© o N O g A~ W N =

Emergent World Beliefs: Exploring Transformers in
Stochastic Games

Anonymous Author(s)
Affiliation
Address

email

Abstract

Transformer-based large language models (LLMs) have demonstrated strong rea-
soning abilities across diverse fields, from solving programming challenges to
competing in strategy-intensive games such as chess. Prior work has shown that
LLMs can develop emergent world models in games of perfect information, where
internal representations correspond to latent states of the environment. In this paper,
we extend this line of investigation to domains of incomplete information, focusing
on poker as a canonical partially observable Markov decision process (POMDP).
We pretrain a GPT-style model on Poker Hand History (PHH) data and probe its in-
ternal activations. Our results demonstrate that the model learns both deterministic
structure—such as hand ranks—and stochastic features—such as equity—without
explicit instruction. Furthermore, by using primarily nonlinear probes, we demon-
strated that these representations are decodeable and correlate with theoretical
belief states, suggesting that LLMs are learning their own representation of the
stochastic environment of Texas Hold’em Poker.

1 Introduction

Current transformer-based large language models (LLMs) have achieved breakthrough results across
various tasks, ranging from answering industry programming questions to solving olympiad-level
problems. [Tschisgale et al.,[2025| Jain et al.,|2024]. The ability of LLMs to complete these tasks
lies in their advanced reasoning capabilities, which are extremely evident when playing reasoning-
intensive games such as chess [Zhang et al.| 2025].

Despite these achievements in LLM reasoning capabilities, the internal execution of their strategies
remains a "black-box". Recently, research on LLMs with internal world representations has grown
to demonstrate higher-level LLM understanding in games as seen in|Karvonen|[2024] and [Li et al.
[2024]. The findings of |Li et al.|[2024]] demonstrate the OthelloGPT model’s ability to develop its
own internal representation of the game states and rules of Othello from move strings in a strictly
deterministic, perfect-information setting, with the hope that natural-language models are learning
broader semantic "world representations". In this paper, we extend this analysis to world models
in games of incomplete information, in particular Poker, to explore how LLMs intrinsically model
uncertainty in a Bayesian fashion and provide new insights into their decision-making process.

Our paper’s main contributions include: The (1) extension of LLM internal world representation
to games of incomplete information and (2) a quantifiable understanding of circuits/features
that underlie an LLM’s "'belief state'' for partially observable Markov Decision Processes
(explored through Poker). We defer a theoretical analysis of the second focus to appendix section
and a further discussion on LLM world models to
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2 Related Works

This paper builds upon the work of |[Karvonen! [2024], L1 et al.| [2024]] and Nanda et al.| [2023]]
who trained language models to play complete information games such as Chess and Othello. |Li
et al.| [2024] demonstrated that OthelloGPT, a LLM trained on sequences of legal moves in Othello
spontaneously developed an internal representation of the game board that could be extracted with
nonlinear probes. Later it was demonstrated by Nanda et al.|[2023]] that linear probes could extract
this representation as well. [Karvonen|[2024] extended these findings from Othello to the game of
Chess as well, and also demonstrated models that developed these world representations also had the
capability to understand and estimate latent variables such as player skill.

3 Poker Model

As a foundation for our studies on LLMs in POMDPs/stochastic games, we pretrain a GPT-style
architecture on Poker games, using the Poker Hand History (PHH) format [Kim| [2024]] (see Appendix

D).
3.1 Dataset

As noted by past papers exploring emergent world representations such as |Karvonen| [2024]], dataset
size plays a large role in probe results. Due to the unavailability of large and complete poker hand
datasets, we opted to generate our own. We did this by utilizing a large number of game simulations
to determine poker equity[Billings et al.,|1999] which then drives decision making. Our simulation
script generates legal six-player No-Limit Texas Hold’em hands in PHH format. To start each hand,
we give each player fresh stacks and randomly initialize their playing style to ensure that there is
variation in agent behavior. Agents use a combination of simulation equity estimates and heuristics
based on their randomly initialized playing style to make decisions, driving realistic and diverse poker
games.

