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Abstract—The crux of single-channel speech separation is
how to encode the mixture of signals into such a latent em-
bedding space that the signals from different speakers can
be precisely separated. Existing methods for speech separation
either transform the speech signals into frequency domain to
perform separation or seek to learn a separable embedding space
by constructing a latent domain based on convolutional filters.
While the latter type of methods learning an embedding space
achieves substantial improvement for speech separation, we argue
that the embedding space defined by only one latent domain
does not suffice to provide a thoroughly separable encoding
space for speech separation. In this paper, we propose the
Stepwise-Refining Speech Separation Network (SRSSN), which
follows a coarse-to-fine separation framework. It first learns a 1-
order latent domain to define an encoding space and thereby
performs a rough separation in the coarse phase. Then the
proposed SRSSN learns a new latent domain along each basis
function of the existing latent domain to obtain a high-order
latent domain in the refining phase, which enables our model to
perform a refining separation to achieve a more precise speech
separation. We demonstrate the effectiveness of our SRSSN by
conducting extensive experiments, including speech separation
in a clean (noise-free) setting on WSJ0-2/3mix datasets as well
as in noisy/reverberant settings on WHAM!/WHAMR! datasets.
Furthermore, we also perform experiments of speech recognition
on separated speech signals by our model to evaluate the
performance of speech separation indirectly.

Index Terms—Speech separation, high-order latent domain,
coarse-to-fine, end-to-end

I. INTRODUCTION

SPEECH separation aims to separate out the clean speech
signals for each involved speaker from a mixture of speech

signals. It plays an important role in speech processing [1],
especially in the scenario of mixed and noisy speech environ-
ment. Speech separation, particularly under the single-channel
condition, is still a highly challenging research problem due
to the difficulty of encoding the mixed speech signal into an
entirely separable embedding feature space. This paper focuses
on single-channel speech separation.

A classical type of methods [2]–[8] for single-channel
speech separation is to transform the input mixture of temporal
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speech signals into the frequency domain employing the Short-
Time Fourier Transform (STFT) [9] and then perform speech
separation in the frequency domain. Whilst this type of meth-
ods achieves great improvement on speech separation due to
relatively mature techniques on time-frequency transformation
and signal processing in frequency domain, it suffers from two
limitations for speech separation: 1) most existing methods
focus on reconstructing the magnitude of the signal in the
frequency domain but ignore the modeling of the phase (which
is the other crucial physical property of frequency signals)
since there is no sufficiently effective way of modeling the
phase yet; 2) performing speech separation in the frequency
domain is an effective but not necessarily the optimal way,
and it is still doubtful whether the frequency domain is able
to provide entirely separable space for speech signals [10].

With great success of deep learning in many fields such
as computer vision and machine learning by the powerful
capability of feature representation, another research line
of speech separation [10]–[20] seeks to leverage deep con-
volutional neural networks (CNNs) to learn an embedding
space that is separable for speech signals between different
speakers. A remarkable benefit of such methods is that the
whole separation procedures including encoding, separation
and decoding can be integrated into an end-to-end model,
which is in contrast to the sequentially individual steps in
aforementioned STFT-based methods. A prominent example
of such method is Time-domain Audio Separation Network
(TASNET) [11], which employs a 1-D convolutional network
consisting of multiple convolutional filters to transform the
temporal signals within a time slot into a latent embedding
space. This latent space can be considered as a 1-order latent
domain with the convolutional filters as its basis functions.
The input signals are first encoded into such embedding space
defined by this latent domain and then the separation and
decoding are performed subsequently in this embedding space.
Many follow-up works [10], [12], [13], [15], [17]–[19] focus
on building better separators upon TASNET to further improve
the performance of speech separation. While such TASNET-
based methods have boosted the performance of speech separa-
tion substantially, we argue that whether the embedding space
defined by only 1-order latent domain suffices to provide a
thoroughly separable feature space, particularly in challenging
scenarios where speakers with similar speech characteristics
are involved in. An empirical investigation is conducted by
ablation study both quantitatively and qualitatively in Sec-
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tion IV-B1 and the experimental results validate our doubt.
In this paper, we propose the Stepwise-Refining Speech

Separation Network (SRSSN), which performs speech sepa-
ration in a stepwise manner following a coarse-to-fine frame-
work. In the coarse phase, it first conducts a rough separation
in a coarse embedding space defined in a 1-order latent
domain, which is similar as the typical way of TASNET-
based methods [10]–[13], [15]–[19]. In the refining phase, our
SRSSN learns a new latent domain along the basis functions of
the existing domain in the coarse phase to form a high-order
domain space. Then the coarse embedding space is further
decomposed into a fine-grained embedding space defined by
the constructed high-order domain. As a result, our proposed
SRSSN is able to re-code the coarsely separated features in
the fine-grained embedding space and achieve a more precise
separation. To conclude, our SRSSN benefits from following
advantages:
• We design a coarse-to-fine separation framework, which first

conducts a rough speech separation and then performs the
refining separation in the constructed fine-grained embed-
ding space to achieve more precise separated results.

• A Fine-grained Encoding Mechanism is designed specifi-
cally to construct a fine-grained embedding space by learn-
ing a high-order latent domain space, which enables our
SRSSN to refine the separation results.

• Our proposed model can be readily integrated into any of ex-
isting TASNET-based frameworks following the encoding-
separation-decoding paradigm. In particular, we investigate
the performance of our model by integrating it into two
typical separator structures: DPRNN-TASNET [15] based
on RNN and DPTNET-TASNET [18] based on Trans-
former [21].

• Extensive experiments validate the superiority of encod-
ing in the learned high-order latent domain over in a 1-
order latent domain (as most existing methods do). It is
demonstrated that our SRSSN compares favorably against
state-of-the-art methods for speech separation in both the
clean (noise-free) setting on WSJ0-2/3mix dataset and
noisy/reverberant settings on WHAM!/WHAMR! datasets.
Besides, we also perform experiments of speech recognition
as an indirect evaluation way, in which a same automatic
speech recognition (ASR) model achieves better perfor-
mance on the separated speech signals by our model than on
the separated signals by other models for speech separation.

II. RELATED WORK

Frequency-domain-based methods. Frequency domain-
based methods transform the mixed speech signal into fre-
quency domain using the STFT [9]. They perform separation
in frequency domain and transform the separated representa-
tions back into speech signals employing the Inverse Short-
time Fourier Transform (iSTFT) [22]. Hershey et al. [2],
[3] devise a Deep Clustering (DPCL) method which learns
a speaker-discriminative vector for each time-frequency bin
of the mixture spectrogram and employs clustering to ob-
tain speaker assignments for each time-frequency bin. Kol-
bæk et al. [4], [5] propose a Permutation Invariant Train-
ing (PIT) approach to align multiple estimates for different

