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Abstract

Hubness, the tendency for few points to be001
among the nearest neighbours of a dispro-002
portionate number of other points, commonly003
arises when applying standard distance mea-004
sures to high-dimensional data, often negatively005
impacting distance-based analysis. As autore-006
gressive large language models (LLMs) oper-007
ate on high-dimensional representations, we008
ask whether they are also affected by hubness.009
We first show, theoretically, that the only repre-010
sentation comparison operation performed by011
LLMs, namely that between context and unem-012
bedding vectors to determine continuation prob-013
abilities, is not characterized by the concentra-014
tion of distances phenomenon that typically015
causes the appeareance of nuisance hubness.016
We then empirically show that this comparison017
still leads to a high degree of hubness, but the018
hubs in this case do not constitute a disturbance.019
They are rather the result of context-modulated020
frequent tokens often appearing in the pool of021
likely candidates for next token prediction. On022
the other hand, when other distance computa-023
tions involving LLM representations are per-024
formed, we do not have the same theoretical025
guarantees, and, indeed, we see nuisance hubs026
appear. In summary, our work highlights, on027
the one hand, how hubness, while omnipresent028
in high-dimensional spaces, is not always a029
negative property that needs to be mitigated,030
and, on the other hand, it shows that various031
widely-used LLMs have developed a guessing032
strategy that consists in constantly assigning a033
high probability to frequent tokens.034

1 Introduction035

Hubness is a phenomenon which occurs in high-036

dimensional data (Radovanovic et al., 2010), where037

some data points (the hubs) are in the k nearest038

neighbours of many other points while most points039

(the anti-hubs) are in the k nearest neighbours of040

few or no other points. Hubness has been found in041

many different types of data: for example in time-042

series, biology and image processing (Tomašev 043

et al., 2011, 2015) and, in relation to text, in bag- 044

of-words embeddings (Radovanovic et al., 2010; 045

Schnitzer et al., 2012), dense word embeddings 046

(Dinu and Baroni, 2014), dense sentence embed- 047

dings (Nielsen and Hansen, 2024) and cross-modal 048

embeddings (Bogolin et al., 2022). Hubs arise due 049

to intrinsic properties of certain distance measures 050

applied to high-dimensional spaces, and they are 051

typically considered a nuisance, as they obfuscate 052

the genuine semantic landscape of the data of in- 053

terest. Consequently, there is a general interest in 054

techniques to reduce the hubness of a representa- 055

tion space (see for instance Feldbauer and Flexer 056

(2019)). 057

Autoregressive large language models (LLMs) 058

also trade in high-dimensional representations, and 059

it is thus natural to ask whether hubs emerge in 060

distance computations in LLMs. This is the ques- 061

tion we answer in this study. In order to address it, 062

it is fundamental to distinguish between the com- 063

parison operations a model is effectively perform- 064

ing when engaging in next-token prediction and 065

distance-based comparisons we might decide to 066

compute from its representations. 067

Concerning the distance-based comparisons ac- 068

tually performed by a standard autoregressive 069

transformer-based LLM (Elhage et al., 2021), we 070

note that the model prediction is accomplished 071

through the softmaxed dot product between a con- 072

text representation and each row of the unembed- 073

ding matrix. This operation effectively determines 074

a rank over the whole token vocabulary of a model 075

(typically made up of thousands of elements), and it 076

can be seen as a distance-based measure that could 077

be affected by nuisance hubs.1 078

1Technically, another dot product is computed, within the
attention modules, between the query vector of a token and
the key vectors of the preceding tokens. Since in this case the
potential “neighbours” are constrained to be the tokens in the
preceding context, which are meaningful elements (as long as
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We first present a theoretical analysis of this079

softmaxed context-unembedding dot product oper-080

ation, which defines a measure that we will call,081

from now on, probability distance. We show that082

probability distance, under reasonable assumptions,083

is not affected by the concentration of distances084

phenomenon that leads to nuisance hubness in high-085

dimensional spaces. Interestingly, we also find, em-086

pirically, that probability distance is still character-087

ized by high hubness, but these hubs are not noise.088

Instead, they correspond to context-modulated fre-089

quent tokens that are often reasonable guesses,090

given that natural language text is characterized091

by very skewed word distributions (Baayen, 2001).092

Indeed, when the most likely continuation accord-093

ing to the model is a hub, this prediction is often094

the correct one.095

On the other hand, a researcher might be inter-096

ested in performing other similarity comparisons097

between inner representations of a LLM: for ex-098

ample, looking for the nearest neighbours of a099

sentence, as represented by its hidden-activation100

last-token vector, or of a vocabulary entry, as rep-101

resented in the unembedding matrix.2 It is already102

theoretically known that, when using Euclidean103

distance in this context, hubs might arise due to104

concentration of distances. We confirm empirically105

that such measurements are generally affected by106

nuisance hubness, although, surprisingly, concen-107

tration of distances is not observed in all cases.108

Our main contributions are as follows:109

• We present the first theoretical and empir-110

ical analysis of hubness in autoregressive,111

transformer-based LLMs;112

• We show that the hubs that arise in the predic-113

tion computations of the model are not a trivial114

effect of concentration of distances, but reflect115

a guessing heuristic exploiting the skewed116

nature of word frequency distributions, and117

should thus not be eliminated;118

• We show that other similarity computations119

involving LLM representations are instead af-120

fected by nuisance hubness, and thus they121

should only be performed in combination with122

hubness reduction techniques.123

we are looking at meaningful text), we do not expect nuisance
hubs to affect this operation.

2We focus on the unembedding matrix because it is the
one we are also studying in the context of probability distance
computations, but we expect similar trends to emerge for the
embedding matrix as well.

2 Related Work 124

Radovanovic et al. (2010) showed the ubiquity of 125

hubs in many different kinds of datasets. Hub- 126

ness is a cause of concern, as it can negatively 127

impact many common tasks in data analysis and 128

machine learning, such as regression, classifica- 129

tion, outlier detection and clustering. Hubness was 130

also shown to hinder the performance of nearest- 131

neighbour algorithms in speech recognition, recom- 132

mendation and multimedia retrieval (see Feldbauer 133

and Flexer (2019) and references therein). Problem- 134

atic hubness also occurs in distributed text repre- 135

sentations analogous to those produced by a LLM. 136

For example Dinu and Baroni (2014), Smith et al. 137

(2017), Lample et al. (2018), Huang et al. (2020) 138

and Nielsen and Hansen (2024) studied hubness 139

in word and text embeddings, while Bogolin et al. 140

(2022), Wang et al. (2023) and Chowdhury et al. 141

(2024) looked at hubness in multimodal language 142

models and cross-modal retrieval. 143

Given the problems posed by hubs, various hub- 144

ness reduction methods have been proposed, for 145

example Local Scaling (Zelnik-Manor and Per- 146

ona, 2004), Mutual Proximity (Schnitzer et al., 147

2012), Globally Corrected Rank (Dinu and Ba- 148

roni, 2014), Inverted Softmax (Smith et al., 2017), 149

Cross-domain Similarity Local Scaling (Lample 150

et al., 2018), Hubness Nearest Neighbor Search 151

(Huang et al., 2020), Querybank Normalisation 152

(Bogolin et al., 2022), DBNorm (Wang et al., 2023), 153

Dual Inverted Softmax (Wang et al., 2023), F- 154

norm (Nielsen and Hansen, 2024) and Nearest 155

Neighbor Normalization (Chowdhury et al., 2024). 156

These methods have been systematically compared 157

by Feldbauer and Flexer (2019) and Nielsen and 158

Hansen (2024), among others. 159

As shown by the plethora of hubness reduction 160

techniques, the focus has so far been on mitigat- 161

ing hubness, with little attention devoted to the 162

question of whether hubness is actually always a 163

nuisance phenomenon to be mitigated. 164

3 Theoretical preliminaries 165

We first define the k-occurrence, Nk, as in 166

(Radovanovic et al., 2010). Given a set of points, 167

the k-occurrence of a specifix point x, Nk(x), is 168

the number of points for which x is in the k-nearest 169

neighbours. We define hubs as points, h, with high 170

k-occurrence, i.e., where Nk(h) is large. To get a 171

sense of which values of Nk(x) should be consid- 172

ered large, we can analyze the distribution of the 173
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k-occurrences of a dataset. If the neighbourhood re-174

lation is relatively symmetric, and most points are175

in the k nearest neighbours of k other points, the176

distribution of k-occurrences will have a peak at k177

and also be relatively symmetric. This is the usual178

case in low dimensions. However, if we have some179

points, hubs, with a k-occurrence much larger than180

k, we will get a skewed distribution. Thus, like181

in Radovanovic et al. (2010) and Feldbauer and182

Flexer (2019), we use the skewness of the distri-183

bution of k-occurrences (k-skew) to measure the184

hubness of a dataset. Recall that for a collection of185

n data points, x, the skewness is calculated as186

skew(x) =
1

n

n∑
i=1

(
xi − µx

σx

)3

(1)187

where µx is the mean and σx is the standard de-188

viation of x. If the k-occurrence distribution is189

completely symmetric, we get a k-skew of 0.190

3.1 Hubness and concentration of distances191

Concentration of distances happens when the dif-192

ference between the largest and smallest distance193

to a point goes to zero as the dimension increases.194

Necessary and sufficient conditions for this to hap-195

pen have been presented in Beyer et al. (1999);196

Durrant and Kabán (2009). When concentration of197

distances occurs, for every query point, we have198

that every other point is almost equally far away,199

see Fig. 1.200

Figure 1: Illustrative example of concentration of dis-
tances. Distribution of 10,000 Euclidean distances be-
tween query and comparison points from a standard
Gaussian in 3 and 300 dimensions. In 300 dimensions,
no pair of points has a distance between 0 and 20, and
most have a distance around 25, so the distances “con-
centrate”.

