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ABSTRACT

Double Q-learning (Hasselt, 2010) has gained significant success in practice due
to its effectiveness in overcoming the overestimation issue of Q-learning. How-
ever, theoretical understanding of double Q-learning is rather limited and the only
existing finite-time analysis was recently established in Xiong et al. (2020) under
a polynomial learning rate. This paper analyzes the more challenging case with
a rescaled linear/constant learning rate for which the previous method does not
appear to be applicable. We develop new analytical tools that achieve an order-
level better finite-time convergence rate than the previously established result.
Specifically, we show that synchronous double Q-learning attains an ε-accurate
global optimum with a time complexity of Ω

(
lnD

(1−γ)7ε2

)
, and the asynchronous

algorithm attains a time complexity of Ω̃
(

L
(1−γ)7ε2

)
, where D is the cardinality

of the state-action space, γ is the discount factor, and L is a parameter related
to the sampling strategy for asynchronous double Q-learning. These results im-
prove the order-level dependence of the convergence rate on all major parameters
(ε, 1 − γ,D,L) provided in Xiong et al. (2020). The new analysis in this pa-
per presents a more direct and succinct approach for characterizing the finite-time
convergence rate of double Q-learning.

1 INTRODUCTION

Double Q-learning proposed in Hasselt (2010) is a widely used model-free reinforcement learn-
ing (RL) algorithm in practice for searching for an optimal policy (Zhang et al., 2018a;b; Hessel
et al., 2018). Compared to the vanilla Q-learning proposed in Watkins & Dayan (1992), double
Q-learning uses two Q-estimators with their roles randomly selected at each iteration, respectively
for estimating the maximum Q-function value and updating the Q-function. In this way, the over-
estimation of the action-value function in vanilla Q-learning can be effectively mitigated, especially
when the reward is random or prone to errors (Hasselt, 2010; Hasselt et al., 2016; Xiong et al.,
2020). Moreover, double Q-learning has been shown to have the desired performance in both finite
state-action setting (Hasselt, 2010) and infinite setting (Hasselt et al., 2016) where it successfully
improved the performance of deep Q-network (DQN), and thus inspired many variants (Zhang et al.,
2017; Abed-alguni & Ottom, 2018) subsequently.

In parallel to its empirical success in practice, the theoretical convergence properties of double Q-
learning has also been explored. Its asymptotic convergence was first established in Hasselt (2010).
The asymptotic mean-square error for double Q-learning was studied in Weng et al. (2020c) under
the assumption that the algorithm converges to a unique optimal policy. Furthermore, in Xiong et al.
(2020), the finite-time convergence rate has been established for double Q-learning with a polyno-
mial learning rate α = 1/tω, ω ∈ (0, 1). Under such a choice for the learning rate, they showed
that double Q-learning attains an ε-accurate optimal Q-function at a time complexity approaching
to but never reaching Ω( 1

ε2 ) at the cost of an asymptotically large exponent on 1
1−γ . However, a

polynomial learning rate typically does not offer the best possible convergence rate, as having been
shown for RL algorithms that a so-called rescaled linear learning rate (with a form of αt = a

b+ct )
and a constant learning rate achieve a better convergence rate (Bhandari et al., 2018; Wainwright,
2019a;b; Chen et al., 2020; Qu & Wierman, 2020). Therefore, a natural question arises as follows:
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Can a rescaled linear learning rate or a constant learning rate improve the convergence rate of
double Q-learning order-wisely? If yes, does it also improve the dependence of the convergence
rate on other important parameters of the Markov decision process (MDP) such as the discount
factor and the cardinality of the state and action spaces?

The answer to the above question does not follow immediately from Xiong et al. (2020), because
the finite-time analysis framework in Xiong et al. (2020) does not handle such learning rates to yield
a desirable result. This paper develops a novel analysis approach and provides affirmative answers
to the above question.

1.1 OUR CONTRIBUTIONS

This paper establishes sharper finite-time bounds for double Q-learning with a rescaled lin-
ear/constant learning rate, which are orderwisely better than the existing bounds in Xiong et al.
(2020). We devise a different analysis approach from that in Xiong et al. (2020), which is more
capable of handling variants of double Q-learning.

