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Abstract

Transformer-based large language models (LLMs) have demonstrated strong rea-1

soning abilities across diverse fields, from solving programming challenges to2

competing in strategy-intensive games such as chess. Prior work has shown that3

LLMs can develop emergent world models in games of perfect information, where4

internal representations correspond to latent states of the environment. In this paper,5

we extend this line of investigation to domains of incomplete information, focusing6

on poker as a canonical partially observable Markov decision process (POMDP).7

We pretrain a GPT-style model on Poker Hand History (PHH) data and probe its in-8

ternal activations. Our results demonstrate that the model learns both deterministic9

structure—such as hand ranks—and stochastic features—such as equity—without10

explicit instruction. Furthermore, by using primarily nonlinear probes, we demon-11

strated that these representations are decodeable and correlate with theoretical12

belief states, suggesting that LLMs are learning their own representation of the13

stochastic environment of Texas Hold’em Poker.14

1 Introduction15

Current transformer-based large language models (LLMs) have achieved breakthrough results across16

various tasks, ranging from answering industry programming questions to solving olympiad-level17

problems. [Tschisgale et al., 2025, Jain et al., 2024]. The ability of LLMs to complete these tasks18

lies in their advanced reasoning capabilities, which are extremely evident when playing reasoning-19

intensive games such as chess [Zhang et al., 2025].20

Despite these achievements in LLM reasoning capabilities, the internal execution of their strategies21

remains a "black-box". Recently, research on LLMs with internal world representations has grown22

to demonstrate higher-level LLM understanding in games as seen in Karvonen [2024] and Li et al.23

[2024]. The findings of Li et al. [2024] demonstrate the OthelloGPT model’s ability to develop its24

own internal representation of the game states and rules of Othello from move strings in a strictly25

deterministic, perfect-information setting, with the hope that natural-language models are learning26

broader semantic "world representations". In this paper, we extend this analysis to world models27

in games of incomplete information, in particular Poker, to explore how LLMs intrinsically model28

uncertainty in a Bayesian fashion and provide new insights into their decision-making process.29

Our paper’s main contributions include: The (1) extension of LLM internal world representation30

to games of incomplete information and (2) a quantifiable understanding of circuits/features31

that underlie an LLM’s "belief state" for partially observable Markov Decision Processes32

(explored through Poker). We defer a theoretical analysis of the second focus to appendix section B,33

and a further discussion on LLM world models to C.34
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2 Related Works35

This paper builds upon the work of Karvonen [2024], Li et al. [2024] and Nanda et al. [2023]36

who trained language models to play complete information games such as Chess and Othello. Li37

et al. [2024] demonstrated that OthelloGPT, a LLM trained on sequences of legal moves in Othello38

spontaneously developed an internal representation of the game board that could be extracted with39

nonlinear probes. Later it was demonstrated by Nanda et al. [2023] that linear probes could extract40

this representation as well. Karvonen [2024] extended these findings from Othello to the game of41

Chess as well, and also demonstrated models that developed these world representations also had the42

capability to understand and estimate latent variables such as player skill.43

3 Poker Model44

As a foundation for our studies on LLMs in POMDPs/stochastic games, we pretrain a GPT-style45

architecture on Poker games, using the Poker Hand History (PHH) format [Kim, 2024] (see Appendix46

D).47

3.1 Dataset48

As noted by past papers exploring emergent world representations such as Karvonen [2024], dataset49

size plays a large role in probe results. Due to the unavailability of large and complete poker hand50

datasets, we opted to generate our own. We did this by utilizing a large number of game simulations51

to determine poker equity[Billings et al., 1999] which then drives decision making. Our simulation52

script generates legal six-player No-Limit Texas Hold’em hands in PHH format. To start each hand,53

we give each player fresh stacks and randomly initialize their playing style to ensure that there is54

variation in agent behavior. Agents use a combination of simulation equity estimates and heuristics55

based on their randomly initialized playing style to make decisions, driving realistic and diverse poker56

games.57

3.2 Training58

We fine-tuned a causal transformer language model based on GPT-2 [Radford et al., 2019] using a59

PHH-formatted dataset comprising over two million synthetically generated poker trajectories, as60

described above. The model retained the GPT-2 base configuration, with 12 attention heads and a hid-61

den dimensionality of 768. Each hand was tokenized using a custom PreTrainedTokenizerFast62

vocabulary. During preprocessing, for a subset of tokens, we insert a reserved special <GAP> token in63

the input and shift the replaced original token to appear following a special <ANS> token later in the64

sequence. In training, we compute loss exclusively on the tokens that follow <ANS> to ensure proper65

loss calculation.66

Optimization used AdamW with β1 = 0.9, β2 = 0.95, and ϵ = 10−8, with a commonly used67

learning rate of 5× 10−5. We trained for 13 epochs (training was paused after validation loss stopped68

improving), using an effective batch size of 128 (minibatch size 64 with gradient accumulation of69

2). Checkpoints were saved every 5,000 steps and the best-performing checkpoint by validation loss70

was stored separately. We used a 95-5 train-test split for model training. See Appendix G for more71

training details.72

4 Probing Internal Representations73

We distinguish between two types of internal representations in our analysis: deterministic represen-74

tations, which capture absolute aspects like hand rank and actions, and stochastic representations-75

such as equity- to extract the model’s internal belief state of the underlying Poker POMDP76

(Shai et al. [2024]). To capture these results, we probe internal activations using a linear clas-77

sifier probe and a two-layer multilayer perceptron (MLP), a technique frequently used ([Li et al.,78