A first effect of the concentration of distances 201

is that, while every point will, trivially, still have 202

a nearest neighbour, just adding a small amount 203

of noise is likely to change which points are the 204

closest. Another consequence is that, in high di- 205

mension, all points will be close to lying on a hy- 206

persphere, and be quite sparsely distributed. If we 207

take a point which is slightly closer to the mean of 208

the data than most other points, then this point will 209

now be the closest neighbour of many other points 210

(although it is still quite far away from everything), 211

i.e., this point will be a hub. 212

Therefore, if we are attempting to compare high- 213

dimensional representations using a distance mea- 214

sure which exhibits concentration of distances, we 215

will get that most representations are far away from 216

each other. However, a few hubs will be the near- 217

est neighbours of many other representations, with 218

no guarantee that they are close in any meaningful 219

sense. We call this kind of hubs, solely arising due 220

to concentration of distances, nuisance hubs. 221

3.2 Probability distance in LLMs and 222

concentration of distances 223

When comparing the representations of LLMs, it is 224

common to use Euclidean distance or cosine simi- 225

larity, which is equivalent to normalized Euclidean 226

distance in terms of neighbour ranking. However, 227

Euclidean distance is affected by concentration of 228

distances (Aggarwal et al., 2001). We thus expect 229

to find nuisance hubs when using it to compare 230

representations. 231

Does this mean that LLMs are adversely affected 232

by hubness? As discussed in the introduction, mod- 233

els are not using Euclidean-distance-based com- 234

parisons as part of their inner workings. They 235

are trained instead to compare contexts with possi- 236

ble vocabulary items and give the most likely next 237

items a high probability. We can interpret this as 238

a dissimilarity measure, which we call probability 239

distance, by using 1− p(y | x), where p(y | x) is 240

the probability the model associates to item y given 241

the context x. In this way, we construct neighbour- 242

hoods for each context, with the closest items being 243

the ones which are most likely. 244

The following theorem shows that, when using 245

probability distance, we do not get concentration 246

of distances unless the probabilities are uniform. 247

Theorem 1. Let xi ∈ X be a data point. Let yj , 248

j ∈ {1, ..., v}, be the possible labels of points from 249

X , and let p(yj |x) be the probability of label yj 250
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given x which uses representations f(x),g(y) ∈251

Rm. We define the dissimilarity between xi and252

yj to be d(xi,yj) = 1 − p(yj |xi). Then, if the253

distribution over y does not go to the uniform dis-254

tribution for every x, p(y|x) ̸→ U(y), we will not255

get concentration of distances for this dissimilarity256

as the dimension m → ∞.257

Proof. In appendix A258

For LLM predictions in language models, this259

proof means that, as long as our models do not as-260

sign close to equal probabilities to all tokens for all261

the given contexts, there will be no concentration262

of distances. Table 14 in Appendix D shows that,263

when we compare contexts with vocabulary items,264

the mean L2 distance to the uniform distribution is265

very far from zero for all models. This is expected266

since, for any given context, some items will be267

much more likely than others, and LLMs have been268

expressly trained to make accurate in-context pre-269

dictions.270

Note that Theorem 1 does not imply that there271

will be no hubs for the probability distance measure272

used by LLMs, but if hubs are present, they will not273

be nuisance hubs due to concentration of distances.274

4 Experiments275

We have submitted a Jupyter Notebook with the276

article containing examples of hubness and concen-277

tration of distances on synthetic data. The notebook278

and all code for experiments and plots will be made279

public upon acceptance.280

4.1 Setup281

We experiment with five different autoregressive282

LLMs, namely OPT-6.7B (Zhang et al., 2022),283

Llama-3-8B (Meta, 2024), Pythia-6.9B (Biderman284

et al., 2023), OLMo-7B (Groeneveld et al., 2024),285

and Mistral-7B (Jiang et al., 2023), hereon referred286

to as Opt, Llama, Pythia, Olmo, and Mistral, respec-287

tively. As input to the models, we use the 3 datasets288

made available by Cheng et al. (2025). Each289

of them consists of 50K sequences, or contexts,290

as we will call them, of 20 orthographic tokens291

randomly extracted from Bookcorpus (Zhu et al.,292

2015), Pile10k (Gao et al., 2020) and WikiText-293

103 (Merity et al., 2017), respectively. Note that294

these contexts start and end at random points in a295

text (in particular, the last token is not necessarily296

a punctuation mark). In order to estimate domain-297

specific token frequency distributions, we use the298

full corpora the contexts were extracted from.299

Figure 2: Probability distance distribution for Pythia on
contexts from Pile10k. If we had had a concentration of
distances, we would not see this spread of distances all
the way to zero (compare with Fig. 1).

Figure 3: k-occurrence distribution for Pythia pre-
dictions on contexts from Pile10k. This distribution
is highly skewed with many hubs (points with k-
occurrence more than 100).

To measure hubness, we set k = 10 and define a 300

point x as a hub if it has Nk(x) ≥ 100. That is, a 301

point is a hub if it is in the 10 nearest neighbours of 302

10 times more points than we would expect if the 303

relationship had been symmetric. We informally as- 304

certained that our conclusions are robust to changes 305

in these hyperparameters. 306

4.2 Probability distance in LLMs 307

In this section, we first confirm that the probability 308

distances computed by LLMs do not exhibit con- 309

centration of distances. We then show that, despite 310

this, all tested LLMs are characterized by high hub- 311

ness. We find however that their hubs correspond 312

to context-dependent frequent tokens, that tend to 313

be reasonable prediction candidates. 314

Fig. 2 shows, for Pythia and Pile10k, that there 315
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is no concentration of distances, as predicted by316

Theorem 1. This fact is confirmed for the other317

models in Appendix E.318

Given the lack of concentration of distances,319

LLM probability neighbourhoods should not be320

characterized by nuisance hubs. However, all mod-321

els still have a very high k-skewness. A k-skewness322

of 3 already means that either there are many points323

which are in the k nearest neighbours of more than324

k other points (there are many points with a k-325

occurrence larger than the mean), or there are a326

few points which are in the k nearest neighbours of327

substantially more than k points (a few points have328

k-occurrences much larger than the mean). Thus, a329

k-skewness of 3 could already be considered high,330

but all models have k-skewness higher than 40 for331

all three datasets (Table 4 in Appendix B). Indeed,332

in all cases we find hubs, that is, tokens with a k-333

occurrence larger than 100. In fact, all models have334

at least one vocabulary item with a k-occurrence335

higher than 10,000 for all datasets. As an example,336

the k-occurrence distribution of Pythia on Pile10k337

is shown in Fig. 3.338

If the hubs do not come from concentration of339

distances, where do they come from? By quali-340

tative inspection, we observe that the hubs corre-341

spond to intuitively frequent tokens, as shown in342

Table 1. To make this intuition more formal, we343

plotted the k-occurrence of the hubs against the fre-344

quencies of occurrence of the tokens in the various345

datasets. We found that, for all models, there is a346

high Spearman correlation (0.63 or larger) between347

the k-occurrence of the hubs and the frequencies of348

the vocabulary items in the dataset which the model349

is making predictions on.3 For example, compar-350

ing k-occurrences of hubs in Pythia’s predictions351

on Pile10k with the frequency of tokens in Pile10k352

gives a Spearman correlation of 0.71 (Fig. 4; all353

correlations in Table 15 of Appendix H).354

Thus the probability distance computed by355

3In all plots using log scales, we have added a small con-
stant, 10−9, to the frequencies, in order to make the points
with 0 frequency visible. Tokens with 0 frequency therefore
all lie on a horizontal line at 10−9 in our plots. Note that, for
all models and all datasets, there are some vocabulary items
which have frequency 0 even though they are hubs in the pre-
dictions. These are tokens that do not occur in the datasets
but are frequently predicted by the LLMs due to tokeniza-
tion and pre-processing discrepancies between the training
corpora and the datasets. For example, for Llama on Pile10k,
’.\n’ is frequently predicted, but it never occurs in the dataset
(where periods and newlines were systematically separated
during pre-processing). As another example, the Bookcorpus
is systematically lower-cased, so a LLM will predict frequent
capitalized tokens (e.g., The) that never occur in this dataset.

Figure 4: k-occurrence of hubs in Pythia predictions
on contexts from Pile10k vs. frequency of vocabulary
items in Pile10k. ρ is the Spearman correlation.