3.2 Training

We fine-tuned a causal transformer language model based on GPT-2 [Radford et al.,|2019] using a
PHH-formatted dataset comprising over two million synthetically generated poker trajectories, as
described above. The model retained the GPT-2 base configuration, with 12 attention heads and a hid-
den dimensionality of 768. Each hand was tokenized using a custom PreTrainedTokenizerFast
vocabulary. During preprocessing, for a subset of tokens, we insert a reserved special <GAP> token in
the input and shift the replaced original token to appear following a special <ANS> token later in the
sequence. In training, we compute loss exclusively on the tokens that follow <ANS> to ensure proper
loss calculation.

Optimization used AdamW with 87 = 0.9, 85 = 0.95, and ¢ = 1078, with a commonly used
learning rate of 5 x 10~°. We trained for 13 epochs (training was paused after validation loss stopped
improving), using an effective batch size of 128 (minibatch size 64 with gradient accumulation of
2). Checkpoints were saved every 5,000 steps and the best-performing checkpoint by validation loss
was stored separately. We used a 95-5 train-test split for model training. See Appendix [G|for more
training details.

4 Probing Internal Representations

We distinguish between two types of internal representations in our analysis: deterministic represen-
tations, which capture absolute aspects like hand rank and actions, and stochastic representations-
such as equity- to extract the model’s internal belief state of the underlying Poker POMDP
(Shai et al.| [2024]]). To capture these results, we probe internal activations using a linear clas-
sifier probe and a two-layer multilayer perceptron (MLP), a technique frequently used ([Li et al.,
2024, |Hernandez and Andreas, |2021]]). The function of a linear probe used for our determinis-
tic model is pp(x!) = argmax(Wxl), where § = {W € RE*F}, where F is the number of
dimensions of the input activation vector z}. The function used for our two-layer MLP probe is
po(zl) = argmax(W; ReLU(Waal)), where § = {W; € REH W, ¢ R¥*F} [ is the number
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of hidden dimensions for the nonlinear probes, where C' denotes the number of classes under consid-
eration for identification (typically C' = 4 in our context). For our stochastic representation probes,
argmax was not used as the output was continuous. Overall, the MLP probe achieved higher accuracy
than the linear probe, consistent with the findings of |Li et al.| [2024]].

4.1 Deterministic World Model

Expanding on|L1 et al.|[2024]], we extract basic deterministic game features such as hand-rank through
activation probing. Hand-rank represents the categorical value of a player’s hole cards in the context
of board cards and is strictly deterministic in our setting. We train a separate probe on each layer of
the model to note any possible variations between layers that may signify that layer’s responsibility
in output generation. To prevent over-representation of frequent hand-ranks (e.g. high_card and pair)
and misidentification of internal representational states, we balanced the dataset by capping each
class at the 40th percentile of unique hand-rank counts (Appendix [H| for more details on this). The
linear probe achieves 80% accuracy for identifying hand-rank, while the MLP reaches 98% accuracy
(Icl similar to results shown in[Li et al.| [2024]]. These results are measured on a dataset excluded
from training of the GPT-based model as well as separate from probe training (extended results in
Appendix [J). As shown in Figure[Ic] the prominent diagonal in the confusion matrix indicates high
class-wise accuracy, demonstrating that the internal activations of the model reliably encode the rank
of the hand, which implies that the model is developing an internal representation of poker hand
states, rather than just memorizing statistics.

Layer 00 Confusion Matrix Layer 00 Confusion Matrix Layer 00 Confusion Matrix

aaaaaaaaaaaaaaaaaaaaaaaaaaa

(a) MLP probe hand-rank identifi- (b) MLP probe hand-rank identifi- (c) MLP probe hand-rank identifi-
cation on Layer 0 — 30th percentile cation on Layer O — 35th percentile cation on Layer 0 — 40th percentile
equation. equation. equation.

Figure 1: MLP probe confusion matrices for hand-rank identification on Layer O using different
percentile equations. Representation of rarer hand-ranks is improved with lower percentiles. See
Appendix E] for additional deterministic experimental results.