• For synchronous double Q-learning, where all state-action pairs are visited at each iteration,
we apply a rescaled linear learning rate αt = 3

3+(1−γ)t and show that the algorithm can attain

an ε-accurate global optimum with a time complexity of Ω
(

lnD
(1−γ)7ε2

)
, where γ is the discount

factor and D = |S||A| is the cardinality of the finite state-action space. As a comparison, for
the ε dominated regime (with relatively small γ), our result attains an ε-accurate optimal Q-
function with a time complexity Ω( 1

ε2 ), whereas the result in Xiong et al. (2020) (see Table 1)
does not exactly reach Ω( 1

ε2 ) and its approaching to such an order (η := 1 − ω → 0) is at an
additional cost of an asymptotically large exponent on 1

1−γ . For 1− γ dominated regime, our
result improves on that in Xiong et al. (2020) (which has been optimized in the dependence on

1− γ in Table 1) by O
((

ln 1
1−γ

)7)
.

• For asynchronous double Q-learning, where only one state-action pair is visited at each iter-
ation, we obtain a time complexity of Ω̃

(
L

(1−γ)7ε2

)
, where L is a parameter related to the

sampling strategy in Assumption 1. As illustrated in Table 1, our result improves upon that in
Xiong et al. (2020) order-wisely in terms of its dependence on ε and 1− γ as well as on L by
at least O

(
L5
)
.

Our analysis takes a different approach from that in Xiong et al. (2020) in order to handle the
rescaled linear/constant learning rate. More specifically, to deal with a pair of nested stochastic
approximation (SA) recursions, we directly establish the dependence bound of the error dynamics
(of the outer SA) between the Q-estimator and the global optimum on the error propagation (of the
inner SA) between the two Q-estimators. Then we develop a bound on the inner SA, integrate it
into that on the outer SA as a noise term, and establish the final convergence bound. This is a very
different yet more direct approach than that in Xiong et al. (2020), the latter of which captures the
blockwise convergence by constructing two complicated block-wisely decreasing bounds for the
two SAs. The sharpness of the bound also requires careful selection of the rescaled learning rates
and proper usage of their properties.

1.2 RELATED WORK

Theory on double Q-learning: Double Q-learning was proposed and proved to converge asymptot-
ically in Hasselt (2010). In Weng et al. (2020c), the authors explored the properties of mean-square
errors for double Q-learning both in the tabular case and with linear function approximation, under
the assumption that a unique optimal policy exists and the algorithm can converge. The most rel-
evant work to this paper is Xiong et al. (2020), which established the first finite-time convergence
rate for tabular double Q-learning with a polynomial learning rate. This paper provides sharper
finite-time convergence bounds for double Q-learning, which requires a different analysis approach.

Tabular Q-learning and convergence under various learning rates: Proposed in Watkins &
Dayan (1992) under finite state-action space, Q-learning has aroused great interest in its theoretical
study. Its asymptotic convergence has been established in Tsitsiklis (1994); Jaakkola et al. (1994);

2



Under review as a conference paper at ICLR 2021

Table 1: Comparison of time complexity for (a)synchronous double Q-learning.
The choices ω → 1, ω = 6

7 , and ω = 2
3 respectively optimize the dependence of time complexity

on ε, 1− γ, and L in Xiong et al. (2020). We denote a ∨ b = max{a, b}, a ∧ b = min{a, b}.