2024, Hernandez and Andreas, 2021]). The function of a linear probe used for our determinis-79

tic model is pθ(x
l
t) = argmax(Wxl

t), where θ = {W ∈ RC×F }, where F is the number of80

dimensions of the input activation vector xl
t. The function used for our two-layer MLP probe is81

pθ(x
l
t) = argmax(W1 ReLU(W2x

l
t)), where θ = {W1 ∈ RC×H ,W2 ∈ RH×F }, H is the number82
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of hidden dimensions for the nonlinear probes, where C denotes the number of classes under consid-83

eration for identification (typically C = 4 in our context). For our stochastic representation probes,84

argmax was not used as the output was continuous. Overall, the MLP probe achieved higher accuracy85

than the linear probe, consistent with the findings of Li et al. [2024].86

4.1 Deterministic World Model87

Expanding on Li et al. [2024], we extract basic deterministic game features such as hand-rank through88

activation probing. Hand-rank represents the categorical value of a player’s hole cards in the context89

of board cards and is strictly deterministic in our setting. We train a separate probe on each layer of90

the model to note any possible variations between layers that may signify that layer’s responsibility91

in output generation. To prevent over-representation of frequent hand-ranks (e.g. high_card and pair)92

and misidentification of internal representational states, we balanced the dataset by capping each93

class at the 40th percentile of unique hand-rank counts (Appendix H for more details on this). The94

linear probe achieves 80% accuracy for identifying hand-rank, while the MLP reaches 98% accuracy95

(1c, similar to results shown in Li et al. [2024]. These results are measured on a dataset excluded96

from training of the GPT-based model as well as separate from probe training (extended results in97

Appendix J). As shown in Figure 1c, the prominent diagonal in the confusion matrix indicates high98

class-wise accuracy, demonstrating that the internal activations of the model reliably encode the rank99

of the hand, which implies that the model is developing an internal representation of poker hand100

states, rather than just memorizing statistics.101

(a) MLP probe hand-rank identifi-
cation on Layer 0 – 30th percentile
equation.

(b) MLP probe hand-rank identifi-
cation on Layer 0 – 35th percentile
equation.

(c) MLP probe hand-rank identifi-
cation on Layer 0 – 40th percentile
equation.

Figure 1: MLP probe confusion matrices for hand-rank identification on Layer 0 using different
percentile equations. Representation of rarer hand-ranks is improved with lower percentiles. See
Appendix I for additional deterministic experimental results.

4.2 Stochastic World Model102

To demonstrate our hypothesis of the language model having internal representations corresponding103

to the internal representation of the belief state over the POMDP, we trained a two-layer MLP104

using simulation based equity estimations [Billings et al., 1999] as our label. For this dataset, we105

intentionally masked out all hole cards except for those belonging to player one. From our trained106

probe, we were able to achieve a correlation coefficient of 0.50 on our test dataset predictions (Figure107

2). This correlation between model activations and the predicted winning potential of a given hand108

demonstrates that our GPT model has spontaneously developed some internal representation of the109

hand strength.110

4.3 Activation Maps111

As a validation of the LLM’s world representation, we observe its ability to discern hands and112

patterns of different strategic value in poker. We visualized activations using PCA, t-SNE, and113

UMAP (see Appendix K for extended results). Figure 3b reveals distinct clusters, indicating that the114

model organizes its representations in accordance with hand rank, pairs, and three-of-a-kind clusters115

closely, thus demonstrating its ability to learn game-level concepts from unsupervised data. Note that116

the presence of multiple clusters for hand-ranks such as pair indicates that the model is learning a117
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Figure 2: Scatter plot of predicted versus true equity values using the MLP probe on layer 11.

broader representation of pair, where each cluster likely refers to a subset of pairs (the types of cards118

encompassed in the pair).119

(a) t-SNE visualization of Layer 2 activations.
Points represent a single hand colored by
rank.

(b) t-SNE visualization of Layer 0 activa-
tions. Points represent a single hand colored
by rank. Note the two_pair cluster near the
top.

Figure 3: t-SNE visualized activation plots. Activations are clustered by hand-rank and conceptual
similarity.

5 Limitations120

Dataset size remains a core limitation of our experiments, as with our generation method it becomes121

computationally expensive to generate extremely large amounts of data. The size of our dataset122

impacts the model accuracy on its task as well as results obtained from probes [Karvonen, 2024].123

Our deterministic probing analysis is also limited by this factor, as there are insufficient examples of124

rarer hands such as straights or flushes in our generated datasets for us to accurately probe for them.125

Additionally, the process for generating data may be overly simplified in relation to the complexity126

of poker interactions, potentially impacting analysis results. Finally, there are no guarantees that127

current results regarding LLM beliefs of the Poker POMDP are able to be extended to analysis of128

new stochastic poker variables.129

6 Conclusion and Future Works130

We demonstrated that a GPT-2-based model trained on PHH-style data can develop a deterministic131

understanding of the game state as well as an understanding of stochastic game elements. This brings132

us closer to extending the emergent world model hypothesis to games characterized by incomplete133

information. To extend our work, we hope to further scale our base LM and formalize our intuitions of134

LLM Bayesian behavior—in particular, extracting LLM beliefs of the Poker POMDP (see Appendix135

B for theory)—and better understand the structure of LLM predictive world representations through136

SAEs and further probing experiments.137
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A Appendix207

