

]
+ 4β2

t δ2 (28)

Proof. Note that

Term1 = β2
t

N2E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)−
N∑

i=1
h(yi(ΦΦΦt),ΦΦΦ∗) +

N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ∗)

∥∥∥∥∥
2

triangular inequality

≤ 2β2
t

N2 E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)−
N∑

i=1
h(yi(ΦΦΦt),ΦΦΦ∗)

∥∥∥∥∥
2

︸ ︷︷ ︸
Lipschitz of h

+ 2β2
t

N2 E

∥∥∥∥∥
N∑

i=1
h(yi(ΦΦΦt),ΦΦΦ∗)

∥∥∥∥∥
2

(a1)
≤ 2β2

t L2

N2 E

[
2N

N∑
i=1

∥∥(θθθi
t+1 − yi(ΦΦΦt))

∥∥2 + 2N2 ∥(ΦΦΦt −ΦΦΦ∗)∥2

]

+ 2β2
t

N2 E

∥∥∥∥∥
N∑

i=1
h(yi(ΦΦΦt),ΦΦΦ∗)−

N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗) +
N∑

i=1
h(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2

≤ 4β2
t L2E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2

t L2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]

+ 4β2
t

N2 E

∥∥∥∥∥
N∑

i=1
h(yi(ΦΦΦt),ΦΦΦ∗)−

N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2

︸ ︷︷ ︸
Lipschitz of h, yi

+ 4β2
t

N2 E

∥∥∥∥∥
N∑

i=1
h(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2

(a2)
≤ 4β2

t L2E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2
t L2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
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+ 4β2
t L4E

[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 4β2

t

N2 E

∥∥∥∥∥
N∑

i=1
h(yi(ΦΦΦ∗),ΦΦΦ∗)−

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2

(a3)
≤ 4β2

t (L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2
t L2

N
E

[
N∑

i=1
∥θθθt+1 − yi(ΦΦΦt)∥2

]
+ 4β2

t δ2,

where the (a1) is due to ∥
∑N

i=1 xi∥2 ≤ N
∑N

i=1 ∥xi∥2, (a2) is due to the Lipschitz of functions h and
yi, and (a3) holds based on the mixing time property in Definition 4.3.

Next, we bound Term2 in the following lemma.
Lemma F.3. We have

Term2 ≤ βt(L/αt − 2ω)E[∥ΦΦΦ∗ −ΦΦΦt∥2] + βtαtL

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
. (29)

Proof. We have

Term2 = 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(θθθi
t+1,ΦΦΦt)⟩

]

= 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩
]

+ 2βtE

⟨ΦΦΦ∗ −ΦΦΦt,
1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)− h̄(θθθi
t+1,ΦΦΦt)⟩︸ ︷︷ ︸

Lipschitz of h


≤ 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩
]

+ 2βtLE

[
⟨ΦΦΦ∗ −ΦΦΦt,

1
N

N∑
i=1

(yi(ΦΦΦt)− θθθi
t+1)⟩

]
(b1)
≤ 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩
]

+ βtL/αtE[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ βtαtL

N2 E

[
∥

N∑
i=1

(θθθi
t+1 − yi(ΦΦΦt))∥2

]
(b2)
≤ 2βtE

[
⟨ΦΦΦt −ΦΦΦ∗,

1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩
]

+ βtL/αtE[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ βtαtL

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]

≤ βt(L/αt − 2ω)E[∥ΦΦΦ∗ −ΦΦΦt∥2] + βtαtL

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
,

where (b1) holds because 2xT y ≤ β∥x∥2 + 1/β∥y∥2,∀β > 0, (b2) is due to ∥
∑N

i=1 xi∥2 ≤
N
∑N

i=1 ∥xi∥2, and the last inequality is due to Assumption E.8.

Next, we bound Term3 in the following lemmas.



Published as a conference paper at RLC 2024

Lemma F.4. For all t ≥ τ we have

Term3 ≤ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)E[∥ΦΦΦt−τ −ΦΦΦt∥2]
+ (6βt/αt + 6βtαtδ

2(1 + L2) + 4βtαtL
2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 16βtαtL
2 + 6βtαtδ

2

N
E

[
N∑

i=1
∥θθθi,∗ − θθθt+1∥2

]
+ 11βtαtδ

2. (30)

Proof. We first decompose Term3 as follows

Term3 = 2βtE

[
⟨ΦΦΦt −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt)⟩
]

= 2βtE

[
⟨ΦΦΦt −ΦΦΦt−τ ,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt)⟩
]

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt)⟩
]

= 2βtE

[
⟨ΦΦΦt −ΦΦΦt−τ ,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt)⟩
]

︸ ︷︷ ︸
C1

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)−

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt−τ )⟩

]
︸ ︷︷ ︸

C2

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt−τ )− 1

N

N∑
i=1

h̄(θθθi
t+1,ΦΦΦt−τ )⟩

]
︸ ︷︷ ︸

C3

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1
N

N∑
i=1

h̄(θθθi
t+1,ΦΦΦt−τ )− 1

N

N∑
i=1

h̄(θθθi
t+1,ΦΦΦt)⟩

]
︸ ︷︷ ︸

C4

.