SyncDQ Stepsize Time complexity
Xiong
et al.
(2020)

1
tω , ω ∈
( 1
3 , 1)

ω = 1− η → 1 ω = 6/7

Ω̃

(
1

ε2+η ∨
(

1
1−γ

) 1
η

)
Ω̃

(
1

(1−γ)7

(
1
ε3.5 ∨

(
ln 1

1−γ

)7))
This work 3

3+(1−γ)t Ω
(

1
ε2

)
Ω
(

1
(1−γ)7ε2

)
AsyncDQ Stepsize Time complexity
Xiong
et al.
(2020)

1
tω , ω ∈
( 1
3 , 1)

ω = 1− η → 1 ω = 6/7 ω = 2/3

Ω̃

(
1
ε2+η ∨

(
1

1−γ

) 1
η

)
Ω̃

(
1

(1−γ)7

(
1
ε3.5 ∨

(
ln 1

1−γ

)7))
Ω̃
(
L6(lnL)1.5

(1−γ)9ε3

)
This work ε2(1−γ)6∧

1
Ω̃
(

1
ε2

)
Ω̃
(

1
(1−γ)7ε2

)
Ω̃
(

L
(1−γ)7ε2

)

Borkar & Meyn (2000); Melo (2001); Lee & He (2019) by requiring the learning rates to satisfy∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞. Another line of research focuses on the finite-time analysis of

Q-learning under different choices of the learning rates. Szepesvári (1998) captured the first con-
vergence rate of Q-learning using a linear learning rate (i.e., αt = 1

t ). Under similar learning rates,
Even-Dar & Mansour (2003) provided finite-time results for both synchronous and asynchronous
Q-learning with a convergence rate being exponentially slow as a function of 1

1−γ . Another pop-
ular choice is the polynomial learning rate which has been studied for synchronous Q-learning in
Wainwright (2019b) and for both synchronous/asynchronous Q-learning in Even-Dar & Mansour
(2003). With this learning rate, however, the convergence rate still has a gap with the lower bound
of O( 1√

T
) (Azar et al., 2013). To handle this, a more sophisticated rescaled linear learning rate was

introduced for synchronous Q-learning (Wainwright, 2019b; Chen et al., 2020) and asynchronous
Q-learning (Qu & Wierman, 2020), and thus yields a better convergence rate. The finite-time bounds
for Q-learning were also given with constant stepsizes (Beck & Srikant, 2012; Chen et al., 2020; Li
et al., 2020). In this paper, we focus on the rescaled linear/constant learning rate and obtain sharper
finite-time bounds for double Q-learning.

Q-learning with function approximation: When the state-action space is considerably large or
even infinite, the Q-function is usually approximated by a class of parameterized functions. In such
a case, Q-learning has been shown not to converge in general (Baird, 1995). Strong assumptions
are typically needed to establish the convergence of Q-learning with linear function approxima-
tion (Bertsekas & Tsitsiklis, 1996; Melo et al., 2008; Zou et al., 2019; Chen et al., 2019; Du et al.,
2019; Yang & Wang, 2019; Jia et al., 2019; Weng et al., 2020a;b) or neural network approxima-
tion (Cai et al., 2019; Xu & Gu, 2019). The convergence analysis of double Q-learning with function
approximation raises new technical challenges and can be an interesting topic for future study.

2 PRELIMINARIES ON DOUBLE Q-LEARNING

We consider a Markov decision process (MDP) over a finite state space S and a finite action space
A with the total cardinality given by D := |S||A|. The transition kernel of the MDP is given by
P : S × A × S → [0, 1] denoted as P(·|s, a). We denote the random reward function at time t
as Rt : S × A × S 7→ [0, Rmax], with E[Rt(s, a, s

′)] = Rs
′

sa. A policy π := π(·|s) captures the
conditional probability distribution over the action space given state s ∈ S. For a policy π, we define
Q-function Qπ ∈ R|S|×|A| as

Qπ(s, a) :=E

[ ∞∑
t=1

γtRt(st, at, s
′
t)
∣∣∣s1 = s, a1 = a

]
, (1)

where γ ∈ (0, 1) is the discount factor, at ∼ π(·|st), and s′t ∼ P(·|st, at).
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Both vanilla Q-learning (Watkins & Dayan, 1992) and double Q-learning (Hasselt, 2010) aim to find
the optimal Q-function Q∗ which is the unique fixed point of the Bellman operator T (Bertsekas &
Tsitsiklis, 1996) given by

T Q(s, a) = Es′∼P(·|s,a)
[
Rs
′

sa + γmax
a′∈A

Q(s′, a′)

]
. (2)

Note that the Bellman operator T is γ-contractive which satisfies ‖T Q− T Q′‖ ≤ γ ‖Q−Q′‖
under the supremum norm ‖Q‖ := maxs,a |Q(s, a)|.