LLMs during predictions is characterized by high 356

hubness, but this high hubness is not a nuisance 357

phenomenon, but the reflection of how LLMs 358

adapted to word frequency distributions. Given that 359

LLMs must predict the next token in natural text, 360

and natural text is characterized by very skewed 361

distributions, all models have learned to often pre- 362

dict very frequent tokens (punctuation marks, the, 363

of, etc.). 364

Interestingly, the hubs are not simply fixed based 365

on a single frequency distribution (e.g., that of the 366

training corpus). Instead, they are modulated by the 367

type of text the LLM is predicting. This is shown 368

by the fact that, given a context extracted by one 369

of the datasets, k-occurrence is more highly corre- 370

lated with frequency estimates extracted from the 371

corpus that dataset is extracted from, than with esti- 372

mates from the other corpora. For example, Fig. 5 373

shows that, for Pythia, the correlation of Pile10k 374

hub k-occurrences with frequencies estimated on 375

the Bookcorpus is only 0.25, but if we instead com- 376

pare with frequencies from the Pile10k corpus we 377

get the much higher correlation of 0.71. 378

Unlike the nuisance hubs in the literature we re- 379

viewed above, which often harm performance, the 380

context-modulated, frequent-token-predicting hubs 381

emerging in LLMs look benign. Indeed, when a 382

model predicts a hub as the most likely continua- 383

tion, this actually leads on average to higher accu- 384

racy than when the model is predicting a non-hub. 385

For example, when Pythia predicts a non-hub for 386

Pile10k contexts, it has an accuracy of about 28%, 387

but when it predicts a hub, it has an accuracy of 388

39% (Table 2). 389
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Pile10k Bookcorpus Wikitext-103
Pythia \n and the , in the . , and \n and the , in a
Olmo and the , . in the . , and \n and the , in .
Opt \n and the , . the . and , \n the and , in \n
Mistral \n the and , . the . and , \n and the , in .
Llama \n , the and . \n the . , and \n the and , in

Table 1: Top five prediction hubs for the various LLMs on different datasets. Intuitively, they are all very frequent
tokens, that also coincide across models.

Figure 5: k-occurrence of hubs in Pythia predictions
(x-axis) vs. frequency of tokens (y-axis). ρ is the Spear-
man correlation. Top row: Predictions made on contexts
from Pile10k. Bottom row: Predictions made on con-
texts from Bookcorpus. First column: Frequency of
tokens in Pile10k. Second column: Frequency of to-
kens in Bookcorpus. In both cases, correlation is higher
when frequency is estimated on the same corpus as the
contexts used for prediction.

4.2.1 Emergence of frequency-sensitive390

prediction hubs during training391

Having established that hubs in LLMs are the prod-392

uct of a sensible token prediction heuristic, we393

might wonder if this behavior is due to an intrinsic394

model bias, or it emerges during training. Focusing395

on Pythia, whose intermediate training checkpoints396

are publicly available, we find that hubs appear397

in predictions from the very beginning, as shown398

by the k-skewness values reported in Table 7 (Ap-399

pendix B). However, Fig. 6 shows that the corre-400

lation of k-occurrence with frequency is relatively401

low in the earlier stages of training, and becomes402

larger as training progresses. This suggests that,403

on the one hand, the model might have an intrinsic404

bias towards hubness in prediction, but, on the other405

hand, learning to constantly keep context-relevant406

frequent tokens in the top candidate pool is a strat-407

egy that is acquired during training, because it is408

model context general hub non-hub
Pythia Pile10k 0.37 0.39 0.28
Pythia WikiText-103 0.36 0.38 0.30
Pythia Bookcorpus 0.31 0.32 0.23
Olmo Pile10k 0.36 0.39 0.29
Olmo WikiText-103 0.36 0.38 0.32
Olmo Bookcorpus 0.32 0.33 0.24
Opt Pile10k 0.34 0.37 0.26
Opt WikiText-103 0.35 0.37 0.31
Opt Bookcorpus 0.30 0.31 0.22
Mistral Pile10k 0.35 0.38 0.27
Mistral WikiText-103 0.36 0.37 0.31
Mistral Bookcorpus 0.32 0.33 0.24
Llama Pile10k 0.37 0.40 0.31
Llama WikiText-103 0.38 0.40 0.35
Llama Bookcorpus 0.33 0.34 0.25

Table 2: General prediction accuracy, accuracy on hubs
and accuracy on non-hubs. Accuracy is higher for hubs
than non-hubs for all models on all datasets.

advantageous for the prediction task. 409

4.3 Comparing contexts or vocabulary items 410

with Euclidean distance 411

Having shown that the probability distance measure 412

computed by LLMs during next token prediction 413

is not affected by nuisance hubs, we turn to other 414

comparisons that, while not relevant to LLM gen- 415

eration, might arise in LLM analysis or adaptation. 416

In particular, one might want to compute similar- 417

ities between LLM representations of sequences 418

or vocabulary entries for interpretability purposes 419

or for specific downstream tasks (e.g., a task that 420

requires measuring the similarity between two sen- 421

tences, represented by their last-token activation 422

vectors). In these cases, it is natural to use Eu- 423

clidean distance or normalized Euclidean distance 424

(or the rank-equivalent cosine) to compare repre- 425

sentations. As we mentioned above, these mea- 426

sures are affected by concentration of distances 427

given various underlying distributions (Aggarwal 428

et al., 2001), and we thus might observe the rise 429

of nuisance hubs. We present here examples using 430

Euclidean distance; normalized Euclidean and full 431

results are in appendices F and G. 432
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Figure 6: k-occurrence of hubs in Pythia predictions
on Bookcorpus (x-axis) vs frequency from Bookcorpus
(y-axis) for three checkpoints. ρ is the Spearman corre-
lation. The final number of training steps is 143,000, at
which point ρ = 0.72. The correlation saturates faster
on Pile10k (a subset of Pythia’s training data) than on
Bookcorpus and WikiText-103, so we show an example
from Bookcorpus to better display the gradual increase.

Starting with distance between context represen-433

tations (that is, the last-layer/last-token representa-434

tions of the sequences in our datasets), when we435

consider the distribution of distances between con-436

texts using plain or normalized Euclidean distance,437

we get concentration of distances for all models,438

in the sense that the distance distributions do not439

have support all the way to zero. However, the440

distances are not as tightly concentrated around a441

single value as they were in the toy example of442

Fig. 1. For example, for Pythia all distances be-443

tween contexts from Bookcorpus are larger than 15444

using Euclidean distance, and only two distances445

are less than 20 (Fig. 7) (see Appendix F for all446

plots).447

Figure 7: Distribution of Euclidean distances between
contexts for Pythia on Bookcorpus (left) and Pile10k
(right). In both cases we observe a gap in distances
approaching 0, more pronounced for Bookcorpus.

As expected given the presence of concentration448

of distances, when comparing contexts with Eu-449

clidean distance, we get high k-skewness (Table450

5 in Appendix B). When we consider the neigh-451

bourhoods in which the hubs occur (examples in452

Table 13, Appendix C), we see that they occur in 453

neighbourhoods of contexts they are not at all se- 454

mantically similar to. Thus, we confirm they are 455

nuisance hubs. 456

The picture is more nuanced when comparing 457

vocabulary items, as represented by their entries in 458

the unembedding matrix. For Pythia and Opt, we 459

again observe a concentration of distances, while 460

for Olmo, Mistral and Llama, surprisingly, the dis- 461

tribution has support all the way to zero (see Fig. 8 462

for Pythia and Llama, and the figures in Appendix 463

G for the other models). This suggests that, for 464

these models, the underlying distribution of rep- 465

resentations is different from those that lead to 466

concentration of distances with increasing dimen- 467

sion (Aggarwal et al., 2001). Interestingly, the 468

distance plots show that different distance distribu- 469

tions emerge for different LLMs, suggesting that 470

different factors are at play. We leave a thorough 471

investigation of vocabulary item distributions in 472

these LLMs to future work. 473

Figure 8: Vocabulary item to vocabulary item Euclidean
distances in unembedding matrix for Pythia (left) and
Llama (right).

Still, for all models, even those that do not show 474

concentration of distances, we observe high hub- 475

ness (with the exception of Olmo when using nor- 476

malized Euclidean distance) (Table 6 in Appendix 477

B), and the hubs do not correlate with token fre- 478

quency (Fig. 9; all correlations in Table 16 in Ap- 479

pendix H). In fact, we see that for all models, the 480

hubs are “junk” tokens unlikely to be meaningfully 481

similar to many other items (Table 3 for Euclidean 482

distance), coherent with the view that they are nui- 483

sance hubs. Other distances measures are in tables 484

10 and 11 in Appendix C. 485

5 Conclusion 486

We explored the phenomenon of hubness in autore- 487

gressive language models. We first observed that 488

the only representation comparison performed by 489

7



Euclidean distance hub examples
Pythia \n 11x_ 14x_ \n 39x_ \n 4x_ \n 43x_
Olmo remn glimp supernat taxp careg
Opt <pad> \u0011 madeupword0000 <mask> \u001c

Mistral \u0438 \u043e\u043a\u0442\u044f

\u0431\u0440\u044f

\u0444\u0435\u0432\u0440

\u0430\u043b\u044f

\u0441\u0435\u043d\u0442

\u044f\u0431\u0440\u044f
\u28ff

Llama –>\r\n\r\n );\r\r\r\n \u258d\u258d\u258d\u258d

\u258d\u258d\u258d\u258d

\u258d\u258d\u258d\u258d

\u258d\u258d\u258d\u258d

\u258d\u258d\u258d\u258d

\u258d\u258d\u258d\u258d

’,\r\r\n

Table 3: Top five k-occurrence hubs when comparing vocabulary items using Euclidean distance. To display long
space sequences, we write nx_ where n is number of spaces. Very long tokens have been broken into multiple lines.
These are mostly “junk” items, although Olmo has top hubs which are well-formed word fragments.