Next, we bound C1 as

C1 = 2βtE

[
⟨ΦΦΦt −ΦΦΦt−τ ,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt)⟩
]

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + βtαtE

∥∥∥∥∥ 1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)− h̄(θθθi

t+1,ΦΦΦt) + h̄(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 2βtαtE

∥∥∥∥∥ 1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)

∥∥∥∥∥
2

+ 2βtαtE

∥∥∥∥∥ 1
N

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)− h̄(θθθi
t+1,ΦΦΦt)

∥∥∥∥∥
2

= βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 2βtαt

N2 E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)

∥∥∥∥∥
2
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+ 2βtαtE

∥∥∥∥∥ 1
N

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)− h̄(θθθi
t+1,ΦΦΦt)

∥∥∥∥∥
2

Lemma F.2
≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 8βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2

+ 2βtαtE

∥∥∥∥∥ 1
N

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)− h̄(θθθi
t+1,ΦΦΦt)

∥∥∥∥∥
2

︸ ︷︷ ︸
Lipschitz of h

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 8βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2

+ 2βtαtL
2E

∥∥∥∥∥ 1
N

N∑
i=1

2(ΦΦΦ∗ −ΦΦΦt) + 2(θθθi
t+1 − yi(ΦΦΦ∗))

∥∥∥∥∥
2

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 8βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2

+ 4βtαtL
2E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4βtαtL

2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦ∗)∥2

]
= βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 8βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2 + 4βtαtL
2E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 4βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt) + yi(ΦΦΦt)− yi(ΦΦΦ∗)∥2

]
≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 8βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2

+ 4βtαtL
2E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8βtαtL

2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtL

4E[∥ΦΦΦ∗ −ΦΦΦt∥2]
= βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 4βtαtL

2(3 + 4L2)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 16βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2,

where the last inequality is due to the Lipschitz of the function yi.

Next, we bound C2 as follows.

C2 = 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)−

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt−τ )⟩

]
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≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + βtαtE

∥∥∥∥∥ 1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)−

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt−τ )

∥∥∥∥∥
2

︸ ︷︷ ︸
Lipschitz of h

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + βtαtL
2E[∥ΦΦΦt −ΦΦΦt−τ∥2]

= βt/αtE[∥ΦΦΦt−τ −ΦΦΦt + ΦΦΦt −ΦΦΦ∗∥2] + βtαtL
2E[∥ΦΦΦt −ΦΦΦt−τ∥2]

≤ 2βt/αtE[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2] + βtαtL
2E[∥ΦΦΦt −ΦΦΦt−τ∥2]

= (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2].

Similarly, C4 is bounded exactly same as C2, i.e.,

C4 ≤ (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2].

Next, we bound C3 as follows.

C3 = 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt−τ )− 1

N

N∑
i=1

h̄(θθθi
t+1,ΦΦΦt−τ )⟩

]

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + βtαt
1

N2E

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt−τ )−
N∑

i=1
h̄(θθθi

t+1,ΦΦΦt−τ )

∥∥∥∥∥
2

Definition 4.3
≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2]

+ βtαt
1

N2E

(Nδ ∥ΦΦΦt−τ −ΦΦΦ∗∥+ Nδ + δ

N∑
i=1

∥∥θθθi
t+1 − yi(ΦΦΦ∗)

∥∥)2
≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + 3βtαtδ

2E
[
∥ΦΦΦt−τ −ΦΦΦ∗∥2

]
+ 3βtαtδ

2

+ 3βtαtδ
2

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦ∗)

∥∥2
]

= βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + 3βtαtδ
2E
[
∥ΦΦΦt−τ −ΦΦΦ∗∥2

]
+ 3βtαtδ

2

+ 3βtαtδ
2

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt) + yi(ΦΦΦt)− yi(ΦΦΦ∗)

∥∥2
]

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + 3βtαtδ
2E
[
∥ΦΦΦt−τ −ΦΦΦ∗∥2

]
+ 3βtαtδ

2

+ 6βtαtδ
2

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt)

∥∥2
]

+ 6βtαtL
2δ2E

[
∥ΦΦΦt −ΦΦΦ∗∥2

]
≤ (2βt/αt + 6βtαtδ

2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + (2βt/αt + 6βtαtδ
2 + 6βtαtL

2δ2)E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 3βtαtδ
2 + 6βtαtδ

2

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt)

∥∥2
]

,

where the last inequality comes from E[∥ΦΦΦt−τ −ΦΦΦ∗∥2] ≤ 2E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2E[∥ΦΦΦt −ΦΦΦ∗∥2].