The idea of double Q-learning is to keep two Q-tables (i.e., Q-function estimators) QA and QB ,
and randomly choose one Q-table to update at each iteration based on the Bellman operator com-
puted from the other Q-table. We next describe synchronous and asynchronous double Q-learning
algorithms in more detail.

Synchronous double Q-learning: Let {βt}t≥1 be a sequence of i.i.d. Bernoulli random variables
satisfying P(βt = 0) = P(βt = 1) = 0.5. At each time t, βt = 0 indicates that QB is updated, and
otherwise QA is updated. The update at time t ≥ 1 can be written in a compact form as,{

QAt+1(s, a) = (1− αtβt)QAt (s, a) + αtβt
(
Rt(s, a, s

′) + γQBt (s′, a∗)
)
,

QBt+1(s, a) = (1− αt(1− βt))QBt (s, a) + αt(1− βt)
(
Rt(s, a, s

′) + γQAt (s′, b∗)
)
,

(3)

for all (s, a) ∈ S × A, where s′ is sampled independently for each (s, a) by s′ ∼ P(·|s, a),
a∗ = arg maxa∈AQ

A(s′, a), b∗ = arg maxa∈AQ
B(s′, a) and αt is the learning rate. Note that

the rewards for both updates of QAt+1 and QBt+1 are the same copy of Rt.

Asynchronous double Q-learning: Different from synchronous double Q-learning, at each itera-
tion the asynchronous version samples only one state-action pair to update the chosen Q-estimator.
That is, at time t, only the chosen Q-estimator and its value at the sampled state-action pair (st, at)
will be updated. We model this by introducing an indicator function τt(s, a) = 1{(st,at)=(s,a)}.
Then the update at time t ≥ 1 of asynchronous double Q-learning can be written compactly as{

QAt+1(s, a) = (1− αtτt(s, a)βt)Q
A
t (s, a) + αtτt(s, a)βt

(
Rt + γQBt (s′, a∗)

)
,

QBt+1(s, a) = (1− αtτt(s, a)(1− βt))QBt (s, a) + αtτt(s, a)(1− βt)
(
Rt + γQAt (s′, b∗)

)
,

(4)
for all (s, a) ∈ S ×A, where Rt is evaluated as Rt(s, a, s′).

In the above update rules (3) and (4), at each iteration only one of the two Q-tables is randomly
chosen to be updated. This chosen Q-table generates a greedy optimal action, and the other Q-
table is used for estimating the corresponding Bellman operator (or evaluating the greedy action)
for updating the chosen table. Specifically, if QA is chosen to be updated, we use QA to obtain
the optimal action a∗ and then estimate the corresponding Bellman operator using QB to update
QA. As shown in Hasselt (2010), E[QB(s′, a∗)] is likely smaller than Emaxa[QA(s′, a)], where
the expectation is taken over the randomness of the reward for the same (s, a, s′) tuple. Such a
two-estimator framework adopted by double Q-learning can effectively reduce the overestimation.

Without loss of generality, we assume that QA and QB are initialized with the same value (usually
both all-zero tables in practice). For both synchronous and asynchronous double Q-learning, it has
been shown in Xiong et al. (2020) that either Q-estimator is uniformly bounded by Rmax

1−γ throughout
the learning process. Specifically, for either i ∈ {A,B}, we have

∥∥Qit∥∥ ≤ Rmax

1−γ and
∥∥Qit −Q∗∥∥ ≤

2Rmax

1−γ := Vmax for all t ≥ 1. This boundedness property will be useful in our finite-time analysis.

