
000 DESTYLE2STYLE: SCALABLE DESTYLIZATION- 001 DRIVEN DATA GENERATION FOR ARTISTIC STYLE 002 TRANSFER

003 **Anonymous authors**

004 Paper under double-blind review

005 Figure 1: The top part shows our style transfer results across diverse artistic styles at 1K resolution,
006 while the bottom part presents comparisons between our method and existing image editing models.
007

008 ABSTRACT

009 DeStyle2Style introduces a novel approach to artistic style transfer by reframing
010 it as a data problem. Our key insight is destylization, reversing style transfer
011 by removing stylistic elements from artworks to recover natural, style-reduced
012 counterparts. This yields DeStyle-100K, a large-scale dataset that provides
013 authentic supervision signals by aligning real artistic styles with their underlying
014 content. To build DeStyle-100K, we develop DestyleNet, a text-guided destylization
015 model that reconstructs style-reduced natural images, and DestyleCoT-Filter,
016 a multi-stage evaluation model that employs Chain-of-Thought reasoning to auto-
017 matically discard low-quality pairs while ensuring content fidelity and style accu-
018 racy. Furthermore, we introduce BCS-Bench, a benchmark with balanced stylistic
019 diversity and content generality for systematic evaluation of style transfer meth-
020 ods. Our results demonstrate that scalable data generation via destylization offers
021 a reliable supervision paradigm, effectively addressing the fundamental challenge
022 of lacking “ground-truth” data in artistic style transfer.

023 1 INTRODUCTION

024 Style transfer (Gatys et al., 2016), which aims to modify an image’s stylistic appearance while main-
025 taining its underlying content, has attracted widespread interest for its applications in creative fields
026 such as digital art, advertising, and fashion. Over the years, style transfer techniques have pro-
027 gressed rapidly, moving from early optimization-driven methods (Gatys et al., 2016; 2017; Kolk-
028 kin et al., 2019) to more recent diffusion model-based solutions (Wang et al., 2024a;b; Xing et al., 2024;
029 Junyao et al., 2024; Sohn et al., 2023).

054 While style transfer has made significant progress in recent years, it remains fundamentally ill-
055 posed, as there exists no definitive “ground-truth” stylization for a given content–style pair. Most
056 prior works attempt to address this challenge from a model-centric perspective, ranging from early
057 efforts using VGG-based feature statistics (Gatys et al., 2015; 2016; Zhang et al., 2019; Kolkin et al.,
058 2019; Gatys et al., 2017), to recent advances based on diffusion model fine-tuning (Sohn et al., 2023;
059 Frenkel et al., 2024; Ouyang et al., 2025; Shah et al., 2023; Wang et al., 2025a) and inversion-based
060 techniques (Chung et al., 2024a; Zhang et al., 2023a; Voynov et al., 2023) to circumvent the lack of
061 definitive “ground-truth” supervision. However, such approaches still suffer from inaccurate style
062 representation and uncontrollable optimization behaviors, owing to the absence of explicit supervi-
063 sion. This highlights the need for a data-centric solution that provides reliable stylization supervi-
064 sion. OmniStyle (Wang et al., 2025b) takes the first step toward data-centric supervision by synthe-
065 zing large amounts of stylized outputs using existing style transfer models and filtering them with
066 multimodal LLMs (MLLMs), thereby constructing the first large-scale paired dataset OmniStyle-1M
067 for style transfer. However, the synthesized results inevitably provide pseudo-supervision, as the su-
068 pervision quality is fundamentally limited by existing style transfer models, resulting in unreliable
069 and unauthentic approximations that fail to achieve consistent and faithful style transfer.

070 In this paper, **DeStyle2Style** also adopts a data-centric perspective, but follows a fundamentally dif-
071 ferent and more essential path, **destylization**. The destylization paradigm, instead of synthesizing
072 stylized images from scratch, reverses the process by automatically reducing style information and
073 extracting structure-aligned natural content images from real artistic artworks. This paradigm fun-
074 damentally addresses the core limitations of OmniStyle (Wang et al., 2025b) by enabling original
075 artistic images to serve as the sole authentic supervision signals. Here, “authentic supervision sig-
076 nals” refer to using unaltered style images as direct learning targets, rather than relying on synthetic
077 data generated through style transfer models that are modified from existing images. By doing
078 so, the supervision signals are derived exclusively from high-quality original style images, while
079 the de-stylized images serve solely as content inputs, ensuring that the supervision quality remains
080 uncompromised. On the contrary, their minor imperfections naturally introduce beneficial varia-
081 tions, effectively serving as data augmentation to improve model robustness. Specifically, the core
082 of DeStyle2Style is a text-guided destylization model, **DestyleNet**, which leverages accompanying
083 textual descriptions to guide the reconstruction of natural, style-reduced counterparts from artistic
084 inputs. Leveraging this approach, we are able to extract style-reduced, structure-aligned natural con-
085 tent from a wide range of real and origin artistic images, enabling the construction of a reliable and
086 diverse dataset. Consequently, we construct **DeStyle-100K**, a high-quality dataset comprises 100K
087 high-quality image triplets in the form of \langle **de-stylized image**, **reference image**, **style image** \rangle^1 .
088 As shown in Figure 2, the dataset encompasses a diverse range of visual styles, including traditional
089 artworks from 669 renowned artists (e.g., Van Gogh and Monet) across 117 art movements (e.g., Im-
090 pressionism, Baroque), as well as 65 mainstream digital styles such as origami art, 3D, flat design,
091 line-art, ink painting, and others. To ensure data quality, we further introduce **DestyleCoT-Filter**, a
092 Chain-of-Thought-based filtering mechanism that evaluates the plausibility of the destylized image
093 as a natural, style-reduced counterpart along two dimensions: content preservation and style discrep-
094 ency. Unlike prior approaches that directly apply MLLMs to assess stylized outputs, which often
095 involve complex and subjective artistic attributes, DestyleCoT-Filter operates on destylized images
096 that better align with the training distribution of MLLMs. This makes the evaluation more robust and
097 reliable. In addition, DestyleCoT-Filter employs a multi-stage, fine-grained assessment framework
098 that facilitates interpretable and controllable quality filtering. Finally, to enable comprehensive eval-
099 uation, we introduce **BCS-Bench**, which consists of 56 style images across 35 representative styles
100 and 55 content images spanning six major content categories: human, animal, plant, scene, archi-
101 tecture, and object. These form a total of 3,080 content-style pairs for systematic evaluation.