Figure 9: Relation between Pythia vocabulary-item-to-
vocabulary-item hub k-occurrence and vocabulary item
frequency for Pile10k, using Euclidean distance. No
correlation emerges, with most hubs corresponding to 0
frequency items.

the model that could be affected by hubs consists in490

the softmaxed dot product between context repre-491

sentations and vocabulary vectors in the unembed-492

ding matrix. Note that this is different from what493

happens in other deep learning systems: for ex-494

ample, in multimodal language-and-vision models495

such as CLIP (Radford et al., 2021), (normalized)496

Euclidean distances are commonly used to find the497

nearest text and image embeddings, which implies498

likely concentration of distances and consequent499

rise of nuisance hubs.500

We showed, theoretically, that the probability501

distance measure used by LLMs is not affected by502

the concentration of distance problem that leads503

to undesirable hubness in other high-dimensional504

spaces. Still, we empirically found that probability505

distance is characterized by high hubness. How-506

ever, when considering the hubs, we discovered507

that they are context-modulated frequent tokens, of508

the sort that it makes sense for the model to often509

predict. In other words, they are “benign” hubs 510

that reflect the highly skewed distributions found 511

in natural language (Baayen, 2001). The existence 512

of these frequent-token hubs ties in well with the 513

recent discovery of Stolfo et al. (2024) that LLMs 514

have neurons which, all else being equal, promote 515

the probability of frequent tokens. 516

When other similarity measures are considered, 517

such as comparing representations of contexts or 518

of vocabulary items in the unembedding matrix us- 519

ing Euclidean distance, we found a theoretically 520

mixed but empirically clear picture. For context 521

comparison and vocabulary item comparison with 522

some models, we confirmed the expected relation 523

between concentration of distances and the pres- 524

ence of nuisance hubness. Concerning the com- 525

parison vocabulary items with other models, we 526

observed distance distributions that do not clearly 527

imply concentration, but we still detected hubs that 528

appear to be nuisance neighbours. While these 529

comparisons are not performed by the model for 530

purposes of output prediction, they might still be of 531

interest to researchers for analytical purposes (e.g., 532

establishing if the unembedding matrix defines a 533

meaningful semantic space) or practical reasons 534

(e.g., extracting sentence representations from the 535

model, and use their similarity in a downstream 536

task). Since in these cases hubness appears in its 537

nuisance form, it is appropriate to apply hubness 538

reduction techniques. 539

Our main take-away is that hubness, while ubiq- 540

uitous, is neither good nor bad in itself, and a care- 541

ful analysis of the hubs that arise in different situa- 542

tions is called for, before deciding whether to apply 543

hubness mitigation. We have further established, 544

through the lens of hubness analysis, that the LLMs 545

we analyzed all learned a guessing heuristic that 546

consists in constantly promoting a set of context- 547

modulated frequent tokens as likely predictions. 548

8



Limitations549

• The theoretical result that probability distance550

does not entail concentration of distances is551

general. However, the empirical finding that552

hubs reflect context-dependent frequency dis-553

tributions only holds for the models we ex-554

perimented with, and it should be extended to555

other model families and sizes.556

• We established that, at least for the models557

we considered, prediction hubs correspond558

to context-dependent frequent tokens, and,559

at least in Pythia, this is an emergent phe-560

nomenon during training. We still lack a561

causal understanding of how these prediction562

hubs come about.563

• We found that, for 3/5 models, Euclidean dis-564

tance applied to unembedding matrix repre-565

sentations does not lead to concentration of566

distances, although it still leads to nuisance567

hubs. The nature of the distance distributions568

of these models and the reason why they lead569

to nuisance hubs will have to be studied in570

future work.571

Ethics Statement572

The inner workings of language models are still573

largely unknown. This makes their increasingly574

common deployment in a variety of settings essen-575

tially unreliable and potentially harmful. Our paper576

constitutes a small contribution towards a better577

understanding of how language models work, and578

hence, ultimately, towards increasing their safety.579
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A Proof that non-uniform probability764

distances do not concentrate765

We here prove theorem 1.766

Theorem 1. Let xi ∈ X be a data point. Let yj ,767

j ∈ {1, ..., v}, be the possible labels of points from768

X , and let p(yj |x) be the probability of label yj769

given x which uses representations f(x),g(y) ∈770

Rm. We define the dissimilarity between xi and yj771

to be d(xi,yj) = 1−p(yj |xi). Then if the distribu-772

tion over y does not go to the uniform distribution773

for every x, p(y|x) ̸→ U(y), then we will not get774

concentration of distances for this dissimilarity as775

the dimension m → ∞.776

Proof. By theorem 2 in (Durrant and Kabán, 2009),777

if not778

limm→∞
Varx,y[d(x,y)]
Ex,y[d(x,y)]2

= 0 (2)779

then we do not get concentration of distances.780

Therefore, we will consider Varx,y[d(x,y)]
Ex,y[d(x,y)]2

. First we781

consider Ey[d(x,y)]
2.782

Ex,y[d(x,y)]
2 = (ExEy[d(x,y)])

2783

= (Ex[
1

v

v∑
j=1

(1− p(yj |x))])2784

= (Ex[1−
1

v

v∑
j=1

p(yj |x)])2785

=

(
1− 1

v

)2

786

We see that this does not depend on the di-787

mension, m. Therefore, if we can show that788

limm→∞Varx,y[d(x,y)] ̸= 0, we are done. We789

consider Varx,y[d(x,y)].790

Varx,y[d(x,y)] = Varx,y[1− p(y|x)]791

= Varx,y

[
p(y|x)− 1

v

]
792

= Ex,y

[(
p(y|x)− 1

v

)2
]

793

− Ex,y

[
p(y|x)− 1

v

]2
794

795

We see that 796

Ex,y

[
p(y|x)− 1

v

]2
797

=

Ex

1

v

v∑
j=1

p(yj |x)]−
1

v

2

798

=

(
1

v
− 1

v

)2

= 0 799

So we get that 800

Varx,y[d(x,y)] = Ex,y

[(
p(y|x)− 1

v

)2
]

801

= Ex

1

v

v∑
j=1

(
p(yj |x)−

1

v

)2
 802

The summation is the L2 distance between the prob- 803

ability functions p(y|x) and the uniform distribu- 804

tion over y. Therefore this does not go to zero, 805

unless p(y|x) goes to the uniform distribution over 806

y for every x. 807

B Occurrence of hubs 808

We here present information about the occurrence 809

of hubs for the tested models when comparing 810

the representations using either Euclidean distance, 811

normalized Euclidean distance or softmaxed dot 812

product. The softmaxed dot product is what the 813

model uses when comparing contexts with vocabu- 814

lary items to get probabilities of next tokens; how- 815

ever, it is also possible to do a softmaxed dot prod- 816

uct of contexts with contexts or vocabulary with 817

vocabulary. Since we showed in Theorem 1 that the 818

softmaxed dot product will not display a concentra- 819

tion of distances if the distribution is not uniform, 820

one might hope that the softmaxed dot product 821

could be used to compare contexts with contexts 822

or vocabulary items with vocabulary items without 823

getting nuisance hubs. However, when comparing 824

vocabulary items, we get close to uniform distri- 825

butions (Table 14 in Appendix D), and when we 826

compare contexts, we get that contexts are usually 827

much closer to themselves than to other contexts, 828

but all other contexts are still far away (figures 17, 829

20, 23, 26 and 29 in Appendix F). 830

In Table 4 we show statistics of prediction hubs 831

for the tested models on the tested datasets. Ta- 832

ble 5 presents hub statistics for contexts compared 833

with contexts and Table 6 has vocabulary items 834

compared with vocabulary items. 835
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Statistics concerning prediction hubs, hubs of836