Hence, we have Term3 as follows

Term3 = C1 + C2 + C3 + C4

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 4βtαtL
2(3 + 4L2)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 16βtαtL
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ 8βtαtδ

2
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+ (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2]

+ (2βt/αt + 6βtαtδ
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2]

+ (2βt/αt + 6βtαtδ
2 + 6βtαtL

2δ2)E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 3βtαtδ
2 + 6βtαtδ

2

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt)

∥∥2
]

+ (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2]

≤ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)E[∥ΦΦΦt−τ −ΦΦΦt∥2]
+ (6βt/αt + 6βtαtδ

2(1 + L2) + 4βtαtL
2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 16βtαtL
2 + 6βtαtδ

2

N
E

[
N∑

i=1
∥yi(ΦΦΦt)− θθθi

t+1∥2

]
+ 11βtαtδ

2,

which completes the proof.

To bound Term3, we need to bound E[∥ΦΦΦt −ΦΦΦt−τ∥2], which is shown in the following lemma.
Lemma F.5. we have ∀t ≥ 2τ

E[∥ΦΦΦt −ΦΦΦt−τ∥2] ≤ 4τ2β2
0/α2

0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2
0L2B2τ2 + 8β2

0δ2τ2. (31)

Proof. The proof follows similar procedures of proof for Lemma 3 in Dal Fabbro et al. (2023). Starting
with

∥ΦΦΦ∗ −ΦΦΦt+1∥2 = ∥ΦΦΦ∗ −ΦΦΦt∥2 + β2
t

N2

∥∥∥∥∥
N∑

i=1
h(θθθi

t+1,ΦΦΦt)

∥∥∥∥∥
2

− 2βt⟨ΦΦΦ∗ −ΦΦΦt,
1
N

N∑
i=1

h(θθθi
t+1,ΦΦΦt)⟩

≤ (1 + βt/α0)∥ΦΦΦ∗ −ΦΦΦt∥2 + (βtα0 + β2
t )

N2

∥∥∥∥∥
N∑

i=1
hi

t(θθθi
t+1,ΦΦΦt)

∥∥∥∥∥
2

≤ (1 + βt/α0)∥ΦΦΦ∗ −ΦΦΦt∥2 + 2βtα0

N2

∥∥∥∥∥
N∑

i=1
hi

t(θθθi
t+1,ΦΦΦt)

∥∥∥∥∥
2

, (32)

where the first inequality holds due to 2xT y ≤ γ∥x∥2 + 1/γ∥y∥2,∀γ > 0, and the second inequality
holds since βtα0 ≥ β2

t . We then have the following inequality according to Lemma F.2,

E
[
∥ΦΦΦ∗ −ΦΦΦt+1∥2] ≤ (1 + βt/α0 + 8βtα0L2(1 + L2))E

[
∥ΦΦΦ∗ −ΦΦΦt∥2]

+ 8βtα0L2

N
E

[
N∑

i=1
∥θθθt+1 − yi(ΦΦΦt)∥2

]
+ 8βtα0δ2

≤ (1 + βt/α0 + 8βtα0L2(1 + L2))E
[
∥ΦΦΦ∗ −ΦΦΦt∥2]+ 8βtα0(L2B2 + δ2). (33)

By letting α0 ≤ 1
2L
√

2(1+L2)
, we have βt/α0 ≥ 8βtα0L2(1 + L2), and hence

E
[
∥ΦΦΦ∗ −ΦΦΦt+1∥2] ≤ (1 + 2β0/α0)E

[
∥ΦΦΦ∗ −ΦΦΦt∥2]+ 8β0α0(L2B2 + δ2). (34)

Therefore, for all t′ such that t− τ ≤ t′ ≤ t,

E[∥ΦΦΦ∗ −ΦΦΦt′∥2] ≤ (1 + 2β0/α0)τE[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 8β0α0(L2B2 + δ2)
τ−1∑
ℓ=0

(1 + 2β0/α0)ℓ. (35)

Using the fact that (1 + x) ≤ ex Dal Fabbro et al. (2023), if we let β0/α0 ≤ 1
8τ , we have

(1 + 2β0/α0)ℓ ≤ (1 + 2β0/α0)τ ≤ e0.25 ≤ 2,
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and
τ−1∑
ℓ=0

(1 + 32β2)ℓ ≤ 2τ.

Hence, we have

E[∥ΦΦΦ∗ −ΦΦΦt′∥2] ≤ 2E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 16β0α0τ(L2B2 + δ2).