Our code can be found at:208

• https://anonymous.4open.science/r/poker-interp-4653/209

B Theoretical Justification of Bayesian World Models210

In this section, we motivate LLMs as MLE learners in a POMDP setting, and formalize the connection211

between these LLM probabilistic "belief states" and concrete residual stream activations that are212

separated through linear probes. Past work such as Shai et al. [2024] demonstrates that geometry of a213

Hidden Markov Model’s belief states can be recovered in the residual stream of a transformer. In this214

work, we formalize the meaning of an LLM "belief state" for next-token prediction that represents215

the trajectory of partially observable Markov processes.216

B.1 Belief State and Poker MDP Definitions217

Consider Z as some unobserved latent world state in the LLM (i.e. the board state in Othello, hidden218

cards in Poker, semantic topics of conversation in NLP) along with a history of tokens up to time t as219

h = (x1, · · · , xt). The true next token distribution is given as220

p(xt+1|ht) =
∑
z

p(xt+1|z, ht)p(z|ht)

So the next token depends on our distribution over latent states p(z|ht), which we encode as our LLM221

belief state. For an ideally trained LLM in deterministic games of chess/Othello, this distribution is222

just an indicator of the deterministic board state given a sequence of moves, but for games such as223

poker we uncover a nontrivial distribution over latent space.224

In short, for next-token prediction in a POMDP setting, the LLM must carry information at least as225

strong as p(z|ht). We view Poker as such a partially observable Markov Decision Process (POMDP),226

defining states S as the full game specification with a partially observable subset O representing227

6

https://openreview.net/forum?id=YIB7REL8UC
https://www.jstor.org/stable/168926
https://www.jstor.org/stable/168926
https://www.jstor.org/stable/168926
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://link.aps.org/doi/10.1103/6fmx-bsnl
https://arxiv.org/abs/2501.17186
https://anonymous.4open.science/r/poker-interp-4653/


outside cards and behaviors, actions A as a single player’s options (raising, folding, calling, etc), and228

the transition dynamics T representing stochasticity over dealt cards as well as other player’s actions.229

From standard POMDP analysis, we recall that the belief state is a sufficient statistic for decision-230

making (in our setting, next-token prediction) Kaelbling et al. [1998].231

B.2 Linearity of Predictions in the Belief State232

For POMDPs over deterministic games as explored in Li et al. [2024], we can justify the use of linear233

probing through a theoretical analysis as predictions of the future as linear functions on the LLM’s234

belief state.235

Linearity Lemma: Given our Poker POMDP M = (S,A,O, T,Ω) and a policy π (our sequence236

model trained on poker games), let Ht be the history up to t and bt ∈ ∆(S) the belief bt(s) =237

Pr(St = s | Ht). For any finite-horizon future event F measurable w.r.t. (St+1:T , Ot+1:T , At:T−1)238

under π, there exists a vector vF ∈ R|S| such that239

Pr
π
(F | Ht) =

∑
s∈S

bt(s) vF (s) = ⟨bt, vF ⟩.

In other words, our prediction of future events given our current history under the policy is linear in240

our defined belief state. In particular, then for each observation o ∈ O,241

Pr
π
(Ot+1 = o | Ht) = ⟨bt, vo⟩,

where vo is a per-observation vector of weights (in practice, learned by a linear probe) so the entire242

next-observation distribution is an affine linear map of bt.243

Proof:244

Let f = 1F be the indicator of F . By the tower rule,245

Eπ[f | Ht] =
∑
s∈S

Pr
π
(St = s | Ht)Eπ[f | St = s,Ht].

In a POMDP, the controlled Markov property implies that, given St = s (and with policy π fixed),246

the distribution of (St+1:T , Ot+1:T , At:T−1) does not depend on the specific past Ht (i.e. our token247

histories); hence Eπ[f | St = s,Ht] = Eπ[f | St = s]vF (s) by conditional independence.248

Then, this directly gives us the probabilities as Prπ(F | Ht) =
∑

s bt(s) vF (s) = ⟨bt, vF ⟩. Taking249

F = {Ot+1 = o} yields the desired linearity of observation result.250

So the PODMP belief state "automatically" gives us linearity! Intuitively, if the transformer trained251

on next-token prediction does in fact hold its belief state in the residual stream, then any predictive252

probe should be linear in these activations. Consider the following toy example:253

Suppose we have a simple binary hypothesis testing Z = {0, 1} to denote which coin is in use among254

two coins with probabilities p1, p2. Conditional on Z, our observations x1, · · · , xt ∈ {H,T} are id255

with P (xi = H|Z = z) = pz, P (xi = T |Z = z) = 1 − pz, z ∈ {0, 1}. Our log likelihood ratio256

(LLR) of one hypothesis over the other evolves with ratios log( θ1θ0 ) and log( 1−θ1
1−θ0

). Our log likelihood257

ratio ηt by assumption exists in the residual stream of our sequence prediction model.258

How does the residual stream "provide" the belief coordinate? Our connection between linear259

probes and POMDP belief states lies in the LLM’s residual stream, motivated from the theory of260

transformer circuits Anthropic [2021]. Let rt ∈ Rd denote the residual stream at position t. Assume261

the model stores ηt along a direction v ∈ Rd:262

rt ≈ r0 + ηt v + εt = r0 +
(
ηt−1 + LLR(xt)

