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ABSTRACT

Conventional self-supervised learning (SSL) methods, such as SimCLR and Sim-
Siam, have demonstrated significant effectiveness. However, their feature repre-
sentation is not robust to image rotations, as rotational augmentation may nega-
tively impact the framework. In this paper, we address this limitation by apply-
ing SSL to group-equivariant CNNs, specifically rotation-equivariant CNNs, to
develop robust features. To learn expressive, rotation-invariant features, we in-
troduce our training method, Guiding Invariance with Equivariance (GIE), which
simultaneously trains both invariant features and the equivariance score for im-
ages. The equivariance score guides the rotation-equivariant features through
an attention-weighted sum mechanism, enabling the development of rotation-
invariant features. Through experiments, we demonstrate that our GIE method
not only extracts high-performing features under four discrete rotations but also
achieves robustness to random-degree rotations through rotation augmentation
training. These results highlight the effectiveness of our method in achieving ro-
bust rotation-invariance.

1 INTRODUCTION

How do humans recognize rotated images? Although it may seem simple and straightforward for
humans to recognize rotated images, Figure [I] shows that this is not always the case. When at-
tempting to read rotated text, we don’t read it directly but rather follow a sequential process. In this
process, we first try to understand how the image is rotated, then mentally “rotate” it back to its
original position before reading. Similarly, when identifying objects in a rotated image, our brain
doesn’t immediately recognize the object. Instead, it analyzes the image, determining the angle at
which the recognizable “object” emerges, and then mentally rotates it back to its correct orientation
before accurately identifying the object. In some cases, such as with the number 9, it can be difficult
to determine how many degrees the image has been rotated, making it challenging to accurately rec-
ognize the number. The difficulty in analyzing such samples is a natural phenomenon and supports
the claim that humans perform a sequential process when analyzing rotated images.

However, in deep learning, analyzing and rotating an image to its original position before extracting
features requires using the model twice, which is resource-intensive. With this motivation, we pro-
pose the Guiding Invariance with Equivariance (GIE) method, which applies the sequential process
at the feature level rather than the image level (see Figure[I)). We used a rotation-equivariant model
as the feature extractor, ensuring that the output features behave equivariantly with respect to the
input image’s rotation. From these features, we obtained an equivariance score that indicates the
degree of image rotation, allowing us to apply the sequential process at the feature level, similar
to how humans analyze images. Through this process, we can naturally extract rotation-invariant
features guided by the equivariance scores.

We conducted experiments using a self-supervised learning (SSL) approach to train the rotation-
invariant features extracted by the GIE method and evaluated the model across various experimental
datasets. We tested two SSL methods, SImCLR (Chen et al., 2020) and SimSiam (Chen & He, 2021)),
using CIFAR10 (Krizhevsky et al.,[2009), STL10 (Coates et al.,|201 1)), and ImageNet100 (Tian et al.,
2020) as datasets. The experimental results with the two SSL methods and three datasets showed
that, in all cases, the rotation-invariant features extracted by the GIE method achieved higher linear
classification accuracy for 0, 90, 180, and 270-degree rotations compared to other baseline feature
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Figure 1: Human recognition of rotated images and the concept behind the GIE method. Humans
do not directly recognize a rotated image but instead process it sequentially. Motivated by this, we
propose the GIE method, which employs a sequential process at the feature level.

extractors, such as basic CNN and E(2)-CNN (Weiler & Cesal, [2019) models. Furthermore, we
added rotation augmentation to the input image transform to extract rotation-invariant features for
random angles between 0 and 360 degrees. Through these experiments, we were able to observe
that our GIE method achieved more stable and higher linear accuracy across all degrees compared
to other baselines.

Additionally, we analyzed the equivariance score across various datasets to understand its signifi-
cance. Through extensive experiments, we found that the equivariance score effectively guides the
features to a recognizable relative orientation, aligning with our intended concept. Furthermore, we
extended our experiments to include different rotation group orders and conducted experiments on
dense prediction tasks.

To summarize:

* We introduce the Guiding Invariance with Equivariance (GIE) method as a novel approach
for learning superior rotation-invariant representations using rotation-equivariant CNNs.

» Using the GIE method, we generated rotation-invariant features and demonstrated robust
performance against rotations by applying them to various self-supervised learning meth-
ods and image datasets.

* We analyzed the significance of the equivariance score through various experiments.

* We proposed several extensions, including different group orders and dense prediction.

2 RELATED WORK

SSL techniques leverage diverse augmentations and learn their underlying similarities to efficiently
extract representations from unlabeled data. Among SSL techniques, there are pretext-based mod-
els like RotNet (Gidaris et al.,[2018)), which predicts rotated images, and contrastive learning-based
models such as SIMCLR (Chen et al} 2020) and SimSiam (Chen & Hel 2021). Additionally, E-
SSL (Dangovski et al.|[2022) combines a separate module that predicts rotated images, like RotNet,
with contrastive learning-based models to extract equivariant features. Using these models as base-




Under review as a conference paper at ICLR 2025

Inv feature

Guiding MLP | N
invariance -H(Xl) projector B

Equivariance Predictor

Eqv feature
& R2Conv

X, F 5
) Eqv score H InnerBatchNorm
T, Equivariance I
! predictor 5(X1) [y : [ Reu |
) - : LOm’ i

R2Conv

X : : InnerBatchNorm

Inv feature

invariance projector

|
Eqv scoreg
Equivari : Equivariance Score
quivariance S(X,) |- g
predictor S(X) = [U'OyalvaZ)aS]

(@ (b)

Equ feature

Guiding H(X)) MLP |

Xy > F

Figure 2: (a) Architecture of the GIE method and (b) Architecture of the equivariance predictor. (a)
We utilized the rotation-invariant feature H(X), created through guiding invariance, as a feature
encoder for contrastive learning. (b) Specifically, 'R2Conv,” ’InnerBatchNorm,” and 'ReLU’ corre-
spond to the 1 x 1 group-equivariant convolution, batch normalization, and ReLLU layer, respectively,
from the e2cnn library (Cesa et al., 2021}, which preserves the equivariance of the input feature.

lines, we propose a rotation-invariant representation by integrating an equivariance predictor into
the contrastive learning-based models of SimCLR and SimSiam.

Group-equivariant convolutional neural network (GCNNs) first appeared in the work by |Cohen &
Welling| (2016) and demonstrated good performance on rotated MNIST (Ghifary et al., 2015) due
to their property of being equivariant to image transformation groups. Subsequent research (Weiler
& Cesa, [2019; |Cohen & Welling|, 2017; Hoogeboom et al.l 2018} (Cohen et al., 2019) has further
explored the properties of GCNNs. Studies using GCNNs to address problems related to rota-
tion transforms have been conducted in numerous paper (Worrall et al.l 2017} |Weiler et al., [2018b;
Bekkers et al., [2018; Marcos et al, [2017; Weiler et al., [2018a)), achieving effective performance
across various fields. We design a group convolutional neural network equivariant to the p4-group,
similar in structure to ResNet (He et al.,[2016)), using e2cnn library (Cesa et al., 2021).