contexts compared with contexts and vocabulary837

items compared with vocabulary items for Pythia’s838

training checkpoints are in tables 7, 8 and 9, respec-839

tively.840

C Hub examples841

Examples of hubs when comparing vocabulary842

items using normalized Euclidean distance (Table843

10) and softmaxed dot product (Table 11). These844

examples show that the hubs are “junk” tokens we845

would consider nuisance hubs.846

Examples of hubs when comparing contexts us-847

ing Euclidean distance on Pile10k are in Table848

12. Note that in this case potential neighbours849

range over the 50k natural language sequences in850

each dataset, which are unlikely to contain “junk851

text”. Still, when we consider the neighbourhoods852

in which the hubs occur (examples in Table 13),853

we see that they tend to occur in the neighbour-854

hoods of largely semantically unrelated contexts.855

We conclude that these are also nuisance hubs.856

D L2 distances to the uniform857

distribution858

We show the mean L2 distances to the uniform dis-859

tribution in Table 14. When comparing contexts860

with vocabulary items (cv), we get a distance that861

is far from zero, as expected. When comparing vo-862

cabulary entry with vocabulary entry (vv), we get863

a distance that is very close to zero, implying that864

we are close to a uniform probability distribution.865

When comparing contexts with other contexts, we866

get a distance very close to one. By inspection of867

the distance distributions, we see that this is be-868

cause, among contexts, each item is much closer869

to itself than to any other item, resulting in a dis-870

tribution very far from uniform (the probability871

of the context itself is close to one, and all other872

probabilities are close to zero). This is different873

from when comparing vocabulary item to vocabu-874

lary item, where we find that all items have close875

to the same distance to each other, including when876

comparing an item with itself.877

E Distribution of probability distances878

We present here plots showing the distribution of879

probability distances for Llama (Fig. 10), Pythia880

(Fig. 11), Olmo (Fig. 12), Opt (Fig. 13) and Mistral881

(Fig. 14). For none of the tested models we find a882

concentration when using probability distance.883

F Distribution of context-to-context 884

distances 885

Plots showing the distribution of distances when 886

comparing context with context for Llama, us- 887

ing Euclidean distance (Fig. 15), normalized Eu- 888

clidean distance (Fig. 16) and softmaxed dot prod- 889

uct (Fig. 17); Pythia, using Euclidean distance 890

(Fig. 18), normalized Euclidean distance (Fig. 19) 891

and softmaxed dot product (Fig. 20); Opt, us- 892

ing Euclidean distance (Fig. 21), normalized Eu- 893

clidean distance (Fig. 22) and softmaxed dot prod- 894

uct (Fig. 23); Olmo, using Euclidean distance 895

(Fig. 24), normalized Euclidean distance (Fig. 25) 896

and softmaxed dot product (Fig. 26) and Mistral, 897

using Euclidean distance (Fig. 27), normalized Eu- 898

clidean distance (Fig. 28) and softmaxed dot prod- 899

uct (Fig. 29). For all models we see a concentration 900

of distances in the sense that there is a gap from 901

zero to the lowest distance values. 902

G Distribution of 903

vocabulary-item-to-vocabulary-item 904

distances 905

We present here plots showing the distribution of 906

distances when comparing vocabulary item with vo- 907

cabulary item for Llama (Fig. 30), Pythia (Fig. 31), 908

Opt (Fig. 32), Olmo (Fig. 33) and Mistral (Fig. 34). 909

In these plots we see a concentration of distances 910

for all models when using softmaxed dot product, 911

but for Euclidean and normalized Euclidean dis- 912

tance the behaviour is more varied. 913

H Hubs k-occurrence correlation with 914

frequency of tokens 915

In table 15 we see that the k-occurrence of predic- 916

tion hubs is strongly correlated with the frequency 917

of vocabulary items in the corpus the contexts come 918

from. For Pythia and Olmo, we also have access 919

to the original training corpora, namely the (full) 920

Pile (Gao et al., 2020) and Dolma (Soldaini et al., 921

2024), and we use them to compute their training 922

token frequency distributions. These frequencies 923

are used in the rows of the table where freq from 924

is “train dataset”. The correlations are also higher 925

for frequencies based on the corpora the contexts 926

come from than for frequencies from the training 927

data. In Table 16, we see that, when comparing 928

vocabulary items with other vocabulary items, we 929

do not get a good correlation between k-occurrence 930

of the hubs and frequency of vocabulary items. 931
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model context num hubs k-skew median Nk mean Nk max Nk var Nk

Pythia Pile10k 540 53.03 212.00 598.45 11715 1848618.70
Pythia WikiText-103 547 56.89 198.00 610.39 15029 2521266.01
Pythia Bookcorpus 500 52.72 243.50 832.06 17246 3854568.12
Olmo Pile10k 519 50.23 224.00 635.68 11795 1950492.38
Olmo WikiText-103 529 56.52 203.00 632.46 15011 2576370.51
Olmo Bookcorpus 493 51.77 249.00 840.93 17293 3661079.69
Opt Pile10k 536 53.28 220.00 625.90 12335 2115506.63
Opt WikiText-103 539 57.64 194.00 618.47 15628 2726513.86
Opt Bookcorpus 503 51.74 241.00 824.51 17425 3700789.63
Mistral Pile10k 527 42.27 219.00 647.29 12376 2350693.16
Mistral WikiText-103 538 44.98 206.00 640.02 15148 2873570.50
Mistral Bookcorpus 511 40.92 240.00 810.77 17678 3503898.55
Llama Pile10k 501 86.89 210.00 645.67 15174 2288104.43
Llama WikiText-103 506 90.48 194.00 661.64 16390 2962717.56
Llama Bookcorpus 493 88.92 252.00 834.07 19255 3801136.99

Table 4: Hubs occurring in predictions for the tested models. All models have high k-skewness on all datasets.
Also, for all models and all datasets, there are a large number of hubs and the maximum k-occurrence is quite high.

Figure 10: Distribution of probability distances for Llama on Pile10k (left), Bookcorpus (middle) and WikiText-103
(right). There is no concentration of distances.

With respect to checkpoints from Pythia, we see932

in Table 17 that correlation with frequencies from933

the relevant dataset increases as the model trains for934

longer. We also see that the correlation for Pile10k935

saturates quite fast, which is probably due to Pythia936

being trained on the Pile. In Table 18 we see that937

there is no strong correlation for the hubs emerging938

from comparing vocabulary items with vocabulary939

items.940

I Computing resources941

All experiments were run using a single NVIDIA942

A30 GPU. Extracting context representations took943

about 2 hours. Calculating probabilities for all944

models took about 2 days. Calculations of distance945

distributions (with precomputed probabilities) took946

about 10 hours. Calculations for comparing predic-947

tion hubs with frequent tokens about 2 hours. Cal-948

culations for vocabulary to vocabulary hubs took949

about 3 hours. Calculations for context to con-950

text hubs, about 1 hour. Calculations for plotting 951

k-occurence distributions took about 8 hours. Get- 952

ting hub examples took less than a minute. All in 953

all, about 3 days of compute time were needed to 954

run all experiments. 955

J Assets 956

Besides standard tools such as Python (version 957

3.10.14) and its main libraries, we used the fol- 958

lowing tools and datasets, in accordance with their 959

respective terms and licenses. 960

Bookcorpus https://huggingface.co/ 961

datasets/bookcorpus; license: unknown 962

Pile-10k https://huggingface.co/datasets/ 963

NeelNanda/pile-10k; license: bigscience- 964

bloom-rail-1.0 965

Wikitext https://huggingface.co/ 966

datasets/wikitext; license: Creative 967
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model similarity context num hubs k-skew median Nk mean Nk max Nk var Nk

Pythia euc Pile10k 404 12.43 145.00 183.08 887 12934.00
Pythia euc WikiText-103 340 11.86 130.00 170.10 918 10276.35
Pythia euc Bookcorpus 263 9.15 134.00 160.01 630 6555.05
Pythia norm euc Pile10k 156 6.19 122.00 138.71 455 2686.78
Pythia norm euc WikiText-103 115 5.27 125.00 140.08 278 1907.99
Pythia norm euc Bookcorpus 108 5.11 121.00 139.14 355 2175.86
Pythia softmax dot Pile10k 21 6.70 12514.00 21421.86 49999 395655332.50
Pythia softmax dot WikiText-103 21 6.02 12504.00 21425.05 50000 395697992.71
Pythia softmax dot Bookcorpus 21 7.98 12536.00 21415.71 49999 395465874.87
Olmo euc Pile10k 41 3.55 118.00 124.83 220 602.14
Olmo euc WikiText-103 26 3.24 113.50 124.00 200 759.92
Olmo euc Bookcorpus 76 3.69 116.00 123.88 239 604.79
Olmo norm euc Pile10k 41 3.55 118.00 124.90 220 600.87
Olmo norm euc WikiText-103 25 3.25 115.00 125.24 201 782.34
Olmo norm euc Bookcorpus 76 3.69 116.00 123.91 239 605.00
Olmo softmax dot Pile10k 21 3.55 12507.00 21425.29 50000 395704459.82
Olmo softmax dot WikiText-103 21 3.24 12507.00 21425.29 50000 395704459.82
Olmo softmax dot Bookcorpus 21 3.69 12507.00 21425.29 50000 395704459.82
Opt euc Pile10k 181 10.99 133.00 162.28 700 7619.44
Opt euc WikiText-103 188 7.95 129.50 148.91 521 4158.88
Opt euc Bookcorpus 193 6.16 128.00 145.15 500 2770.80
Opt norm euc Pile10k 180 11.00 134.00 162.41 707 7620.39
Opt norm euc WikiText-103 185 7.98 129.00 149.52 524 4205.78
Opt norm euc Bookcorpus 189 6.14 129.00 145.95 497 2759.84
Opt softmax dot Pile10k 9 11.11 50000.00 49993.67 50000 157.78
Opt softmax dot WikiText-103 9 7.96 50000.00 49996.44 50000 44.25
Opt softmax dot Bookcorpus 9 6.05 50000.00 49996.44 50000 44.25
Mistral euc Pile10k 292 43.26 139.00 203.08 2723 61061.52
Mistral euc WikiText-103 313 11.39 139.00 174.85 840 10196.62
Mistral euc Bookcorpus 192 7.41 127.00 146.66 585 4276.08
Mistral norm euc Pile10k 201 70.69 133.00 152.31 596 3946.67
Mistral norm euc WikiText-103 237 70.69 128.00 145.98 462 3050.37
Mistral norm euc Bookcorpus 139 70.69 124.00 136.22 416 2439.06
Mistral softmax dot Pile10k 10 46.15 49992.00 49992.00 49992 0.00
Mistral softmax dot WikiText-103 10 49.84 49996.00 49996.00 49996 0.00
Mistral softmax dot Bookcorpus 10 64.73 49997.00 49997.00 49997 0.00
Llama euc Pile10k 85 4.11 120.00 130.75 279 950.04
Llama euc WikiText-103 110 5.62 122.50 146.75 323 3024.46
Llama euc Bookcorpus 86 3.73 117.00 124.62 223 642.77
Llama norm euc Pile10k 34 3.11 114.00 117.76 164 213.18
Llama norm euc WikiText-103 52 3.93 119.50 137.33 211 1184.68
Llama norm euc Bookcorpus 51 3.35 115.00 122.92 186 438.78
Llama softmax dot Pile10k 9 2.51 50000.00 49996.44 50000 44.25
Llama softmax dot WikiText-103 9 2.86 50000.00 49996.44 50000 44.25
Llama softmax dot Bookcorpus 9 2.93 50000.00 49996.44 50000 44.25