)
v + εt, (1)

so residual addition implements evidence accumulation. With a fixed unembedding U ∈ Rd×|V|, the263

logits satisfy264

logits(x | x1:t) = U⊤
x rt + cx ≈ (U⊤

x v) ηt + const, (2)
and so we get a linear function of the belief coordinate. Ultimately, we get that a linear probe w can265

recover ηt from rt via η̂t = w⊤rt.266
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Related works explore the theoretical justifications of linear probes in partially observable processes.267

Two complementary works make a precise claim in this direction: predictions are linear functionals268

of state.269

POMDPs. Under a fixed policy, the belief bt (posterior over latent state) is a sufficient statistic270

for prediction/control; for any finite-horizon event F , Pr(F | Ht) = ⟨bt, vF ⟩ for some vector vF271

determined by the dynamics/observations [Kaelbling et al., 1998, Smallwood and Sondik, 1973].272

Thus the entire next-observation distribution is an affine-linear map of bt.273

PSRs. If the Hankel matrix of future-test probabilities has finite rank k, there exists a k-dimensional274

predictive state p(h) (probabilities of core tests) such that the probability of any test τ is linear:275

Pr(τ | h) = c⊤τ p(h) [Littman et al., 2001, Singh et al., 2004]. Hence, if a transformer stores an276

affine transform of bt or p(h) in its residual stream, there exists a linear probe (and the model’s own277

unembedding) that recovers the relevant prediction278

B.3 Relation to poker (this paper)279

Poker is a canonical partially observable domain where the minimal predictive state is a belief280

over hidden hands (often summarized as a range). Training a next-token model on poker strings281

(actions and reveals) creates direct pressure to maintain this belief internally, because the Bayes-282

optimal next-token distribution is the mixture over hypotheses weighted by the current belief. Our283

empirical program—linear probes for range log-odds, layerwise tuned-lens trajectories, and causal284

edits along probe directions—follows the Othello/chess playbook while grounding interpretation285

in POMDP/PSR sufficiency. This explains why (i) range features should be linearly decodable,286

(ii) updates should approximate additive log-likelihood ratios upon new evidence, and (iii) editing287

decoded belief directions should steer action logits in predictable ways.288

C LLM World Models289

In this section we further explore the literature of LLM world models and discuss our contributions290

in the context of prior work.291

In the previous section, we formalize our definition of world models/belief state for POMDPs. In the292

case of OthelloGPT, this world model takes the form of a representation of the board state/dynamics293

in the residual stream, but in our Poker case, the relevant latent is instead a belief (range) over hidden294

information, such as player hands and strategies/deck cards.295

C.1 What counts as a world model?296

Broader than POMDPs and games, a world model functions as an internal state whose evolution297

under the model approximates the latent state/dynamics of the data-generating process, such that298

predictions are a (typically affine-linear) functional of that state. Early neural control work formalized299

this idea broadly as “world models” [Ha and Schmidhuber, 2018]. In LLMs, the clearest evidence300

comes from synthetic or structured domains where latent state is objectively defined and recoverable301

from strings. The primarily goal of LLM world model research in toy settings such as Poker and302

Othello is to find strong signals that LLMs can learn higher-order structure (translated to the language303

setting, higher-order emotions/rationalities) from sampled sequences of these unobserved transition304

dynamics.305

C.2 Empirical evidence in trained sequence models306

Board games. In Othello-GPT, a small transformer trained only to predict legal moves (no board307

supervision) learns an internal representation of the full board: probes decode square occupancy;308

causal interventions flip squares and reliably change downstream moves [Li et al., 2024]. Follow-up309

work in chess reaches similar conclusions: linear decoders recover piece/square features and editing310

those features predictably shifts move probabilities, indicating persistent board-state coordinates in311

the residual stream [Mei et al., 2025].312

Space & time. When trained on ordinary text corpora, LLMs encode geometric and temporal313

structure that is linearly recoverable: e.g., countries/cities embed into coherent low-dimensional314
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coordinate systems and historical entities align along temporal axes [Gurnee and Tegmark, 2024].315

These are not merely lexical clusters but approximately metric maps, suggesting latent factors aligned316

with world structure.317

C.3 Mechanistic lenses on storage and update318

Two families of tools consistently reveal how predictions depend on internal state.319

Layerwise decoding: The logit lens and the calibrated tuned lens linearly decode token distributions320

from intermediate residual streams, showing a monotone refinement of predictions across depth—321

consistent with iterative inference/update of a persistent state carried forward by residual addition322

[nostalgebraist, 2020, Belrose et al., 2023]. In practice, we observe this through the refinement of323

LLM confidence in poker games as more cards are dealt.324

Feature decomposition: Sparse autoencoders (SAEs) and related dictionary-learning methods325

recover more monosemantic directions in residual space (e.g., individual board squares, entity326

features), addressing superposition and enabling targeted causal edits [Cunningham et al., 2023,327

Templeton et al., 2024, Elhage et al., 2022]. These results support a picture in which a small328

set of task-relevant state features are embedded (often nearly linearly) and read out by the fixed329

unembedding matrix.330

D PHH Formatting331

In PHH notation cards abbreviated to a rank followed by a suit (King of Hearts -> Kh). Table 1 shows332

how actions are represented in PHH notation.333

Player Actions
Standard Representation PHH Representation
Hole Cards Dealt d dh pN card(s)==s)
Board Cards Dealt d db card(s)
Fold pN f
Check/Call pN cc
Bet/Raise pN cbr amount
Showdown pN sm card(s)