Since ∥ΦΦΦt −ΦΦΦt−τ∥2 ≤ τ
∑t−1

ℓ=t−τ ∥ΦΦΦℓ+1 −ΦΦΦℓ∥2 = τ β2

N2

∑t−1
ℓ=t−τ ∥

∑N
i=1 hi

ℓ(θθθi
ℓ+1,ΦΦΦℓ)∥2, when t ≥ 2τ ,

we have ℓ ≥ τ and thus

E[∥ΦΦΦt −ΦΦΦt−τ∥2]

≤ τ
β2

N2

t−1∑
ℓ=t−τ

∥
N∑

i=1
hi

ℓ(θθθi
ℓ+1,ΦΦΦℓ)∥2

≤ τ

t−1∑
ℓ=t−τ

((4β2
0(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦℓ∥2] + 4β2

0L2B2τ2 + 4β2
0δ2τ2

≤ 4β2
0(L2 + L4)τ2(2E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 16β0α0τ(L2B2 + δ2)) + 4β2

0L2B2τ2 + 4β2
0δ2τ2

= 8β2
0(L2 + L4)τ2E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 4β2

0L2B2τ2 + 4β2
0δ2τ2

≤ τ2β2
0/α2

0E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 4β2
0L2B2τ2 + 4β2

0δ2τ2

≤ 2τ2β2
0/α2

0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 2τ2β2
0/α2

0E[∥ΦΦΦt −ΦΦΦt−τ∥2] + 4β2
0L2B2τ2 + 4β2

0δ2τ2.

Since 2τ2β2
0/α2

0 ≤ 1/2 when β0/α0 ≤ 1
8τ , we have

E[∥ΦΦΦt −ΦΦΦt−τ∥2] ≤ 4τ2β2
0/α2

0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2
0L2B2τ2 + 8β2

0δ2τ2.

This completes the proof.

Lemma F.6. Term3 is bounded as follows

Term3 ≤ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)(4τ2β2
0/α2

0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2
0L2B2τ2 + 8β2

0δ2τ2)
+ (6βt/αt + 6βtαtδ

2(1 + L2) + 4βtαtL
2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 16βtαtL
2 + 6βtαtδ

2

N
E

[
N∑

i=1
∥θθθi,∗ − θθθt+1∥2

]
+ 11βtαtδ

2.

Proof. Substituting the bound of E[∥ΦΦΦt −ΦΦΦt−τ∥2] in (31) into Term3 in Lemma F.4 yield the final
results.

Provided Term1 in Lemma F.2, Term2 in Lemma F.3, and Term3 in Lemma F.6, we have the
following lemma to characterize the drift between ΦΦΦt+1 and ΦΦΦt.
Lemma F.7. For t ≥ 2τ , the following holds

E[∥ΦΦΦ∗ −ΦΦΦt+1∥2]
≤ (1 + 4β2

t (L2 + L4) + (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)4τ2β2
0/α2

0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βt(L/αt − 2ω))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 4β2
t L2 + βtαtL + 16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑

i=1
∥θθθi,∗ − θθθt+1∥2

]
+ (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)(8β2

0L2B2τ2 + 8β2
0δ2τ2) + 4β2

t δ2 + 11βtαtδ
2.
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Proof. Substituting Term1, T erm2 and Term3 back into Lemma F.1, we have

E[∥ΦΦΦ∗ −ΦΦΦt+1∥2]

≤ E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2
t (L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2

t L2

N
E

[
N∑

i=1
∥θθθt+1 − yi(ΦΦΦt)∥2

]
+ 4β2

t δ2

+ βt(L/αt − 2ω)E[∥ΦΦΦ∗ −ΦΦΦt∥2] + βtαtL

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)(4τ2β2

0/α2
0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2

0L2B2τ2 + 8β2
0δ2τ2)

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 16βtαtL
2 + 6βtαtδ

2

N
E

[
N∑

i=1
∥θθθi,∗ − θθθt+1∥2

]
+ 11βtαtδ

2

= (1 + 4β2
t (L2 + L4) + (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)4τ2β2

0/α2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βt(L/αt − 2ω))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 4β2
t L2 + βtαtL + 16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑

i=1
∥θθθi,∗ − θθθt+1∥2

]
+ (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)(8β2

0L2B2τ2 + 8β2
0δ2τ2) + 4β2

t δ2 + 11βtαtδ
2.

This completes the proof.

F.1.2 Drift of θθθi
t,∀i.

Next, we characterize the drift between θθθi
t+1 and θθθi

t.
Lemma F.8. The drift between θθθi

t+1 and θθθi
t,∀i is given by

E[∥θθθi
t+1 − yi(ΦΦΦt)∥2] = E

∥∥∥∥∥θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt)

∥∥∥∥∥
2

︸ ︷︷ ︸
T erm4

+ E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2]︸ ︷︷ ︸
T erm5

+ 2E
[〈

θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt), yi(ΦΦΦt−1)− yi(ΦΦΦt)

〉]
︸ ︷︷ ︸

T erm6

. (36)

Proof. According to the update of θθθi
t in (7), we have

E[∥θθθi
t+1 − yi(ΦΦΦt)∥2] = E

∥∥∥∥∥θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt) + yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥∥∥∥
2

= E

∥∥∥∥∥θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt)

∥∥∥∥∥
2

︸ ︷︷ ︸
T erm4

+ E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2]︸ ︷︷ ︸
T erm5

+ 2E
[〈

θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt), yi(ΦΦΦt−1)− yi(ΦΦΦt)

〉]
︸ ︷︷ ︸

T erm6

, (37)



Published as a conference paper at RLC 2024

where the second inequality holds due to ∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩.