In the field of representation learning, various techniques have been suggested for equivariant rep-
resentations. Many methods (Garrido et al.,|2023; |Dangovski et al.| [2022; |[Feng et al., 2019; Gidaris
et al.L[2018; [Lee et al.l [2021; Bai et al., 2023 | Xu & Triesch, 2023 Devillers & Lefort, [2022) incor-
porate a predictor that matches the encoded augmented data to extract equivariant properties with
respect to the given transform(e.g., determining the degree of rotation). Another approach (Lee
et al., 2023) involves using the ReResNet (Han et al., [2021]) encoder, which can extract equivariant
features without performing rotation transforms. In our work, similar to Han et al.| (2021), we used
an E(2)-CNN backbone network following the ResNet architecture.

3 LEARNING ROTATION-EQUIVARIANT CNNS

3.1 OVERVIEW

In Figure[2a] we have illustrated our GIE method. To obtain rotation-invariant features, we employed
a rotation-equivariant backbone network F to extract the rotation-equivariant feature F'(X). Unlike
previous SSL approaches, we designed an equivariance predictor module using a 1 x 1 group convo-
lution layer from the e2cnn library (Cesa et al., 2021) to maintain equivariance of the equivariance
score, where the score refers to the output of the equivariance predictor. We assigned an orientation
alignment loss to facilitate the learning of the equivariance score. Using the learned equivariance
score and the rotation-equivariant features extracted from the backbone, we conducted a guiding
invariance process to create rotation-invariant features. For the training loss functions, we combine
the conventional SSL loss with the orientation alignment loss. Also, the background information
related to group-equivariant CNNs mentioned here is presented in Appendix
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3.2 GROUP-EQUIVARIANT CNNSs

Group-equivariant CNNs (GCNNs) maintain equivariance with a predefined image transformation
group GG, making them effective for extracting equivariant features. We used a cyclic group of order
4 (i.e., p4-group), corresponding to 90-degree rotations, as our group G. Our backbone model F'
is based on the ResNet architecture, with the layers replaced by equivariant layers provided by the
e2cnn library.

The output feature vector exhibits equivariance, where the rotation of the input image corresponds
to a permutation in the group dimension of the feature vector. Formally, let X represent the input
image, and F'(X) € RIGI*K be the equivariant feature passed through the backbone F. We define
G is p4-group, hence |G| = 4. Then, F'(X) can be expressed as follows:

F(X) = [fo, f1, fa, fal, f; eRE (1)

Since F'(X) exhibits rotation-equivariance, for 7 X, 72X, r3 X, which represent the input X rotated
by 90°, 180°, 270°, respectively, we have the following relationships:

F(rX) = F(@r°X) = [f3, fo, 1, f2] )
F(r’X) = F(r*X) = [f2, f3, fo, f1] 3)
F(r’X) = F(r 'X) = [f1, f2, f3, fo] 4)

Due to the characteristics of the equivariant backbone model, we can replace image rotation with a
feature-level permutation.

Edixhoven et al.|(2023) analyze the exact equivariance of GCNNs. As mentioned, since typical GC-
NNs do not achieve exact equivariance, we adjusted the input image size following the mathematical
conditions from |[Edixhoven et al.|(2023)) to ensure exact equivariance in the final output feature vec-
tor. By setting this, we ensured that the final output feature vector maintained exact equivariance.
The details are as follows.

Exact equivariance in GCNN on p4-group (Edixhoven et al., 2023) A GCNN is exactly equiv-
ariant to rotations of multiples of 90-degree if the following equation holds for all layers in the
network:

(i—k) mods=0. )
where i is the rectangular image size, k is the kernel size and s is the stride. Based on the previous
equation, we reshaped the images in each dataset to fit the model architecture in the experiments.

3.3 EQUIVARIANCE PREDICTOR

After the feature vector is extracted, it is fed into an equivariance predictor (see Figure[2b). The pre-
dictor consists of a 1 X 1 group-equivariant convolution, batch normalization, and a ReLU layer, all
designed to preserve group-equivariance using the e2cnn library. This design enables the equiv-
ariance predictor to analyze the input feature vector effectively while maintaining the rotation-
equivariance of the output. We set the final output dimension to a 1-regular representation (4 di-
mensions), which enabled the generation of an equivariant 4-dimensional score, referred to as the
equivariance score.

The distinctive characteristic of the equivariance score is its rotation-equivariance; if the input im-
age is rotated by 90 degrees, the original equivariance score shifts laterally by one position. Conse-
quently, once the equivariance score S(X) for an input image X is determined, the scores for the
rotated images S(rX), S(r?X), and S(r3 X) are automatically defined due to their rotational equiv-
ariance. In other words, if we define S(X) := [ag, a1, az, as], where a; € R are scalar values, then
S(rX), S(r*X), and S(r®X) are determined as [as, ao, a1, a2}, [az, as, ag, a1], and [a1, az, as, agl,
respectively. Thus, a 4-dimensional vector effectively captures the properties of these four rotated
image states (see Figure[3).

3.4 GUIDING INVARIANCE

Using the equivariance score S(X), we create the rotation-invariant feature H (X ) by guiding the
original feature F'(X). We refer to this process as guiding invariance. For the guiding invariance
component, we selected group attentioning operation to conduct our experiments.
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Figure 3: An example of an equivariance score. If the input image is rotated, the equivariance score
cyclically shifts by one position.

Group attentioning Let X as the input image, F/(X) € RIGIXX ag the equivariant feature passed

through the backbone, and S(X) € RI! as the equivariance score. We set G as a p4-group, hence
|G| = 4. Then F'(X), S(X) can be expressed as follows:

F(X) = [anf17f27f3]7 S(X) = [0/0,0,1,0,2,0,3], fiERK)aiER (6)
We define our rotation invariant feature H (X)) as follows:

H(X):=8(X) - [F(X),F(r'X),F(r2X), F(r3X)]

7
=aoF(X) 4+ a1 F(r ' X) + ayF(r2X) + asF(r3X) @
Then, the feature H(X) is rotation-invariant, as demonstrated by:
H(rX)=5(rX)-[F(rX),F(X),F(r 'X),F(r>X)]
=a3F(rX) +aoF(X) + a1 F(r'X) 4 asF(r2X) ®

=a3F(r3X) 4 aoF(X) + a1 F(r 'X) + ax F(r2X)
= H(X)

From the definition of H(X), it is evident that S(X) acts like attention weights on the encoder
features of each rotated image. Consequently, we refer to this operation as group attentioning.
Consistent with the concept of attention as described in [Woo et al| (2018)), we applied a softmax
function across the group dimension to the output of the equivariance predictor. The related pseudo
code is provided in Algorithm [I)of Appendix [A.2]

3.5 LOSS FUNCTION

To simultaneously train the rotation-invariant feature and the equivariance score, we combined the
loss used in traditional self-supervised learning with another loss designed for equivariance score
training. We introduce the orientation alignment loss that we used for training.

Orientation alignment loss The orientation alignment loss, as used in Lee et al.|(2023)), ensures
that the equivariance scores of different image views match. We have simplified the orientation
alignment loss since we do not need to align the orientations of the images.

Let X be the input image, and define Xy, X5 as the outputs of different transformations 77, 15
applied to X (i.e., X; = T3(X), 7 = 1, 2. see Figure . We define our orientation alignment loss

as follows:
4

Lowi(X1, X2) = = 5(X1)i log(S(X2);) ©)
i=1
This is essentially the cross-entropy loss between S(X;) and S(X32). Unlike the method used in

the original |[Lee et al.|(2023), since the dominant orientation in our training dataset is aligned to 0
degrees, we used the cross-entropy loss without any additional shift operations.