Table 1: PHH-style representations of player actions

E Dataset Generation Details334

Our dataset generation process creates valid six player No Limit Texas Hold’em poker games. The335

games are generated as a result of six unique and independent game agents playing against each336

other. Agents use myopic heuristics, driven by simulated win equity estimates. Each agent is337

randomly initialized for the following impactful values on decision making, using a provided seed for338

reproducibility.339

• Propensity to raise340

• Tightness in adhering to equity341

• Bluff frequency342

• Call willingness343

• Initial bet scale344

• Raise scale345

• Bet continuation346

•347
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This combination of heuristics with equity allows vast amounts of game data to be generated relatively348

quickly with a competent level of agent play. A considerable limitation of this method is that agents349

do not adapt over time or learn from others playing styles in a way that humans or more complex350

game playing agents could.351

F Supplemental Figures and Tables352

Below we give a diagram of our overall training pipeline for our Poker-GPT model, including our353

data-masking procedure.354

Figure 4: Training Pipeline. We train for up to 20 epochs, with early stopping if validation accuracy
declines for three consecutive epochs to prevent overfitting.

G Compute and Memory Resources355

We trained our GPT-2-based model, which comprises of 87 million parameters, on an NVIDIA356

H200 GPU for approximately seven hours. For the training of probes, we leveraged a diverse set of357

hardware: RTX 5090, NVIDIA H200, A10, and A100 GPUs.358

H Percentile Computation359

Let y = array of hand rank labels,
L = {ℓ1, ℓ2, . . . , ℓk} = unique labels in y,

ci =
∑
j

1{yj=ℓi} for i = 1, . . . , k (counts per label),

target_count = max
(

percentile40({c1, . . . , ck}), 10
)

This balance in count helped us mitigate the impact of the excessive abundance of instances of hand360

ranks such as high_card due to their high-frequency nature by chance. This calculation also helps361

us validate the probe is not just learning to output one hand rank and, instead, is forced to extract362

intricate information from the activations of the model.363
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I Action Identification364

To investigate how the model encodes the game state, we analyzed its ability to predict the action365

taken when the token corresponding to the action (f, cc, etc.) was masked out. This helped us366

prevent the model from ’cheating’ and seeing the token within the playthrough. With this approach,367

the model was forced to determine the action taken based on the context of the playthrough. After368

running both a linear classifier probe and two-layer MLP (only one hidden layer), we noticed that the369

linear probe (see Figure 5a) and MLP probe (see Figure 5b) both achieved 80% accuracy for action370

identification. This implies that the model is learning to associate actions to certain contexts such as371

card reveals (as in the case of sm) and possibly learning how they fit in these contexts.372

(a) Confusion Matrix for MLP Probe Action
Identification on Layer 4.

(b) Confusion Matrix for MLP Probe Action
Identification on Layer 4.

Figure 5: Neither model seems to perform considerably better than the other, possibly due to the fact
the local context of cc and f is very similar.
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J Hand-Rank Probe Experiments373

(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 0 (f) Layer 1 (g) Layer 2 (h) Layer 3

(i) Layer 0 (j) Layer 1 (k) Layer 2 (l) Layer 3

(m) Layer 0 (n) Layer 1 (o) Layer 2 (p) Layer 3

Figure 6: Confusion matrices and additional metrics for probe experiments across Layers 0–3. Row
1: Linear Probe, Row 2: MLP - 30th Percentile Equation, Row 3: MLP - 35th Percentile Equation,
Row 4: MLP - 40th Percentile Equation.

K Activation Plots374

Below are our activation plots (compressed with PCA, t-SNE, and UMAP, respectively, to 2-D375

plots) across multiple model layers. We note the per-hand clusters (with each cluster representing a376

particular "type" of hand, ie. a pair with certain card values, or a three of a kind with a certain card377

type). We also note that conceptual similarity is also being represented by these clusters. Note: These378

plots were generated from a test set of 200,000 samples. This set is separate from the training set379

used for the model and the one used for the probes.380

PCA activation analysis revealed triangular activation structures that closely resemble the belief-381

state geometries described by Shai et al. [2024]. A natural direction for future work is to investigate382

whether these structures reflect the model’s implicit representation of belief states in a POMDP setting.383

In particular, the vertices of the triangle may correspond to pure beliefs—confident assignments384

to specific hand ranks—while interior points capture mixtures over multiple possibilities. This385

interpretation would suggest that the model has learned to encode uncertainty in a manner consistent386

with POMDP belief representations.387
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Figure 7: PCA visualizations by layer (rows = 0–3) and training (and test) size (columns = 100k,
200k, 200k (modification with test split), 430k).

(a) Layer 0 (b) Layer 0 (c) Layer 0 (d) Layer 0

(e) Layer 1 (f) Layer 1 (g) Layer 1 (h) Layer 1

(i) Layer 2 (j) Layer 2 (k) Layer 2 (l) Layer 2

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

t-SNE offered feature-rich plots for our use cases with visible hand-rank clusters and conceptual388

similarity clusters being prominent, especially among pair and three_of_a_kind.389
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Figure 8: t-SNE visualizations by layer (rows = 0–3) and training (and test) size (columns = 100k,
200k, 200k (modification with test split), 430k).

(a) Layer 0 (b) Layer 0 (c) Layer 0 (d) Layer 0

(e) Layer 1 (f) Layer 1 (g) Layer 1 (h) Layer 1

(i) Layer 2 (j) Layer 2 (k) Layer 2 (l) Layer 2

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

UMAP offered interesting plots that seem to show some clustering but are much less interpretable390

than t-SNE activation plots.391
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Figure 9: UMAP visualizations by layer (rows = 0–3) and training (and test) size (columns = 100k,
200k, 200k (modification with test split), 430k).