We next analyze each term in (37). First, we bound Term4 in the following lemma.
Lemma F.9. With t ≥ τ , we have Term4 bounded as

Term4 ≤ (1 + 2βt−1/αt − 2αtKω)E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+ (12α2
t δ2K2 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]
+ (12α2

t δ2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt −ΦΦΦt−1∥2]
+ 6α2

t δ2K2(1 + B2) + 2α2
t K2L2B2 + 2L2K2B2α3

t /βt−1 + α3
t /βt−1(3K2B2 + 3K2δ2). (38)

Proof. According to the definition of Term4, we have

Term4 = E

∥∥∥∥∥θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt)

∥∥∥∥∥
2

= E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ α2

tE

∥∥∥∥∥
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)

∥∥∥∥∥
2

+ 2αt

〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)
〉

= E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)
〉]

+ α2
tE

∥∥∥∥∥
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt) +
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(yi(ΦΦΦt),ΦΦΦt)

∥∥∥∥∥
2

≤ E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ 2α2

tE

∥∥∥∥∥
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)

∥∥∥∥∥
2

︸ ︷︷ ︸
Mixing time property in Definition 4.3

+ 2α2
tE

∥∥∥∥∥
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(yi(ΦΦΦt),ΦΦΦt)

∥∥∥∥∥
2

+ 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)
〉]

≤ E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ 6α2

t δ2K2E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 6α2

t δ2K2(1 + B2) + 2α2
t K2L2B2

+ 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)
〉]

︸ ︷︷ ︸
T erm41

+ 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)
〉]

︸ ︷︷ ︸
T erm42

, (39)

where the first inequality holds due to the fact that ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2, and the second
inequality is due to the mixing time property of function g as in Definition 4.3.
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Next, we bound Term41 as

Term41 = 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)
〉]

= 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
ḡ(θθθi

t,ΦΦΦt−1)
〉]

+ 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,ΦΦΦt−1)
〉]

≤ −2αtKωE
[
∥θθθi

t − yi(ΦΦΦt−1)∥2]
+ 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,ΦΦΦt−1)
〉]

≤ −2αtKωE
[
∥θθθi

t − yi(ΦΦΦt−1)∥2]+ βt−1/αtE
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+ α3
t /βt−1E

∥∥∥∥∥
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,ΦΦΦt−1)

∥∥∥∥∥
2 . (40)

In particular, we can bound E
[∥∥∥∑K

k=1 ḡ(θθθi
t,k−1,ΦΦΦt)−

∑K
k=1 ḡ(θθθi

t,ΦΦΦt−1)
∥∥∥2
]

as

E

∥∥∥∥∥
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,ΦΦΦt−1)

∥∥∥∥∥
2

≤ 2L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2E

∥∥∥∥∥
K∑

k=1
θθθt,k−1 − θθθt

∥∥∥∥∥
2

≤ 2L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2KE

[
K∑

k=1
∥θθθt,k−1 − θθθt∥2

]
≤ 2L2E

[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2K2B2. (41)

Substituting (41) back into (40), we have Term41 bounded as

Term41 ≤ −2αtKωE
[
∥θθθi

t − yi(ΦΦΦt−1)∥2]+ βt−1/αtE
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+ α3
t /βt−1(2L2E

[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2K2B2). (42)

We next bound Term42 as

Term42 = 2αtE

[〈
θθθi

t − yi(ΦΦΦt−1),
K∑

k=1
g(θθθi

t,k−1,ΦΦΦt)−
K∑

k=1
ḡ(θθθi

t,k−1,ΦΦΦt)
〉]

≤ βt−1/αtE
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ α3

t /βt−1(3K2B2 + 3K2δ2 + 3K2δ2E[∥ΦΦΦt −ΦΦΦ∗∥2])

≤ βt−1/αtE
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ α3

t /βt−1(3K2B2 + 3K2δ2)

+ 6K2δ2α3
t /βt−1E[∥ΦΦΦt−1 −ΦΦΦ∗∥2] + 6K2δ2α3

t /βt−1E[∥ΦΦΦt −ΦΦΦt−1∥2] (43)

Substituting Term41 and Term42 back into (39), we get the final result

Term4 ≤ E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ 6α2

t δ2K2E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 6α2

t δ2K2(1 + B2) + 2α2
t K2L2B2
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+ Term41 + Term42

= E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ 6α2

t δ2K2E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 6α2

t δ2K2(1 + B2) + 2α2
t K2L2B2

− 2αtKωE
[
∥θθθi

t − yi(ΦΦΦt−1)∥2]+ βt−1/αtE
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+ α3
t /βt−1(2L2E

[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2K2B2)

+ βt−1/αtE
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]+ α3

t /βt−1(3K2B2 + 3K2δ2)

+ 6K2δ2α3
t /βt−1E[∥ΦΦΦt−1 −ΦΦΦ∗∥2] + 6K2δ2α3

t /βt−1E[∥ΦΦΦt −ΦΦΦt−1∥2]

≤ (1 + 2βt−1/αt − 2αtKω)E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+ (12α2
t δ2K2 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]
+ (12α2

t δ2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt −ΦΦΦt−1∥2]
+ 6α2

t δ2K2(1 + B2) + 2α2
t K2L2B2 + 2L2K2B2α3

t /βt−1

+ α3
t /βt−1(3K2B2 + 3K2δ2) (44)

This completes the proof.

