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Abstract

Transformer-based large language models (LLMs) have demonstrated strong rea-
soning abilities across diverse fields, from solving programming challenges to
competing in strategy-intensive games such as chess. Prior work has shown that
LLMs can develop emergent world models in games of perfect information, where
internal representations correspond to latent states of the environment. In this
paper, we extend this line of investigation to domains of incomplete information,
focusing on poker as a canonical partially observable Markov decision process
(POMDP). We pretrain a GPT-style model on Poker Hand History (PHH) data and
probe its internal activations. Our results demonstrate that the model learns both
deterministic structure, such as hand ranks, and stochastic features, such as equity,
without explicit instruction. Furthermore, by using primarily nonlinear probes, we
demonstrated that these representations are decodeable and correlate with theoreti-
cal belief states, suggesting that LLMs are learning their own representation of the
stochastic environment of Texas Hold’em Poker.

1 Introduction

Current transformer-based large language models (LLMs) have achieved breakthrough results across
various tasks, ranging from answering industry programming questions to solving olympiad-level
problems. [Tschisgale et al., 2025, Jain et al., 2024]. The ability of LLMs to complete these tasks
lies in their advanced reasoning capabilities, which are extremely evident when playing reasoning-
intensive games such as chess [Zhang et al., 2025].

Despite these achievements in LLM reasoning capabilities, the internal execution of their strategies
remains a "black-box". Recently, research on LLMs with internal world representations has grown
to demonstrate higher-level LLM understanding in games as seen in Karvonen [2024] and Li et al.
[2024]. The findings of Li et al. [2024] demonstrate the OthelloGPT model’s ability to develop its
own internal representation of the game states and rules of Othello from move strings in a strictly
deterministic, perfect-information setting, with the hope that natural-language models are learning
broader semantic "world representations". In this paper, we extend this analysis to world models
in games of incomplete information, in particular Poker, to explore how LLMs intrinsically model
uncertainty in a Bayesian fashion and provide new insights into their decision-making process.
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†† Senior author.
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Our paper’s main contributions include:

• We extend LLM internal world representation to games of incomplete information.

• We quantify the understanding of circuits/features that underlie an LLM’s "belief state" for
partially observable Markov Decision Processes (explored through Poker).

We defer a theoretical analysis of the second focus to appendix section B, and a further discussion on
LLM world models to C.

2 Related Works

This paper builds upon the work of Karvonen [2024], Li et al. [2024] and Nanda et al. [2023]
who trained language models to play complete information games such as Chess and Othello. Li
et al. [2024] demonstrated that OthelloGPT, a LLM trained on sequences of legal moves in Othello
spontaneously developed an internal representation of the game board that could be extracted with
nonlinear probes. Later it was demonstrated by Nanda et al. [2023] that linear probes could extract
this representation as well. Karvonen [2024] extended these findings from Othello to the game of
Chess as well, and also demonstrated models that developed these world representations also had the
capability to understand and estimate latent variables such as player skill.

3 Poker Model

As a foundation for our studies on LLMs in POMDPs/stochastic games, we pretrain a GPT-style
architecture on Poker games, using the Poker Hand History (PHH) format [Kim, 2024] (see Appendix
D).

3.1 Dataset

As noted by past papers exploring emergent world representations such as Karvonen [2024], dataset
size plays a large role in probe results. Due to the unavailability of large and complete poker hand
datasets, we opted to generate our own. We did this by utilizing a large number of game simulations
to determine poker equity[Billings et al., 1999] which then drives decision making. Our simulation
script generates legal six-player No-Limit Texas Hold’em hands in PHH format. To start each hand,
we give each player fresh stacks and randomly initialize their playing style to ensure that there is
variation in agent behavior. Agents use a combination of simulation equity estimates and heuristics
based on their randomly initialized playing style to make decisions, driving realistic and diverse poker
games.

3.2 Training

We fine-tuned a causal transformer language model based on GPT-2 [Radford et al., 2019] using a
PHH-formatted dataset comprising over two million synthetically generated poker trajectories, as
described above. The model retained the GPT-2 base configuration, with 12 attention heads and a
hidden dimensionality of 768. The GPT-2 base configuration was chosen due to it being lightweight
to work with our limited compute resources while being well understood and robust. Each hand
was tokenized using a custom PreTrainedTokenizerFast vocabulary. During preprocessing, for a
subset of tokens, we insert a reserved special <GAP> token in the input and shift the replaced original
token to appear following a special <ANS> token later in the sequence. In training, we compute loss
exclusively on the tokens that follow <ANS> to ensure proper loss calculation.