4.2 Stochastic World Model

To demonstrate our hypothesis of the language model having internal representations corresponding
to the internal representation of the belief state over the POMDP, we trained a two-layer MLP
using simulation based equity estimations [Billings et al., |[1999] as our label. For this dataset, we
intentionally masked out all hole cards except for those belonging to player one. From our trained
probe, we were able to achieve a correlation coefficient of 0.50 on our test dataset predictions (Figure
[2). This correlation between model activations and the predicted winning potential of a given hand
demonstrates that our GPT model has spontaneously developed some internal representation of the
hand strength.

4.3 Activation Maps

As a validation of the LLM’s world representation, we observe its ability to discern hands and
patterns of different strategic value in poker. We visualized activations using PCA, t-SNE, and
UMARP (see Appendix [K]for extended results). Figure [3b]reveals distinct clusters, indicating that the
model organizes its representations in accordance with hand rank, pairs, and three-of-a-kind clusters
closely, thus demonstrating its ability to learn game-level concepts from unsupervised data. Note that
the presence of multiple clusters for hand-ranks such as pair indicates that the model is learning a
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Figure 2: Scatter plot of predicted versus true equity values using the MLP probe on layer 11.

broader representation of pair, where each cluster likely refers to a subset of pairs (the types of cards
encompassed in the pair).
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(a) t-SNE visualization of Layer 2 activations. (b) t-SNE visualization of Layer O activa-
Points represent a single hand colored by tions. Points represent a single hand colored
rank. by rank. Note the two_pair cluster near the

top.

Figure 3: t-SNE visualized activation plots. Activations are clustered by hand-rank and conceptual
similarity.

5 Limitations

Dataset size remains a core limitation of our experiments, as with our generation method it becomes
computationally expensive to generate extremely large amounts of data. The size of our dataset
impacts the model accuracy on its task as well as results obtained from probes 2024].
Our deterministic probing analysis is also limited by this factor, as there are insufficient examples of
rarer hands such as straights or flushes in our generated datasets for us to accurately probe for them.
Additionally, the process for generating data may be overly simplified in relation to the complexity
of poker interactions, potentially impacting analysis results. Finally, there are no guarantees that
current results regarding LLM beliefs of the Poker POMDP are able to be extended to analysis of
new stochastic poker variables.

6 Conclusion and Future Works

We demonstrated that a GPT-2-based model trained on PHH-style data can develop a deterministic
understanding of the game state as well as an understanding of stochastic game elements. This brings
us closer to extending the emergent world model hypothesis to games characterized by incomplete
information. To extend our work, we hope to further scale our base LM and formalize our intuitions of
LLM Bayesian behavior—in particular, extracting LLM beliefs of the Poker POMDP (see Appendix
for theory)—and better understand the structure of LLM predictive world representations through
SAEs and further probing experiments.
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A Appendix

Our code can be found at:

* https://anonymous.4open.science/r/poker-interp-4653/

B Theoretical Justification of Bayesian World Models

In this section, we motivate LLMs as MLE learners in a POMDP setting, and formalize the connection
between these LLLM probabilistic "belief states" and concrete residual stream activations that are
separated through linear probes. Past work such as|Shai et al.|[2024] demonstrates that geometry of a
Hidden Markov Model’s belief states can be recovered in the residual stream of a transformer. In this
work, we formalize the meaning of an LLM "belief state" for next-token prediction that represents
the trajectory of partially observable Markov processes.

B.1 Belief State and Poker MDP Definitions

Consider Z as some unobserved latent world state in the LLM (i.e. the board state in Othello, hidden
cards in Poker, semantic topics of conversation in NLP) along with a history of tokens up to time t as
h = (x1,--- ,x¢). The true next token distribution is given as

p(zegalhe) = Zp(l“tﬂ |2, he)p(z|he)

So the next token depends on our distribution over latent states p(z|h¢), which we encode as our LLM
belief state. For an ideally trained LLM in deterministic games of chess/Othello, this distribution is
just an indicator of the deterministic board state given a sequence of moves, but for games such as
poker we uncover a nontrivial distribution over latent space.

In short, for next-token prediction in a POMDP setting, the LLM must carry information at least as
strong as p(z|h;). We view Poker as such a partially observable Markov Decision Process (POMDP),
defining states S as the full game specification with a partially observable subset O representing
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outside cards and behaviors, actions A as a single player’s options (raising, folding, calling, etc), and
the transition dynamics T representing stochasticity over dealt cards as well as other player’s actions.