102 Our contributions include 1) **DeStyle2Style** reframe artistic style transfer as a data generation prob-
103 lem, it enables the use of unaltered style images as direct learning targets through de-stylization,
104 providing high-quality supervision signals for the style transfer. DeStyle2Style demonstrates that
105 scalable and high-quality supervision via destylization is key to achieving reliable and faithful style
106 transfer. 2) We introduce **DeStyle-100K**, a large-scale dataset of 100K high-quality triplets con-
107 structed through destylization. Unlike prior pseudo-target datasets, DeStyle-100K provides *authen-
108 tic supervision*, where unaltered style images directly serve as training signals through a reverse
109 formulation. 3) We develop **DestyleNet**, a text-guided destylization model capable of reducing di-

¹green:input; blue:“ground-truth”

121 **Figure 2: Representative Samples of DeStyle-100K.** DeStyle-100K consists of 100K high-quality
 122 triplets in the form of \langle style image, reference image, de-stylized image \rangle , covering classical artistic
 123 styles from 669 artists across 117 art movements, and supporting 65 mainstream digital styles. More
 124 samples can be found in the appendix.

125
 126
 127
 128 verse artistic styles while faithfully preserving structure-aligned content. To ensure data integrity,
 129 we design **DestyleCoT-Filter**, a fine-grained CoT-based evaluation framework that enforces both
 130 content preservation and style discrepancy. **4) We propose BCS-Bench**, a benchmark with balanced
 131 stylistic diversity and content generality for systematic evaluation of style transfer methods. It
 132 consists of 56 style images spanning 35 representative artistic styles and 55 content images covering 6
 133 major semantic categories (human, animal, plant, scene, architecture, object), forming 3,080 diverse
 134 content-style pairs for quantitative and qualitative analysis.

2 RELATED WORK

135
 136
 137 **Style Transfer.** Style transfer has advanced rapidly, evolving from handcrafted features and filter-
 138 based stylization (Zhang et al., 2013; Wang et al., 2004), to optimization-based approaches (Gatys
 139 et al., 2016; 2017; Kolkin et al., 2019), and then to feed-forward models enabling arbitrary trans-
 140 fer (Huang & Belongie, 2017; Li et al., 2017; Liao et al., 2017; Zhang et al., 2022a; Deng et al.,
 141 2020). Recently, diffusion-based methods (Wang et al., 2024a; Chung et al., 2024b; Xu et al.,
 142 2024; Xing et al., 2024) have further pushed performance, through both tuning-based (Zhang et al.,
 143 2023b;a; Wang et al., 2023) and tuning-free (Wang et al., 2024b; Junyao et al., 2024; Qi et al.,
 144 2024) paradigms. Despite these advances, a fundamental limitation remains: the lack of definitive
 145 “ground-truth” for stylization, which hinders supervised training. Existing methods rely on hand-
 146 crafted metrics, unstable inversion, or pseudo-supervised fine-tuning (Wang et al., 2025b), resulting
 147 in noisy learning signals and weak style representations. To address this, we propose a novel destyl-
 148 ization paradigm that reverses the stylization process to extract style-reduced and structure-aligned
 149 content from style images. This enables the construction of grounded content-style supervision
 150 pairs. Based on this, we introduce DeStyle-100K, a high-quality dataset created via destylization,
 151 providing authentic supervision for training style transfer models.

152
 153 **Datasets for Style Transfer.** Early style transfer datasets, such as WikiArt (Tan et al., 2019) and
 154 Style30K (Li et al., 2024), provide artistic exemplars but lack aligned triplets, making them un-
 155 suitable for supervised training. Recent efforts (Xing et al., 2024; Wang et al., 2025b) attempt to
 156 construct synthetic triplet datasets, but their quality is limited by the performance and biases of the
 157 underlying style transfer models. Although MLLMs are used for filtering, their reliability on stylized
 158 images remains questionable due to limited domain understanding. As a result, the supervision may
 159 be noisy, with style drift, artifacts, and poor generalization. In contrast, we propose a destylization-
 160 based construction pipeline that reverses the stylization process to recover natural content, allowing
 161 MLLMs to perform reliable evaluation. This enables the creation of triplets with accurate content
 alignment and authentic style supervision.