3 FINITE-TIME CONVERGENCE ANALYSIS

In this section, we start with modeling the error dynamics to be nested SAs, following by a conver-
gence result for a general SA that will be applicable for both SAs. Then we provide the finite-time
results for both synchronous and asynchronous double Q-learning. Finally, we sketch the proof of
the main theorem for the synchronous algorithm to help understand the technical proofs.
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3.1 CHARACTERIZATION OF THE ERROR DYNAMICS

In this subsection, we characterize the (a)synchronous double Q-learning algorithms as a pair of
nested SA recursions, where the outer SA recursion captures the error dynamics between the Q-
estimator and the global optimum Q∗, and the inner SA captures the error propagation between the
two Q-estimators which enters into the outer SA as a noise term. Such a characterization enjoys
useful properties that will facilitate the finite-time analysis.

Outer SA: Denote the iteration error by rt = QAt −Q∗ and define the empirical Bellman operator
T̂tQ(s, a) := Rt(s, a, s

′) + γmaxa′∈AQ(s′, a′). Then we can have for all t ≥ 1 (see Appendix C),

rt+1(s, a) = (1− α̃t(s, a))rt(s, a) + α̃t(s, a) (Gt(rt)(s, a) + εt(s, a) + γνt(s
′, a∗)) , (5)

where εt := T̂tQ∗−Q∗, νt := QBt −QAt ,Gt(rt) := T̂tQAt −T̂tQ∗ = T̂t (rt +Q∗)−T̂tQ∗, and the

equivalent learning rate α̃t(s, a) :=

{
αtβt, for synchronous version
αtβtτt(s, a), for asynchronous version

. Note that it is by

design that we use the same sampled reward Rt in both T̂tQ∗ and T̂tQAt in the definition of Gt(rt).

These newly introduced variables have several important properties. First of all, the noise term
{εt}t is a sequence of i.i.d. random variables satisfying Eεt = E[T̂tQ∗] − Q∗ = T Q∗ − Q∗ =
0 ∈ RD. Furthermore, define the span seminorm of Q∗ as ‖Q∗‖span := max(s,a)∈S×AQ

∗(s, a) −
min(s,a)∈S×AQ

∗(s, a). Then it can be shown that (see Appendix C)

‖εt‖ ≤ 2Rmax + γ ‖Q∗‖span := κ. (6)

Moreover, it is easy to show that ‖Gt(rt)‖ ≤ γ ‖rt‖, which follows from the contractive property of
the empirical Bellman operator given the same next state. We shall say that Gt is quasi-contractive
in the sense that the γ-contraction inequality only holds with respect to the origin 0.

Inner SA: We further characterize the dynamics of νt = QBt − QAt as an SA recursion (see Ap-
pendix C):

νt+1(s, a) = (1− α̂t(s, a))νt(s, a) + α̂t(s, a) (Ht(νt)(s, a) + µt(s, a)) , (7)

for all t ≥ 1 where α̂t(s, a) :=

{
αt, for synchronous version
αtτt(s, a), for asynchronous version

. It has been shown in

Xiong et al. (2020) that Ht is quasi-contractive satisfying ‖Ht(νt)‖ ≤ 1+γ
2 ‖νt‖, and {µt}t≥1 is a

martingale difference sequence with respect to the filtration Ft defined by F1 = {∅,Ω} where Ω
denotes the underlying probability space and for t ≥ 2,

Ft =

{
σ ({sk}, {Rk−1}, βk−1, 2 ≤ k ≤ t) , for synchronous version,
σ (sk, ak, Rk−1, βk−1, 2 ≤ k ≤ t) , for asynchronous version,

(8)

where we note that for synchronous sampling {sk} and {Rk−1} are the collections of sampled next
states and the sampled rewards for each (s, a)-pair, respectively; while for asynchronous sampling,
the pairs {(sk, ak, sk+1)}k≥2 are consecutive sample transitions from one observed trajectory.

In the sequel, we will provide the finite-time convergence guarantee for (a)synchronous double Q-
learning using the SA recursions described by (5) and (7).

3.2 FINITE-TIME BOUND FOR A GENERAL SA

In this subsection, we develop a convergence result for a general SA that will be applicable for both
inner and outer SAs described in Section 3.1.