From standard POMDP analysis, we recall that the belief state is a sufficient statistic for decision-
making (in our setting, next-token prediction) [Kaelbling et al.|[1998].

B.2 Linearity of Predictions in the Belief State

For POMDPs over deterministic games as explored in [Li et al.|[2024]], we can justify the use of linear
probing through a theoretical analysis as predictions of the future as linear functions on the LLM’s
belief state.

Linearity Lemma: Given our Poker POMDP M = (S, A, O, T, Q) and a policy 7 (our sequence
model trained on poker games), let H; be the history up to ¢ and b; € A(S) the belief b;(s) =
Pr(S; = s | Ht). For any finite-horizon future event F' measurable w.r.t. (Sty1.7, Oty1.7, At.T—1)

under 7, there exists a vector vg € RIS! such that
Pr(F | Hy) = th(s) vp(s) = (be,vp).
SES

In other words, our prediction of future events given our current history under the policy is linear in
our defined belief state. In particular, then for each observation o € O,

F:Tr(OHl =o0 | Ht) = <bt7'Uo>7

where v, is a per-observation vector of weights (in practice, learned by a linear probe) so the entire
next-observation distribution is an affine linear map of b;.

Proof:
Let f = 1F be the indicator of F'. By the tower rule,

E.lf | H] = Zf;r(St =5 | H)E.[f| S, =s, Hy.
seS

In a POMDP, the controlled Markov property implies that, given S; = s (and with policy 7 fixed),
the distribution of (S¢11.7, O¢t1.7, Ar.7—1) does not depend on the specific past H; (i.e. our token
histories); hence E,[f | St = s, Ht] = E.[f | St = s]vr(s) by conditional independence.

Then, this directly gives us the probabilities as Pr(F | Hy) = > b:(s) vp(s) = (b, vp). Taking
F = {041 = o} yields the desired linearity of observation result.

So the PODMP belief state "automatically” gives us linearity! Intuitively, if the transformer trained
on next-token prediction does in fact hold its belief state in the residual stream, then any predictive
probe should be linear in these activations. Consider the following toy example:

Suppose we have a simple binary hypothesis testing Z = {0, 1} to denote which coin is in use among
two coins with probabilities p1, po. Conditional on Z, our observations 1, - - ,x; € {H, T} are id
with P(z; = H|Z = z) = p,,P(a; =T|Z = z) =1 —p,,z € {0,1}. Our log likelihood ratio
(LLR) of one hypothesis over the other evolves with ratios log(Z—;) and log( }:z; ). Our log likelihood
ratio 7, by assumption exists in the residual stream of our sequence prediction model.

How does the residual stream '"provide'' the belief coordinate? Our connection between linear
probes and POMDP belief states lies in the LLM’s residual stream, motivated from the theory of
transformer circuits |Anthropic| [2021]. Let 7, € R denote the residual stream at position ¢. Assume
the model stores 7, along a direction v € R%:

e R To + v+ g =19 + (77t—1 +LLR(xt)>v + &, )

so residual addition implements evidence accumulation. With a fixed unembedding U € R?*IV!, the
logits satisfy

logits(z | £1.4) = U} ri +co ~ (U] v)n: + const, )
and so we get a linear function of the belief coordinate. Ultimately, we get that a linear probe w can
recover 7, from 7, via ), = w ' ry.
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Related works explore the theoretical justifications of linear probes in partially observable processes.
Two complementary works make a precise claim in this direction: predictions are linear functionals
of state.

POMDPs. Under a fixed policy, the belief b; (posterior over latent state) is a sufficient statistic
for prediction/control; for any finite-horizon event F', Pr(F | H;) = (b:, vr) for some vector vp
determined by the dynamics/observations [Kaelbling et al., |{1998] [Smallwood and Sondik| [1973]].
Thus the entire next-observation distribution is an affine-linear map of b,.