Optimization used AdamW with β1 = 0.9, β2 = 0.95, and ϵ = 10−8, with a commonly used
learning rate of 5× 10−5. We trained for 13 epochs (training was paused after validation loss stopped
improving), using an effective batch size of 128 (minibatch size 64 with gradient accumulation of
2). Checkpoints were saved every 5,000 steps and the best-performing checkpoint by validation loss
was stored separately. We used a 95-5 train-test split for model training. See Appendix G for more
training details.
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4 Probing Internal Representations

We distinguish between two types of internal representations in our analysis: deterministic represen-
tations, which capture absolute aspects like hand rank and actions, and stochastic representations-
such as equity- to extract the model’s internal belief state of the underlying Poker POMDP
(Shai et al. [2024]). To capture these results, we probe internal activations using a linear clas-
sifier probe and a two-layer multilayer perceptron (MLP), a technique frequently used ([Li et al.,
2024, Hernandez and Andreas, 2021]). The function of a linear probe used for our determinis-
tic model is pθ(x

l
t) = argmax(Wxl

t), where θ = {W ∈ RC×F }, where F is the number of
dimensions of the input activation vector xl

t. The function used for our two-layer MLP probe is
pθ(x

l
t) = argmax(W1 ReLU(W2x

l
t)), where θ = {W1 ∈ RC×H ,W2 ∈ RH×F }, H is the number

of hidden dimensions for the nonlinear probes, where C denotes the number of classes under consid-
eration for identification (typically C = 4 in our context). For our stochastic representation probes,
argmax was not used as the output was continuous. Overall, the MLP probe achieved higher accuracy
than the linear probe, consistent with the findings of Li et al. [2024].

4.1 Deterministic World Model

(a) Layer 0 – 30th percentile equation. (b) Layer 0 – 35th percentile equation.

(c) Layer 0 – 40th percentile equation. (d) MLP probe accuracy across model layers (40th
percentile).

Figure 1: MLP probe performance for hand-rank identification. Panels (a-c) show confusion matricies
for Layer 0 using datasets balanced by limiting each hand-rank class to the 30th, 35th, and 40th
percentile of its unique sample count. Darker diagonal cells indicate more accurate predictions.
Representation of rarer hand ranks, such as two pairs, is improved with lower percentiles. Panel
(d) shows probe accuracy across all layers using the 40th percentile dataset, with 95% confidence
intervals across five random seeds. Together, results indicate that hand-rank information is encoded
strongly and consistently. See Appendix I for additional deterministic experimental results.
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Expanding on Li et al. [2024], we extract basic deterministic game features such as hand-rank through
activation probing. Hand-rank represents the categorical value of a player’s hole cards in the context
of board cards and is strictly deterministic in our setting. We train a separate probe on each layer of
the model to note any possible variations between layers that may signify that layer’s responsibility
in output generation. To prevent over-representation of frequent hand-ranks (e.g. high_card and pair)
and misidentification of internal representational states, we balanced the dataset by capping each class
at the 40th percentile of unique hand-rank counts (Appendix H for more details on this). The linear
probe achieves ~80% accuracy for identifying hand-rank, while the MLP reaches ~98% accuracy
(1c, similar to results shown in Li et al. [2024]. These results are measured on a dataset excluded
from training of the GPT-based model as well as separate from probe training (extended results in
Appendix J). As shown in Figure 1c, the prominent diagonal in the confusion matrix indicates high
class-wise accuracy, demonstrating that the internal activations of the model reliably encode the rank
of the hand, which implies that the model is developing an internal representation of poker hand
states, rather than just memorizing statistics. Furthermore, small error bars reflect low variance across
various seeds in Figure 1d in the first several layers, demonstrating that a strong consistency of the
model’s internal representations that reflects the ~98% accuracy is present.