Figure 3: (a) Stylization-based data generation pipeline (OmniStyle). (b) Destylization-based data generation pipeline (ours). Our method enables authentic supervision with high-quality and style-faithful data, in contrast to stylization-based pipelines that rely on pseudo-supervision, often artifacts-prone.

3 METHOD

In this section, we first compare the advantages and limitations of two data construction pipelines: our proposed destylization-based pipeline and the stylization-based pipeline of OmniStyle (Section 3.1). We then introduce the design of DeStyleNet (Section 3.2), followed by a detailed description of how we construct a DeStyle-100K dataset (Section 3.3). Next, we introduce DestyleCoT-Filter (Section 3.4), a fine-grained evaluation mechanism for data quality control. Finally, we describe the overall architecture of DeStyle2Style and detail its training procedure (Section 3.5).

3.1 DESTYLIZATION VS. STYLIZATION

Stylization and destylization are inverse processes: while stylization aims to transfer artistic style onto a natural image, destylization seeks to reduce stylistic elements from an artwork to recover its underlying natural content. OmniStyle adopt stylization-based pipelines (see Figure 3.a), which generate synthetic stylized results by applying style images to content images using pre-trained style transfer models. However, due to the limited capabilities of current style transfer models, such pipelines often suffer from visual artifacts, content leakage, and style inconsistency, resulting in pseudo-supervision that compromises the quality and fidelity of the constructed datasets.

In contrast, we propose a novel destylization-based pipeline (see Figure 3.b) that reverses this process: starting from real artworks, we reduce style using a dedicated destylization model to recover the underlying natural appearance. This enables the construction of training triplets in which the style transfer supervision is derived directly from style images, offering higher fidelity, authentic style supervision, better alignment with the original artistic distribution, and more faithful learning signals for style transfer. **Authentic supervision**, in our context, refers to supervision signals derived from unmodified style images rather than pseudo-stylized results synthesized by applying style transfer models to content images. Unmodified style images include real artworks and high-quality images synthesized from text prompts via FLUX-T2I (Black Forest Labs, 2024). We next provide a detailed introduction to our destylization approach.

3.2 DESTYLENET

DestyleNet is a text-guided destylization model that reduces stylistic attributes from a style image and generates a structure-aligned content image. In the following sections, we present the construction of the destylization dataset and the architecture of DestyleNet.

Destylization Dataset. To train the DestyleNet, we construct a dedicated dataset, as shown in Fig. 4(a). We first select 200 high-resolution content images for each of six semantic categories including humans, objects, animals, plants, scenes, and architectures from HQ-50K (Yang et al., 2023) and FFHQ (Karras et al., 2019). For style references, we collect 200 classical paintings from the [National Gallery of Art](#) (National Gallery of Art, 2025) and 200 style images from Style30K (Li et al., 2024). Each content image is stylized using four state-of-the-art methods: STROTSS (Kolkin et al., 2019), StyleID (Chung et al., 2024b), CSGO (Xing et al., 2024), and Attention Distillation (Zhou et al., 2025), guided by style images. Content captions are generated using InternVL2.5-7B (Chen

Figure 4: (a) Destylization Dataset Construction and (b) The architecture of DestyleNet model.

et al., 2024). This results in 60K stylized, content, and caption triplets for training the destylization model.

DestyleNet Architecture. Building upon the constructed triplet dataset, we design DestyleNet based on the [FLUX-Dev \(Black Forest Labs, 2024\)](#) model, as illustrated in Figure 4(b). The core idea of DestyleNet is to reduce stylistic information from the input style image under the guidance of a content text prompt. Specifically, we first employ a Variational Autoencoder (VAE) to extract continuous visual features from both the content image and its corresponding stylized image, while a text encoder is used to extract semantic features from the content caption. To obtain a style-reduced output, Gaussian noise is added to the visual features of the content image, which serves as the learning target. The stylized image features and text features are then spatially concatenated with the noisy content features to form a complete token sequence, which is subsequently fed into the FLUX DiT for image generation. During inference, DestyleNet takes as input a style image and its corresponding content caption, and produces a style-reduced natural image. As shown in Figure 2, DestyleNet demonstrates robust applicability across a wide spectrum of style domains. In addition to classical paintings, our model effectively reduces stylistic elements from diverse and complex art styles, including papercraft, 3D, pixel art, chinese ink painting, flat design, and line art, and more. This generalization ability provides essential model support for the construction of the DeStyle-100K.

3.3 DESTYLE-100K DATASET

Based on DestyleNet, we perform a two-stage destylization pipeline to construct the DeStyle-100K: (1) collecting a diverse set of style images and (2) conducting text-guided destylization.

Style Images Collection. To construct the DeStyle-100K dataset, we build a large-scale style image pool that incorporates both real and synthetic artworks with diverse stylistic attributes. For real images, we collect classical artworks from public datasets such as WikiArt (Tan et al., 2019) and the [National Gallery of Art \(National Gallery of Art, 2025\)](#), followed by a multi-stage filtering process to remove low-resolution, non-artistic, and duplicate images. We further apply InternVL2.5-7B (Chen et al., 2023) to retain images with concrete and interpretable scenes, categorize them into six content classes (Human, Animal, Plant, Object, Scene, Architecture), and discard stylistically ambiguous cases. This yields 10K high-quality real artworks spanning 669 artists (e.g., Van Gogh, Monet) and 117 movements (e.g., Impressionism, Baroque), all resized to 1024×1024 . To compensate for the limited diversity and availability of real artworks, we synthesize additional stylized images using [FLUX-Dev \(Black Forest Labs, 2024\)](#). Specifically, we define a 65-category style taxonomy (e.g., Pixel Style, Cyberpunk, Line Art) and a hierarchical content tree with six top-level classes, each further divided into 10 subtypes (e.g., “Fantasy character”, “Traditional Asian architecture”). For each style, we randomly pair it with 300 content subtypes to form diverse style–content combinations. We then employ GPT-4o to generate detailed joint prompts for each pair, and render 1024×1024 style images using FLUX-Dev with randomly sampled seeds, resulting in a total of 150K synthetic images.