Table 5: Hub occurrence in context-to-context comparisons of models. Here, we find a variable number of hubs.
Notice that in the cases where there are very few hubs, they also have a very high k-occurrence. K-skew is generally
high, but noticeably lower for Olmo and Llama.
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model similarity num hubs k-skew median Nk mean Nk max Nk var Nk

Pythia euc 219 28.09 1204.00 1542.98 7010 1461748.99
Pythia norm euc 213 15.60 175.00 187.92 480 4670.50
Pythia softmax dot 82 87.72 228.00 632.27 6849 1076426.66
Olmo euc 182 48.49 569.00 1582.87 16758 5493220.08
Olmo norm euc 2 2.87 129.00 129.00 153 576.00
Olmo softmax dot 11 17.00 368.00 333.91 416 6904.81
Opt euc 121 133.76 2351.00 2925.73 49567 20890799.01
Opt norm euc 131 187.67 480.00 644.24 17868 2339052.32
Opt softmax dot 61 95.73 437.00 1544.64 15035 8521519.41
Mistral euc 92 55.70 475.50 1665.46 15492 6620836.97
Mistral norm euc 42 48.47 890.00 1750.00 5908 2951721.24
Mistral softmax dot 72 127.38 219.50 946.78 19930 6324938.23
Llama euc 154 119.95 2342.00 5214.19 75630 87178321.52
Llama norm euc 157 51.83 1417.00 1839.80 9633 2734227.93
Llama softmax dot 115 126.75 290.00 2480.46 34902 32640506.49

Table 6: Hub occurrence in vocabulary to vocabulary comparisons of models. All models have high k-skewness
except Olmo when using normalized Euclidean distance.

Pythia
train step context num

hubs k-skew median Nk mean Nk max Nk var Nk

512 Pile10k 494 60.79 280.00 921.15 23732 5546010.32
512 WikiText-103 384 59.93 319.50 1216.65 25522 9575950.85
512 Bookcorpus 329 54.56 466.00 1458.22 23409 8832689.96
4000 Pile10k 541 54.05 216.00 655.19 14190 2461721.49
4000 WikiText-103 517 58.84 213.00 703.55 18218 3566829.92
4000 Bookcorpus 445 54.66 262.00 977.78 20739 5542898.30
16000 Pile10k 530 53.26 221.00 630.52 13209 2077732.91
16000 WikiText-103 528 58.19 202.00 655.80 16334 2916747.40
16000 Bookcorpus 483 53.30 248.00 876.65 19036 4366880.92
64000 Pile10k 544 53.24 222.50 599.79 11827 1875166.92
64000 WikiText-103 546 56.94 200.50 619.68 15334 2575362.91
64000 Bookcorpus 490 54.27 247.00 852.74 19433 4033276.62

Table 7: Hub occurrence in prediction hubs of training checkpoints of Pythia. All checkpoints have high k-skewness.
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Pythia
train step similarity context num

hubs k-skew median Nk mean Nk max Nk var Nk

512 euc Pile10k 0 1.51 - - - -
512 euc WikiText-103 0 1.67 - - - -
512 euc Bookcorpus 0 1.42 - - - -
512 norm euc Pile10k 0 1.51 - - - -
512 norm euc WikiText-103 0 1.67 - - - -
512 norm euc Bookcorpus 0 1.42 - - - -
512 softmax dot Pile10k 9 1.51 50000.00 49994.89 50000.00 102.32
512 softmax dot WikiText-103 9 1.67 50000.00 49996.44 50000.00 44.25
512 softmax dot Bookcorpus 9 1.42 50000.00 49996.44 50000.00 44.25
4000 euc Pile10k 77 4.52 121.00 135.51 290.00 1362.20
4000 euc WikiText-103 64 3.95 117.50 128.09 255.00 863.33
4000 euc Bookcorpus 55 5.54 121.00 143.87 508.00 4929.57
4000 norm euc Pile10k 71 4.31 121.00 133.89 265.00 1163.00
4000 norm euc WikiText-103 57 3.81 114.00 126.96 245.00 784.45
4000 norm euc Bookcorpus 52 5.36 119.00 143.12 486.00 4628.29
4000 softmax dot Pile10k 9 3.91 50000.00 49994.67 50000.00 100.22
4000 softmax dot WikiText-103 9 3.41 50000.00 49996.44 50000.00 44.25
4000 softmax dot Bookcorpus 9 4.69 50000.00 49996.44 50000.00 44.25
16000 euc Pile10k 324 14.97 141.00 188.35 1167.00 15864.51
16000 euc WikiText-103 249 10.81 133.00 157.92 826.00 7733.11
16000 euc Bookcorpus 181 6.97 125.00 144.98 542.00 4211.09
16000 norm euc Pile10k 183 8.58 134.00 156.45 696.00 4892.84
16000 norm euc WikiText-103 108 5.83 124.50 140.79 415.00 2920.02
16000 norm euc Bookcorpus 94 4.77 123.00 137.38 364.00 2102.22
16000 softmax dot Pile10k 9 2.69 50000.00 49994.56 50000.00 99.80
16000 softmax dot WikiText-103 9 2.03 50000.00 49996.44 50000.00 44.25
16000 softmax dot Bookcorpus 9 2.37 50000.00 49996.44 50000.00 44.25
64000 euc Pile10k 484 45.41 148.00 230.15 4113.00 85626.85
64000 euc WikiText-103 400 15.26 147.50 195.59 1307.00 18498.18
64000 euc Bookcorpus 321 16.14 132.00 170.63 1309.00 14396.79
64000 norm euc Pile10k 152 11.84 129.00 156.08 863.00 8231.98
64000 norm euc WikiText-103 101 5.88 129.00 143.64 337.00 2566.94
64000 norm euc Bookcorpus 113 5.26 123.00 139.71 327.00 2022.99
64000 softmax dot Pile10k 9 3.51 49999.00 49988.78 50000.00 461.51
64000 softmax dot WikiText-103 9 3.45 50000.00 49995.44 50000.00 66.69
64000 softmax dot Bookcorpus 9 10.96 50000.00 49988.89 50000.00 569.21

Table 8: Hub occurrence in context-to-context hubs of training checkpoints of Pythia. Hubness seems to increase
during training.