4.2 Stochastic World Model

To demonstrate our hypothesis of the language model having internal representations corresponding
to the internal representation of the belief state over the POMDP, we trained a two-layer MLP
using simulation based equity estimations [Billings et al., 1999] as our label. For this dataset, we
intentionally masked out all hole cards except for those belonging to player one. From our trained
probe, we were able to achieve a correlation coefficient of 0.59 on our test dataset predictions,
averaged across seeds (Figure 2a). This correlation between model activations and the predicted
winning potential of a given hand demonstrates that our GPT model has spontaneously developed
some internal representation of the hand strength. Observing the R2 across layers, the understanding
of equity is most strongly encoded in the early layers, becoming diluted after layers 0-4 (Figure
2b). This decrease in R2 across layers is consistent with information bottleneck style compression
[Tishby and Zaslavsky, 2015], with deeper layers retaining information that is more relevant for
token prediction, leading to weaker representations of input variables such as hand equity as the
representation becomes more focused on the prediction task. This result is similar to what is observed
in our deterministic world model evaluations (Figure 1d), with hand recognition experiencing the
same trend.

(a) Predicted vs. true equity (layer 0). (b) Comparison of R2 across layers.

Figure 2: Probe performance on stochastic representations. Panel (a) shows predicted versus true
hand equity for Layer 0, demonstrating that model activations contain information about winning
probability despite incomplete information. Panel (b) shows the R2 value of equity prediction
across layers, showing that equity information is strongest in earlier layers of (0-5) and progressively
diminishes deeper in the network, consistent with information-bottleneck–style compression.
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4.3 Activation Maps

As a validation of the LLM’s world representation, we observe its ability to discern hands and
patterns of different strategic value in poker. We visualized activations using PCA, t-SNE, and
UMAP (see Appendix K for extended results). Figure 3b reveals distinct clusters, indicating that the
model organizes its representations in accordance with hand rank, pairs, and three-of-a-kind clusters
closely, thus demonstrating its ability to learn game-level concepts from unsupervised data. Note that
the presence of multiple clusters for hand-ranks such as pair indicates that the model is learning a
broader representation of pair, where each cluster likely refers to a subset of pairs (the types of cards
encompassed in the pair).

(a) t-SNE visualization of Layer 2 activations.
Points represent a single hand colored by
rank.

(b) t-SNE visualization of Layer 0 activa-
tions. Points represent a single hand colored
by rank. Note the two_pair cluster near the
top.

Figure 3: t-SNE visualized activation plots. Activations are clustered by hand-rank and conceptual
similarity. Distinct clusters indicate that the model internally organizes hands according to rank or
equity strength that follows. Multiple clusters for ranks such as “pair” suggest that the model learns
more detailed sub-categories (e.g., types of pairs such as J and K) rather than treating each rank as a
single class.

5 Limitations

Dataset size remains a core limitation of our experiments, as with our generation method it becomes
computationally expensive to generate extremely large amounts of data. The size of our dataset
impacts the model accuracy on its task as well as results obtained from probes [Karvonen, 2024].
Our deterministic probing analysis is also limited by this factor, as there are insufficient examples of
rarer hands such as straights or flushes in our generated datasets for us to accurately probe for them.
Additionally, the process for generating data may be overly simplified in relation to the complexity of
poker interactions, potentially impacting how the model understands the game and it’s simple and
complex variables. This is an unfortunate consequence of being forced to use synthetic data, due to
a lack of fully documented poker hand datasets. Due to this, we are unable to validate our results
with additional datasets. Finally, there are no guarantees that current results regarding LLM beliefs of
the Poker POMDP are able to be extended to analysis of new stochastic poker variables, or to novel
domains.

6 Conclusion and Future Works

We demonstrated that a GPT-2-based model trained on PHH-style data can develop a deterministic
understanding of the game state as well as an understanding of stochastic game elements. This brings
us closer to extending the emergent world model hypothesis to games characterized by incomplete
information. To extend our work, we hope to further scale our base LM and formalize our intuitions of
LLM Bayesian behavior—in particular, extracting LLM beliefs of the Poker POMDP (see Appendix
B for theory)—and better understand the structure of LLM predictive world representations through
SAEs and further probing experiments.
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A Appendix

Our code can be found at:

• https://anonymous.4open.science/r/poker-interp-4653/

B Theoretical Justification of Bayesian World Models

In this section, we motivate LLMs as MLE learners in a POMDP setting, and formalize the connection
between these LLM probabilistic "belief states" and concrete residual stream activations that are
separated through linear probes. Past work such as Shai et al. [2024] demonstrates that geometry of a
Hidden Markov Model’s belief states can be recovered in the residual stream of a transformer. In this
work, we formalize the meaning of an LLM "belief state" for next-token prediction that represents
the trajectory of partially observable Markov processes.