Consider the following general SA algorithm with the unique fixed point θ∗ = 0:

θt+1 = (1− αt)θt + αt (Gt(θt) + εt + γνt) , (9)

for all t ≥ 1, where θt ∈ Rn and we abuse the notation of a general learning rate αt ∈ [0, 1). Then
we bound θt in the following proposition, the proof of which is provided in Appendix D.
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Proposition 1. Consider an SA given in (9). Suppose Gt is quasi-contractive with a constant pa-
rameter γ, that is, ‖Gt(θt)‖ ≤ γ ‖θt‖ where γ ∈ (0, 1). Then for any learning rate αt ∈ [0, 1), the
iterates {θt} satisfy

‖θt‖ ≤
t−1∏
k=1

(1− (1− γ)αk) ‖θ1‖+ γαt−1 (‖Wt−1‖+ ‖νt−1‖)

+ γ

t−2∑
k=1

{
t−1∏
l=k+1

(1− (1− γ)αl)

}
αk (‖Wk‖+ ‖νk‖) + ‖Wt‖ , (10)

where the sequence {Wt} is given by Wt+1 = (1− αt)Wt + αtεt with W1 = 0.

We note that an SA with a similar form to that in (9) has been analyzed in Wainwright (2019b),
which additionally requires a monotonicity assumption. In contrast, our analysis does not require
this assumption. Moreover, distinct from Wainwright (2019b), we treat the noise terms εt and νt
separately rather than bounding them together. This is because for double Q-learning, the noise term
νt has its own dynamics which is significantly more complex than the i.i.d. noise εt. Bounding them
as one noise term will yield more conservative results.

Note that the SA recursion (7) is a special case of (9) by setting νt = 0. Therefore, Proposition 1 is
readily applicable to both (5) and (7).

3.3 FINITE-TIME ANALYSIS OF SYNCHRONOUS DOUBLE Q-LEARNING

We apply the above bound for SA to synchronous double Q-learning and bound the error ‖rt‖ =∥∥QAt −Q∗∥∥. The first result is stated in the following theorem.
Theorem 1. Fix γ ∈ (0, 1). Consider synchronous double Q-learning in (3) with a rescaled linear
learning rate αt = 3

3+(1−γ)t ,∀t ≥ 0. Then the learning error rt = QAt −Q∗ satisfies

E ‖rt+1‖ ≤
3 ‖r1‖

(1− γ)t
+

3
√

3κC̃

(1− γ)3/2
1√
t

+
36
√

3VmaxD̃

(1− γ)5/2
1√
t
, (11)

where C̃ := 6
√

ln 2D + 3
√
π, D̃ := 2

√
ln 2D +

√
π. and κ is defined in (6) which is the uniform

bound of |εt| .

Theorem 1 provides the finite-time error bound for synchronous double Q-learning. To understand
Theorem 1, the first term on the RHS (right hand side) of (11) shows that the initial error decays
sub-linearly with respect to the number of iterations. The second term arises due to the fluctuation
of the noise term εt, which involves the problem specific quantity κ. The last item arises due to the
fluctuation of the noise term µt in the νt-recursion (7), i.e., the difference between two Q-estimators.
Corollary 1. The time complexity (i.e., the total number of iterations) to achieve an ε-accurate
optimal Q-function (i.e., E ‖rT ‖ ≤ ε) is given by T (ε, γ,D) = Ω

(
lnD

(1−γ)7ε2

)
.

Proof. The proof follows directly from Theorem 1 by noting that the middle term on the RHS of

(11) scales as
(

1
1−γ

) 5
2

since κ = 2Rmax + γ ‖Q∗‖span ≤
2Rmax

1−γ = Vmax.