target speakers, which enumerates all source permutations
and uses the permutation with the minimum error to update
the network parameters. Wang et al. [7] integrate the PIT-
based mask-inference network [5] and DPCL [3] regularizer
into a multi-task learning framework for better separation
performance. Inspired by the Computational Auditory Scene
Analysis (CASA) [23], Liu et al. [8] propose a Deep CASA
approach, which first estimated spectra for each speaker at
each frame and then groups the estimated frame-level spectra
to different speakers employing clustering.
Learnable-latent-domain-based methods. Learnable latent
domain-based methods leverage CNN layers to learn a latent
domain for speech separation. Luo et al. [11] first propose the
TASNET, which takes speech signal as input and reconstructs
the separated sources in an end-to-end manner. Most variants
of TASNET focus on building effective separation network
to model the extremely long encoded sequence and thus to
perform a precise representation separation. Luo et al. [10]
propose a fully-convolutional TASNET (Conv-TASNET), con-
sisting of stacking 1-D dilated temporal convolutional layers
similar to Wavenet [24]. Shi et al. [13] devise an improved
version of Conv-TASNET equipped with dynamic gated mech-
anism. Tzinis et al. [17] propose a computationally efficient
backbone structure similar to U-Net [25], which extracts multi-
resolution temporal features through successive downsampling
and upsampling. Luo et al. [15] develop a Dual-Path Recurrent
Neural Network (DPRNN), which performs local and global
temporal modeling alternately, to capture long-time depen-
dency over entire sequence instead of fixed receptive fields
as in Conv-TASNET [10]. Chen et al. [18] devise a Dual-Path
Transformer Network (DPTNET), which also adopt the dual-
path strategy to handle the long sequence as in DPRNN [15]
and utilize improved transformer layers incorporating RNN
layers to model the context in an order-aware manner. Subakan
et al. [19] propose the Sepformer, which is an extension of
DPTNET [18] by employing deeper and wider Transformer
layers, achieves better performance than DPTNET at the cost
of much larger model size.

Meanwhile, several studies explore to leverage the discrim-
inative speaker representation to improve separation perfor-
mance. Nachmani et al. [16] introduce a task to minimize
the distance between the speaker embeddings of the estimated
signal and target signal, where the speaker embeddings are
extracted from a separately trained speaker identification net-
work. Zeghidour et al. [20] propose the Wavesplit network
consisting of a speaker stack and a separation stack, where
the speaker stack extracts frame-level speaker-discriminative
vectors and obtain speaker centroids employing clustering,
and the separation stack estimates isolated speech signals
conditioned the speaker centroids.
Two-stage or cascaded architectures. Some studies adopt
two-stage or cascaded strategies for speech separation and
enhancement. Zhao et al. [26] introduce a two-stage frame-
work to enhance noisy-reverberant speech, where denoising
and dereverberation are performed sequentially. Kavalerov et
al. [27] devise a iterative version of TASNET cascading of two
same separation model, where the initial estimates obtained in
the first model along with the mixture are fed into the second
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Fig. 1: Architecture of our proposed SRSSN. It first performs a rough separation in the coarse phase, then the coarsely separated
features are further encoded in a fine-grained embedding space to perform a more precise separation in the refining phase. The
Fine-grained Encoding Mechanism is specifically designed to learn the fine-grained encoding space for refining separation by
constructing a high-order latent domain upon the 1-order latent domain.

model for a more precise separation. Fan et al. [28] propose
to separate the mixture preliminarily in frequency domain
and design an End-to-End Post-Filter (E2EPF) to leverage
the similarity between the mixture and preliminary estimates
to further improve the separation performance. Delfarah et
al. [29] introduce a two-stage deep CASA [8] method to
separate mixed speech in reverberant condition, where the first
stage estimates reverberant separated speech and the second
stage dereverberates the separated speech to obtain clean
anechoic speech. Phan et al. [30] utilize chained generators
to gradually refine noisy speech in a stage-wise manner.

III. STEPWISE-REFINING SPEECH SEPARATION NETWORK

Given a mixture of single-channel speech signal from dif-
ferent speakers, we aim to separate and extract the clean signal
for each involved speaker. The crux of this problem is how
to encode the mixture signal into such a latent embedding
space that different speech sources are entirely separable. To
surmount this crux, our proposed Stepwise-Refining Speech
Separation Network (SRSSN) performs fine-grained encoding
in a high-order latent domain rather than in a 1-order latent
domain (as most existing methods do) for signals in each time
slot, to obtain more precise separation.

Specifically, our SRSSN performs speech separation in a
stepwise-refining manner following a coarse-to-fine frame-
work. It first conducts a rough separation in a coarse em-
bedding space defined in a low-order (1-order) latent domain,
then the coarse embedding space is further decomposed into
a fine-grained embedding space defined in a high-order latent
domain, which is achieved based on our designed Fine-grained
Encoding Mechanism. As a result, the proposed SRSSN is
able to perform a more precise speech separation. Figure 1
illustrates the overall architecture of SRSSN. We will first
present the coarse-to-fine separation framework, then we will
elaborate on the Fine-grained Encoding Mechanism to explain

how to construct the high-order latent domain for refining the
result of speech separation.

A. Coarse-to-fine Separation Framework

Our SRSSN consists of two separation phases: 1) the coarse
phase for a rough separation of signals among speakers in a
coarse embedding space defined by a 1-order latent domain,
and 2) the refining phase in which a fine-grained embedding
space is constructed in a high-order latent domain for a more
precise separation.

1) Coarse phase: As shown in Figure 1, we build both
the coarse and refining phases of our model based on the
basic encoder-separator-decoder framework adopted by the
classical TASNET-based models [10], [12], [13], [15], [17]–
[19]. Formally, given a mixture of signal x ∈ R1×T of
temporal length T , the coarse encoder Ec of SRSSN encodes
the signal into a coarse embedding space with N c basis
functions by a nonlinear transformation:

Fc = Ec(x). (1)

Herein Fc ∈ RNc×T ′
is the encoded feature representation

and T ′ is the encoded temporal length. Following the typical
encoding scheme [18], we model the coarse encoder Ec by a
1-D convolutional layer with N c filters of kernel size 1×Kc,
followed with the nonlinear activation layer ReLU. Here the
N c convolutional filters can be viewed as the basis functions
to form a latent domain, which presumably simulates the
frequency domain due to the similar mathematical transfor-
mations between the encoder and the Short-Time Fourier
Transformation [9].

The encoded representations Fc are then fed into the
coarse separator Sc of SRSSN to estimate the signal mask
Mc

i ∈ RNc×T ′
, i = 1, . . . , D for each speaker, where D is

the number of involved speakers in the input mixed signal x.
The mask values are constrained to be non-negative to indicate
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Fig. 2: Structures of the separator in DPRNN-TASNET and
DPTNET-TASNET. Note that the coarse separator Sc and the
the refining separator Sr share the same model structure.

the content proportion for each speaker with respect to each
basis function by applying a non-linear activation layer ReLU.
Thus the separation in the coarse phase is performed as:

Mc
1, . . . ,M

c
D = Sc(Fc),

Fci = Fc �Mc
i , i = 1, . . . , D,

(2)

where Fci ∈ RNc×T ′
is the separated features for i-th speaker

and � denotes element-wise multiplication.

Modeling of Separator Sc. The separator Sc can be imple-
mented in the same structure with any separator of existing
TASNET-based models [10], [12], [13], [15], [17]–[19]. To
investigate the effectiveness of our model extensively, we eval-
uate our model equipped with two typical separator structures
respectively: the separator structure in DPRNN-TASNET [15]
and DPTNET-TASNET [18] due to their excellent perfor-
mance.