Text-Guided Destylization. We use GPT-4o to generate content-focused descriptions of style images, explicitly instructed to ignore stylistic attributes and focus solely on plausible real-world semantics, such as object identity, scene type, pose, and spatial layout. These descriptions are then used as text prompts to guide the destylization process with DestyleNet, yielding a large number of style–destylized image pairs.

270 3.4 DESTYLECOT-FILTER
271272 To ensure high-quality data, we introduce DestyleCoT-Filter, a Chain-of-Thought-based filtering
273 mechanism that evaluates the quality of style–destylized image pairs. Unlike previous MLLM-based
274 filtering methods (Wang et al., 2025b), which focus on assessing stylized results, DestyleCoT-Filter
275 evaluates destylized images (i.e., natural-looking counterparts), making the assessment more robust.
276 This avoids the need for complex domain knowledge of art history or stylistic conventions. The
277 DestyleCoT-Filter pipeline consists of two complementary evaluation components: *content preservation*
278 and *style discrepancy*, which together ensure that the destylized image retains the original
279 content while effectively reducing the artistic style.280 **Content Preservation.** Directly prompting GPT-4o to assess content consistency often fails to
281 capture fine-grained mismatches. To address this, we adopt a Chain-of-Thought (CoT) strategy that
282 guides GPT-4o to: (1) identify key semantic regions in the style image (e.g., faces, hands, text, scene
283 elements); (2) verify their structural and visual consistency in the destylized image; and (3) assign a
284 quality score from 0 to 5 based on the most significant failure, penalizing even minor omissions or
285 distortions. Explanations are provided for each rating to enhance interpretability.286 **Style Discrepancy.** To directly assess how much stylistic information is reduced, we adopt a fine-
287 grained evaluation strategy that decomposes the style image into distinct attributes, such as color
288 palette, texture, lighting, and rendering effects. GPT-4o is then guided to compare these attributes
289 with the destylized result. We assign a 0–5 score reflecting stylistic reduction, accompanied by a
290 brief rationale.291 We evaluate all candidates for content preservation and style discrepancy, retaining only samples
292 with both scores ≥ 4 . This yields 100K high-quality style–destylized pairs. For each style image,
293 we compute the CSD (Somepalli et al., 2024) score over images in the same category and select the
294 one with the highest stylistic similarity as the reference to form triplets.295 3.5 DESTYLE2STYLE MODEL
296
297300 Building upon the DeStyle-100K dataset, we propose DeStyle2Style, a simple yet effective style
301 transfer framework based on FLUX-Dev (Black Forest Labs, 2024). Specifically, given a triplet of
302 images in the form of style-reference-destylized, DeStyle2Style treats the style image as the denoising
303 target. The reference image and the destylized image serve as conditional inputs to the DiT
304 module, while the text input is left empty. All images are encoded into continuous visual features
305 using a pretrained VAE. Gaussian noise is added to the features of the style image to construct a de-
306 noising training objective. To effectively model the transformation from the destylized to the style
307 image, we introduce sequential positional encoding to the input tokens. This sequential encoding
308 better captures the ordering and interaction within the triplet to avoid content confusion. Specifi-
309 cally, tokens extracted from the style, reference, and destylized images are assigned continuous and
310 non-overlapping position indices, allowing the model to explicitly distinguish the role and order of
311 each image in the style transfer pipeline. For efficient training, we adopt LoRA-based fine-tuning
312 instead of full-model updating. This not only reduces memory overhead but also helps preserve the
313 pretrained knowledge, leading to improved stylization performance.314
315 Table 1: Comparison of existing style transfer benchmarks and our proposed BCS-Bench. “N/A”
316 denotes missing information.317
318

Benchmark	Content Images	Content Categories	Style Images	Style Categories	Content-Style Pairs	Resolution
CAST (Zhang et al., 2022b)	N/A	N/A	N/A	N/A	50	N/A
AesPANet (Hong et al., 2023)	N/A	N/A	N/A	N/A	65	256×256
InST (Zhang et al., 2023b)	N/A	N/A	N/A	N/A	26	N/A
StyleID (Chung et al., 2024b)	20	4	40	Only Oil paintings	800	512×512
StyleShot (Junyao et al., 2024)	20	6	490	73	9,800	879×876
OmniStyle (Wang et al., 2025b)	20	4	100	32	2,000	1024×1024
BCS-Bench (Ours)	55	6	56	35	3,080	1024×1024

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176

378 DestyleNet and 48 for DeStyle2Style. To enhance robustness in both destylization and stylization
 379 learning, we apply horizontal and vertical flipping as data augmentation during training.
 380

381 4.3 QUANTITATIVE EVALUATION

383 Our quantitative evaluation consists of two parts: (1) comparison with existing style transfer meth-
 384 ods, and (2) comparison with both closed and open-source image editing models.