We next compare Corollary 1 with the time complexity of synchronous double Q-learning provided
in Xiong et al. (2020), which is given by

T = Ω

((
1

(1− γ)6ε2
ln

D

(1− γ)7ε2

) 1
ω

+

(
1

1− γ
ln

1

(1− γ)2ε

) 1
1−ω
)
, (12)

where ω ∈ ( 1
3 , 1). For the ε dominated regime (with relatively small γ), the result in (12) clearly

cannot achieve the order of 1
ε2 and lnD as our result does. Further, its approaching to such an order

(η → 0 in Table 1) is also at an additional cost of an asymptotically large exponent on 1
1−γ . For 1−γ

dominated regime, the dependence on 1 − γ can be optimized by taking ω = 6
7 in (12), compared

to which our result achieves an improvement by a factor of O
((

ln 1
1−γ

)7)
(see Table 1).
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3.4 FINITE-TIME ANALYSIS OF ASYNCHRONOUS DOUBLE Q-LEARNING

In this subsection, we provide the finite-time result for asynchronous double Q-learning. Differently
from the synchronous version, at each iteration asynchronous double Q-learning only update one
state-action pair of a randomly chosen Q-estimator. Thus the sampling strategy is important for the
convergence analysis, for which we first make the following assumption.
Assumption 1. The Markov chain induced by the stationary behavior policy π is uniformly ergodic.

This is a standard assumption under which Markov chain is most widely studied (Paulin et al., 2015).
It was also assumed in (Qu & Wierman, 2020; Li et al., 2020) for the asynchronous samples in Q-
learning. We further introduce the following standard notations (see for example Qu & Wierman
(2020); Li et al. (2020)) that will be useful in the analysis.

First, we denote µπ as the stationary distribution of the behavior policy over the state-action space
S×A and denote µmin := min(s,a)∈S×A µπ(s, a). It is easy to see that the smaller µmin is, the more
iterations we need to visit all state-action pairs. Formally, we capture this probabilistic coverage by
defining the following covering number:

L = min

{
t : min

(s1,a1)∈S×A
P(Bt|(s1, a1)) ≥ 1

2

}
, (13)

where Bt denotes the event that all state-action pairs have been visited at least once in t iterations.

In addition, the ergodicity assumption indicates that the distribution of samples will approach to the
stationary distribution µπ in a so-called mixing rate. We define the corresponding mixing time as

tmix = min

{
t : max

(s1,a1)∈S×A
dTV

(
P t(·|(s1, a1)), µπ

)
≤ 1

4

}
, (14)

where P t(·|(s1, a1)) is the distribution of (st, at) given the initial pair (s1, a1), and dTV(µ, ν) is the
variation distance between two distributions µ, ν.

Next, we provide the first result for asynchronous double Q-learning in the following theorem whose
proof is seen in Appendix H.
Theorem 2. Fix γ ∈ (0, 1), δ ∈ (0, 1), ε ∈ (0, 1

1−γ ) and suppose that Assumption 1
holds. Consider asynchronous double Q-learning with a constant learning rate αt = α =
c1

ln DT
δ

min
{

(1− γ)6ε2, 1
tmix

}
with some constant c1. Then asynchronous double Q-learning learns

an ε-accurate optimum, i.e.,
∥∥QAt −Q∗∥∥ ≤ ε, with probability at least 1 − δ given the time com-

plexity of

T = Ω̃

((
1

µminε2(1− γ)7
+

tmix

µmin(1− γ)

)
ln

1

ε(1− γ)2

)
,

where tmix is defined in (14).

The complexity in Theorem 2 is given in terms of the mixing time. To facilitate comparisons, we
provide the following result in terms of the covering number.
Theorem 3. Under the same conditions of Theorem 2, consider a constant learning rate αt =
α = c2

ln DT
δ

min
{

(1− γ)6ε2, 1
}

with some constant c2. Then asynchronous double Q-learning can

learn an ε-accurate optimum, i.e.,
∥∥QAT −Q∗∥∥ ≤ ε, with probability at least 1 − δ given the time

complexity of

T = Ω̃

(
L

ε2(1− γ)7
ln

1

ε(1− γ)2

)
,

where L is defined in (13).

We next compare Theorem 3 with the result obtained in Xiong et al. (2020). In Xiong et al. (2020),
the authors provided the time complexity for asynchronous double Q-learning as

T = Ω

((
L4

(1− γ)6ε2
ln

DL4

(1− γ)7ε2

) 1
ω

+

(
L2

1− γ
ln

1

(1− γ)2ε

) 1
1−ω
)
, (15)
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where ω ∈ ( 1
3 , 1). It can be observed that our result improves that in (15) with respect to the order

of all key parameters ε,D, 1− γ, L (see Table 1). Specifically, the dependence on L in (15) can be
optimized by choosing ω = 2

3 , upon which Theorem 3 improves by a factor of at least L5.