Both of the separator structures employ a same core block
iteratively (for R times) for modeling temporal dependencies
in a speech sequence. The main difference between these two
types of separators lies in the structure of the core block:
the separator in DPRNN-TASNET employs Bi-directional
LSTM [31] to construct its core block (DPRNN block), while
the core block (named DPTNET block) of the separator in
DPTNET-TASNET is designed based on Transformer [21].
Specifically, as shown in Figure 2, the encoded representation
Fc is firstly normalized by Layer-Normalization [32] and
fed into a linear layer to adjust the number of channels.
Then it was equally segmented into successive chunks with
temporal length of L and overlap of L

2 between adjacent
chunks. Both the DPRNN block and the DPTNET block
adopt a dual-path strategy to capture the long-term temporal
dependencies. Each block consists of two paths: an intra-
path used for capturing the intra-dependencies within each
chunk and an inter-path for modeling the inter-dependencies
among chunks. After temporal modeling by R core blocks, a

nonlinear activation layer PReLU [33] and a linear layer are
used to expand the number of channels by D times to make the
separated encoding representation Fci , i = 1, . . . , D keep the
same feature dimension as the un-separated representation Fc.
Subsequently, the chunks are transformed back into sequential
shape through the overlap-add operation [15]. Finally, a linear
layer followed by a activation layer ReLU is utilized to
estimate the mask values.

The separated representations Fci are finally decoded into
the speech sources ŝci ∈ R1×T , i = 1, . . . , D for each speaker
by the coarse decoder Dc:

ŝci = Dc(Fci ), i = 1, . . . , D. (3)

We model the decoder Dc as a 1-D transposed convolutional
layer which is the reversed operation of the encoder. Note that
the decoding operation in the coarse phase is only performed
in training for supervision. During inference, the separated
latent representations Fci are fed into the refining phase for
the fine-grained separation.

2) Refining phase: The performance of the whole model
relies on the effectiveness of feature separation in the encoding
embedding space. Thus, it is crucial that the speech sources
can be precisely separable between different speakers in the
encoded embedding space. However, we argue that the coarse
embedding space encoded by only one latent domain does
not suffice to provide a thoroughly separable feature space for
all speakers, which is validated empirically by the ablation
experiments in Section IV-B1. To tackle this limitation, we
propose the Fine-grained Encoding Mechanism (presented in
Section III-B) to construct a high-order latent domain and
thereby define a fine-grained embedding space upon the coarse
space to make a more precise separation.

Taken the separated representations in the coarse embedding
space Fc as inputs, the encoder Er in the refining phase
re-codes the features for each speaker in the fine-grained
embedding space:

Fri = Er(Fci ), i = 1, . . . , D, (4)

where the refining encoder Er will be described concretely in
Section III-B.

Benefitting from the fine-grained feature decomposition
from Fc to Fr, a refining separation can be performed on Fr

for each speaker by the separator Sr in the refining phase,
which is similar to the separation procedure in the coarse
phase. For instance, the encoded feature for the i-th speaker
Fri is further separated by Sr and the component for the j-th
speaker is Fri,j :

Mr
i,1, . . . ,M

r
i,D = Sr(Fri ),

Fri,j = Fri �Mr
i,j j = 1, . . . , D.

(5)

Accordingly, the refined encoded feature for j-th speaker is
obtained by the summation over all j-th components (sepa-
rated ingredients) from all speakers:

Gr
j =

D∑
i=1

Fri,j . (6)
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Fig. 3: Fine-grained separation in the refining phase. (a) The proposed Fine-grained Encoding Mechanism learns a new latent
domain Hr along each basis function of the old latent domain Hc that defines the coarse embedding space. The obtained new
latent domain Hr and the old latent domain Hc jointly form a high-order domain, which defines a fine-grained embedding
space for refining separation. (b) The refining separator processes the encoded representations in parallel for all groups of
basis functions of the latent domain Hc for each speaker. (c) The refining decoder performs two-stage decoding to obtain
final speech signal: decoding from fine-grained embedding space to the coarse embedding space by Dr1 and decoding from the
coarse embedding space to the output speech signal by Dr2.

The decoder Dr in the refining phase is then employed
to decode the refined features into speech sources ŝrj ∈
R1×T , j = 1, . . . , D:

ŝrj = Dr(Gr
j), j = 1, . . . , D. (7)

The obtained speech sources ŝr are expected to be cleaner
and more precise than the coarse version derived in the coarse
phase due to the refining separation, which is verified in
experiments of Section IV-B1.

B. Fine-grained Encoding Mechanism

The Fine-grained Encoding Mechanism is devised to con-
struct a more fine-grained encoding space from the coarse en-
coding space for more precise and thorough separation among
different speakers. Specifically, we learn a new latent domain
along each basis function of the existing latent domain that
defines the coarse embedding space. Consequently, the derived
new latent domain and the old latent domain jointly form
a high-order domain, which defines a fine-grained encoding
space by decomposing the coarse embedding space along the
newly learned latent domain.

The coarse encoder Ec in the coarse phase transforms non-
linearly the input speech signal into an encoding space by
learning N c 1-D convolutional filters together with ReLU.
These N c convolutional filters can be viewed as basis func-
tions to form a latent domain denoted as Hc. As a result, the

learned encoding space in the coarse phase can be considered
to be defined by such latent domain Hc comprising N c

basis functions. We adopt the similar way to construct a
new latent domain Hr upon Hc. Formally, we learn a 1-
D convolutional layer composed of Nr filters of kernel size
1 × Kr together with a nonlinear activation layer ReLU to
construct a new latent domain with Nr basis functions. The
newly constructed latent domain Hr is applied to each of
N c basis functions of the old domain Hc for a fine-grained
decomposition. Consequently, the new domain Hr enables one
more order of partitions of the encoding space upon the old
domain Hc, and thus a high-order (2-order) latent domain
Hhigh is constructed. The N c basis functions of Hc and the
Nr basis functions of Hr correspond to basis functions in
different orders of Hhigh respectively: one may view Hhigh
as characterizing the encoding space by N c × Nr individual
features to achieve a fine-grained encoding space.

Mathematical formulation. The whole procedure is mathe-
matically formulated as:

N c basis functions of domain Hc := N c conv-filters of Ec,
Nr basis functions of domain Hr := Nr conv-filters of Er,
high-order domain Hhigh := Hr ×Hc,
Fri (n) = Er(Fci (n)), i = 1, . . . , D; n = 1, . . . , N c.