Total loss We integrate the conventional self-supervised learning loss (SSL loss) with our equiv-
ariance loss to form the loss function. For SimCLR, the SSL loss is infoNCE (Oord et al., 2018)),
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and for SimSiam, it is negative cosine similarity loss. Let Lggy, be the SSL loss and Lo,; be the
orientation alignment loss, then the total loss L is defined as follows:

L:=Lssp+ B Lori (10)

Here, (3 is a scalar weight assigned to the Lo,-;. The details regarding the choice of 3 are covered in
Appendix [B.4]

4 EXPERIMENTS

4.1 SETUPS

We applied our GIE method to both SImCLR and SimSiam to demonstrate its robustness across
various SSL frameworks, without dependency on a specific method. To validate the effectiveness of
GIE, we compared the results to baseline SimCLR and SimSiam methods, where each SSL method
was trained with a ResNet backbone. Additionally, we compared our approach to SimCLR and
SimSiam experiments using an E(2)-CNN backbone, structured similarly to ResNet but without
the application of GIE. Since E(2)-CNN backbones generally consume more GPU memory during
training compared to conventional CNNs, we adjusted the model size of the E(2)-CNN backbone
(by modifying the number of channels, depth, etc.) to ensure comparable or reduced GPU memory
consumption relative to a standard ResNet backbone. Furthermore, we included RotNet and E-
SSL, which learn features by predicting image rotations, as additional baseline comparisons. These
methods were chosen due to their alignment with our approach, as both predict image rotations
similar to our goal of training the equivariance score, which effectively learns features from rotated
images.

Our experimental evaluation was conducted on datasets including CIFAR10, STL10, and Ima-
geNet100. For further details and training settings, please refer to Appendix

4.2 ROTATION INVARIANCE ACROSS FOUR DISCRETE 90-DEGREE ORIENTATIONS

For the CIFAR10 dataset, we conducted the following experiments. Contrastive learning methods
such as SimCLR and SimSiam, SSL methods trained with rotation prediction loss such as Rot-
Net (Gidaris et al 2018) and E-SSL (Dangovski et al.l [2022), contrastive learning methods with
the backbone replaced by the E(2)-CNN architecture, and our proposed GIE method. For SimCLR
and SimSiam, we used ResNet18 as the backbone. Unlike the standard augmentation transforms in
SimCLR and SimSiam, we added 90-degree four-direction rotation augmentation to create new ex-
periments (SimCLR(R) and SimSiam(R)). In the case of RotNet, we conducted experiments using
two backbones: Network in Network (NIN, [Lin/ (2013)) and ResNet18. For E-SSL, we experi-
mented with both SimCLR and SimSiam. For SimCLR and SimSiam with the E(2)-CNN backbone,
we experimented with two setups: one with group pooling from the e2cnn library added to the fi-
nal layer and one without group pooling. This was done to compare the traditional group pooling
method for extracting rotation-invariant features with our proposed GIE method. The E(2)-CNN
backbone followed the depth and layer structure of ResNet18, with the number of channels adjusted
to ensure no significant difference in training GPU memory consumption compared to ResNet18
(see Appendix [B.3)). As shown in Table[T] our E(2)-CNN based experiments consumed similar GPU
memory compared to other networks, while recording a lower number of encoder parameters. In
all experiments, the backbone architecture was adjusted to match the image size of CIFARI10 by
modifying the stride.

After pretraining, we froze the pretrained backbone and attached a linear classifier to measure linear
classification accuracy. Additionally, to assess rotation invariance across four directions, we eval-
uated the linear classification accuracy on both the Non-Rotated (NR) dataset and the Rotated (R)
dataset, which included images rotated in four directions. As shown in Table |1} our GIE method
achieved the highest linear evaluation performance on the R dataset for both SimCLR and SimSiam,
while also recording comparable performance on the NR dataset. Furthermore, even in the experi-
ments using the E(2)-CNN backbone, the GIE method outperformed the other two cases where GIE
was not applied. These results demonstrate the clear advantages of GIE as a training method.

For STL10 training, we used a setting similar to that of CIFAR10, with slight modifications to
accommodate the STL10 image size. For the baseline models SimCLR and SimSiam, we used two
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Table 1: Results on CIFAR10, STL10, and ImageNet100. We conducted training using various SSL
methods and different backbones. *EqvPred’ refers to our equivariance predictor. Since we use the
H (X) feature, the equivariance predictor is conceptually included in the backbone encoder.

Dataset SSL Method Backbone GPU Memory (GB) Encoder Params (M) NR R
RofNet RotNet NIN 6.1 1.41 89.69 86.70
RotNet ResNet18 4.7 11.17 87.75 86.86
SimCLR ResNet18 6.7 11.17 91.47 7220
SimCLR(R) ResNet18 6.7 11.17 86.52 86.43
SimCLR E-SSL ResNet18 8.8 11.17 93.57 81.58
SimCLR E(2)-CNN 8.8 2.93 91.63 87.89
CIFARI10 SimCLR E(2)-CNN + Group Pooling 8.8 2.93 90.25 90.27
SimCLR + GIE (ours)  E(2)-CNN + EqvPred 8.6 3.26 91.72  92.01
SimSiam ResNet18 6.7 11.17 91.14 71.80
SimSiam(R) ResNet18 6.7 11.17 86.14 86.29
SimSiam E-SSL ResNet18 8.8 11.17 93.76  83.29
SimSiam E(2)-CNN 8.8 2.93 90.82 86.75
SimSiam E(2)-CNN + Group Pooling 8.8 2.93 90.60  90.46
SimSiam + GIE (ours) E(2)-CNN + EqvPred 8.6 3.26 91.05 91.08
RotNet RotNet ResNet18 45 11.18 76.57 76.39
SimCLR ResNet18 55 11.18 83.34  69.90
SimCLR(R) ResNet18 55 11.18 7748 7547
SimCLR ResNet50 12.6 23.51 87.56 75.84
SimCLR SimCLR(R) ResNet50 12.6 23.51 83.13  82.90
E-SSL ResNet50 19.0 23.51 87.68 7743
STL10 SimCLR E(2)-CNN 9.6 11.14 86.50 82.11
SimCLR E(2)-CNN + Group Pooling 9.6 11.14 85.05 84.08
SimCLR + GIE (ours)  E(2)-CNN + EqvPred 9.1 12.83 86.48 86.44
SimSiam ResNet18 55 11.18 8446 71.52
SimSiam(R) ResNet18 55 11.18 73.05 7277
SimSiam SimS?am ResNet50 12.6 23.51 8491 72.18
SimSiam(R) ResNet50 12.6 23.51 74.56 7430
E-SSL ResNet50 17.9 23.51 85.99 75.85
SimSiam E(2)-CNN 9.6 11.14 86.01 84.15
SimSiam E(2)-CNN + Group Pooling 9.6 11.14 82.68 84.19
SimSiam + GIE (ours) E(2)-CNN + EqvPred 9.1 12.83 8741 88.31
SimCLR ResNet50 28.20 23.51 76.06 66.37
SimCLR(R) ResNet50 28.20 23.51 7224 71.84
SimCLR  SimCLR E(2)-CNN 20.05 11.14 7242 6843
SimCLR E(2)-CNN + Group Pooling 20.05 11.14 70.60  70.20
I SimCLR + GIE (ours)  E(2)-CNN + EqvPred 20.24 12.83 7334 7275
mageNet100
SimSiam ResNet50 28.43 23.51 7342 61.85
SimSiam(R) ResNet50 28.43 23.51 68.30  71.19
SimSiam  SimSiam E(2)-CNN 20.56 11.14 75.10  73.09
SimSiam E(2)-CNN + Group Pooling 19.65 11.14 71.82 73.26
SimSiam + GIE (ours) E(2)-CNN + EqvPred 18.80 12.83 75.62 76.54