3.5 PROOF SKETCH OF THEOREM 1

In order to provide the convergence bound for double Q-learning under the rescaled linear learning
rate, we develop a different analysis approach from that in Xiong et al. (2020), the latter of which
does not handle the rescaled linear learning rate. More specifically, in order to analyze a pair of
nested SA recursions, we directly bound both the error dynamics of the outer SA between the Q-
estimator and the global optimum and the error propagation between the two Q-estimators captured
by the inner SA. Then we integrate the bound on the inner SA into that on the outer SA as a noise
term, and establish the final convergence bound. This is a very different yet more direct approach
than the techniques in Xiong et al. (2020) which constructs two complicated block-wisely decreasing
bounds for the two SAs to characterize a block-wise convergence.

Our finite-time analysis for synchronous double Q-learning (i.e., Theorem 1) includes four steps.

Step I: Bounding outer SA dynamics E ‖rt‖ by inner SA dynamics E ‖νt‖. Here, rt := QAt −Q∗
captures the error dynamics between the Q-estimator and the global optimum, and νt := QAt −QBt
captures the error propagation between the two Q-estimators. We apply Proposition 1 to the error
dynamics (5) of rt, take the expectation, and apply the learning rate inequality (24) to obtain

E ‖rt‖ ≤ αt−1 ‖r1‖+
γ

2
αt−1

t−1∑
k=1

(E ‖Wk‖+ E ‖νk‖) + E ‖Wt‖ , (16)

where Wt+1 = (1− α̃t)Wt + α̃tεt, with initialization W1 = 0.

Step II: Bounding E ‖Wt‖. We first construct a Ft-martingale sequence {W̃i}1≤i≤t+1 with
W̃t+1 = Wt+1 and W̃1 = 0. Next, we bound the squared difference sequence (W̃i+1 − W̃i)

2 by
4V 2

maxα
N
t /α

N−2
i , for 1 ≤ i ≤ t, where N is defined in (26). Then we apply the Azuma-Hoeffding

inequality (see Lemma 5) to {W̃i}1≤i≤t+1 and further use Lemma 6 to obtain the bound on E ‖Wt‖
in Proposition 2 which is given by

E ‖Wt+1‖ ≤ κC̃
√
αt, (17)

where C̃ = 6
√

ln 2D + 3
√
π and κ is defined in (6).

Step III: Bounding inner SA dynamics E ‖νt‖. Similarly to Step I, we apply Proposition 1 to the
νt-recursion (7), take the expectation, and apply the learning rate inequality (24) to obtain

E ‖νt‖ ≤ αt−1 ‖ν1‖+
1 + γ

2
αt−1

t−1∑
k=2

E ‖Mk‖+ E ‖Mt‖ , (18)

where Mt+1 = (1− αt)Mt + αtµt, with initialization M1 = 0. Using a similar idea to Step II, we
obtain the bound on E ‖Mt‖ in Proposition 3. Finally, we substitute the bound of E ‖Mt‖ back in
(18) and use the fact ‖ν1‖ = 0 to obtain

E ‖νt‖ ≤
6VmaxD̃

1− γ
√
αt−1, with D̃ = 2

√
ln 2D +

√
π. (19)

Step IV: Deriving finite-time bound. Substituting (17) and (19) into (16) yields (11).

4 CONCLUSION

In this paper, we derived sharper finite-time bounds for double Q-learning with both synchronous
sampling and Makovian asynchronous sampling. To achieve this, we developed a different approach
to bound two nested stochastic approximation recursions. An important yet challenging future topic
is the convergence guarantee for double Q-learning with function approximation. In addition to the
lack of the contraction property of the Bellman operator in the function approximation setting, it is
likely that neither of the two Q-estimators converges, or they do not converge to the same point even
if they both converge. Characterizing the conditions under which double Q-learning with function
approximation converges is still an open problem.
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