Featn,m = Fri (n,m), i = 1, . . . , D; n = 1, . . . , N c; m = 1, . . . , Nr.
(8)
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Herein, Hr × Hc denotes that the domain Hr is applied to
each basis function of Hc in parallel. Fci (n) ∈ R1×T ′

is
the encoded representations along the n-th basis function for
the i-th speaker in domain Hc in the coarse phase, while
Featn,m ∈ R1×T ′′

is the corresponding encoded represen-
tations in fine-grained embedding space along the n-th basis
function in the first order and the m-th basis function in the
second order of the high-order domain Hhigh (in the refining
phase). It should be noted that all the basis feature functions in
the old domain are decomposed by the same refining encoder
Er to ensure that all decompositions are operated in the same
new latent domain. To reduce the model complexity and avoid
potential overfitting, in practice we apply the similar idea as
group convolution [34] to perform transformation in group-
wise manner. Concretely, we first divide N c basis functions
of the old domain into P groups and then apply the same
refining encoder Er to each group Fci (p) ∈ RNc

P ×T
′

to obtain
a set of Nr decomposed features Fri (p) ∈ RNr×T ′′

:

Fri (p) = Er(Fci (p)), i = 1, . . . , D; p = 1, . . . , P. (9)

Consequently, the size of the resulting encoded representations
in the new domain Fr is Nr × P × T ′′.
Physical interpretation. The rationale behind this design is
that different basis functions correspond to different com-
ponents in the latent domain, which is similar to different
frequency bands in the frequency domain. Thus the speech
signal for a speaker is characterized by the distribution of
different components (along different basis functions) in a
latent domain. Nevertheless, we argue that the capacity of
feature representation in one latent domain is not sufficient to
separate all speakers perfectly. For those mixtures of speech
signal that cannot be thoroughly separated in one latent
domain, our designed fine-grained embedding space encoded
by a high-order latent domain enables more precise separation.

Comparison with the modeling mechanism of scaling up
the number of basis functions in the old 1-order domain.
A straightforward way to expand the capacity of feature
representation in the embedding space is to directly scale
up the number of basis functions in the old domain Hc.
Whilst it seems plausible, it has two limitations compared
to our proposed Fine-grained Encoding Mechanism: 1) This
mechanism can only improve the feature representation in the
same embedding space along the old latent domain which
is prone to be saturated and overfitting. By contrast, our
model exploits a larger embedding space by learning a new
latent domain and applying it to each basis function of the
old domain to form a high-order latent domain. Thus the
feature representation power is increased quadratically instead
of linearly. 2) This mechanism increases the parameter size of
the encoder proportionally to the scaling factor. Nevertheless,
the parameter size of the encoder in our model grows linearly
to the scaling factor of the representation capacity, which
benefits from the design that the same refining encoder Er
encoding the new latent domain is applied to all the basis
functions of the old domain.

Refining separator Sr in the fine-grained embedding space.
As shown in Figure 3 (b), the refining separator Sr processes

the encoded features in the fine-grained embedding space in
parallel for all groups of basis functions of the old domain
Hc, i.e., the P feature blocks Fri (p) ∈ RNr×T ′′

, p = 1, . . . , P
for the i-th speaker, are processed in parallel:

Mr
i,j(p) = Sr(Fri (p)),

Fri,j(p) = Fri (p)�Mr
i,j(p), p = 1, . . . , P.

(10)

The refining separator Sr shares the same model structure
as the coarse separator Sc: consisting of R stacked blocks
of DPRNN [15] or DPTNET [18]. The refined separated
representation for j-th speaker is obtained by the summation
over all j-th components, namely the separated ingredient of
j-th speaker, from all speakers in parallel along each of P
feature blocks. Thus, Equation 6 is implemented as:

Gr
j(p) =

D∑
i=1

Fri,j(p), p = 1, . . . , P. (11)

Refining decoder Dr in the fine-grained embedding space.
Since our fine-grained embedding space is constructed based
upon the coarse embedding space, our refining decoder Dr
performs decoding reversely. Hence, the refining decoder Dr is
a two-stage decoder consisting of Dr1 and Dr2. Specifically, the
sub-decoder Dr1 decodes the feature representation from fine-
grained embedding space back to the coarse embedding space,
which is applied to all feature groups in parallel. Then the sub-
decoder Dr2 decodes features from the coarse embedding space
to final speech signal for each speaker. The whole decoding
procedure is carried out as follows:

Gc
j(p) = Dr1(Gr

j(p)), p = 1, . . . , P,

ŝrj = Dr2(Gc
j)

(12)

As indicated in Figure 3 (c), Dr1 is modeled by a 1-D
transposed convolutional layer followed by a nonlinear acti-
vation layer ReLU, and Dr2 is modeled by a 1-D transposed
convolutional layer.

C. End-to-end Parameter Learning by Joint Supervision

We optimize the whole model of SRSSN in an end-to-end
manner by performing supervised learning on both the coarse
phase and the refining phase. Specifically, we employ the
scale-invariant source-to-noise ratio (SI-SNR) [35] as the loss
function, which is widely used and validated effectively for
end-to-end speech separation [10], [15], [16], [18], [19]. For-
mally, given a target signal (groundtruth) s and the estimated
signal ŝ, the SI-SNR is defined as follows:

starget =
〈ŝ, s〉
‖s‖2

s,

snoise = ŝ− starget,

SI-SNR(ŝ, s) := 10 log10

‖starget‖2

‖snoise‖2
,

(13)

where starget is the projected correct ingredient of estimated
signal ŝ on the target signal and snoise is the residual noise
ingredient of ŝ. Following [15], [18], we adopt utterance-level
PIT [5] to align multiple estimates for different target speakers
in both the coarse phase and the refining phase. Consequently,
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our SRSSN is optimized by maximizing the SI-SNR scores in
both the coarse phase and the refining phase:

Lc = − max
πc∈P

1

D

D∑
i=1

SI-SNR(si, ŝ
c
πc(i)),

Lr = − max
πr∈P

1

D

D∑
i=1

SI-SNR(si, ŝ
r
πr(i)),

L = Lc + Lr.

(14)

where Lc and Lr are the loss functions used in the coarse
phase and refining phase, respectively. πc and πr are permu-
tations from the set P of all D! possible permutations among
D speakers.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed SRSSN, we
conduct three sets of experiments: 1) speech separation in the
clean (noise-free) setting involving 2 and 3 speakers respec-
tively, 2) speech separation between 2 speakers in noisy and
reverberant settings, and 3) speech recognition on separated
speech signals decoded by methods for speech separation to
evaluate the performance of speech separation indirectly. We
also perform ablation study on the task of speech separation
in the clean setting to investigate the effect of each proposed
functional technique in our proposed SRSSN. In each set
of experiments, we evaluate the performance of our SRSSN
adopting the separator structure of DPRNN-TASNET [15] and
DPTNET-TASNET [18] respectively to evaluate the robustness
of our model utilizing different classical separator structures.
These two versions of our model are denoted as DPRNN-
SRSSN and DPTNET-SRSSN respectively.

A. Experimental Setup

Evaluation Metrics. For speech separation, we employ two
standard metrics for evaluation, namely scale-invariant signal-
to-noise ratio improvement (∆SI-SNR) [35] and signal-to-
distortion ratio improvement (∆SDR) [36]. Higher value of
∆SI-SNR or ∆SDR indicates higher quality of the separated
results. For speech recognition, we employ Word Error Rate
(WER) of the predicted transcripts relative to the reference
transcripts for evaluation. Lower value of WER implies better
recognition result and higher quality of the separated speech.
Implementation Details Our model is implemented in Py-
torch framework [37]. It is trained using Adam [38] optimizer
with a learning rate of 10−3 and a weight decay of 10−5

on 2-second temporal segments for 200 epochs. We clip
all gradients to lie in the interval [−5, 5] to avoid potential
gradient explosion. For the encoder Ec in the coarse phase,
the number of filters N c, kernel size Kc, and stride size are
set to be 256, 16, and 8, respectively. For the encoder Er in the
refining phase, the number of filters Nr, kernel size Kr, stride
size, and number of groups P are tuned to be 256, 2, 1, and
4, respectively. For both separators Sc and Sr, the numbers of
core blocks R are set to 6 except for the experiment on ablation
study (Section IV-B1), and the length of chunks L is set to 100.
In the DPRNN blocks, each Bi-LSTM layer is equipped with

128 hidden units in each direction. In the DPTNET blocks,
each improved Transformer layer [18] consists of a 4-head
self-attention layer with total embedding dimension of 64, a
Bi-LSTM layer with 128 hidden units in each direction, and
a linear layer with 64 hidden units.