Next, we bound Term5 in the following lemma.
Lemma F.10. With t ≥ τ , we have Term5 bounded as

Term5 ≤ 4β2
t−1(L4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2] +

4β2
t−1L4

N
E

[
N∑

i=1
∥θθθt − yi(ΦΦΦt−1)∥2

]
+ 4L2β2

t−1δ2. (45)

Proof. We have

Term5 = E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2] = L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2]

=
L2β2

t−1
N2 E

∥∥∥∥∥
N∑

i=1
h(θθθi

t,ΦΦΦt−1)

∥∥∥∥∥
2

≤ 4β2
t−1(L4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2] +

4β2
t−1L4

N
E

[
N∑

i=1
∥θθθt − yi(ΦΦΦt−1)∥2

]
+ 4L2β2

t−1δ2, (46)

where the last inequality holds due to Lemma F.2.

Next, we bound Term6 in the following lemma.
Lemma F.11. We have Term6 bounded as

Term6 ≤ βt−1/αtTerm4 + αt/βt−1Term5. (47)

Proof.

Term6 = 2E
[〈

θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1,ΦΦΦt), yi(ΦΦΦt−1)− yi(ΦΦΦt)

〉]

≤ βt−1/αtE

∥∥∥∥∥θθθi
t − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθi
t,k−1

∥∥∥∥∥
2

︸ ︷︷ ︸
T erm4

+ αt/βt−1E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2]︸ ︷︷ ︸
T erm5

(48)
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Providing Term4 in Lemma F.9, Term5 in Lemma F.10, and Term6 in Lemma F.11, we
have the following result.
Lemma F.12. For t ≥ τ , the following holds

E[∥θθθi
t+1 − yi(ΦΦΦt)∥2]

≤

[
(1 + βt−1/αt)

(
(1 + 2βt−1/αt − 2αtKω)

+ (12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)

4β2
t−1L2

N

)
+ (1 + αt/βt−1)

4β2
t−1L4

N

]
· E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+
[

(1 + βt−1/αt)
(

(12α2
t δ2K2 + 6K2δ2α3

t /βt−1)

+ (12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)(4βt−1(L2 + L4))

)

+ (1 + αt/βt−1)4β2
t−1(L4 + L6)

]
· E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+ (1 + βt−1/αt)
(

(12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)4β2

t−1δ2

+ 6α2
t δ2K2(1 + B2) + 2α2

t K2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K2B2 + 3K2δ2)
)

+ (1− αt/βt+1) · 4L2β2
t−1δ2. (49)

Proof. According to (36), we have

E[∥θθθi
t+1 − yi(ΦΦΦt)∥2] = Term4 + Term5 + Term6

Lemma F.11
≤ (1 + βt−1/αt)Term4 + (1 + αt/βt−1)Term5

≤ (1 + βt−1/αt)
(

(1 + 2βt−1/αt − 2αtKω)E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+ (12α2
t δ2K2 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]
+ (12α2

t δ2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt −ΦΦΦt−1∥2]

+ 6α2
t δ2K2(1 + B2) + 2α2

t K2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K2B2 + 3K2δ2)
)

+ (1 + αt/βt−1)
(

4β2
t−1(L4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+
4β2

t−1L4

N
E

[
N∑

i=1
∥θθθt − yi(ΦΦΦt−1)∥2

]
+ 4L2β2

t−1δ2

)
Lemma F.10
≤ (1 + βt−1/αt)

(
(1 + 2βt−1/αt − 2αtKω)E

[∥∥θθθi
t − yi(ΦΦΦt−1)

∥∥2]
+ (12α2

t δ2K2 + 6K2δ2α3
t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]

+ (12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)

·
(

4β2
t−1(L2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2] +

4β2
t−1L2

N
E

[
N∑

i=1
∥θθθt − yi(ΦΦΦt−1)∥2

]
+ 4β2

t−1δ2
)
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+ 6α2
t δ2K2(1 + B2) + 2α2

t K2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K2B2 + 3K2δ2)
)

+ (1 + αt/βt−1)
(

4β2
t−1(L4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+
4β2

t−1L4

N
E

[
N∑

i=1
∥θθθt − yi(ΦΦΦt−1)∥2

]
+ 4L2β2

t−1δ2

)

=
[

(1 + βt−1/αt)
(

(1 + 2βt−1/αt − 2αtKω)

+ (12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)

4β2
t−1L2

N

)
+ (1 + αt/βt−1)

4β2
t−1L4

N

]
· E
[∥∥θθθi

t − yi(ΦΦΦt−1)
∥∥2]

+
[

(1 + βt−1/αt)
(

(12α2
t δ2K2 + 6K2δ2α3

t /βt−1)

+ (12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)(4βt−1(L2 + L4))

)

+ (1 + αt/βt−1)4β2
t−1(L4 + L6)

]
· E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+ (1 + βt−1/αt)
(

(12α2
t δ2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)4β2

t−1δ2

+ 6α2
t δ2K2(1 + B2) + 2α2

t K2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K2B2 + 3K2δ2)
)

+ (1 + αt/βt−1) · 4L2β2
t−1δ2. (50)

This completes the proof.