Pythia
train step similarity num

hubs k-skew median Nk mean Nk max Nk var Nk

512 euc 849 25.31 178.00 283.46 4208.00 97323.77
512 norm euc 0 0.39 - - - -
512 softmax dot 0 0.51 - - - -
4000 euc 126 91.37 345.00 2778.63 48472.00 59240949.76
4000 norm euc 0 1.12 - - - -
4000 softmax dot 0 0.90 - - - -
16000 euc 144 93.25 259.00 1928.71 42221.00 30508081.08
16000 norm euc 0 1.10 - - - -
16000 softmax dot 2 9.10 243.00 243.00 333.00 8100.00
64000 euc 220 32.10 1083.00 1522.12 9107.00 1897935.92
64000 norm euc 8 8.37 155.50 166.38 325.00 4226.48
64000 softmax dot 36 103.45 208.50 408.83 2937.00 272428.14

Table 9: Hub occurrence in vocabulary to vocabulary comparisons of training checkpoints of Pythia. All checkpoints
have high k-skewness when using Euclidean distance, but, with the other distances, k-skewness only becomes high
later during training.
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Normalized Euclidean distance hub examples
Pythia neighb \n 44x_ \n 11x_ disappe \n 43x_
Olmo \n\n\n 3x_ imonit - - -
Opt <pad> <mask> \ufffd \u0011 madeupword0000
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Table 10: Top five hubs when comparing vocabulary items for the various LLMs using normalized Euclidean
distance. They are nearly all “junk” tokens. To display long sequences of spaces, we write nx_ where n is number
of spaces. OLMo only has two hubs in this case, so we use - to denote there is no token in places three to five.

softmaxed dot product hub examples
Pythia neighb acknow laug resil advertis
Olmo \ufffd\ufffd \ufffd\ufffd \ufffd\ufffd \ufffd\ufffd \ufffd
Opt 20439 Vaults \ufffd\ufffd\u6975 Depths \u899a\u9192
Mistral /******/ Geplaatst qpoint ICENSE vscale
Llama HeaderCode .scalablytyped addCriterion GuidId OffsetTable

Table 11: Top five hubs when comparing vocabulary items for the various LLMs using softmaxed dot product.
They are mostly “junk” tokens, they differ a lot across model. These are examples of nuisance hubs.

Euclidean distance hub examples on Pile10k

Pythia

Mart\u00ed and Sandoya , 2013 ) , 2D and 3D bin packing ( Alvarez - Valdes et al . ,
secondary cave proves that your camp does n\u2019t want to fight for conservative principles ever . Happy Nomad on December

l = -54 - -305 . Let k = l - 255 . Does k = 0 ? False Let
to scale , as for a right & quot . We had to pay , taking across the theory&hellip made

0 . What is the lowest common multiple of ( -8)/28 + ( -32)/(-14 ) and m ? 18 Let

2013
11
w(a
AD
j(t

Olmo

. Indeed almost no one ever does that for a longer period , but at least we can . The
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Table 12: Top five hubs when comparing contexts for the various LLMs using Euclidean distance on Pile10k. Next
tokens are on the right.
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Examples of Euclidean distance hubs in weird neighbourhoods on Pile10k
Pythia hub Mart\u00ed and Sandoya , 2013 ) , 2D and 3D bin packing ( Alvarez - Valdes et al . , 2013
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Table 13: Examples of contexts that have hubs in the ten nearest neighbours. The hubs are intuitively dissimilar
from the contexts of which they are neighbours.

Figure 11: Distribution of probability distances for Pythia on Pile10k (left), Bookcorpus (middle) and WikiText-103
(right). There is no concentration of distances.
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model context comparison type mean L2 distance to uniform
Pythia Pile10k cv 0.44
Pythia Pile10k vv 0.00
Pythia Pile10k cc 1.00
Pythia WikiText-103 cv 0.41
Pythia WikiText-103 vv 0.00
Pythia WikiText-103 cc 1.00
Pythia Bookcorpus cv 0.36
Pythia Bookcorpus vv 0.00
Pythia Bookcorpus cc 1.00
Olmo Pile10k cv 0.43
Olmo Pile10k vv 0.00
Olmo Pile10k cc 1.00
Olmo WikiText-103 cv 0.43
Olmo WikiText-103 vv 0.00
Olmo WikiText-103 cc 1.00
Olmo Bookcorpus cv 0.38
Olmo Bookcorpus vv 0.00
Olmo Bookcorpus cc 1.00
Opt Pile10k cv 0.41
Opt Pile10k vv 0.00
Opt Pile10k cc 1.00
Opt WikiText-103 cv 0.41
Opt WikiText-103 vv 0.00
Opt WikiText-103 cc 1.00
Opt Bookcorpus cv 0.35
Opt Bookcorpus vv 0.00
Opt Bookcorpus cc 1.00
Mistral Pile10k cv 0.45
Mistral Pile10k vv 0.00
Mistral Pile10k cc 1.00
Mistral WikiText-103 cv 0.44
Mistral WikiText-103 vv 0.00
Mistral WikiText-103 cc 1.00
Mistral Bookcorpus cv 0.37
Mistral Bookcorpus vv 0.00
Mistral Bookcorpus cc 1.00
Llama Pile10k cv 0.45
Llama Pile10k vv 0.00
Llama Pile10k cc 1.00
Llama WikiText-103 cv 0.45
Llama WikiText-103 vv 0.00
Llama WikiText-103 cc 1.00
Llama Bookcorpus cv 0.37
Llama Bookcorpus vv 0.00
Llama Bookcorpus cc 1.00

Table 14: When using softmaxed dot product: mean L2 distance between the resulting probability distribution
and the uniform distribution. Rounded to two decimals. Comparison types are: cv - context with vocabulary item,
vv - vocabulary with vocabulary and cc - context with context. Note that mean L2 distance is far from zero when
comparing contexts with vocabulary items. See more discussion in the appendix text (D).
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model context freq from Spearman corr
Pythia Pile10k Pile10k 0.71
Pythia Pile10k WikiText-103 0.45
Pythia Pile10k Bookcorpus 0.25
Pythia Pile10k train dataset 0.70
Pythia WikiText-103 Pile10k 0.64
Pythia WikiText-103 WikiText-103 0.70
Pythia WikiText-103 Bookcorpus 0.28
Pythia WikiText-103 train dataset 0.68
Pythia Bookcorpus Pile10k 0.60
Pythia Bookcorpus WikiText-103 0.46
Pythia Bookcorpus Bookcorpus 0.72
Pythia Bookcorpus train dataset 0.66
Olmo Pile10k Pile10k 0.74
Olmo Pile10k WikiText-103 0.45
Olmo Pile10k Bookcorpus 0.27
Olmo Pile10k train dataset 0.66
Olmo WikiText-103 Pile10k 0.63
Olmo WikiText-103 WikiText-103 0.70
Olmo WikiText-103 Bookcorpus 0.27
Olmo WikiText-103 train dataset 0.65
Olmo Bookcorpus Pile10k 0.59
Olmo Bookcorpus WikiText-103 0.45
Olmo Bookcorpus Bookcorpus 0.70
Olmo Bookcorpus train dataset 0.61
Opt Pile10k Pile10k 0.76
Opt Pile10k WikiText-103 0.44
Opt Pile10k Bookcorpus 0.31
Opt WikiText-103 Pile10k 0.64
Opt WikiText-103 WikiText-103 0.69
Opt WikiText-103 Bookcorpus 0.32
Opt Bookcorpus Pile10k 0.61
Opt Bookcorpus WikiText-103 0.45
Opt Bookcorpus Bookcorpus 0.73
Mistral Pile10k Pile10k 0.79
Mistral Pile10k WikiText-103 0.49
Mistral Pile10k Bookcorpus 0.29
Mistral WikiText-103 Pile10k 0.62
Mistral WikiText-103 WikiText-103 0.73
Mistral WikiText-103 Bookcorpus 0.28
Mistral Bookcorpus Pile10k 0.64
Mistral Bookcorpus WikiText-103 0.47
Mistral Bookcorpus Bookcorpus 0.70
Llama Pile10k Pile10k 0.69
Llama Pile10k WikiText-103 0.43
Llama Pile10k Bookcorpus 0.29
Llama WikiText-103 Pile10k 0.57
Llama WikiText-103 WikiText-103 0.66
Llama WikiText-103 Bookcorpus 0.29
Llama Bookcorpus Pile10k 0.57
Llama Bookcorpus WikiText-103 0.43
Llama Bookcorpus Bookcorpus 0.63

Table 15: For prediction hubs: correlation of k-occurrence with frequencies of vocabulary items for all tested
models on all tested datasets. Note correlation is strongest when the columns context and freq from agree.
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model similarity freq from Spearman corr
Pythia euc Pile10k -0.20
Pythia euc WikiText-103 -0.20
Pythia euc Bookcorpus -0.12
Pythia norm euc Pile10k -0.11
Pythia norm euc WikiText-103 -0.02
Pythia norm euc Bookcorpus -0.04
Pythia softmax dot Pile10k -0.07
Pythia softmax dot WikiText-103 0.04
Pythia softmax dot Bookcorpus 0.29
Olmo euc Pile10k -0.22
Olmo euc WikiText-103 0.03
Olmo euc Bookcorpus 0.05
Olmo norm euc Pile10k -
Olmo norm euc WikiText-103 -
Olmo norm euc Bookcorpus -
Olmo softmax dot Pile10k -0.59
Olmo softmax dot WikiText-103 -0.67
Olmo softmax dot Bookcorpus -
Opt euc Pile10k -0.00
Opt euc WikiText-103 -0.14
Opt euc Bookcorpus 0.01
Opt norm euc Pile10k -0.01
Opt norm euc WikiText-103 -0.13
Opt norm euc Bookcorpus -0.00
Opt softmax dot Pile10k -0.14
Opt softmax dot WikiText-103 -0.16
Opt softmax dot Bookcorpus -0.12
Mistral euc Pile10k -0.45
Mistral euc WikiText-103 -0.29
Mistral euc Bookcorpus -0.23
Mistral norm euc Pile10k -
Mistral norm euc WikiText-103 -
Mistral norm euc Bookcorpus -0.18
Mistral softmax dot Pile10k -0.17
Mistral softmax dot WikiText-103 -0.30
Mistral softmax dot Bookcorpus -0.14
Llama euc Pile10k -0.22
Llama euc WikiText-103 -
Llama euc Bookcorpus -
Llama norm euc Pile10k -0.13
Llama norm euc WikiText-103 -0.13
Llama norm euc Bookcorpus -0.13
Llama softmax dot Pile10k -0.12
Llama softmax dot WikiText-103 -0.14
Llama softmax dot Bookcorpus -0.14