B.1 Belief State and Poker MDP Definitions

Consider Z as some unobserved latent world state in the LLM (i.e. the board state in Othello, hidden
cards in Poker, semantic topics of conversation in NLP) along with a history of tokens up to time t as
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h = (x1, · · · , xt). The true next token distribution is given as

p(xt+1|ht) =
∑
z

p(xt+1|z, ht)p(z|ht)

So the next token depends on our distribution over latent states p(z|ht), which we encode as our LLM
belief state. For an ideally trained LLM in deterministic games of chess/Othello, this distribution is
just an indicator of the deterministic board state given a sequence of moves, but for games such as
poker we uncover a nontrivial distribution over latent space.

In short, for next-token prediction in a POMDP setting, the LLM must carry information at least as
strong as p(z|ht). We view Poker as such a partially observable Markov Decision Process (POMDP),
defining states S as the full game specification with a partially observable subset O representing
outside cards and behaviors, actions A as a single player’s options (raising, folding, calling, etc), and
the transition dynamics T representing stochasticity over dealt cards as well as other player’s actions.

From standard POMDP analysis, we recall that the belief state is a sufficient statistic for decision-
making (in our setting, next-token prediction) Kaelbling et al. [1998].

B.2 Linearity of Predictions in the Belief State

For POMDPs over deterministic games as explored in Li et al. [2024], we can justify the use of linear
probing through a theoretical analysis as predictions of the future as linear functions on the LLM’s
belief state.

Linearity Lemma: Given our Poker POMDP M = (S,A,O, T,Ω) and a policy π (our sequence
model trained on poker games), let Ht be the history up to t and bt ∈ ∆(S) the belief bt(s) =
Pr(St = s | Ht). For any finite-horizon future event F measurable w.r.t. (St+1:T , Ot+1:T , At:T−1)
under π, there exists a vector vF ∈ R|S| such that

Pr
π
(F | Ht) =

∑
s∈S

bt(s) vF (s) = ⟨bt, vF ⟩.

In other words, our prediction of future events given our current history under the policy is linear in
our defined belief state. In particular, then for each observation o ∈ O,

Pr
π
(Ot+1 = o | Ht) = ⟨bt, vo⟩,

where vo is a per-observation vector of weights (in practice, learned by a linear probe) so the entire
next-observation distribution is an affine linear map of bt.

Proof:

Let f = 1F be the indicator of F . By the tower rule,

Eπ[f | Ht] =
∑
s∈S

Pr
π
(St = s | Ht)Eπ[f | St = s,Ht].

In a POMDP, the controlled Markov property implies that, given St = s (and with policy π fixed),
the distribution of (St+1:T , Ot+1:T , At:T−1) does not depend on the specific past Ht (i.e. our token
histories); hence Eπ[f | St = s,Ht] = Eπ[f | St = s] =: vF (s) by conditional independence.

Then, this directly gives us the probabilities as Prπ(F | Ht) =
∑

s bt(s) vF (s) = ⟨bt, vF ⟩. Taking
F = {Ot+1 = o} yields the desired linearity of observation result.

So the PODMP belief state "automatically" gives us linearity! Intuitively, if the transformer trained
on next-token prediction does in fact hold its belief state in the residual stream, then any predictive
probe should be linear in these activations. Consider the following toy example:

Suppose we have a simple binary hypothesis testing Z = {0, 1} to denote which coin is in use among
two coins with probabilities p1, p2. Conditional on Z, our observations x1, · · · , xt ∈ {H,T} are id
with P (xi = H|Z = z) = pz, P (xi = T |Z = z) = 1 − pz, z ∈ {0, 1}. Our log likelihood ratio
(LLR) of one hypothesis over the other evolves with ratios log( θ1θ0 ) and log( 1−θ1

1−θ0
). Our log likelihood

ratio ηt by assumption exists in the residual stream of our sequence prediction model.
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How does the residual stream "provide" the belief coordinate? Our connection between linear
probes and POMDP belief states lies in the LLM’s residual stream, motivated from the theory of
transformer circuits Anthropic [2021]. Let rt ∈ Rd denote the residual stream at position t. Assume
the model stores ηt along a direction v ∈ Rd:

rt ≈ r0 + ηt v + εt = r0 +
(
ηt−1 + LLR(xt)

)
v + εt, (1)

so residual addition implements evidence accumulation. With a fixed unembedding U ∈ Rd×|V|, the
logits satisfy

logits(x | x1:t) = U⊤
x rt + cx ≈ (U⊤

x v) ηt + const, (2)
and so we get a linear function of the belief coordinate. Ultimately, we get that a linear probe w can
recover ηt from rt via η̂t = w⊤rt.