backbone models: ResNetl18 and ResNet50. In the case of the E(2)-CNN backbone, we followed
the ResNet18 structure but increased the number of channels, making the model larger than the one
used for CIFAR10 while keeping the GPU memory cost below that of the ResNet50 model. Similar
to the CIFARI10 results, as shown in Table[I} our GIE method achieved the highest performance on
the R dataset, while also showing comparable results on the NR dataset.

Based on the results from CIFAR10 and STL10, we extended our experiments to the large-scale
image dataset, ImageNet100. Since the performance of RotNet and E-SSL on CIFAR10 and STL10
was lower than that of the baseline experiments SImCLR(R) and SimSiam(R), we excluded them
from the baseline comparisons. The experimental results showed that our GIE method achieved
the highest performance on the 4-direction rotated dataset and recorded comparable results on the
non-rotated dataset, as shown in Table/[I]

4.3 ROTATION INVARIANCE UNDER ARBITRARY-DEGREE ROTATIONS

We conducted experiments to evaluate rotation-invariance for random degrees. One issue that arises
with square images is the distortion of edges when rotated at non-90-degree intervals. To address
this, we applied a circular crop to the images during transformation, ensuring uniform information
across all rotations. Additionally, during pretraining, we incorporated random rotation augmentation
to allow the model to learn features across all angles. For methods using the E(2)-CNN backbone,
we applied rotation augmentation within the range of -45 to 45 degrees, as these methods exhibit
periodicity at 90-degree intervals. Similarly, for RotNet and E-SSL, we applied rotation augmenta-
tion within the -45 to 45 degree range, aligning with their concept of rotation prediction. In contrast,
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Table 2: Arbitrary-degree rotations results on CIFAR10, STL10, and ImageNet100. We trained
using circular crop transformations across various experimental settings, then measured the linear
classification accuracy on datasets rotated in 5-degree increments. The reported values represent the
mean and standard deviation of the linear classification accuracy across different angles.

Dataset SSL Method Backbone Rotation Augmentation Degree (0,5,10,...,355) R
RotNet RotNet NIN [—45°,45°] 81.609 + 0.344
RotNet ResNet18 [—45°,45°] 82.812 +0.516
SimCLR(R) ResNet18 [0°,360°] 82.498 + 0.245
E-SSL ResNet18 —45°,45° 79.974 £ 4.972
SimCLR  SimCLR E(2)-CNN —45°,45° 85.503 + 0.270
CIFAR10 SimCLR E(2)-CNN + Group Pooling —45°,45° 86.088 + 0.255
SimCLR + GIE (ours)  E(2)-CNN + EqvPred —45°,45° 86.750 + 0.177
SimSiam(R) ResNet18 [0°,360°] 82.181 +0.234
E-SSL ResNet18 —45°,45° 78.007 £ 5.194
SimSiam  SimSiam E(2)-CNN —45°,45° 83.843 +0.244
SimSiam E(2)-CNN + Group Pooling —45°,45° 86.309 + 0.162
SimSiam + GIE (ours) E(2)-CNN + EqvPred —45°,45° 88.917 £ 0.300
RotNet  RotNet ResNet18 [—45°,45°] 68.114 £ 0.685
SimCLR(R) ResNet18 [0°,360°] 74.171 £ 0.232
SimCLR(R) ResNet50 [0°,360°] 80.492 + 0.202
SimCLR E‘—SSL ResNet50 —45°,45° 76.705 £ 3.355
SimCLR E(2)-CNN —45°,45° 80.863 + 0.189
STL10 SimCLR E(2)-CNN + Group Pooling —45°,45° 81.379 + 0.168
SimCLR + GIE (ours)  E(2)-CNN + EqvPred —45°,45° 83.548 £+ 0.319
SimSiam(R) ResNet18 [0°,360°] 69.658 £ 0.134
SimSiam(R) ResNet50 [0°,360°] 73.217 £ 0.158
SimSiam E‘—SSL ResNet50 —45°,45° 67.397 £ 3.768
SimSiam E(2)-CNN —45°,45° 78.774 £+ 0.190
SimSiam E(2)-CNN + Group Pooling —45°,45° 79.834 £ 0.127
SimSiam + GIE (ours) E(2)-CNN + EqvPred —45°,45° $2.160 + 0.254
SimCLR(R) ResNet50 [0°,360°] 70.60 £ 0.27
SimCLR SimCLR E(2)-CNN —45°,45° 70.18 £ 0.32
SimCLR E(2)-CNN + Group Pooling —45°,45° 71.10 £ 0.28
ImageNet100 SimCLR + GIE (ours)  E(2)-CNN + EqvPred —45°,45° 73.15 + 0.66
SimSiam(R) ResNet50 [0°,360°] 63.33 +£0.20
SimSiam SimSiam E(2)-CNN —45°,45° 69.16 + 0.27
SimSiam E(2)-CNN + Group Pooling —45°,45° 70.08 £ 0.26
SimSiam + GIE (ours) E(2)-CNN + EqvPred —45°,45° 72.89 + 0.33
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(b) RotNet/SimSiam results for STL10 dataset

Figure 4: SimSiam CIFAR10/STL10 results for arbitrary-degree rotations. For additional settings,
please refer to Figure @ for the corresponding graphs.

for the baseline SimCLR and SimSiam methods, we used random rotation augmentation from O to
360 degrees to ensure uniform learning across all angles. After pretraining, we attached a linear
classifier and trained it on images rotated across all angles from O to 360 degrees.

To evaluate performance on fine-grained rotations, we rotated the images in 5-degree increments
and measured the linear classification accuracy. The results in Table|Z| indicate that, in both SimCLR
and SimSiam settings, as well as across the CIFAR10, STL10, and ImageNet100 datasets, our GIE
method achieved the highest mean accuracy with a low standard deviation, demonstrating its stability
across all angles. As shown in Table[2]and Figure[d] the GIE method consistently outperformed other

approaches across all rotation degrees.
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Table 3: Dominance ratios across different datasets. We examined the distribution of equivariance
scores for various datasets using the GIE model trained on ImageNet100. A value exceeding 0.97 in
any dimension was designated as ’"dominant.” The highest proportion for each dataset is highlighted
in bold.