385 **(1) Comparison with Style Transfer Methods.** As shown in Table 2, our method achieves the
 386 best performance on three style-related metrics: Style Loss, CSD Score, and Qwen Style Score.
 387 It also ranks second in Qwen Content Score and is among the top three in both DINO and CLIP
 388 Scores, demonstrating a strong balance between style fidelity and content preservation. While Omni-
 389 Style and StyleID yield slightly higher content scores, they often apply only minor color changes,
 390 leading to reduced style expressiveness. Notably, our method achieves the highest Qwen Aesthetic
 391 Score (8.7326), significantly surpassing all baselines and confirming its ability to generate visually
 392 appealing, high-quality stylizations.

393 **(2) Comparison with Closed and Open-Source Editing Models.** As shown in Table 3, GPT-4o
 394 achieves the best overall performance, ranking first across three metrics. DeStyle2Style consistently
 395 ranks second on multiple metrics, but still lags behind GPT-4o. USO exhibits low stylization strength
 396 (CSD Score 0.4441), which inflates its content score (DINO Score 0.8740) due to insufficient styl-
 397 ization. For open-source models such as Qwen-Image-Edit, FLUX-Kontext, Bagel, and Bagel-
 398 Thinking, we use textual descriptions of style images as a proxy due to the lack of multi-reference
 399 conditioning. However, these descriptions are often imprecise and fail to capture fine-grained stylis-
 400 tic attributes, leading to poor style consistency. In addition, irrelevant or verbose prompt content
 401 may interfere with content preservation and disrupt structural alignment. These results highlight the
 402 importance of multi-reference inputs for achieving faithful style transfer while maintaining content
 403 integrity.

404 Table 2: Quantitative comparison of style transfer methods across multiple metrics (**best** in bold,
 405 second-best underlined).

Metric / Method	DeStyle2Style	OmniStyle	AD	StyleID	AesPANet	CSGO	StyleShot	STROTSS
DINO-Score \uparrow	0.8203	<u>0.8606</u>	0.8479	0.8828	0.8001	0.6714	0.6714	0.7677
CLIP-Score \uparrow	0.2702	0.2777	0.2667	<u>0.2731</u>	0.2666	0.2370	0.1977	0.2544
CSD-Score \uparrow	0.5606	0.5159	0.5256	0.4102	0.3019	0.5280	<u>0.5276</u>	0.4456
Style Loss \downarrow	<u>0.1170</u>	<u>0.1221</u>	0.1322	0.1275	0.3455	0.1278	0.1288	0.1381
Qwen-Content-Score \uparrow	8.1385	8.1277	7.8149	8.2283	7.9878	6.6793	4.6082	7.7821
Qwen-Style-Score \uparrow	7.5763	7.4242	6.7531	6.5404	6.8722	7.0094	<u>7.5445</u>	6.9866
Qwen-Aesthetic-Score \uparrow	<u>8.7326</u>	8.1681	7.9087	7.2955	7.1135	7.8304	<u>8.1133</u>	6.9987

412 Table 3: Quantitative comparison of image editing methods across multiple metrics (**best** in bold,
 413 second-best underlined).

Metrics/Model	DeStyle2Style	USO	GPT-4o	Qwen-Image-Edit	FLUX-Kontext	Bagel	Bagel-Thinking
DINO-Score \uparrow	0.8203	0.8740	0.8506	0.7421	0.8132	0.7287	0.7183
CLIP-Score \uparrow	0.2702	0.2681	0.2930	0.2375	0.2623	0.2320	0.2446
CSD-Score \uparrow	0.5606	0.4441	0.5536	<u>0.5576</u>	0.5330	0.5494	0.5516
Style Loss \downarrow	0.1170	0.1361	0.0380	0.1172	0.1499	0.1202	0.1204
Qwen-Content-Score \uparrow	8.1385	<u>9.0024</u>	7.5388	7.1202	<u>8.2676</u>	7.7216	7.7355
Qwen-Style-Score \uparrow	7.5763	4.6711	8.1156	7.2436	<u>6.5395</u>	6.6201	6.3715
Qwen-Aesthetic-Score \uparrow	<u>8.7326</u>	9.2693	9.3507	<u>9.5412</u>	9.3351	9.3766	9.5980

420 Table 4: **User study comparison between our method and representative style transfer approaches**
 421 (**best** in bold, second-best underlined).

Metric / Method	DeStyle2Style	OmniStyle	AD	StyleID	AesPANet	CSGO	StyleShot	STROTSS
Rank 1 (%) \uparrow	28.21	<u>18.82</u>	8.54	13.68	9.40	11.11	5.12	5.12
Top 3 (%) \uparrow	58.95	<u>56.40</u>	25.62	38.46	35.75	35.88	20.49	28.45

425 4.4 USER STUDY

427 To complement the quantitative evaluation, we conducted a user study to assess the perceptual qual-
 428 ity of stylized results. Participants were shown outputs from DeStyle2Style and other competing
 429 methods, and asked to rank their top three favorites based on: (1) *Style Preservation* — how well the
 430 style of the reference image is reflected; (2) *Content Preservation* — the degree to which structural
 431 details of the content image are retained; and (3) *Aesthetic Appeal* — overall visual quality. To
 432 reduce bias, image order was randomized and zooming was enabled. We collected 1,620 votes from

432 Table 5: User study comparison between our method and representative image editing methods (**best**
 433 second-best underlined).