Related works explore the theoretical justifications of linear probes in partially observable processes.
Two complementary works make a precise claim in this direction: predictions are linear functionals
of state.

POMDPs. Under a fixed policy, the belief bt (posterior over latent state) is a sufficient statistic
for prediction/control; for any finite-horizon event F , Pr(F | Ht) = ⟨bt, vF ⟩ for some vector vF
determined by the dynamics/observations [Kaelbling et al., 1998, Smallwood and Sondik, 1973].
Thus the entire next-observation distribution is an affine-linear map of bt.

PSRs. If the Hankel matrix of future-test probabilities has finite rank k, there exists a k-dimensional
predictive state p(h) (probabilities of core tests) such that the probability of any test τ is linear:
Pr(τ | h) = c⊤τ p(h) [Littman et al., 2001, Singh et al., 2004]. Hence, if a transformer stores an
affine transform of bt or p(h) in its residual stream, there exists a linear probe (and the model’s own
unembedding) that recovers the relevant prediction

B.3 Relation to poker (this paper)

Poker is a canonical partially observable domain where the minimal predictive state is a belief
over hidden hands (often summarized as a range). Training a next-token model on poker strings
(actions and reveals) creates direct pressure to maintain this belief internally, because the Bayes-
optimal next-token distribution is the mixture over hypotheses weighted by the current belief. Our
empirical program—linear probes for range log-odds, layerwise tuned-lens trajectories, and causal
edits along probe directions—follows the Othello/chess playbook while grounding interpretation
in POMDP/PSR sufficiency. This explains why (i) range features should be linearly decodable,
(ii) updates should approximate additive log-likelihood ratios upon new evidence, and (iii) editing
decoded belief directions should steer action logits in predictable ways.

C LLM World Models

In this section we further explore the literature of LLM world models and discuss our contributions
in the context of prior work.

In the previous section, we formalize our definition of world models/belief state for POMDPs. In the
case of OthelloGPT, this world model takes the form of a representation of the board state/dynamics
in the residual stream, but in our Poker case, the relevant latent is instead a belief (range) over hidden
information, such as player hands and strategies/deck cards.

C.1 What counts as a world model?

Broader than POMDPs and games, a world model functions as an internal state whose evolution
under the model approximates the latent state/dynamics of the data-generating process, such that
predictions are a (typically affine-linear) functional of that state. Early neural control work formalized
this idea broadly as “world models” [Ha and Schmidhuber, 2018]. In LLMs, the clearest evidence
comes from synthetic or structured domains where latent state is objectively defined and recoverable
from strings. The primarily goal of LLM world model research in toy settings such as Poker and
Othello is to find strong signals that LLMs can learn higher-order structure (translated to the language
setting, higher-order emotions/rationalities) from sampled sequences of these unobserved transition
dynamics.
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C.2 Empirical evidence in trained sequence models

Board games. In Othello-GPT, a small transformer trained only to predict legal moves (no board
supervision) learns an internal representation of the full board: probes decode square occupancy;
causal interventions flip squares and reliably change downstream moves [Li et al., 2024]. Follow-up
work in chess reaches similar conclusions: linear decoders recover piece/square features and editing
those features predictably shifts move probabilities, indicating persistent board-state coordinates in
the residual stream [Mei et al., 2025].

Space & time. When trained on ordinary text corpora, LLMs encode geometric and temporal
structure that is linearly recoverable: e.g., countries/cities embed into coherent low-dimensional
coordinate systems and historical entities align along temporal axes [Gurnee and Tegmark, 2024].
These are not merely lexical clusters but approximately metric maps, suggesting latent factors aligned
with world structure.

C.3 Mechanistic lenses on storage and update

Two families of tools consistently reveal how predictions depend on internal state.

Layerwise decoding: The logit lens and the calibrated tuned lens linearly decode token distributions
from intermediate residual streams, showing a monotone refinement of predictions across depth—
consistent with iterative inference/update of a persistent state carried forward by residual addition
[nostalgebraist, 2020, Belrose et al., 2023]. In practice, we observe this through the refinement of
LLM confidence in poker games as more cards are dealt.