Ratio ImageNet100 STL10 Caltech256 Stanford cars FGVC-Aircraft CUB-200-2011 Oxford 102 Flowers MTARSI
Dimension 1 Dominant (> 0.97) 0.83% 0.18% 0.99% 0.00% 0.00% 0.72% 1.08% 9.28%
Dimension 2 Dominant (> 0.97) 1.49% 0.14% 1.55% 0.00% 0.01% 0.20% 0.72% 5.68%
Dimension 3 Dominant (> 0.97) 0.17% 0.32% 0.90% 0.01% 0.01% 0.77% 0.89% 6.97%
Dimension 4 Dominant (> 0.97) 89.01% 91.34% 62.65% 99.51% 98.92% 81.36% 28.40% 8.11%
Non-dominant (all dimensions < 0.97) 8.49% 8.02% 33.92% 0.48% 1.05% 16.95% 68.91% 69.95%

Dimension 1 Distribution Dimension 2 Distribution Dimension 3 Distribution Dimension 4 Distribution
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Figure 5: Equivariance score distribution histogram. For STL10, the majority of samples are con-
centrated in the 0.97-1.0 bin of dimension 4. In contrast, the Oxford 102 Flowers dataset shows a
relatively uniform distribution. Histograms for other datasets can be found in Figure @

4.4 FURTHER STUDY

Analysis of equivariance score We examined the distribution of the equivariance score for the
pretrained model using the GIE method on the ImageNet100 dataset (see Table 3] and Figure [3).
Although we did not use any loss function that amplifies a particular dimension (e.g., rotation pre-
diction loss), the equivariance score was dominated by specific dimensions, with a majority of the
samples showing dominant values in these dimensions. We refer to these scores as dominant scores.
This phenomenon aligns well with our motivation and intent for the equivariance score to reflect the
relative orientation in which an image is most easily recognized.

Additionally, by analyzing the equivariance score, we gained insights into the overall characteris-
tics of different datasets. As shown in Table[3] the STL10 and the ImageNet100 exhibited dominant
score proportions of 91.34% and 89.01%, respectively, indicating a strong bias toward specific orien-
tations. In contrast, the Oxford 102 Flowers (Nilsback & Zisserman), [2008) dataset, which contains
more rotation-invariant images, showed a dominant score proportion of only 28.40%. These re-
sults demonstrate that the equivariance score effectively captures both the rotation-invariance and
rotation-equivariance of images.

In Figure [6] we analyzed several image samples by rotating them and examining the patterns of
their equivariance scores. For objects that are equivariant to rotation, such as cars and birds, the
equivariance scores exhibited periodic and regular patterns in response to rotation. In contrast,
images that are rotation-invariant, like flowers, generated noisy equivariance scores, highlighting
the distinction between the two types.

To verify whether performance drops on rotation-invariant datasets, we measured the linear classifi-
cation accuracy of the pretrained backbone on other datasets across four discrete 90-degree orienta-
tions. As shown in Tabled]in Appendix [B.2] the GIE model outperformed the baseline backbones,
such as the E(2)-CNN and the E(2)-CNN with group pooling, even on rotation-invariant datasets
like Oxford 102 Flowers and MTARSI 2020). This result indicates that the equivariance
score not only represents recognizable orientations but also functions as a complex attention weight,
supporting the robustness of GIE.
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Figure 6: Image samples and corresponding equivariance score graphs across rotated degrees. Ad-
ditional equivariance score results are illustrated in Figure @

Semantic segmentation using Pascal VOC datasets To verify whether the GIE model could also
produce strong rotation-invariant features for dense prediction tasks, we applied it to the semantic
segmentation task using the Pascal VOC (Everingham et al.| 2010) dataset. The results showed that
the GIE model backbone outperformed other baseline models in terms of mIOU and Pixel Accuracy
at all angles (0, 90, 180, 270 degrees). Details of the experimental setup and results can be found in

Appendix [B.7]

Extension on p8-group Extending the GIE concept to a group of order N is a natural progression.
We conducted experiments on CIFAR10 to apply the GIE method to the p8-group. Since mathemat-
ical exact equivariance is not feasible due to bilinear interpolation occurring at the pixel level when
the image is rotated by 45 degrees, we employed a specialized augmentation method to address this
issue. The details of the procedure and results can be found in Appendix B8]

S5 LIMITATIONS AND FUTURE WORK

The GIE model relies on the rotation-equivariant properties of the features. Therefore, a GCNN
backbone must be used, and detailed input image size settings are required to ensure exact equiv-
ariance. Additionally, a loss function is required to learn the equivariance score. Currently, the
orientation loss is only used within the contrastive learning framework, but we plan to extend its ap-
plicability to supervised learning in future work. Furthermore, we will also more explore extending
the method to a rotation group of order N and applying it to tasks such as image segmentation.

ETHICS STATEMENT

This research adheres to ethical standards in Al, including considerations for data use, fairness, and
privacy. We utilized publicly available datasets (CIFAR10, STL10, ImageNet100, Pascal VOC, etc.)
that do not contain personally identifiable information. While our models may inherit biases present
in these datasets, we did not intentionally introduce or analyze biases, and we advocate responsible
use of our methods to minimize potential misuse. Our research does not involve human subjects or
require Institutional Review Board (IRB) approval, and all methodologies, results, and models have
been transparently documented to maintain integrity.

REPRODUCIBILITY STATEMENT

All experiments in this study have been thoroughly documented to ensure reproducibility. The
datasets used (CIFAR10, STL10, ImageNet100, Pascal VOC, etc.) are publicly available, and the
code and model configurations have been clearly specified. All algorithms and hyperparameter
settings described in this paper are detailed explicitly, and the code will be made publicly available.
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A SUPPLEMENTARY INFORMATION REGARDING GIE

A.1 PRELIMINARIES ON GCNN

Group convolution Group convolution is a generalization of traditional convolution in neural
networks, where the transformation group (such as rotations, reflections, or translations) is applied to
the feature maps. Instead of performing convolution only over spatial translations, group convolution
processes data using symmetries from a specific group. This allows the model to capture patterns
and symmetries beyond simple shifts, making it more robust to transformations like rotations.

Equivariance and invariance Equivariance and invariance are two important concepts in repre-
sentation learning. Equivariance refers to a property where a transformation applied to the input
results in a corresponding transformation in the output. For example, a neural network is equivariant
if rotating an image leads to a rotated feature map in the output. Formally, for a function f and a
transformation 7', the function is equivariant if f(7'(x)) = T'(f(z)). On the other hand, invariance
means that the output remains unchanged when a transformation is applied to the input. A function
is invariant to a transformation T if f(7'(z)) = f(«). Invariance is useful for tasks where the output
should be insensitive to specific transformations, like object recognition regardless of orientation,
while equivariance is crucial for capturing structured changes in the input data.

Exact equivariance Exact equivariance refers to a strict form of equivariance, where the model’s
output perfectly follows the transformation applied to the input. In an exactly equivariant system, the
transformation of the input always leads to a predictable and mathematically precise transformation
of the output, without any loss of information. This differs from approximate equivariance, where
the correspondence between transformed inputs and outputs may not be perfect but is close enough
for practical purposes.

A.2 PYTORCH-STYLE PSEUDOCODE FOR GUIDING INVARIANCE

The pseudocode for guiding invariance discussed in Section [3.4]is presented in Algorithm [T}

13
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Algorithm 1 Pytorch-style pseudocode for guiding invariance process under the rotation group of
order V.