B. Speech Separation in Clean Setting

We first conduct experiments on speech separation in clean
setting, i.e., no noise is contained in the mixture of speech
signals except the signals of involved speakers to be separated.
We first perform ablation study to investigate the effectiveness
of the coarse-to-fine separation framework and the proposed
Fine-grained Encoding Mechanism. Then we compare our
SRSSN to the state-of-the-art methods for speech separation
in this experimental setting.
Dataset. We perform experiments on WSJ0-2mix and WSJ0-
3mix [2] in the clean setting, which is the reference mixed
speech datasets for single-channel speech separation. WSJ0-
2mix is generated from Wall Street Journal (WSJ) dataset [39],
and consists of mixed speech utterances from two different
speakers with random signal-to-noise ratio between 0 dB and
5dB. The data in WSJ0-2mix is split into three sets with
duration of 30 hours, 10 hours and 5 hours for training,
validation and test, respectively. WSJ0-3mix, containing three-
speaker mixtures, is generated in a similar way as in WSJ0-
2mix. We use the min version of speech data with sampling
rate of 8kHz, the benchmark for speaker separation, in which
the longer utterance is trimmed to align the shorter utterance.

1) Ablation Study: We perform ablation experiments on
nine variants of our SRSSN for both DPRNN-SRSSN and
DPTNET-SRSSN on WSJ0-2mix [2]:
• Base model, which has only coarse phase and thus no

Fine-grained Encoding Mechanism is used. As a result,
the base model is equivalent to DPRNN-TASNET or
DPTNET-TASNET, depending on the separator structure
(based on DPRNN or DPTNET blocks). The stride size
for Base model in both cases are set to be 8, which is
consistent with all other models in ablation study.

• Base-expanded, which is similar to Base model with
one difference: the encoding space in the coarse phase is
expanded by scaling up the number of basis functions in
the latent domain to exploit the limit of sufficiently large
encoding space, namely using much more CNN filters
(N c = 1024) for the encoder.

• Base-deeper, which has deeper encoder and decoder than
Base model, to investigate the effect of the convolutional
depth of both the encoder and decoder. In this variant,
we deepen the encoder and the decoder with 2, 3 and 4
convolutional layers (1-D) respectively, and select the best
performance as the optimal results w.r.t. the convolutional
depth.

• Base-high-order, which directly encodes the mixed
speech into high-order embedding space and perform
speech separation in only one separation phase. Com-
pared to our SRSSN, no rough separation is performed
in the 1-order embedding space. Hence, this variant is
proposed to validate the effectiveness of coarse-to-fine
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Fig. 4: Performance of nine variants of our SRSSN in terms of ∆SI-SNR and ∆SDR for ablation study, using DPRNN and
DPTNET as separator respectively.

separation scheme. Specifically, the encoder is modeled
by cascading the coarse encoder Ec and refining encoder
Er, to encode the speech signal into the fine-grained
embedding space. The refining separator Sr and the
refining decoder Dr are applied subsequently.

• Iterative, which adopts the iterative scheme used in iT-
DCN++ [27], [40]. Specifically, the separation procedure
in Base model is repeated twice, where the mixed speech
and the initial estimates in the first phase are fed into the
second phase. Two phases are cascaded into an end-to-
end model.

• SRSSN-1D, which has both the coarse and refining
phases but no Fine-grained Encoding Mechanism is used
in the refining phase. The refining phase has the same
model structure as the coarse phase. Thus both two phases
encode features in a 1-order latent domain. Note that
SRSSN-1D is different from Iterative in that the refin-
ing phase of SRSSN-1D accepts the coarsely separated
latent representations as input whilst the second phase
of Iterative takes the decoded estimated signals as the
input.

• SRSSN-1D-expanded, which is similar to SRSSN-1D
with one difference: the encoding space in the refining
phase is expanded by scaling up the number of basis func-
tions in the latent domain. Similar to Base-expanded,
much larger number of CNN filters (Nr = 1024) are
used for the refining encoder.

• SRSSN-Lr, which is the same as the proposed SRSSN,
except that the model is trained with only loss function
Lr in the refining phase, discarding the loss function Lc
in the coarse phase.

• SRSSN, which is our intact model: the Coarse-to-fine
framework is applied and the Fine-grained Encoding
Mechanism is leveraged to construct a fine-grained en-
coding space defined by a learned high-order latent
domain, which enables fine-grained separation.

Since the separator accounts for most of model parameters, the
total number of core blocks (DPRNN or DPTNET) in the sep-
arator for each variant is kept consistent for a fair comparison.
Specifically, for the variants with only one separation phase
including Base model, Base-expanded, Base-deeper, and
Base-high-order, the number of core blocks R is set to 6. For
the variants with two separation phases, including Iterative,
SRSSN-1D, SRSSN-1D-expanded, SRSSN-Lr, and SRSSN,
the number of blocks R in both phases is set to 3. Figure 4
presents the experimental results of these nine variants of our
model with two different separator structures (DPRNN-based
and DPTNET-based) for ablation study.

It should be noted that the convolutional sampling rate (on
the input signal) in the refining phase of our model are actually
equal to the coarse phase when setting the stride size in the
refining phase to be 1, because the refining phase is performed
on the output of the coarse phase. In all our implementation,
the stride size in the coarse phase and refining phase are set to
be 8 and 1 respectively, thus the overall stride size (on the input
signal) of our SRSSN after two phases is 8, which is equal
to other methods in the ablation study. In such experimental
settings, the comparisons between our model and other models
in ablation study are fair.
Effect of Coarse-to-fine framework. For both DPRNN-based
and DPTNET-based separator structures, the performance is
improved significantly in both metrics from Base model to
SRSSN-1D, which manifests the remarkable advantages of
our proposed Coarse-to-fine separation framework. Although
the coarse phase and the refining phase of SRSSN-1D have
the same model structure especially with the same encoding
scheme, the learned encoding features of two phases are able to
adapt to different separation stages under the guidance of the
loss functions during training. The performance comparison
between Iterative [27], [40] and SRSSN-1D demonstrates
the benefit of our proposed Coarse-to-fine framework. The
strategy of progressive separation through multiple phases is
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Fig. 5: Performance of our SRSSN and Base model in terms of ∆ SI-SNR and ∆ SDR on different test subsets with different
level of similarity between involved speakers in the mixed speech.

also adopted in Iterative, where the initial estimates from
the first phase serve as prior speaker information to improve
the separation performance in the second phase. However,
it needs to learn a new encoding space for separation from
scratch. In our proposed Coarse-to-Fine method, the separated
representations from the first phase are further separated in
the second phase, where the more thorough encoding space
is constructed based on the existing coarse encoding space.
The method SRSSN-Lr trained with only loss function in
the refining phase obtained much lower performance than the
final version. The reason is that the performance of the coarse
phase degenerates notably without direct supervision by the
loss function on it.