Feature decomposition: Sparse autoencoders (SAEs) and related dictionary-learning methods
recover more monosemantic directions in residual space (e.g., individual board squares, entity
features), addressing superposition and enabling targeted causal edits [Cunningham et al., 2023,
Templeton et al., 2024, Elhage et al., 2022]. These results support a picture in which a small
set of task-relevant state features are embedded (often nearly linearly) and read out by the fixed
unembedding matrix.

D PHH Formatting

In PHH notation cards abbreviated to a rank followed by a suit (King of Hearts -> Kh). Table 1 shows
how actions are represented in PHH notation.

Player Actions
Standard Representation PHH Representation
Hole Cards Dealt d dh pN card(s)==s)
Board Cards Dealt d db card(s)
Fold pN f
Check/Call pN cc
Bet/Raise pN cbr amount
Showdown pN sm card(s)

Table 1: PHH-style representations of player actions

E Dataset Generation Details

Our dataset generation process creates valid six player No Limit Texas Hold’em poker games. The
games are generated as a result of six unique and independent game agents playing against each
other. Agents use myopic heuristics, driven by simulated win equity estimates. Each agent is
randomly initialized for the following impactful values on decision making, using a provided seed for
reproducibility.

• Propensity to raise
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• Tightness in adhering to equity

• Bluff frequency

• Call willingness

• Initial bet scale

• Raise scale

• Bet continuation

This combination of heuristics with equity allows vast amounts of game data to be generated relatively
quickly with a competent level of agent play. A considerable limitation of this method is that agents
do not adapt over time or learn from others playing styles in a way that humans or more complex
game playing agents could.

F Supplemental Figures and Tables

Below we give a diagram of our overall training pipeline for our Poker-GPT model, including our
data-masking procedure.

Figure 4: Training Pipeline. We train for up to 20 epochs, with early stopping if validation accuracy
declines for three consecutive epochs to prevent overfitting.

G Compute and Memory Resources

We trained our GPT-2-based model, which comprises of 87 million parameters, on an NVIDIA
H200 GPU for approximately seven hours. For the training of probes, we leveraged a diverse set of
hardware: RTX 5090, NVIDIA H200, A10, and A100 GPUs.
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H Percentile Computation

Let y = array of hand rank labels,
L = {ℓ1, ℓ2, . . . , ℓk} = unique labels in y,

ci =
∑
j

1{yj=ℓi} for i = 1, . . . , k (counts per label),

target_count = max
(

percentile40({c1, . . . , ck}), 10
)

This balance in count helped us mitigate the impact of the excessive abundance of instances of hand
ranks such as high_card due to their high-frequency nature by chance. This calculation also helps
us validate the probe is not just learning to output one hand rank and, instead, is forced to extract
intricate information from the activations of the model.

I Action Identification

To investigate how the model encodes the game state, we analyzed its ability to predict the action
taken when the token corresponding to the action (f, cc, etc.) was masked out. This helped us
prevent the model from ’cheating’ and seeing the token within the playthrough. With this approach,
the model was forced to determine the action taken based on the context of the playthrough. After
running both a linear classifier probe and two-layer MLP (only one hidden layer), we noticed that the
linear probe (see Figure 5a) and MLP probe (see Figure 5b) both achieved ~80% accuracy for action
identification. This implies that the model is learning to associate actions to certain contexts such as
card reveals (as in the case of sm) and possibly learning how they fit in these contexts.

(a) Confusion Matrix for MLP Probe Action
Identification on Layer 4.

(b) Confusion Matrix for MLP Probe Action
Identification on Layer 4.

Figure 5: Action identification performance using linear and MLP probes when the action token (e.g.,
f, cc, sm) is masked out during inference, to prevent models from "cheating". Panels (a) and (b) show
confusion matrices for the linear probe and two-layer MLP probe respectively, evaluated on Layer
4 of the transformer. Both probes achieve similar accuracy (∼80%), suggesting that the model’s
internal activations already encode sufficient information about common actions and their situational
context, but also show confusions between actions with similar local structure (e.g., cc vs. f).
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J Hand-Rank Probe Experiments

(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 0 (f) Layer 1 (g) Layer 2 (h) Layer 3