F.1.3 Final Step of Proof for Theorem 4.1

Now, we are ready to proof the desired result in Theorem 4.1.

According to the definition of Lyapunov function in (14), We have

M({θθθi
t+2},ΦΦΦt+1) = ∥ΦΦΦt+1 −ΦΦΦ∗∥2 + βt

αt+1
· 1

N

N∑
i=1
∥θθθi

t+2 − yi(ΦΦΦt+1)∥2

≤ (1 + 4β2
t (L2 + L4) + (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)4τ2β2

0/α2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βt(L/αt − 2ω))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 4β2
t L2 + βtαtL + 16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]
+ (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)(8β2

0L2B2τ2 + 8β2
0δ2τ2) + 4β2

t δ2 + 11βtαtδ
2

+ βt

αt+1
·

[
(1 + βt/αt+1)

(
(1 + 2βt/αt+1 − 2αt+1Kω)

+ (12α2
t+1δ2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)

4β2
t L2

N

)
+ (1 + αt+1/βt)

4β2
t L4

N

]

· 1
N

E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt)

∥∥2
]
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+
[

(1 + βt/αt+1)
(

(12α2
t+1δ2K2 + 6K2δ2α3

t+1/βt)

+ (12α2
t+1δ2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)(4βt(L2 + L4))

)

+ (1 + αt+1/βt)4β2
t (L4 + L6)

]
· E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ (1 + βt/αt+1)
(

(12α2
t+1δ2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)4β2

t δ2

+ 6α2
t+1δ2K2(1 + B2) + 2α2

t+1K2L2B2 + 2L2K2B2α3
t+1/βt + α3

t+1/βt(3K2B2 + 3K2δ2)
)

+ (1 + αt+1/βt) · 4L2β2
t δ2

]
. (51)

To simplify the notations, we define

D1 := (4β2
t (L2 + L4) + (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)4τ2β2

0/α2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βtL/αt)

+ βt

αt+1

[
(1 + βt/αt+1)

(
(12α2

t+1δ2K2 + 6K2δ2α3
t+1/βt)

+ (12α2
t+1δ2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)(4βt(L2 + L4))

)

+ (1 + αt+1/βt)4β2
t (L4 + L6)

]
, (52)

and

D2 := 4β3
t /αt+1L2 + α2

t L + 16α2
t L2 + 6αtαtδ

2

+
[(

(2βt/αt+1) + (12α2
t+1δ2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)

4β2
t L2

N

)
+ (1 + αt+1/βt)

4β2
t L4

N

]

+
[

βt/αt+1

(
(1 + 2βt/αt+1 − 2αt+1Kω)

+ (12α2
t+1δ2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)

4β2
t L2

N

)
+ (1 + αt+1/βt)

4β2
t L4

N

]
. (53)

Since D1 is of higher orders of o(βt) and D2 is of higher order of o(αt+1), we can let D1 ≤ ωβt and
D2 ≤ Kωαt+1. Therefore, we have

M({θθθi
t+2},ΦΦΦt+1) ≤ (1− ωβt)M({θθθi

t+1},ΦΦΦt)

+ (144τ2K2L2δ2 + 4L4/N)βtαt+1

[
E[∥ΦΦΦt −ΦΦΦ∗∥2] + 1

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt)

∥∥2
]]

+ 4αt+1βtK
2(3δ2(1 + B2) + L2B2) + 2α2

t+1(3K2B2 + 3K2δ2 + 2L2K2B2) + 8αt+1βtδ
2

≤ (1− ωβt)M({θθθi
t+1},ΦΦΦt)

+ (144τ2K2L2δ2 + 4L2/N)βtαt

[
E[∥ΦΦΦt −ΦΦΦ∗∥2] + 1

N
E

[
N∑

i=1

∥∥θθθi
t+1 − yi(ΦΦΦt)

∥∥2
]]

+ 4αtβtK
2(3δ2(1 + B2) + L2B2) + 2α2

t (3K2B2 + 3K2δ2 + 2L2K2B2) + 8αtβtδ
2, (54)
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where the first inequality holds by omitting the higher order of learning rates, and the second
inequality holds due to the decreasing learning rates of αt.