PSRs. If the Hankel matrix of future-test probabilities has finite rank &, there exists a k-dimensional
predictive state p(h) (probabilities of core tests) such that the probability of any test 7 is linear:
Pr(7 | h) = ¢ p(h) [Littman et al., 2001, Singh et al., |2004]. Hence, if a transformer stores an
affine transform of b; or p(h) in its residual stream, there exists a linear probe (and the model’s own
unembedding) that recovers the relevant prediction

B.3 Relation to poker (this paper)

Poker is a canonical partially observable domain where the minimal predictive state is a belief
over hidden hands (often summarized as a range). Training a next-token model on poker strings
(actions and reveals) creates direct pressure to maintain this belief internally, because the Bayes-
optimal next-token distribution is the mixture over hypotheses weighted by the current belief. Our
empirical program—Iinear probes for range log-odds, layerwise tuned-lens trajectories, and causal
edits along probe directions—follows the Othello/chess playbook while grounding interpretation
in POMDP/PSR sufficiency. This explains why (i) range features should be linearly decodable,
(ii) updates should approximate additive log-likelihood ratios upon new evidence, and (iii) editing
decoded belief directions should steer action logits in predictable ways.

C LLM World Models

In this section we further explore the literature of LLM world models and discuss our contributions
in the context of prior work.

In the previous section, we formalize our definition of world models/belief state for POMDPs. In the
case of OthelloGPT, this world model takes the form of a representation of the board state/dynamics
in the residual stream, but in our Poker case, the relevant latent is instead a belief (range) over hidden
information, such as player hands and strategies/deck cards.

C.1 What counts as a world model?

Broader than POMDPs and games, a world model functions as an internal state whose evolution
under the model approximates the latent state/dynamics of the data-generating process, such that
predictions are a (typically affine-linear) functional of that state. Early neural control work formalized
this idea broadly as “world models” [Ha and Schmidhuber, [2018]]. In LLMs, the clearest evidence
comes from synthetic or structured domains where latent state is objectively defined and recoverable
from strings. The primarily goal of LLM world model research in toy settings such as Poker and
Othello is to find strong signals that LLMs can learn higher-order structure (translated to the language
setting, higher-order emotions/rationalities) from sampled sequences of these unobserved transition
dynamics.

C.2 Empirical evidence in trained sequence models

Board games. In Othello-GPT, a small transformer trained only to predict legal moves (no board
supervision) learns an internal representation of the full board: probes decode square occupancys;
causal interventions flip squares and reliably change downstream moves [Li et al., 2024]. Follow-up
work in chess reaches similar conclusions: linear decoders recover piece/square features and editing
those features predictably shifts move probabilities, indicating persistent board-state coordinates in
the residual stream [Mei et al., [2025].

Space & time. When trained on ordinary text corpora, LLMs encode geometric and temporal
structure that is linearly recoverable: e.g., countries/cities embed into coherent low-dimensional
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coordinate systems and historical entities align along temporal axes [|Gurnee and Tegmarkl, [2024]].
These are not merely lexical clusters but approximately metric maps, suggesting latent factors aligned
with world structure.

C.3 Mechanistic lenses on storage and update

Two families of tools consistently reveal how predictions depend on internal state.

Layerwise decoding: The logit lens and the calibrated runed lens linearly decode token distributions
from intermediate residual streams, showing a monotone refinement of predictions across depth—
consistent with iterative inference/update of a persistent state carried forward by residual addition
[nostalgebraist, |2020, Belrose et al., 2023]]. In practice, we observe this through the refinement of
LLM confidence in poker games as more cards are dealt.

Feature decomposition: Sparse autoencoders (SAEs) and related dictionary-learning methods
recover more monosemantic directions in residual space (e.g., individual board squares, entity
features), addressing superposition and enabling targeted causal edits [Cunningham et al., 2023
Templeton et al.l 2024] Elhage et al., [2022]]. These results support a picture in which a small
set of task-relevant state features are embedded (often nearly linearly) and read out by the fixed
unembedding matrix.

D PHH Formatting

In PHH notation cards abbreviated to a rank followed by a suit (King of Hearts -> Kh). Table 1 shows
how actions are represented in PHH notation.

Player Actions
Standard Representation PHH Representation
Hole Cards Dealt d dh pN card(s)==s)
Board Cards Dealt d db card(s)
Fold pN £
Check/Call pN cc
Bet/Raise pN cbr amount
Showdown pN sm card(s)

Table 1: PHH-style representations of player actions

E Dataset Generation Details

Our dataset generation process creates valid six player No Limit Texas Hold’em poker games. The
games are generated as a result of six unique and independent game agents playing against each
other. Agents use myopic heuristics, driven by simulated win equity estimates. Each agent is
randomly initialized for the following impactful values on decision making, using a provided seed for
reproducibility.