# Input: F(X), S(X), N # Feature representation, equivariant score, and
order N
# Output: H(X) # Output tensor

def H(F_X, S_X, N):
# Step 1: Assign equivariant score

eqv_score = S_X

# Step 2: Assign feature representation
feature_repr = F_X

# Step 3: Generate permuted representations (order N case)

permuted_reprs = [torch.roll (feature_repr, shifts=i, dims=-1) for i
in range (N) ]
permuted_reprs = torch.stack (permuted_reprs, dim=-1)

# Step 4: Perform weighted sum of permuted representations
H_X = torch.matmul (permuted_reprs, eqv_score.unsqueeze (dim=-1)).
squeeze (dim=-1)

# Output result H(X)
return H_X

B DETAILED INFORMATION AND ADDITIONAL INSIGHTS REGARDING THE
EXPERIMENTS

B.1 DETAILS OF EXPERIMENTS

CIFAR10 CIFARIO is an image recognition dataset consisting of 60,000 32x32 color images
across 10 object classes. Each class contains 6,000 images, with 5,000 designated for training
and 1,000 for testing. We utilized all 50,000 training images for self-supervised pretraining and
subsequently evaluated linear classification accuracy by attaching a linear classifier to the pretrained
backbone. The evaluation was performed using the full set of 50,000 training images and 10,000
test images. For the exact equivariance of feature, we set the training image size 33x33 in the
experiments.

We used an E(2)-CNN backbone following the ResNet18 architecture. The initial number of chan-
nels consisted of 20 regular representation units (80 dimensions), and the final output feature in-
creased by a factor of 8 to become 160-regular representation units (640 dimensions). The equiv-
ariance predictor uses two 1 x 1 group-equivariant convolution layers, employs 512-regular rep-
resentation units (2048 dimensions) for the intermediate node type, and, as previously mentioned,
uses 1-regular representation unit (4 dimensions) for the output type. Both SimCLR and SimSiam
utilized the SGD (Ruder, 2016) optimizer, with a learning rate of 0.06 and a batch size of 512.
We conducted SSL training for 800 epochs, after which the trained backbone was frozen, and a
linear classifier was attached for 100 epochs to measure linear classification accuracy. To prevent
overfitting, the base learning rate was set to 30 and decreased using a cosine learning rate scheduler.

STL10 STL10 is an image recognition dataset specifically designed for unsupervised and semi-
supervised learning. It includes 10 classes and features 100,000 unlabeled images, 5,000 training
images, and 8,000 validation images. We conducted pretraining on a combined set of 105,000
images, incorporating both the unlabeled and training subsets, and then performed linear evaluation
using 5,000 training images and 8,000 validation images. For the exact equivariance of feature, we
set the training image size 97x97 in the experiments.

We used an E(2)-CNN backbone following the ResNet18 architecture. The initial number of chan-
nels consisted of 39-regular representation units (156 dimensions), and the final output feature in-
creased by a factor of 8 to become 312-regular representation units (1248 dimensions). The equiv-
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ariance predictor uses three 1 x 1 group-equivariant convolution layers, employs 512-regular rep-
resentation units (2048 dimensions) for the intermediate node type, and, as previously mentioned,
uses 1-regular representation unit (4 dimensions) for the output type. For SimCLR training, we used
a learning rate of 0.6, a batch size of 512, 400 epochs, and the LARS (You et al., |2017) optimizer.
For SimSiam training, we used a learning rate of 0.1, a batch size of 512, 400 epochs, and the SGD
optimizer. To measure linear classification accuracy, we froze the trained backbone and attached a
linear classifier, which was trained for 100 epochs with a learning rate of 1.0.

ImageNet100 ImageNet (Russakovsky et al., [2015) is a large-scale image recognition dataset
comprising approximately 1,280,000 images. For our experiments, we used a subset, ImageNet100,
which includes 100 selected classes as described in (Tian et al.| (2020). We performed pretraining
using the training data, followed by linear evaluation on both the training and validation datasets.
For the exact equivariance of feature, we set the image size 225x225 in the experiments.

We used an E(2)-CNN backbone following the ResNet18 architecture. The initial number of chan-
nels consisted of 39-regular representation units (156 dimensions), and the final output feature in-
creased by a factor of 8 to become 312-regular representation units (1248 dimensions). The equiv-
ariance predictor uses three 1 x 1 group-equivariant convolution layers, employs 512-regular repre-
sentation units (2048 dimensions) for the intermediate node type, and, as previously mentioned, uses
1-regular representation unit (4 dimensions) for the output type. For SimCLR training, we used a
learning rate of 0.3, a batch size of 256, 400 epochs, and the LARS optimizer. For SimSiam training,
we used a learning rate of 0.05, a batch size of 256, 400 epochs, and the SGD optimizer. To measure
linear classification accuracy, we froze the trained backbone and attached a linear classifier, which
was trained for 100 epochs with a learning rate of 1.0.

B.2 LINEAR CLASSIFICATION ACCURACY FOR OTHER DATASETS

To verify the transferability performance of the model, we conducted evaluation experiments mea-
suring linear classification accuracy on various natural image datasets, including STL10, Stanford
Cars (Krause et al. [2013), Caltech256 (Griffin et al.l 2007), FGVC-Aircraft (Maji et al., |2013)),
CUB-200-2011 (Wah et al.|l 2011}, as well as rotation-invariant datasets like Oxford 102 Flowers
and MTARSI, using an 18-depth E(2)-CNN model trained on the ImageNet100 dataset. As shown
in Table 4] our E(2)-CNN GIE model exhibited the highest performance across all categories of the
datasets.

Table 4: Linear classification accuracy for other datasets. We measured the linear classification ac-
curacy of the E(2)-CNN backbones with 18-depth, pretrained on ImageNet100, across four discrete
90-degree rotations for other datasets.

Dataset E(2)-CNN E(2)-CNN Gpool E(2)-CNN GIE(ours)
STL10 83.11 84.48 87.89
Stanford Cars 22.80 20.82 32.39
Caltech256 57.25 59.16 64.11
FGVC-Aircraft 29.04 26.37 38.94
CUB-200-2011 22.04 20.98 25.45
Oxford 102 Flowers 85.33 83.22 86.06
MTARSI 85.92 82.44 87.46

B.3 COMPARISON OF GROUP ALIGNING(SHIFT) AND GROUP ATTENTIONING(SOFTMAX)

As another guiding invariance method, we employed group aligning operations. Group aligning
was introduced in |Lee et al.|(2023) to learn rotation-invariant descriptors for visual correspondence
tasks. In that paper, an orientation map is extracted and a cyclic shift is performed to the dominant
orientation dimension to ensure the rotation invariance of the descriptors. Similarly, we extracted
the dominant dimension, which has the maximum value, from our learned equivariance score S(X)
and performed group aligning on the rotation equivariant feature F'(X) by cyclically shifting it to
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this dimension. Formally, we can define H (X') with the following expression:
H(X):=F(r *X), where k= argmaz(S(X)) (11)

We additionally experimented with group aligning as a guiding invariance process to assess any
performance differences compared to group attentioning. Table [5 organizes the SimCLR and Sim-
Siam performance for STL10 and ImageNet100 according to the guiding invariance process (GIP).
’None’ represents the performance without using GIE, ’Align’ represents the use of group align-
ing, and ’Attention’ represents the use of group attentioning as the GIP. STL10 used the E(2)-CNN
model with 18-depth, while ImageNet100 used the E(2)-CNN with 50-depth. For the non-rotated
dataset, the performance of F'(X) is reported, and for the rotated dataset, the performance of H(X)
is reported.