(a) Layer 0 (b) Layer 0 (c) Layer 0 (d) Layer 0

(e) Layer 1 (f) Layer 1 (g) Layer 1 (h) Layer 1

(i) Layer 2 (j) Layer 2 (k) Layer 2 (l) Layer 2

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

NeurIPS Paper Checklist392

1. Claims393

Question: Do the main claims made in the abstract and introduction accurately reflect the394

paper’s contributions and scope?395

Answer: [Yes]396

Justification: The claims of our language model learning deterministic game structure as397

well as stochastic features of equity are supported by our results in sections addressing398

probing deterministic and stochastic world models.399

Guidelines:400

• The answer NA means that the abstract and introduction do not include the claims401

made in the paper.402

• The abstract and/or introduction should clearly state the claims made, including the403

contributions made in the paper and important assumptions and limitations. A No or404

NA answer to this question will not be perceived well by the reviewers.405

• The claims made should match theoretical and experimental results, and reflect how406

much the results can be expected to generalize to other settings.407
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals408

are not attained by the paper.409

2. Limitations410

Question: Does the paper discuss the limitations of the work performed by the authors?411

Answer: [Yes]412

Justification: The limitations section discusses some of the areas where the scope of our413

paper is not as comprehensive as desired.414

Guidelines:415

• The answer NA means that the paper has no limitation while the answer No means that416

the paper has limitations, but those are not discussed in the paper.417

• The authors are encouraged to create a separate "Limitations" section in their paper.418

• The paper should point out any strong assumptions and how robust the results are to419

violations of these assumptions (e.g., independence assumptions, noiseless settings,420

model well-specification, asymptotic approximations only holding locally). The authors421

should reflect on how these assumptions might be violated in practice and what the422

implications would be.423

• The authors should reflect on the scope of the claims made, e.g., if the approach was424

only tested on a few datasets or with a few runs. In general, empirical results often425

depend on implicit assumptions, which should be articulated.426

• The authors should reflect on the factors that influence the performance of the approach.427

For example, a facial recognition algorithm may perform poorly when image resolution428

is low or images are taken in low lighting. Or a speech-to-text system might not be429

used reliably to provide closed captions for online lectures because it fails to handle430

technical jargon.431

• The authors should discuss the computational efficiency of the proposed algorithms432

and how they scale with dataset size.433

• If applicable, the authors should discuss possible limitations of their approach to434

address problems of privacy and fairness.435

• While the authors might fear that complete honesty about limitations might be used by436

reviewers as grounds for rejection, a worse outcome might be that reviewers discover437

limitations that aren’t acknowledged in the paper. The authors should use their best438

judgment and recognize that individual actions in favor of transparency play an impor-439

tant role in developing norms that preserve the integrity of the community. Reviewers440

will be specifically instructed to not penalize honesty concerning limitations.441

3. Theory assumptions and proofs442

Question: For each theoretical result, does the paper provide the full set of assumptions and443

a complete (and correct) proof?444

Answer: [Yes]445

Justification: Our paper’s theoretical results in our appendix are formally derived and fully446

justified.447

Guidelines:448

• The answer NA means that the paper does not include theoretical results.449

• All the theorems, formulas, and proofs in the paper should be numbered and cross-450

referenced.451

• All assumptions should be clearly stated or referenced in the statement of any theorems.452

• The proofs can either appear in the main paper or the supplemental material, but if453

they appear in the supplemental material, the authors are encouraged to provide a short454

proof sketch to provide intuition.455

• Inversely, any informal proof provided in the core of the paper should be complemented456

by formal proofs provided in appendix or supplemental material.457

• Theorems and Lemmas that the proof relies upon should be properly referenced.458

4. Experimental result reproducibility459
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-460

perimental results of the paper to the extent that it affects the main claims and/or conclusions461

of the paper (regardless of whether the code and data are provided or not)?462

Answer: [Yes]463

Justification: Our experiments are completely reproducible, as the process we use for464

generating our dataset, training our model and conducting our interpretability experiments465

are fully disclosed in the paper.466

Guidelines:467

• The answer NA means that the paper does not include experiments.468

• If the paper includes experiments, a No answer to this question will not be perceived469

well by the reviewers: Making the paper reproducible is important, regardless of470

whether the code and data are provided or not.471

• If the contribution is a dataset and/or model, the authors should describe the steps taken472

to make their results reproducible or verifiable.473

• Depending on the contribution, reproducibility can be accomplished in various ways.474

For example, if the contribution is a novel architecture, describing the architecture fully475

might suffice, or if the contribution is a specific model and empirical evaluation, it may476

be necessary to either make it possible for others to replicate the model with the same477

dataset, or provide access to the model. In general. releasing code and data is often478

one good way to accomplish this, but reproducibility can also be provided via detailed479

instructions for how to replicate the results, access to a hosted model (e.g., in the case480

of a large language model), releasing of a model checkpoint, or other means that are481

appropriate to the research performed.482

• While NeurIPS does not require releasing code, the conference does require all submis-483

sions to provide some reasonable avenue for reproducibility, which may depend on the484

nature of the contribution. For example485

(a) If the contribution is primarily a new algorithm, the paper should make it clear how486

to reproduce that algorithm.487

(b) If the contribution is primarily a new model architecture, the paper should describe488

the architecture clearly and fully.489

(c) If the contribution is a new model (e.g., a large language model), then there should490

either be a way to access this model for reproducing the results or a way to reproduce491

the model (e.g., with an open-source dataset or instructions for how to construct492

the dataset).493

(d) We recognize that reproducibility may be tricky in some cases, in which case494

authors are welcome to describe the particular way they provide for reproducibility.495