* Propensity to raise

* Tightness in adhering to equity

* Bluff frequency

* Call willingness

* Initial bet scale

* Raise scale

e Bet continuation
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This combination of heuristics with equity allows vast amounts of game data to be generated relatively
quickly with a competent level of agent play. A considerable limitation of this method is that agents
do not adapt over time or learn from others playing styles in a way that humans or more complex
game playing agents could.

F Supplemental Figures and Tables

Below we give a diagram of our overall training pipeline for our Poker-GPT model, including our
data-masking procedure.

ddh pl2hAc|ddhp27h9c | ddhp33cKe|ddhpascrs d dh p12hAc | d dh p2 7h9c | d dh p3 3cKe | d dh p4 8c7s
Iddhp57dAs|ddhp6Thas | p3flp4flpScclp6cclplcclp2cclddb Iddhp57dAsiddh p6 Thas [p3flpaflp5cclp6cclpleclp2ce|ddb
6dTs7h | plecclp2cclpScclddbShlplcclp2ce| p5ce 6dTs7hlplcclp2ec|pScclddbShiplec|p2cclp5ce

Iddb 9d | plcc | p2 cbr 640 | p5 cc | p6 cbr 2795 | p1 f | p2 cbr 9800 | p5 | I ddb9d | plcc | p2chr 640 | p5 cc | p6 cbr 2795 | p1 f | p2 cbr 9800 | p5 f |

P6 cc | p2 sm 8hQs | p6 sm Thas <GAP>| p2sm 8hQs | p6 sm Thas | <ANS>| p6 cc

Masked Input Sequence with <GAP> and <ANS> Tokens

Feed Data - ‘
Update Weights Sequences —
Accordingly into Model «

Training Loop

Sample Input Sequence (PHH)

Save Sequences Into Shards That Make Up The Dataset

Evaluate
Using Cross-
Entropy Loss
l ==
Run For 20 Epochs or Flagged for Overfitting * Save Best Checkpoint Based on Loss Function

Figure 4: Training Pipeline. We train for up to 20 epochs, with early stopping if validation accuracy
declines for three consecutive epochs to prevent overfitting.

G Compute and Memory Resources

We trained our GPT-2-based model, which comprises of 87 million parameters, on an NVIDIA
H200 GPU for approximately seven hours. For the training of probes, we leveraged a diverse set of
hardware: RTX 5090, NVIDIA H200, A10, and A100 GPUs.

H Percentile Computation

Let y = array of hand rank labels,
L={l,ls,..., L0} = unique labels in y,

G = Z 1¢y,=¢y fori=1,...,k (counts per label),
J

target_count = max (percentile40({cl, cey Cl))s 10)
This balance in count helped us mitigate the impact of the excessive abundance of instances of hand
ranks such as high_card due to their high-frequency nature by chance. This calculation also helps

us validate the probe is not just learning to output one hand rank and, instead, is forced to extract
intricate information from the activations of the model.

10



ss« 1 Action Identification

se5 To investigate how the model encodes the game state, we analyzed its ability to predict the action
se6 taken when the token corresponding to the action (£, cc, etc.) was masked out. This helped us
367 prevent the model from ’cheating’ and seeing the token within the playthrough. With this approach,
ses the model was forced to determine the action taken based on the context of the playthrough. After
ss9 running both a linear classifier probe and two-layer MLP (only one hidden layer), we noticed that the
s70  linear probe (see Figure[5a) and MLP probe (see Figure [5b) both achieved 80% accuracy for action
371 identification. This implies that the model is learning to associate actions to certain contexts such as
s72  card reveals (as in the case of sm) and possibly learning how they fit in these contexts.