The performance gain from High-order to SRSSN also
indicates the advantages of the progressive separation strategy
through multiple phases defined in our proposed Coarse-to-
fine framework.

Effect of Fine-grained Encoding Mechanism. Our in-
tact SRSSN outperforms SRSSN-1D substantially in both
DPRNN-based and DPTNET-based cases, which indicates the
effectiveness of the proposed Fine-grained Encoding Mech-
anism. Compared to the 1-order latent domain in SRSSN-
1D, the constructed high-order latent domain space in SRSSN
enables the model to perform separation in more fine-grained
encoding space and achieve more precise separation results.
To further explore the performance limit of 1-order latent
domain and investigate the essential difference between 1-
order and high-order latent domain space, we scale up the
number of basis functions in the latent domain of Base model
and SRSSN-1D and compare our SRSSN with the expanded
models Base-expanded and SRSSN-1D-expanded. Figure 4
shows similar results in Base-expanded and SRSSN-1D-
expanded. Increasing the number of basis functions in 1-order
latent space slightly improves the separation performance in
the case of SRSSN-1D-expanded at the cost of proportionally
increasing the parameters of encoder. In the case of DPTNET-
SRSSN, the performance is even degenerated from Base model
to Base-expanded due to potential overfitting in 1-order latent
domain. Our model SRSSN performs distinctly better than
these expanded models.

As shown in Figure 4, Base-deeper, which has deeper

TABLE I: Performance of different number of phases of
stepwise separation in terms of ∆SI-SNR (dB) and ∆SDR
(dB) using DPRNN as separator.

Method Model size GPU Memory usage ∆SI-SNR ↑ ∆SDR ↑

1-phase 2.5M 1.76Gib 17.5 17.7

2-phase 2.7M 2.07Gib 19.0 19.3

3-phase 3.0M 3.86Gib 19.1 19.3

encoder and decoder than Base model, slightly improves
the separation performance than Base model. However, it
performs worse than Base-high-order, which reveals that the
high-order encoding space modeled by our model is not equiv-
alent to (but more powerful than) the deeper encoding space by
Base-deeper. The high-order latent space constructed by the
fine-grained encoding mechanism significantly improves the
feature representation power with even less encoder parame-
ters due to the constructed mechanism of high-order domain
described in III-B.

Robustness of the proposed SRSSN. To evaluate the robust-
ness of our SRSSN, we divide the test data into separate
subsets according to the similarity between involved two
speakers and compare the performance between our SRSSN
and Base model. Typically, mixed speech with more similar-
ities between speakers is harder to be separated. Specifically,
we utilize a pre-trained speaker encoder model1 [41] to extract
the embedding vector of each involved speaker and calculate
their cosine similarity for each sample. Higher cosine simi-
larity indicates higher similarity of speech characteristics of
involved speakers. We sort the samples in test set according
to the similarity, and divide them into three subsets with
equal number of samples, namely Low similarity, Medium
similarity and High similarity. Figure 5 presents the results on
these three subsets and all samples. As the speaker similarity
increases, the performance decreases for both models, which is
reasonable. Our SRSSN consistently outperforms Base model
on all subsets in both metrics, which manifests the robustness
of our SRSSN.

1https://github.com/resemble-ai/Resemblyzer
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Fig. 6: Visualization of STFT power spectrums of our DPRNN-SRSSN (left) and DPTNET-SRSSN (right) in both coarse and
refining phases on two randomly selected samples from test set. The contrasting regions are highlighted in green and blue
boxes.

Exploration of number of phases for stepwise separation.
Theoretically, our proposed Fined-grained Encoding Mecha-
nism can be iteratively employed without limitation to con-
structed higher-order encoding space and perform more fine-
grained speech separation. However, more times of iterations
inevitably lead to the increase of the model complexity and
computational cost but diminishing marginal performance
gain. We conduct experiments to investigate the scalability of
our SRSSN with increasing separation phases: 1) 1-phase,

which is the same as Base model; 2) 2-phase, which is the
same as current version of our SRSSN; 3) 3-phase, which
performs stepwise separation through 3 phases sequentially in
the 1-order, 2-order, and 3-order encoding space, respectively.
Due to the memory limit, we only perform experiments in
the case of DPRNN separator and use fewer DPRNN blocks.
For 1-phase, we use 4 blocks. For 2-phase, we use 2 blocks
for both phases. For 3-phase, we use 2 blocks for the first
phase and 1 phase for the later two phases. Similar to the
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Fig. 7: Visualization of STFT power spectrums of our SRSSN and Base model in case of DPRNN and DPTNET on two
randomly selected samples from the subset of High similarity in test set. The contrasting regions are highlighted in green and
blue boxes.

construction of the 2-order embedding space, the 3-order
embedding space is constructed by the decomposition of the
2-order embedding space using our proposed Fined-grained
Encoding Mechanism.

Table I presents the separation performance of these ver-
sions of SRSSN. The performance is improved significantly
from 1-phase to 2-phase in terms of both metrics, whilst the
performance gain is negligible from 2-phase to 3-phase in
terms of ∆SI-SNR. Such results implie that the 2-order latent

domain constructed in 2-phase suffices to provide a separable
encoding space. Besides, the model size and GPU memory
usage (on a single NVIDIA RTX 3090 when separating the 4-
second speech) increases as the increases of the iterating times.
These results are consistent with above theoretical analysis.

Qualitative Evaluation. To gain more insight into the effect
of speech separation, we perform two sets of qualitative eval-
uation: 1) qualitative results by the coarse phase and refining
phase and 2) qualitative comparison between our SRSSN and
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TABLE II: Performance of different methods for speech sep-
aration on WSJ0-2mix in terms of ∆SI-SNR (dB) and ∆SDR
(dB) in the clean setting.

Method Model size ∆SI-SNR ↑ ∆SDR ↑

Frequency
domain-based

DPCL++ [3] 13.6M 10.8 −
UPIT-Bi-LSTM-ST [5] 92.7M − 10.0

Chimera++ [7] 32.9M 11.5 12.0

Deep CASA [8] 12.8M 17.7 18.0

Learnable latent
domain-based

Bi-LSTM-TASNET [12] 23.6M 13.2 13.6

Conv-TASNET [10] 5.1M 15.3 15.6

E2EPF [28] − 16.9 17.3

FurcaNeXt [13] 51.4M − 18.4

DPRNN-TASNET [15] 2.6M 18.8 19.0

SuDoRM-RF [17] 2.6M 18.9 −
Nachmani et al. [16] 7.5M 20.1 −
DPTNET-TASNET [18] 2.7 M 20.2 20.6

SepFormer [19] 26M 20.4 20.5

Wavesplit [20] 29M 21.0 21.2

DPRNN-SRSSN (ours) 7.5M 20.5 20.7

DPTNET-SRSSN (ours) 5.7M 21.2 21.4

Wavesplit + Data Augment [20] 29M 22.2 22.3

SepFormer + Data Augment [19] 26M 22.3 22.4

the base model. In the first set of experiments, we randomly
select two samples from the test set for DPRNN-SRSSN and
DPTNET-SRSSN, and employ the Librosa analysis toolkit [42]
to visualize the STFT power spectrums of the estimated speech
sources in both phases in Figure 6. Comparing between the vi-
sualization of the groundtruth and estimates for each involved
speaker, we observe that the separated results for one speaker
in the coarse phase still contain residual ingredients from the
other speaker, particularly in the regions indicated by bounding
boxes. In contrast, the separated results in the refining phase is
much better than that in the coarse phase: most of the incorrect
residual ingredients are successfully removed. The estimates
in the refining phase show more similar spectrum patterns as
their groundtruth counterparts than that in the coarse phase.
It indicates that the fine-grained embedding space defined by
the high-order latent domain in refining phase enables a more
precise separation.