(i) Layer 0 (j) Layer 1 (k) Layer 2 (l) Layer 3

(m) Layer 0 (n) Layer 1 (o) Layer 2 (p) Layer 3

Figure 6: Hand-rank identification results across transformer Layers 0–3 using linear and MLP
probes. Each confusion matrix shows probe predictions for the categorical poker hand-rank (e.g.,
high card, pair, two pair, etc.), evaluated on a held-out test set excluded from both model and probe
training. Row 1 shows linear probe performance. Rows 2–4 show MLP probe performance when
the training data is balanced at the 30th, 35th, and 40th percentiles of unique hand-rank frequencies,
respectively, ensuring that rare hand-ranks are not underrepresented. Across all configurations, strong
diagonals indicated by the dark coloring show consistent internal encoding of hand-rank information
by early layers, while differences across percentiles displays the effect of dataset balancing for rarer
hand-ranks.

K Activation Plots

Below are our activation plots (compressed with PCA, t-SNE, and UMAP, respectively, to 2-D
plots) across multiple model layers. We note the per-hand clusters (with each cluster representing
a particular "type" of hand, ie. a pair with certain card values, or a three of a kind with a certain
card type). We also note that conceptual similarity is also being represented by these clusters. Note:
These plots were generated from a test set of ~200,000 samples. This set is separate from the training
set used for the model and the one used for the probes. PCA activation analysis revealed triangular
activation structures that closely resemble the belief-state geometries described by Shai et al. [2024].
A natural direction for future work is to investigate whether these structures reflect the model’s
implicit representation of belief states in a POMDP setting. In particular, the vertices of the triangle
may correspond to pure beliefs, confident assignments to specific hand ranks, while interior points
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capture mixtures over multiple possibilities. This interpretation would suggest that the model has
learned to encode uncertainty in a manner consistent with POMDP belief representations. As seen in
figure

(a) Layer 0 (b) Layer 0 (c) Layer 0 (d) Layer 0

(e) Layer 1 (f) Layer 1 (g) Layer 1 (h) Layer 1

(i) Layer 2 (j) Layer 2 (k) Layer 2 (l) Layer 2

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

Figure 7: PCA projections of activation vectors across transformer Layers 0–3 and across four
different training set sizes (columns: 100k, 200k, 200k with modified test split, and 430k samples).
Each panel shows a 2D PCA embedding of per-token activations colored by hand-rank class. The
recurring triangular geometry resembles POMDP belief-state manifolds and becomes increasingly
well-separated at larger training sizes, indicating stronger representational structure.

The t-SNE visualizations below further illustrate this structure. Each subplot shows a two-dimensional
embedding of activation vectors colored by hand-rank class. Compared to PCA, t-SNE produces
sharper and more clearly separated clusters, revealing that the model internally organizes hands by
both rank and conceptual similarity. In particular, pair and three-of-a-kind categories form distinct,
compact regions, while more ambiguous hands occupy the intermediate space, reflecting graded
internal beliefs about hand strength.
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(a) Layer 0 (b) Layer 0 (c) Layer 0 (d) Layer 0

(e) Layer 1 (f) Layer 1 (g) Layer 1 (h) Layer 1

(i) Layer 2 (j) Layer 2 (k) Layer 2 (l) Layer 2

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

Figure 8: t-SNE visualizations of activation vectors across transformer Layers 0–3 and four different
training set sizes. Each subplot embeds per-token activations into two dimensions, colored by hand-
rank class. t-SNE reveals fine-grained cluster structure that is especially pronounced for conceptually
similar hands (e.g., pairs and three-of-a-kind). Deeper layers also exhibit tighter, more separated
clusters, indicating progressive specialization of internal representations.

Each subplot below shows a UMAP two-dimensional embedding of activation vectors colored
by hand-rank class. UMAP reveals partial clustering behavior, though with less separation and
interpretability than PCA or t-SNE.
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(a) Layer 0 (b) Layer 0 (c) Layer 0 (d) Layer 0

(e) Layer 1 (f) Layer 1 (g) Layer 1 (h) Layer 1

(i) Layer 2 (j) Layer 2 (k) Layer 2 (l) Layer 2

(m) Layer 3 (n) Layer 3 (o) Layer 3 (p) Layer 3

Figure 9: UMAP projections of activation vectors across transformer Layers 0–3 and across four
training set sizes. Clusters correspond to semantically related hand-ranks, but the method introduces
more distortion in the results.
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