Table 5: Ablation on guiding invariance process. For each SSL method, boldface highlights the best
performance among the experiments in each GIP.

SSL method GIP STL10 STL10-R ImageNet100 ImageNet100-R

SimCLR None 85.50 80.95 80.58 76.82
Align 86.33 86.16 81.48 81.37
Attention  86.45 86.19 81.34 81.05

SimSiam None 86.01 84.15 73.12 71.96
Align 87.13 88.10 75.32 76.41
Attention  87.48 88.31 75.66 76.46

In the experiments, while group attentioning generally outperformed group aligning, exceptions oc-
curred in the SimCLR ImageNet100 experiment. Also, the performance difference between group
aligning and group attentioning was not significant, even when group attentioning was higher. Ad-
ditionally, regardless of whether aligning or attentioning was used, performance was higher in both
non-rotated and rotated cases compared to when the GIE methodology was not used at all. There-
fore, the results show that either group aligning or group attentioning can yield good performance
in our GIE method.

a5 Comparison of Attentioning and Aligning
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Figure 7: Results of STL10 SimCLR pretrained models for 10° rotated inference.

However, the group attention method has an advantage in smoothness over the align method. Fig-
ure [/| presents the results of a graph drawn after training a linear classifier with random rotation
augmentation on the STL10 dataset and conducting inference on a dataset rotated in 10-degree in-
crements. Measuring performance in 10-degree increments reveals that while the performance of
group attentioning and group aligning methods is similar around 90 degrees, group attentioning out-
performs group aligning around 45 degrees. This difference can be attributed to the fact that the
features created by group attentioning are continuous with respect to rotation, whereas those from
group aligning are discrete.
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B.4 ABLATION STUDY OF 3 (ON STL10)

Table 6: Ablation study of 5 on STL10 dataset.

Model B=0.1 B =0.2 B=0.3 B=0.4
NR R NR R NR R NR R

SimCLR E(2)-CNN GIE F(X) 86.45 8243 86.75 8430 86.50 82.61 86.04 82.58
SimCLR E(2)-CNNGIE H(X) 8630 86.19 87.11 86.71 86.29 86.07 85.75 85.70

As shown in Table[6] we generally select 3 between 0.1 and 0.4, as this range tends to yield good per-
formance. Therefore, we did not engage in overly sensitive tuning for specific datasets. Additional
experiments on SimCLR with the STL10 dataset show that beta achieves the highest performance
at 0.2. However, since this value can depend on the type of data and experimental settings, we con-
sistently set the beta value to 0.1 for all our experiments to maintain uniformity, as there was no
significant performance difference with varying beta values.

B.5 ABLATION STUDY OF INITIAL CHANNELS (ON CIFAR10)

Table 7: Comparison of GIE models with different base widths.

GIE-16 GIE-20 GIE-24

Initial Channels 16 20 24

GPU Memory (GB) 7.6 8.6 10.5
Encoder Params (M) 2.14 3.26 4.62
NR 91.34 91.72 92.52
R 91.27 92.01 92.55

We examined how the performance of the GIE model changes as the initial channels of the E(2)-
CNN vary. As shown in Table [/| we reported GPU memory usage, encoder parameters, and per-
formance on both the NR and R datasets from CIFAR10 when the initial number of channels was
set to 16, 20, and 24. As observed, increasing the initial number of channels results in higher GPU
memory consumption and more encoder parameters, which in turn improves the performance on
both the NR and R datasets. In the default GIE setting for CIFAR10, the initial number of channels
was set to 20 to strike an appropriate trade-off between GPU memory usage and performance.

B.6 ABLATION STUDY OF 15, 30, 45 AUGMENTATION DEGREE (ON STL10)

We conducted additional experiments using random rotation augmentation with smaller ranges of -
15 to 15 degrees and -30 to 30 degrees. These comparisons aim to illustrate why the -45 to 45 degree
range is more suitable for evaluating rotation invariance when utilizing the E(2)-CNN backbone. As
shown in Figure [8a] while methods with less random rotation may perform better at the 0-degree
point, the approach using a range of -45 to 45 degrees demonstrates greater stability across all angles,
thereby confirming its suitability for evaluating rotation invariance in the E(2)-CNN backbone.

Furthermore, we performed additional experiments comparing the results of transformations with
and without circular cropping. As illustrated in Figures and the application of circu-
lar cropping across all random rotation augmentations results in significantly greater stability and
superior performance at all angles. Therefore, we can conclude that the use of circular cropping
improves overall performance for evaluating rotation invariance.

B.7 EXPERIMENTAL DETAILS AND RESULTS FOR PASCAL VOC SEGMENTATION

We used an image encoder pretrained on ImageNet100 as the backbone, removing the global aver-
age pooling layer to preserve the final feature size. A simple segmentation head consisting of two
1x1 convolution layers was attached to the image encoder, followed by bilinear upsampling to re-
store the original image size. With the backbone frozen, we trained the model for 20 epochs using
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Ablation Study of 15, 30, 45 Degree with Circle Crop (ON STL10) Ablation Study of 45 Degree (ON STL10)
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Figure 8: Ablation study of 15, 30, 45 augmentation degree (on STL10). “GIE” denotes our model
that does not employ circle crop, whereas “GIE(C)” signifies our model that incorporates circle crop.

Table 8: Evaluation results for Pascal VOC segmentation. We performed Pascal VOC segmentation
using models pretrained on ImageNet100. The experiments were divided into two settings: training
with only O-degree images and training with images rotated by 0, 90, 180, and 270 degrees. The
results highlight the best mIOU and Pixel Accuracy values for each angle in bold.

Trained Degree  Model Mean IOU Pixel Accuracy
0 degree 90 degree 180 degree 270 degree 0 degree 90 degree 180 degree 270 degree

ResNet50 0.1672 £ 0.0014  0.0754 £0.0013  0.0847 £ 0.0013  0.0752 £ 0.0010  0.8240 +0.0008  0.7653 £ 0.0020  0.7714 = 0.0015  0.7654 £ 0.0019
ResNet50(R) 0.1416 £ 0.0017  0.1428 £ 0.0012  0.1423 £ 0.0022  0.1433 4+ 0.0022  0.8097 & 0.0007  0.8115 £ 0.0003  0.8107 £ 0.0008 0.8117 £ 0.0007