In the second set of qualitative experiments, we randomly
select two samples from the subset of High similarity (the
most challenging subset) and compare between our SRSSN
and Base model qualitatively. Figure 7 visualizes the STFT
power spectrums of the estimated speech sources. It is clearly
shown that our SRSSN is able to perform a more precise
speech separation than the base model.

2) Comparison with State-of-the-art Methods on WSJ0-2mix
(involving 2 speakers): Next we conduct experiments to com-
pare our model with state-of-the-art methods for speech sep-
aration on WSJ0-2mix dataset [2]. In particular, we compare
our model with 2 types of methods: 1) methods performing
separation in the frequency domain, including DPCL++ [3],
UPIT-Bi-LSTM-ST [5], Chimera++ [7] and Deep CASA [8];
2) methods performing separation in a learnable latent domain
in an end-to-end way, including Bi-LSTM-TASNET [12],
Conv-TASNET [10], E2EPF [28], FurcaNeXt [13], DRPNN-

TASNET [15], SuDoRM-RF [17], Nachmani et al. [16],
DPTNET-TASNET [18], SepFormer [19] and Wavesplit [20].
We evaluate the performance of two versions of our SRSSN:
DPRNN-SRSSN and DPTNET-SRSSN. The number of blocks
in both coarse separator and refining separator R is set to 6.

Table II presents the experimental results of different models
for speech separation on WSJ0-2mix dataset [39] in terms of
both ∆SI-SNR and ∆SDR. For the results without using data
augmentation with dynamic mixing [20], our DPRNN-SRSSN
outperforms all other methods except Wavesplit [20] in terms
of both metrics while DPTNET-SRSSN performs better than all
other methods, which demonstrates advantages of our model.
The methods which learn a separable encoding space defined
by a latent domain, generally perform better than the other type
of methods separating speech in frequency domain explicitly,
which implies that the frequency domain is not necessarily
the best separation space for speech as described in [10].
It is worth noting that our DPRNN-SRSSN and DPTNET-
SRSSN outperform the original methods DPRNN-TASNET
and DPTNET-TASNET by a large margin, respectively.

SepFormer [19], which is extended over DPTNET [18] by
using deeper and wider Transformer layers, achieves better
performance than DPTNET at the cost of much larger model
size. Nachmani et al. [16] conducts an additional task to
minimize the distance of the learned speaker embeddings
between the estimates and the groundtruth, which is extracted
by a speaker recognition model. Such extra supervision further
improves the separation performance whilst it relies on extra
datasets to train the speaker recognition model. Thus it uti-
lizes extra data for training than our model. Wavesplit [20]
learns speaker-discriminative vectors at each time step by
leveraging the information of speaker identities in datasets
to boost performance in the training process. Compare to
Nachmani et al. [16], SepFormer [19], and Wavesplit [20], our
method DPTNET-SRSSN achieves more superior performance
without using additional information in a lightweight way.
The techniques used in these models can be readily integrated
into our SRSSN, leading to a more powerful speech separation
system.

We also compare the memory consumption and inference
time between two versions of our model (DPRNN-SRSSN
and DPTNET-SRSSN) with their TASNET-based counterparts
(DPRNN-TASNET and DPTNET-TASNET) using the same
separator structure. Figure 8 presents the comparison results
in inference mode on the same GPU (a single NVIDIA
RTX 3090) of four models when separating mixed speech
of different speech duration (in second). DPRNN-SRSSN
consumes slightly less memory than DPRNN-TASNET [15],
while DPTNET-SRSSN reduces much more memory usage
compared to DPTNET-TASNET [18], as the length of input
speech increases. The major decrease of memory consumption
lies in the larger stride size of encoder in our models than the
TASNET-based methods. As reported in [15], smaller stride
size of encoder leads to better performance. However, smaller
stride size results in longer feature sequence, which requires
more floating-point operations and memory usage. The stride
size of encoder is tuned to be 1 in DPRNN-TASNET [15] and
DPTNET-TASNET [18] for optimal performance, while it is
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Fig. 8: Comparison of GPU memory usage and inference time as a function of input speech length at 8kHz sampling rate.
The results are reported in inference mode on a single NVIDIA RTX 3090.

TABLE III: Performance of different methods for speech
separation on WSJ0-3mix in terms of ∆SI-SNR (dB) and
∆SDR (dB) in the clean setting.

Method Model size ∆SI-SNR ↑ ∆SDR ↑

Frequency
domain-based

DPCL++ [3] 13.6M 7.1 −
UPIT-Bi-LSTM-ST [5] 92.7M − 7.7

Learnable latent
domain-based

E2EPF [28] − 12.5 13.0

Conv-TASNET [10] 5.1M 12.7 13.1

DPRNN-TASNET [15] 2.6M 15.7 16.0

DPTNET-TASNET [18] 2.7 M 16.2 16.5

Nachmani et al. [16] 7.5M 16.9 −
Wavesplit [20] 29M 17.3 17.6

SepFormer [19] 26M 17.6 17.9

DPRNN-SRSSN (ours) 7.5M 18.8 19.0

DPTNET-SRSSN (ours) 5.7M 19.4 19.6

Wavesplit + Data Augment [20] 29M 17.8 18.1

SepFormer + Data Augment [19] 26M 19.5 19.7

set to 8 in our coarse encoder. Our method achieves much
better performance with a larger stride than TASNET-based
methods, which is favorable for devices with limited memory.

Regarding the inference time, DPRNN-SRSSN and
DPTNET-SRSSN both require slightly more inference time
than their TASNET-based counterparts due to two separation
phases in our SRSSN.

3) Comparison with State-of-the-art Methods on WSJ0-
3mix (involving 3 speakers): Next we conduct experiments to
compare our model with state-of-the-art methods for speech
separation on WSJ0-3mix dataset [2] involving 3 speakers,
which is more challenging than the scenario with 2 speakers.
In particular, we compare our model with 2 types of methods:
1) methods performing separation in the frequency domain,
including DPCL++ [3], UPIT-Bi-LSTM-ST [5]; 2) methods
performing separation in a learnable latent domain, including
E2EPF [28], Conv-TASNET [10], DRPNN-TASNET [15],
DPTNET-TASNET [18], Nachmani et al. [16], Wavesplit [20],
and SepFormer [19]. We evaluate the performance of two
versions of our SRSSN: DPRNN-SRSSN and DPTNET-SRSSN.
The number of blocks in both coarse separator and refining
separator R is set to 6.

TABLE IV: Performance of Speech Separation by different
methods in terms of ∆SI-SNR (dB) and ∆SDR (dB) on
WHAM! and WHAMR! in noisy and reverberant settings.

Method
WHAM! WHAMR!