In the case of closed-source models, it may be that access to the model is limited in496

some way (e.g., to registered users), but it should be possible for other researchers497

to have some path to reproducing or verifying the results.498

5. Open access to data and code499

Question: Does the paper provide open access to the data and code, with sufficient instruc-500

tions to faithfully reproduce the main experimental results, as described in supplemental501

material?502

Answer: [Yes]503

Justification: Our code for reproducing probing experiments, as well as generating our504

dataset and training our model is linked in the appendix.505

Guidelines:506

• The answer NA means that paper does not include experiments requiring code.507

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/508

public/guides/CodeSubmissionPolicy) for more details.509

• While we encourage the release of code and data, we understand that this might not be510

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not511

including code, unless this is central to the contribution (e.g., for a new open-source512

benchmark).513
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• The instructions should contain the exact command and environment needed to run to514

reproduce the results. See the NeurIPS code and data submission guidelines (https:515

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.516

• The authors should provide instructions on data access and preparation, including how517

to access the raw data, preprocessed data, intermediate data, and generated data, etc.518

• The authors should provide scripts to reproduce all experimental results for the new519

proposed method and baselines. If only a subset of experiments are reproducible, they520

should state which ones are omitted from the script and why.521

• At submission time, to preserve anonymity, the authors should release anonymized522

versions (if applicable).523

• Providing as much information as possible in supplemental material (appended to the524

paper) is recommended, but including URLs to data and code is permitted.525

6. Experimental setting/details526

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-527

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the528

results?529

Answer: [Yes]530

Justification: Data splits, learning rates, and epochs are fully enclosed and clear.531

Guidelines:532

• The answer NA means that the paper does not include experiments.533

• The experimental setting should be presented in the core of the paper to a level of detail534

that is necessary to appreciate the results and make sense of them.535

• The full details can be provided either with the code, in appendix, or as supplemental536

material.537

7. Experiment statistical significance538

Question: Does the paper report error bars suitably and correctly defined or other appropriate539

information about the statistical significance of the experiments?540

Answer: [No]541

Justification: We only report single-run point estimates in the Deterministic and Stochastic542

World Model sections without confidence intervals, error bars, or tests across seeds/splits.543

Guidelines:544

• The answer NA means that the paper does not include experiments.545

• The authors should answer "Yes" if the results are accompanied by error bars, confi-546

dence intervals, or statistical significance tests, at least for the experiments that support547

the main claims of the paper.548

• The factors of variability that the error bars are capturing should be clearly stated (for549

example, train/test split, initialization, random drawing of some parameter, or overall550

run with given experimental conditions).551

• The method for calculating the error bars should be explained (closed form formula,552

call to a library function, bootstrap, etc.)553

• The assumptions made should be given (e.g., Normally distributed errors).554

• It should be clear whether the error bar is the standard deviation or the standard error555

of the mean.556

• It is OK to report 1-sigma error bars, but one should state it. The authors should557

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis558

of Normality of errors is not verified.559

• For asymmetric distributions, the authors should be careful not to show in tables or560

figures symmetric error bars that would yield results that are out of range (e.g. negative561

error rates).562

• If error bars are reported in tables or plots, The authors should explain in the text how563

they were calculated and reference the corresponding figures or tables in the text.564

8. Experiments compute resources565
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Question: For each experiment, does the paper provide sufficient information on the com-566

puter resources (type of compute workers, memory, time of execution) needed to reproduce567

the experiments?568

Answer: [Yes]569

Justification: We list hyperparameters, dataset sizes, GPU details, and data generation times,570

as well as all the other computer resources needed for data generation and model training.571

Guidelines:572

• The answer NA means that the paper does not include experiments.573

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,574

or cloud provider, including relevant memory and storage.575

• The paper should provide the amount of compute required for each of the individual576

experimental runs as well as estimate the total compute.577

• The paper should disclose whether the full research project required more compute578

than the experiments reported in the paper (e.g., preliminary or failed experiments that579

didn’t make it into the paper).580

9. Code of ethics581

Question: Does the research conducted in the paper conform, in every respect, with the582

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?583

Answer: [Yes]584

Justification: The paper contains nothing that violates the code of ethics.585

Guidelines:586

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.587

• If the authors answer No, they should explain the special circumstances that require a588

deviation from the Code of Ethics.589

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-590

eration due to laws or regulations in their jurisdiction).591

10. Broader impacts592

Question: Does the paper discuss both potential positive societal impacts and negative593

societal impacts of the work performed?594

Answer: [NA]595

Justification: There is no societal impact of our work.596

Guidelines:597

• The answer NA means that there is no societal impact of the work performed.598

• If the authors answer NA or No, they should explain why their work has no societal599

impact or why the paper does not address societal impact.600

• Examples of negative societal impacts include potential malicious or unintended uses601