0 E(2)-CNN 0.1840 £ 0.0011  0.0799 £ 0.0016  0.1052 £ 0.0036  0.0797 £ 0.0016  0.8236 & 0.0019  0.7682 £ 0.0021  0.7838 £ 0.0011  0.7670 £ 0.0019
E(2)-CNN Gpool 0.1831 £ 0.0034  0.1831 £ 0.0035 0.1831 £ 0.0034  0.1831 £ 0.0034 0.8173 +0.0014 0.8173 £0.0014 0.8173 +0.0014  0.8173 £ 0.0014
E(2)-CNN GIE(ours)  0.1884 = 0.0031  0.1884 £ 0.0031  0.1884 + 0.0032  0.1884 & 0.0031  0.8281 = 0.0010  0.8281 £ 0.0010  0.8281 £ 0.0010  0.8281 £ 0.0010
ResNet50 0.1491 £ 0.0030  0.1095 £ 0.0027  0.1106 £ 0.0022  0.1064 £ 0.0021  0.8135 £ 0.0013  0.7927 £ 0.0011  0.7920 £ 0.0010  0.7907 £ 0.0011
ResNet50(R) 0.1429 £ 0.0012  0.1428 +0.0019  0.1436 = 0.0017  0.1434 £ 0.0025  0.8102 +0.0009 0.8116 £ 0.0005  0.8113 = 0.0010  0.8118 = 0.0008

0,90, 180, 270 E(2)-CNN 0.1687 £ 0.0021  0.1693 £ 0.0031  0.1687 £ 0.0031  0.1688 & 0.0021  0.8142 4 0.0018  0.8143 £ 0.0019  0.8141 £ 0.0019  0.8145 £ 0.0016
E(2)-CNN Gpool 0.1825 4+ 0.0035  0.1825 £ 0.0035 0.1825 £ 0.0035 0.1825 4 0.0035 0.8174 +0.0013 0.8174 £0.0013  0.8174 £ 0.0013  0.8174 & 0.0013

E(2)-CNN GIE(ours)  0.1884 4 0.0031  0.1884 + 0.0031  0.1884 = 0.0031  0.1884 + 0.0031  0.8281 + 0.0008 0.8281 + 0.0008  0.8281 + 0.0008  0.8281 = 0.0008

cross-entropy loss and reported the mean Intersection over Union (mIOU) and Pixel Accuracy. We
repeated the same experiment five times and calculated the mean and standard deviation.

As shown in Table [§] the results indicate that the GIE model achieved the same mIOU and Pixel Ac-
curacy on images rotated by 90, 180, and 270 degrees as it did on the original images, outperforming
other baseline models. Furthermore, when trained on data rotated by 90, 180, and 270 degrees, other
models exhibited a performance drop on the original images, whereas the GIE model maintained its
performance, demonstrating that the performance gap could not be closed.

B.8 EXTENSION ON p8-GROUP

We conducted experiments on CIFAR10 to apply the GIE method to the p8-group. When an image
is rotated by 45 degrees, bilinear interpolation occurs at the pixel level, making exact mathematical
equivariance impossible. Therefore, we doubled the dataset size by adding 45-degree rotated images
to the original dataset and used a rotation augmentation transform in the range of [-22.5, 22.5]
degrees for random rotation during training. An important point here is that, during contrastive
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Label Pred O Pred 90 Pred 180 Pred 270

(a) ResNet50

Label Pred 0 Pred 90 Pred 180 Pred 270

(b) E(2)-CNN GIE (ours)

Figure 9: Semantic segmentation sample results of (a) baseline SimCLR-trained ResNet50 backbone
and (b) our E(2)-CNN GIE-trained backbone

Table 9: Comparison of CIFAR10 experiments using p4-group and p8-group GIE.

pd-group GIE  p8-group GIE

GPU Memory (GB) 8.5 8.5
Initial Channels 20 10
Encoder Params (M) 3.26 1.8
0,5,10,...,355) R 86.750 + 0.177 87.087 + 0.530

p8 vs pd

—&— GIE Order8
—8— GIE Order4

Accuracy (%)

0 30 60 %0 120 150 180 210 240 270 300 330 360
Degree

Figure 10: Comparison of p4-group GIE and p8-group GIE.

learning, images from the original dataset form positive pairs only with each other, while 45-degree
rotated images form positive pairs only with each other. In other words, images from the 0-degree
and 45-degree datasets are not mixed for positive pair sampling. This setup encourages the 8-
dimensional equivariance score to represent distinct values for images at 0 degrees and those rotated
by 45 degrees.

We conducted the same evaluation for random rotation degrees as was done for the p4-group. Ad-
ditionally, to facilitate a fair comparison with the p4-group GIE, we reduced the initial number of
channels to 10 during training to ensure similar GPU memory consumption. As shown in Table
and Figure[I0] the p8-group GIE achieved a higher mean accuracy with fewer encoder parameters.
However, it exhibited a higher standard deviation, indicating unstable performance. This instability
may be attributed to the suboptimal augmentation method used to address the lack of exact equivari-
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ance at 0 and 45 degrees. Nevertheless, the p8-group GIE demonstrated better efficiency compared
to the p4-group GIE, indicating potential for further improvement in future research.

C ADDITIONAL VISUALIZATIONS

CIFAR10 RotNet / SimCLR Arbitrary-Degree Rotation Results

—— ResNet18
- RotNet-NIN
—— RotNet-ResNet18
—— ESSL

—— E2CNN

—— E2CNN-Gpool
—— GIE

0 % 180 270 360
Degrees

(a) RotNet/SimCLR results for CIFAR10 dataset

Values

STL10 RotNet / SImCLR Arbitrary-Degree Rotation Results

—— ResNet18

—— ResNet50
—— RotNet-ResNet18
—— ESSL

—— E2CNN
—— E2CNN-Gpool
—— GIE

o %0 180 270 360

Degrees

(c) RotNet/SimCLR results for STL10 dataset

ImageNet100 SImCLR Arbitrary-Degree Rotation Results

TN TN TN
AR v e e e =

—— ResNet50

—— E2CNN
—— E2CNN-Gpool
— GE

0 EY 180 270 360

Degrees

(e) SimCLR results for ImageNet100 dataset

CIFAR10 RotNet / SimSiam Arbitrary-Degree Rotation Results

Values
2
°

. I\(,vv Ry w‘v-«\/\/\«»/\,ﬁ\f\r,&.‘ .

ResNet18
—— RotNet-NIN
RotNet-ResNet18
ESSL

—— E2CNN

—— E2CNN-Gpool
—— GIE

0 % 180 270 360
Degrees

(b) RotNet/SimSiam results for CIFAR10 dataset

STL10 RotNet / SimSiam Arbitrary-Degree Rotation Results

85

80

7

Values

7

65

[ TS caats M VNN ooy g oV NUED oo 00t SR o NI o)

Wm :.;:,Q e et e e e e = OO

/"“

—— ResNet18
—— ResNet50
RotNet-ResNet18
ESSL

—— E2CNN

—— E2CNN-Gpool
—— GIE

60

o % 180 270 360
Degrees

(d) RotNet/SimSiam results for STL10 dataset

Values
o

ImageNet100 SimSiam Arbitrary-Degree Rotation Results

\AVJ‘J\A,\/W/\/\WVJ\

A - e’

e ae NN, GEN S NI L

—— ResNet50
—— E2CNN

—— E2CNN-Gpool
—— GIE

0 % 180 270 360
Degrees

(f) SimSiam results for ImageNet100 dataset

Figure 11: Results of arbitrary-degree rotations.
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Figure 12: Equivariance score distribution histograms for different datasets. (a) ImageNet100, (b)
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(b) Equivariance score distribution histogram for Caltech256
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(c) Equivariance score distribution histogram for Stanford Cars
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(d) Equivariance score distribution histogram for FGVC-Aircraft
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Figure 13: Examples of equivariance score samples.
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