We now set the proper decaying learning rates. Let αt = α0/(t + 2)5/6 and βt = β0/(t + 2). We then
have

(t + 2)2 · (1− ωβt) = (t + 2)2(1− ωβ0)/(t + 2) ≤ (t + 1)2, (55)

if ωβo < 2. In addition, we have the following inequalities

(t + 2)2 · αtβt ≤ α0β0(t + 2)1/3,

(t + 2)2 · α2
t = α2

0(t + 2)2.

Hence, multiplying both sides with (t + 2)2, we have

(t + 2)2M({θθθi
t+2},ΦΦΦt+1) ≤ (t + 1)2M({θθθi

t+1},ΦΦΦt)

+ (144τ2K2L2δ2 + 4L2/N)α0β0(t + 2)1/3

[
E[∥ΦΦΦt −ΦΦΦ∗∥2] + 1

N
E

[
N∑

i=1
∥θθθi

t+1 − yi(ΦΦΦt)∥2

]]
+ (4α0β0K2(3δ2(1 + B2) + L2B2) + 2α2

0(3K2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ2)(t + 2)1/3.

Summing the above equation from t = 0, . . . , T , we have

(T + 2)2M({θθθi
t+2},ΦΦΦt+1) ≤M({θθθi

1},ΦΦΦ0)

+ (144τ2K2L2δ2 + 4L2/N)α0β0(T + 2)4/3

[
E[∥ΦΦΦ0 −ΦΦΦ∗∥2] + 1

N
E

[
N∑

i=1
∥θθθi

1 − yi(ΦΦΦ0)∥2

]]
+ (4α0β0K2(3δ2(1 + B2) + L2B2) + 2α2

0(3K2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ2)(T + 2)4/3.

Dividing both sides by (T + 2)2, we have

M({θθθi
t+2},ΦΦΦt+1) ≤ M({θθθi

1},ΦΦΦ0)
(T + 2)2

+ (144τ2K2L2δ2 + 4L2/N)α0β0(T + 2)−2/3

[
E[∥ΦΦΦ0 −ΦΦΦ∗∥2] + 1

N
E

[
N∑

i=1
∥θθθi

1 − yi(ΦΦΦ0)∥2

]]
+ (4α0β0K2(3δ2(1 + B2) + L2B2) + 2α2

0(3K2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ2)(T + 2)−2/3.

This completes the proof.

F.2 Proof of Corollary 4.3

If α0 = β0 = o(N−1/3K−1/2), we have

M({θθθi
t+2},ΦΦΦt+1) ≤ O

(
1

(T + 2)2 + 1
N2/3(T + 2)2/3 + 1

K2N5/3(T + 2)2/3 + 1
K2N2/3(T + 2)2/3

)
,

which is dominated by O
(

1
N2/3(T +2)2/3

)
if T 2 > N .

G Additional experiment details

PFedDQN-Rep in CartPole Environment. We evaluate the performance PFedDQN-Rep (see
Appendix B) in a modified CartPole environment Brockman et al. (2016). Similar to Jin et al. (2022),
we change the length of pole to create different environments. Specifically, we consider 10 agents with
varying pole length from 0.38 to 0.74 with a step size of 0.04. We compare PFedDQN-Rep with (i)
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Table 2: Parameter setting

Parameter Description
Input size 4

Hidden size 128× 128× 128
Output size 2

Activation function ReLu
Number of episodes 500

Batch size 64
Discount factor 0.98

ϵ greedy parameter 0.01
Target update 30

Buffer size 10000
Minimal size 500
Learning rate 0.002, decays every 100 episodes
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Figure 8: Comparison of control by DQN, FedDQN and PFedDQN-Rep in Cartpole Environments.

a conventional DQN that each agent learns its own environment independently; and (ii) a federated
version DQN (FedDQN) that allows all agents to collaboratively learn a single policy (without
personalization). We randomly choose one agent and present its performance in Figure 3(top)(a).
The results of the other agents are presented in Figure 8. Again, we observe that our PFedDQN-Rep
achieves the maximized return much faster than the conventional DQN due to leveraging shared
representations among agents; and obtains larger reward than FedDQN, thanks to our personalized
policy. We further evaluate the effectiveness of shared representation learned by PFedDQN-Rep
when generalizes it to a new agent. As shown in Figure 3(top)(b), our PFedDQN-Rep generalizes
quickly to the new environment. Detailed parameter settings can be found in Table 2.

PFedDQN-Rep in Acrobot Environment. We further evaluate FedDQN-Rep in a modified
Acrobot environment Brockman et al. (2016). The pole length is adjusted with [-0.3, 0.3] with a
step size of 0.06, and the pole mass with be adjusted accordingly Jin et al. (2022). The same two
benchmarks are compared as in Figure 3(top). The parameter setting remains the same except
number of episodes decreases to 100. Similar observations can be made from Figure 3(bottom) and
Figure 9 as those for the Cartpole enviroments.
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Figure 9: Comparison of control by DQN, FedDQN and PFedDQN-Rep in Acrobot Environments.