∆SI-SNR ↑ ∆SDR ↑ ∆SI-SNR ↑ ∆SDR ↑

Chimera++ [43] 9.9 − − −
Bi-LSTM-TASNET [44] 12.0 − 9.2 −
Conv-TASNET [44], [45] 12.7 − 8.3 −
Learnable fbank [45] 12.9 − − −
Cascaded-Bi-LSTM-TASNET [44] 12.9 − 10.8 −
DPRNN-TASNET [16] 13.9 − 10.3 −
DPTNET-TASNET 14.9 15.3 12.1 11.1

Nachmani et al. [16] 15.2 − 12.2 −
Wavesplit [20] 15.4 15.8 12.0 11.1

DPRNN-SRSSN (ours) 15.7 16.1 12.3 11.4
DPTNET-SRSSN (ours) 16.1 16.5 12.3 11.3

Wavesplit + Data Augment [20] 16.0 16.5 13.2 12.2

Table III presents the experimental results of different
models for speech separation on WSJ0-3mix dataset [2] in
terms of both ∆SI-SNR and ∆SDR. Our DPRNN-SRSSN
and DPTNET-SRSSN both outperform all other methods with-
out using data augmentation by a large margin. DPTNET-
SRSSN performs slightly worse than SepFormer using data
augmentation [19], which manifests the significant advantages
of our SRSSN. It is worth noting that our DPRNN-SRSSN
and DPTNET-SRSSN both outperform their original methods
DPRNN-TASNET and DPTNET-TASNET significantly.

C. Speech separation in Noisy and Reverberant Settings

In this set of experiments, we conduct experiments in noisy
and reverberant settings to validate the robustness of our
proposed SRSSN.
Datasets. We perform experiments on WSJ0 Hipster Ambient
Mixtures (WHAM!) dataset [43] and WHAMR! dataset [44],
which are constructed based on WSJ0-2mix dataset [2]. In
WHAM!, each two-speaker utterance from WSJ0-2mix dataset
is mixed with a unique noise sample, which is recorded in
non-stationary ambient environments such as coffee shops,
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TABLE V: Performance of speech recognition as well as
speech separation on Libri2Mix dataset.

Method ∆SI-SNR (dB) ↑ ∆SDR (dB) ↑ WER (%) ↓

Bi-LSTM-TASNET 13.5 13.9 30.8

Conv-TASNET 14.4 14.7 27.4

DPRNN-TASNET 16.1 16.6 23.8

DPTNET-TASNET 16.7 17.1 22.4

DPRNN-SRSSN (ours) 17.3 17.7 22.1

DPTNET-SRSSN (ours) 18.3 18.6 20.6

Target signal − − 15.6

Mixed signal − − 95.7

restaurants and bars. The random SNR value between the first
(louder) speaker and the noise is sampled from a uniform
distribution between −6 dB and +3 dB. To separate the clean
signals for involved speakers from such noisy speech data,
the models are required to perform not only speech separation
but also denoising. WHAMR! [44] is an reverberant extension
of WHAM!, in which synthetic reverberation noise is further
fused into the input speech data. Thus dereverberation is also
required for this data to perform thorough speech separation.

We compare our proposed DPRNN-SRSSN and DPTNET-
SRSSN with state-of-the-art methods for speech separa-
tion in noisy and reverberant settings: Chimera++ [43],
Bi-LSTM-TASNET [44], Conv-TASNET [44], [45], Learn-
able fbank [45], Cascaded-Bi-LSTM-TASNET [44], DPRNN-
TASNET [16], DPTNET-TASNET [18], Nachmani et
al. [16] and Wavesplit [20]. Note that Cascaded-Bi-LSTM-
TASNET [44] is specifically designed to adapt to the noisy
and reverberant conditions.

Table IV shows that our DPRNN-SRSSN and DPTNET-
SRSSN outperform other methods without using data aug-
mentation by a large margin under noisy and reverberant
conditions. In particular, our method performs distinctly better
than the cascaded model Cascaded-Bi-LSTM-TASNET [44],
which is equipped with the denoising and dereverberation
functions. It manifests our model is generalized well to the
noisy and reverberant conditions without specific design for
adaptation.

D. Speech Recognition on Separated speech

We further conduct experiments of speech recognition on
separated speech signals decoded by methods for speech
separation to evaluate the performance of speech separation
indirectly. To be specific, we first perform speech separation
on a mixture of speech dataset, then we perform speech recog-
nition using a standard Automatic Speech Recognition (ASR)
model on the separated speech signals by different speech
separation models, respectively. The achieved performance of
speech recognition on the separation results can be considered
as an indirect evaluation measurement for the corresponding
model for speech separation.
Dataset We conduct experiments on a recently released and
fully open-source dataset Libri2Mix [46] for speech recogni-
tion. Libri2Mix is generated based on the ASR dataset Lib-

riSpeech [47] by mixing randomly selected speech utterances
from different speakers. We use the speech data in the clean
condition with sampling rate of 8kHz. It consists of two modes
min and max. In the min mode, the longer utterance is trimmed
to align the shorter utterance. In the max mode, the shorter
utterance is padded with zeros to align the longer utterance.
We train the models for speech separation in the min mode
of the train-100 subset, and perform test of speech separation
in the max mode. The separated signals in the test phase are
further used for performing experiments of speech recognition.

We use the standard hybrid DNN-HMM framework [48] as
the ASR model to perform speech recognition, implemented
based on Kaldi open-source toolkit [49]. The DNN acoustic
model with p-norm non-linearities [50] is trained on the top
of fMLLR features and the forced alignment of the training
data is produced by a GMM-HMM model [51]. A 4-gram
language model is utilized for rescoring. The ASR model
is trained on the subset train-clean-100 of LirbiSpeech [47],
following the official kaldi implementation 1. We compare our
proposed DPRNN-SRSSN and DPTNET-SRSSN with follow-
ing state-of-the-art models for speech separation: Bi-LSTM-
TASNET [12], Conv-TASNET [10], DPRNN-TASNET [15],
DPTNET-TASNET [18].

Table V presents the performance of speech recognition.
Besides, we also the report the experimental results of speech
separation. Target signal and Mixed signal denote the ASR
results on the target signals and original mixed (unseparated)
signals respectively, which can be viewed as the upper bound
and the lower bound for the speech recognition by the same
ASR model. Our model achieves the best performance in both
speech recognition and speech separation. Besides, it is shown
that the performance of speech recognition is consistent with
the performance of speech separation: better speech separated
results lead to higher performance of speech recognition,
which reveals the effectiveness of such indirect evaluation way,
namely performing speech recognition on the separated speech
signals.

V. CONCLUSION

In this work, we have presented the Stepwise-Refining
Speech Separation Network (SRSSN), which performs speech
separation following a coarse-to-fine framework. SRSSN first
conducts a rough speech separation by learning a 1-order latent
domain to define the encoding space in the coarse phase, then
performs refining in the constructed fine-grained embedding
space to achieve more precise separation. In particular, we
propose the Fine-grained Encoding Mechanism, which learns a
new latent domain along each basis function of the existing la-
tent domain that defines the coarse embedding space. Thus two
latent domains jointly form a high-order domain and thereby
define a fine-grained embedding space. Extensive experiments
have demonstrated the effectiveness of the proposed SRSSN.
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