Layer 04 Confusion Matrix Layer 04 Confusion Matrix
3500 3500
g g 1723
3000 3000
2500 | 722 2500
g 2000 g 2000
£ £
= - 1500 = 0 - 1500
§ §
- 1000 - 1000
g - =500 g - o =500
| -0 i | -0
cc f cbr sm cc f cbr sm
Predicted Predicted
(a) Confusion Matrix for MLP Probe Action (b) Confusion Matrix for MLP Probe Action
Identification on Layer 4. Identification on Layer 4.

Figure 5: Neither model seems to perform considerably better than the other, possibly due to the fact
the local context of cc and f is very similar.

11
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J Hand-Rank Probe Experiments

(a) Layer O (b) Layer 1 (c) Layer 2 (d) Layer 3

o u

(e) Layer O (f) Layer 1 (g) Layer 2 (h) Layer 3

(i) Layer 0 (j) Layer 1 (k) Layer 2 (1) Layer 3

(m) Layer O (n) Layer 1 (o) Layer 2 (p) Layer 3

Figure 6: Confusion matrices and additional metrics for probe experiments across Layers 0-3. Row
1: Linear Probe, Row 2: MLP - 30th Percentile Equation, Row 3: MLP - 35th Percentile Equation,
Row 4: MLP - 40th Percentile Equation.

K Activation Plots

Below are our activation plots (compressed with PCA, t-SNE, and UMAP, respectively, to 2-D
plots) across multiple model layers. We note the per-hand clusters (with each cluster representing a
particular "type" of hand, ie. a pair with certain card values, or a three of a kind with a certain card
type). We also note that conceptual similarity is also being represented by these clusters. Note: These
plots were generated from a test set of 200,000 samples. This set is separate from the training set
used for the model and the one used for the probes.

PCA activation analysis revealed triangular activation structures that closely resemble the belief-
state geometries described by (2024]. A natural direction for future work is to investigate
whether these structures reflect the model’s implicit representation of belief states in a POMDP setting.
In particular, the vertices of the triangle may correspond to pure beliefs—confident assignments
to specific hand ranks—while interior points capture mixtures over multiple possibilities. This
interpretation would suggest that the model has learned to encode uncertainty in a manner consistent
with POMDP belief representations.

12



Figure 7: PCA visualizations by layer (rows = 0-3) and training (and test) size (columns = 100k,
200k, 200k (modification with test split), 430k).

(a) Layer O (b) Layer 0

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

sse t-SNE offered feature-rich plots for our use cases with visible hand-rank clusters and conceptual
ss9  similarity clusters being prominent, especially among pair and three_of_a_kind.

13



Figure 8: t-SNE visualizations by layer (rows = 0-3) and training (and test) size (columns = 100k,
200k, 200k (modification with test split), 430k).
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390  UMAP offered interesting plots that seem to show some clustering but are much less interpretable
391 than t-SNE activation plots.
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Figure 9: UMAP visualizations by layer (rows = 0-3) and training (and test) size (columns = 100k,
200k, 200k (modification with test split), 430k).
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims of our language model learning deterministic game structure as
well as stochastic features of equity are supported by our results in sections addressing
probing deterministic and stochastic world models.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations section discusses some of the areas where the scope of our
paper is not as comprehensive as desired.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our paper’s theoretical results in our appendix are formally derived and fully
justified.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experiments are completely reproducible, as the process we use for
generating our dataset, training our model and conducting our interpretability experiments
are fully disclosed in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code for reproducing probing experiments, as well as generating our
dataset and training our model is linked in the appendix.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Data splits, learning rates, and epochs are fully enclosed and clear.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We only report single-run point estimates in the Deterministic and Stochastic
World Model sections without confidence intervals, error bars, or tests across seeds/splits.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list hyperparameters, dataset sizes, GPU details, and data generation times,
as well as all the other computer resources needed for data generation and model training.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper contains nothing that violates the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of our work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There are no risks posed by our paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [TODO]
Justification: The paper does not use existing assets.???
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new assets—the PHH data generator, probing code, and Pok-
erGPT checkpoints—and provide documentation alongside them: repository READMEs
with setup and reproduction commands, environment specs, and data schema; plus in-paper
details on PHH formatting and dataset generation (Appendix §D] §G)). Links are in the
Appendix.
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Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdfunding or human subjects were involved in the paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved in the paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: LLMs were used to assist in the code implementation of our experiments.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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