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations602

(e.g., deployment of technologies that could make decisions that unfairly impact specific603

groups), privacy considerations, and security considerations.604

• The conference expects that many papers will be foundational research and not tied605

to particular applications, let alone deployments. However, if there is a direct path to606

any negative applications, the authors should point it out. For example, it is legitimate607

to point out that an improvement in the quality of generative models could be used to608

generate deepfakes for disinformation. On the other hand, it is not needed to point out609

that a generic algorithm for optimizing neural networks could enable people to train610

models that generate Deepfakes faster.611

• The authors should consider possible harms that could arise when the technology is612

being used as intended and functioning correctly, harms that could arise when the613

technology is being used as intended but gives incorrect results, and harms following614

from (intentional or unintentional) misuse of the technology.615
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• If there are negative societal impacts, the authors could also discuss possible mitigation616

strategies (e.g., gated release of models, providing defenses in addition to attacks,617

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from618

feedback over time, improving the efficiency and accessibility of ML).619

11. Safeguards620

Question: Does the paper describe safeguards that have been put in place for responsible621

release of data or models that have a high risk for misuse (e.g., pretrained language models,622

image generators, or scraped datasets)?623

Answer: [NA]624

Justification: There are no risks posed by our paper.625

Guidelines:626

• The answer NA means that the paper poses no such risks.627

• Released models that have a high risk for misuse or dual-use should be released with628

necessary safeguards to allow for controlled use of the model, for example by requiring629

that users adhere to usage guidelines or restrictions to access the model or implementing630

safety filters.631

• Datasets that have been scraped from the Internet could pose safety risks. The authors632

should describe how they avoided releasing unsafe images.633

• We recognize that providing effective safeguards is challenging, and many papers do634

not require this, but we encourage authors to take this into account and make a best635

faith effort.636

12. Licenses for existing assets637

Question: Are the creators or original owners of assets (e.g., code, data, models), used in638

the paper, properly credited and are the license and terms of use explicitly mentioned and639

properly respected?640

Answer: [TODO]641

Justification: The paper does not use existing assets.???642

Guidelines:643

• The answer NA means that the paper does not use existing assets.644

• The authors should cite the original paper that produced the code package or dataset.645

• The authors should state which version of the asset is used and, if possible, include a646

URL.647

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.648

• For scraped data from a particular source (e.g., website), the copyright and terms of649

service of that source should be provided.650

• If assets are released, the license, copyright information, and terms of use in the651

package should be provided. For popular datasets, paperswithcode.com/datasets652

has curated licenses for some datasets. Their licensing guide can help determine the653

license of a dataset.654

• For existing datasets that are re-packaged, both the original license and the license of655

the derived asset (if it has changed) should be provided.656

• If this information is not available online, the authors are encouraged to reach out to657

the asset’s creators.658

13. New assets659

Question: Are new assets introduced in the paper well documented and is the documentation660

provided alongside the assets?661

Answer: [Yes]662

Justification: We introduce new assets—the PHH data generator, probing code, and Pok-663

erGPT checkpoints—and provide documentation alongside them: repository READMEs664

with setup and reproduction commands, environment specs, and data schema; plus in-paper665

details on PHH formatting and dataset generation (Appendix §D, §G). Links are in the666

Appendix.667
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Guidelines:668

• The answer NA means that the paper does not release new assets.669

• Researchers should communicate the details of the dataset/code/model as part of their670

submissions via structured templates. This includes details about training, license,671

limitations, etc.672

• The paper should discuss whether and how consent was obtained from people whose673

asset is used.674

• At submission time, remember to anonymize your assets (if applicable). You can either675

create an anonymized URL or include an anonymized zip file.676

14. Crowdsourcing and research with human subjects677

Question: For crowdsourcing experiments and research with human subjects, does the paper678

include the full text of instructions given to participants and screenshots, if applicable, as679

well as details about compensation (if any)?680

Answer: [NA]681

Justification: No crowdfunding or human subjects were involved in the paper.682

Guidelines:683

• The answer NA means that the paper does not involve crowdsourcing nor research with684

human subjects.685

• Including this information in the supplemental material is fine, but if the main contribu-686

tion of the paper involves human subjects, then as much detail as possible should be687

included in the main paper.688

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,689

or other labor should be paid at least the minimum wage in the country of the data690

collector.691

15. Institutional review board (IRB) approvals or equivalent for research with human692

subjects693

Question: Does the paper describe potential risks incurred by study participants, whether694

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)695

approvals (or an equivalent approval/review based on the requirements of your country or696

institution) were obtained?697

Answer: [NA]698

Justification: No human subjects were involved in the paper.699

Guidelines:700

• The answer NA means that the paper does not involve crowdsourcing nor research with701

human subjects.702

• Depending on the country in which research is conducted, IRB approval (or equivalent)703

may be required for any human subjects research. If you obtained IRB approval, you704

should clearly state this in the paper.705

• We recognize that the procedures for this may vary significantly between institutions706

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the707

guidelines for their institution.708

• For initial submissions, do not include any information that would break anonymity (if709

applicable), such as the institution conducting the review.710

16. Declaration of LLM usage711

Question: Does the paper describe the usage of LLMs if it is an important, original, or712

non-standard component of the core methods in this research? Note that if the LLM is used713

only for writing, editing, or formatting purposes and does not impact the core methodology,714

scientific rigorousness, or originality of the research, declaration is not required.715

Answer: [Yes]716

Justification: LLMs were used to assist in the code implementation of our experiments.717

Guidelines:718
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• The answer NA means that the core method development in this research does not719

involve LLMs as any important, original, or non-standard components.720

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)721

for what should or should not be described.722
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