Metrics/Model	DeStyle2Style	USO	GPT-4o	Qwen-Image-Edit	FLUX-Kontext	Bagel	Bagel-Thinking
Rank 1 (%) \uparrow	34.56	8.64	<u>32.72</u>	12.96	5.55	2.49	3.08
Top 3 (%) \uparrow	<u>71.60</u>	40.12	75.92	47.53	34.56	11.14	19.13

437
 438 30 participants. As shown in Table 4 and Table 5, we report both Rank-1 proportions and Top-3
 439 selection rates. The results show a clear preference for our method: it outperforms existing style
 440 transfer approaches (Table 2) and achieves performance close to GPT-4o (Table 3).
 441

442 4.5 QUALITATIVE EVALUATION

443 **Comparison to Style Transfer Models.** As shown in Fig. 6, we qualitatively compare
 444 DeStyle2Style with several representative methods. Under the cartoon style (first row), others
 445 mainly apply color shifts, while DeStyle2Style generates clear cartoon-like characters, showing
 446 stronger stylization. Compared to optimization-based methods (AD, STROTSS), DeStyle2Style
 447 avoids content leakage, which often causes textures like trees to spill onto unrelated regions
 448 (bridges). DeStyle2Style also outperforms tuning-free models (OmniStyle, StyleShot, CSGO, Aes-
 449 PANET) by maintaining semantic consistency. It applies uniform styles to regions such as faces
 450 (second row) and bridges (last row), whereas others produce inconsistent textures and colors.
 451

461 Figure 6: Qualitative comparison with other state-of-the-art methods. The missing result of
 462 StyleShot is filtered by its automatic NSFW detector.
 463

480 Figure 7: Comparison between our DeStyle2Style model and the existing image editing models.
 481

482 **Comparison to the Image Editing Models.** Figure 7 presents a qualitative comparison between
 483 our method and several representative image editing models. We divide the analysis into two parts
 484 based on whether the model supports multi-image reference.
 485

(1) Comparison with GPT-4o and USO. GPT-4o suffers from content leakage (e.g., Row 3) and
 noticeable color shifts, typically showing yellowish or overly warm tones compared to the refer-

ence style images (Rows 1–2), which compromise both content fidelity and style accuracy. USO maintains the structural integrity of the content image but exhibits insufficient stylization and fails to achieve faithful style transfer. In contrast, our method effectively preserves the content structure and accurately captures the intended style without introducing such artifacts.

(2) Comparison with Open-Source Editing Models. Since FLUX-Kontext, Qwen-Image-Edit, Bagel, and Bagel-Thinking do not support multi-image reference, we adopt a single-image input setup by converting the style image into a descriptive text instruction. However, these models struggle with complex style transfer tasks, such as the origami-inspired rendering in Row 1 or the pill mosaic in Row 4, and are generally limited to performing simple color adjustments. This limitation likely stems from the inherent difficulty of capturing complex visual styles through text descriptions alone. In contrast, DeStyle2Style leverages multi-image inputs to directly perceive and integrate visual style cues, enabling more faithful reproduction of stylistic elements.

5 CONCLUSION

We present DeStyle2Style, a novel framework that rethinks artistic style transfer as a data-centric problem. By introducing destylization as an inverse formulation, we address the long-standing challenge of lacking authentic supervision in style transfer tasks. Our proposed DeStyle-100K dataset provides high-quality training triplets constructed through destylization, enabling real artistic images, rather than synthetic outputs, to serve directly as supervision targets. This offers a more authentic supervision signal compared to prior pseudo-target approaches. Central to our pipeline are DestyleNet, a text-guided destylization model that reduces stylistic elements while preserving content, and DestyleCoT-Filter, a Chain-of-Thought-based quality assessment mechanism that enforces both content fidelity and style discrepancy. Furthermore, we introduce BCS-Bench, a benchmark with balanced stylistic diversity and content generality, enabling systematic evaluation of style transfer methods. Extensive experiments show that DeStyle2Style generates high-quality stylizations and consistently outperforms prior methods. Our work highlights that scalable and authentic supervision via destylization is essential for achieving reliable and faithful artistic style transfer.

REPRODUCIBILITY STATEMENT

Dataset creation and processing steps are described in Section 3.3 and Appendix A.4. Implementation details are described in Sections 4.2 and Appendix A.4, including model architecture, training hyperparameters, and evaluation protocols. The code and dataset will be made publicly available in a future release.

REFERENCES

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv:2308.12966*, 1(2):3, 2023.

Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow matching for in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506, 2025.

Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024. Accessed: 2025-04-30.

Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. *arXiv:2312.14238*, 2023.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024.