Table 16: For hubs in comparisons of vocabulary with vocabulary: k-occurrence correlation with frequencies
of vocabulary items for all tested models and three different distance measures. We write “-” in cases where the
correlation coefficient is not well-defined. In the case of OLMo and normalized Euclidean distance, it is because
there are only two hubs. In the rest of the cases, it is because all the frequencies are the same.
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Pythia
train step context freq from Spearman corr

512 Pile10k Pile10k 0.59
512 Pile10k WikiText-103 0.43
512 Pile10k Bookcorpus 0.30
512 WikiText-103 Pile10k 0.47
512 WikiText-103 WikiText-103 0.44
512 WikiText-103 Bookcorpus 0.24
512 Bookcorpus Pile10k 0.47
512 Bookcorpus WikiText-103 0.35
512 Bookcorpus Bookcorpus 0.39
4000 Pile10k Pile10k 0.70
4000 Pile10k WikiText-103 0.42
4000 Pile10k Bookcorpus 0.26
4000 WikiText-103 Pile10k 0.61
4000 WikiText-103 WikiText-103 0.64
4000 WikiText-103 Bookcorpus 0.28
4000 Bookcorpus Pile10k 0.54
4000 Bookcorpus WikiText-103 0.42
4000 Bookcorpus Bookcorpus 0.62
16000 Pile10k Pile10k 0.72
16000 Pile10k WikiText-103 0.44
16000 Pile10k Bookcorpus 0.27
16000 WikiText-103 Pile10k 0.64
16000 WikiText-103 WikiText-103 0.70
16000 WikiText-103 Bookcorpus 0.31
16000 Bookcorpus Pile10k 0.61
16000 Bookcorpus WikiText-103 0.47
16000 Bookcorpus Bookcorpus 0.66
64000 Pile10k Pile10k 0.71
64000 Pile10k WikiText-103 0.45
64000 Pile10k Bookcorpus 0.26
64000 WikiText-103 Pile10k 0.63
64000 WikiText-103 WikiText-103 0.71
64000 WikiText-103 Bookcorpus 0.28
64000 Bookcorpus Pile10k 0.59
64000 Bookcorpus WikiText-103 0.46
64000 Bookcorpus Bookcorpus 0.71

Table 17: For prediction hubs in Pythia training checkpoints: correlation of k-occurrence with frequencies of
vocabulary items on all three datasets. Correlation where the columns context and freq from agree increases with
the training step. The correlation saturates faster for Pile10k, probably because Pythia was trained on the Pile.
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Pythia
train step context freq from Spearman corr

512 euc Pile10k -0.03
512 euc WikiText-103 0.02
512 euc Bookcorpus -0.05
512 norm euc Pile10k -
512 norm euc WikiText-103 -
512 norm euc Bookcorpus -
512 softmax dot Pile10k -
512 softmax dot WikiText-103 -
512 softmax dot Bookcorpus -
4000 euc Pile10k 0.06
4000 euc WikiText-103 0.09
4000 euc Bookcorpus -0.04
4000 norm euc Pile10k -
4000 norm euc WikiText-103 -
4000 norm euc Bookcorpus -
4000 softmax dot Pile10k -
4000 softmax dot WikiText-103 -
4000 softmax dot Bookcorpus -
16000 euc Pile10k 0.04
16000 euc WikiText-103 0.04
16000 euc Bookcorpus -0.19
16000 norm euc Pile10k -
16000 norm euc WikiText-103 -
16000 norm euc Bookcorpus -
16000 softmax dot Pile10k -1.00
16000 softmax dot WikiText-103 -
16000 softmax dot Bookcorpus -1.00
64000 euc Pile10k -0.16
64000 euc WikiText-103 -0.16
64000 euc Bookcorpus -0.11
64000 norm euc Pile10k -0.51
64000 norm euc WikiText-103 0.20
64000 norm euc Bookcorpus -0.47
64000 softmax dot Pile10k -0.34
64000 softmax dot WikiText-103 -0.27
64000 softmax dot Bookcorpus 0.38

Table 18: For vocabulary to vocabulary hubs in training checkpoints of Pythia: correlation of k-occurrence with
frequencies of vocabulary items on all three datasets. There is no general correlation with frequent tokens. We write
“-” in cases where the correlation coefficient is not well-defined.
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Figure 12: Distribution of probability distances for Olmo on Pile10k (left), Bookcorpus (middle) and WikiText-103
(right). There is no concentration of distances.

Figure 13: Distribution of probability distances for Opt on Pile10k (left), Bookcorpus (middle) and WikiText-103
(right). There is no concentration of distances.
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Figure 14: Distribution of probability distances for Mistral on Pile10k (left), Bookcorpus (middle) and WikiText-103
(right). There is no concentration of distances.

Figure 15: Distribution of context-to-context Euclidean distances for Llama on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest
distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.

Figure 16: Distribution of context-to-context normalized Euclidean distances for Llama on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero
to the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero
for this distance measure.

Figure 17: Distribution of context-to-context softmaxed dot product distances for Llama on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). Here we have included the distance of a context to itself, which is the spike
at zero. Note that, when using the dot product, there is no guarantee that a context will get the largest score with
itself.
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Figure 18: Distribution of context-to-context Euclidean distances for Pythia on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest
distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.

Figure 19: Distribution of context-to-context normalized Euclidean distances for Pythia on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero
to the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero
for this distance measure.

Figure 20: Distribution of context-to-context softmaxed dot product distances for Pythia on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). Here we have included the distance of a context to itself. Note that, when
using a dot product, there is no guarantee that a context will get the largest score with itself. Pythia is the only tested
model which has distances between 0 and 1.
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Figure 21: Distribution of context-to-context Euclidean distances for Opt on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest
distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.

Figure 22: Distribution of context-to-context normalized Euclidean distances for Opt on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to
the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero for
this distance measure.

Figure 23: Distribution of context-to-context softmaxed dot product distances for Opt on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). Here we have included the distance of a context to itself, which is the spike at
zero. Note that, when using a dot product, there is no guarantee that a context will get the largest score with itself.

Figure 24: Distribution of context-to-context Euclidean distances for Olmo on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest
distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.
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Figure 25: Distribution of context-to-context normalized Euclidean distances for Olmo on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to
the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero for
this distance measure.

Figure 26: Distribution of context-to-context softmaxed dot product distances for Olmo on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). Here we have included the distance of a context to itself, which is the spike at
zero. Note that, when using a dot product, there is no guarantee that a context will get the largest score with itself.

Figure 27: Distribution of context-to-context Euclidean distances for Mistral on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest
distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.

Figure 28: Distribution of context-to-context normalized Euclidean distances for Mistral on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero
to the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero
for this distance measure.
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Figure 29: Distribution of context-to-context softmaxed dot product distances for Mistral on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). Here we have included the distance of a context to itself. Note that, when
using a dot product, there is no guarantee that a context will get the largest score with itself. For Mistral, most
contexts do not have a significantly different dot product with themselves compared to that with other contexts.

Figure 30: Distribution of vocabulary to vocabulary distances for Llama using Euclidean (left), normalized Euclidean
(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include
the distance of an item to itself, since it will always be zero. The spread of distances goes all the way to zero for
Euclidean and normalized Euclidean. However, we get a concentration of distances for the softmaxed dot product.

Figure 31: Distribution of vocabulary to vocabulary distances for Pythia using Euclidean (left), normalized Euclidean
(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include
the distance of an item to itself, since it will always be zero. We get a concentration of distances for all distance
measures.
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Figure 32: Distribution of vocabulary to vocabulary distances for Opt using Euclidean (left), normalized Euclidean
(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include
the distance of an item to itself, since it will always be zero. We get a concentration of distances for all distance
measures.

Figure 33: Distribution of vocabulary to vocabulary distances for Olmo using Euclidean (left), normalized Euclidean
(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include
the distance of an item to itself, since it will always be zero. The spread of distances goes all the way to zero for
Euclidean and normalized Euclidean. However, we get a concentration of distances for the softmaxed dot product.

Figure 34: Distribution of vocabulary to vocabulary distances for Mistral using Euclidean (left), normalized
Euclidean (middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do
not include the distance of an item to itself, since it will always be zero. The spread of distances goes all the way to
zero for Euclidean and normalized Euclidean. However, we get a concentration of distances for the softmaxed dot
product. Mistral is the only model to display a second “hump” when using the Euclidean distance.
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