540 Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
541 for adapting large-scale diffusion models for style transfer. In *CVPR*, pp. 8795–8805, June 2024a.
542

543 Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
544 for adapting large-scale diffusion models for style transfer. In *CVPR*, pp. 8795–8805, 2024b.
545

546 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Wei-
547 hao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified
548 multimodal pretraining. *arXiv preprint arXiv:2505.14683*, 2025.
549

550 Yingying Deng, Fan Tang, Weiming Dong, Wen Sun, Feiyue Huang, and Changsheng Xu. Arbitrary
551 style transfer via multi-adaptation network. In *ACM MM*, pp. 2719–2727, 2020.
552

553 Yarden Frenkel, Yael Vinker, Ariel Shamir, and Daniel Cohen-Or. Implicit style-content separation
554 using b-lora. *arXiv:2403.14572*, 2024.
555

556 Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style.
557 *arXiv:1508.06576*, 2015.
558

559 Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
560 neural networks. In *ECCV*, pp. 2414–2423, 2016.
561

562 Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Con-
563 trolling perceptual factors in neural style transfer. In *CVPR*, pp. 3985–3993, 2017.
564

565 Kibaeom Hong, Seogkyu Jeon, Junsoo Lee, Namhyuk Ahn, Kunhee Kim, Pilhyeon Lee, Daesik Kim,
566 Youngjung Uh, and Hyeran Byun. Aespa-net: Aesthetic pattern-aware style transfer networks. In
567 *ICCV*, pp. 22758–22767, 2023.
568

569 Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
570 ization. In *ICCV*, pp. 1501–1510, 2017.
571

572 Gao Junyao, Liu Yanchen, Sun Yanan, Tang Yinhao, Zeng Yanhong, Chen Kai, and Zhao Cairong.
573 Styleshot: A snapshot on any style. *arxiv:2407.01414*, 2024.
574

575 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
576 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
577 recognition*, pp. 4401–4410, 2019.
578

579 Nicholas Koltun, Jason Salavon, and Gregory Shakhnarovich. Style transfer by relaxed optimal
580 transport and self-similarity. In *Proceedings of the IEEE/CVF conference on computer vision and
581 pattern recognition*, pp. 10051–10060, 2019.
582

583 Wen Li, Muyuan Fang, Cheng Zou, Biao Gong, Ruobing Zheng, Meng Wang, Jingdong Chen, and
584 Ming Yang. Styletokenizer: Defining image style by a single instance for controlling diffusion
585 models. *arXiv:2409.02543*, 2024.
586

587 Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style
588 transfer via feature transforms. In *NeurIPS*, 2017.
589

590 Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. Visual attribute transfer through
591 deep image analogy. *arXiv:1705.01088*, 2017.
592

593 National Gallery of Art. National gallery of art open data program, 2025. URL <https://www.nga.gov/open-access-images/open-data.html>. Accessed April 30, 2025.
594 Licensed under CC0 1.0.
595

596 Ziheng Ouyang, Zhen Li, and Qibin Hou. K-lora: Unlocking training-free fusion of any subject and
597 style loras. In *CVPR*, 2025.
598

599 Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yong-
600 dong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations.
601 In *CVPR*, pp. 8693–8702, 2024.

594 Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and Varun
595 Jampani. Ziplora: Any subject in any style by effectively merging loras. In *arXiv preprint*
596 *arxiv:2311.13600*, 2023.

597 Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
598 Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image generation in any
599 style. *arXiv:2306.00983*, 2023.

600 Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geip-
601 ing, Abhinav Shrivastava, and Tom Goldstein. Measuring style similarity in diffusion models.
602 *arXiv preprint arXiv:2404.01292*, 2024.

603 Wei Ren Tan, Chee Seng Chan, Hernan Aguirre, and Kiyoshi Tanaka. Improved artgan for condi-
604 tional synthesis of natural image and artwork. *IEEE Transactions on Image Processing*, 28(1):
605 394–409, 2019. doi: 10.1109/TIP.2018.2866698. URL <https://doi.org/10.1109/TIP.2018.2866698>.

606 Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir Aberman. $p+$: Extended textual condi-
607 tioning in text-to-image generation. *arXiv:2303.09522*, 2023.

608 Bin Wang, Wenping Wang, Huaiping Yang, and Jiaguang Sun. Efficient example-based painting
609 and synthesis of 2d directional texture. *IEEE TVCG*, 10(3):266–277, 2004.

610 Haofan Wang, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. Instantstyle: Free lunch towards
611 style-preserving in text-to-image generation. *arXiv:2404.02733*, 2024a.

612 Haofan Wang, Peng Xing, Renyuan Huang, Hao Ai, Qixun Wang, and Xu Bai. Instantstyle-plus:
613 Style transfer with content-preserving in text-to-image generation. *arXiv:2407.00788*, 2024b.

614 Ye Wang, Tongyuan Bai, Xuping Xie, Zili Yi, Yilin Wang, and Rui Ma. Sigstyle: Signature style
615 transfer via personalized text-to-image models. In *AAAI*, volume 39, pp. 8051–8059, 2025a.

616 Ye Wang, Ruiqi Liu, Jiang Lin, Fei Liu, Zili Yi, Yilin Wang, and Rui Ma. Omnistyle: Filtering high
617 quality style transfer data at scale. In *Proceedings of the Computer Vision and Pattern Recognition*
618 *Conference*, pp. 7847–7856, 2025b.

619 Zhizhong Wang, Lei Zhao, and Wei Xing. Stylediffusion: Controllable disentangled style transfer
620 via diffusion models. In *ICCV*, pp. 7677–7689, 2023.

621 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
622 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
623 2025a.

624 Shaojin Wu, Mengqi Huang, Yufeng Cheng, Wenxu Wu, Jiahe Tian, Yiming Luo, Fei Ding, and
625 Qian He. Uso: Unified style and subject-driven generation via disentangled and reward learning.
626 *arXiv preprint arXiv:2508.18966*, 2025b.

627 Peng Xing, Haofan Wang, Yanpeng Sun, Qixun Wang, Xu Bai, Hao Ai, Renyuan Huang, and Zechao
628 Li. Csgo: Content-style composition in text-to-image generation. *arXiv 2408.16766*, 2024.

629 Youcan Xu, Zhen Wang, Jun Xiao, Wei Liu, and Long Chen. Freetuner: Any subject in any style
630 with training-free diffusion. *arXiv:2405.14201*, 2024.

631 Qinhong Yang, Dongdong Chen, Zhentao Tan, Qiankun Liu, Qi Chu, Jianmin Bao, Lu Yuan, Gang
632 Hua, and Nenghai Yu. Hq-50k: A large-scale, high-quality dataset for image restoration. *arXiv*
633 *preprint arXiv:2306.05390*, 2023.

634 Wei Zhang, Chen Cao, Shifeng Chen, Jianzhuang Liu, and Xiaou Tang. Style transfer via image
635 component analysis. *IEEE TMM*, 15(7):1594–1601, 2013.

636 Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei Zhang. Exact feature distribution matching
637 for arbitrary style transfer and domain generalization. In *CVPR*, pp. 8035–8045, 2022a.

638 Yulun Zhang, Chen Fang, Yilin Wang, Zhaowen Wang, Zhe Lin, Yun Fu, and Jimei Yang. Multi-
639 modal style transfer via graph cuts. In *ICCV*, pp. 5943–5951, 2019.

648 Yuxin Zhang, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma, Tong-Yee Lee, and Chang-
649 sheng Xu. Domain enhanced arbitrary image style transfer via contrastive learning. In *SIG-
650 GRAPH*, 2022b.

651 Yuxin Zhang, Weiming Dong, Fan Tang, Nisha Huang, Haibin Huang, Chongyang Ma, Tong-Yee
652 Lee, Oliver Deussen, and Changsheng Xu. Prospect: Expanded conditioning for the personaliza-
653 tion of attribute-aware image generation. *arXiv:2305.16225*, 2023a.

654 Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Chang-
655 sheng Xu. Inversion-based style transfer with diffusion models. In *CVPR*, pp. 10146–10156,
656 2023b.

657 Yang Zhou, Xu Gao, Zichong Chen, and Hui Huang. Attention distillation: A unified approach to
658 visual characteristics transfer. *arXiv preprint arXiv:2502.20235*, 2025.

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A APPENDIX**
703

704 We first discuss the limitations of our work and outline potential directions for future research (see
705 Section A.1). We then present additional data samples from the DeStyle-100K dataset (see Section
706 A.2). Next, we provide more stylization results of our method (see Section A.3). Finally, we give a
707 detailed description of the dataset construction process. (see A.4).

709 **A.1 LIMITATIONS AND FUTURE WORK**
710

711 As a data-driven approach, our method may lead to identity changes in stylized results due to noisy
712 data. We will continue improving data quality by designing more robust filtering mechanisms and
713 leveraging more diverse data to enrich the dataset. In addition, future work will explore caption-free
714 destylization strategies to further enhance data generation quality.

715 **A.2 ADDITIONAL DATASET SAMPLES**
716

742 Figure 8: Top: Additional samples from DeStyle-100K. Each triplet (left to right) includes a
743 style image, a reference image, and its destylized counterpart. Bottom: Destylization results by
744 DestyleNet. Each pair (left to right) shows a style image and the corresponding destylized output.
745

746 As shown in the top part of Figure 8, we present additional samples from our DeStyle-100K dataset.
747 The bottom part of Figure 8 illustrates more destylization results produced by our DestyleNet, in-
748 cluding cases of origami, flat design, low-poly, and anime styles. Our method effectively preserves
749 structural information while generating style-reduced, natural-looking content images.

750 **A.3 MORE RESULTS**
751

752 **A.3.1 MORE COMPARISONS WITH STYLE TRANSFER METHODS**
753

754 As shown in Figure 9, we further compare our method with representative style transfer ap-
755 proaches. Optimization-based methods such as AD and STROTSS frequently suffer from content
leakage, leading to noticeable distortions in the underlying content structures (see the 5th and 10th

756 columns). Methods including OmniStyle, StyleID, StyleShot, and CSGO exhibit insufficient stylization strength and often produce blurry appearances or disorganized textures. In contrast, our
757 method achieves both strong and faithful stylization (e.g., photo-to-anime) and can handle more
758 complex styles such as 3D origami. Our results also demonstrate noticeably higher image quality
759 and aesthetic consistency compared to all baselines.
760

761
762 Figure 9: **More comparisons of stylization results against other image style transfer models.**
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

797 A.3.2 MORE COMPARISONS WITH OPEN AND CLOSED-SOURCE IMAGE EDITING MODELS

800 As shown in Figure 10, we present further comparisons with image editing models. We observe
801 that USO produces weaker stylization effects, while GPT-4o performs poorly in transferring real
802 artistic styles (e.g., Row 1) and tends to suffer from semantic content leakage (e.g., Row 3). In
803 contrast, our method achieves superior results. For FLUX-Kontext, Qwen-Image-Edit, Bagel, and
804 Bagel-Thinking, the lack of multi-reference conditioning leads to relatively poor style consistency
805 in their outputs.

806 A.3.3 MORE RESULTS OF DeSTYLE2STYLE

807 As shown in Figure 11, we present additional stylization results produced by our DeStyle2Style.
808 The diverse style categories and high-quality details demonstrate the effectiveness of our approach.
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
Figure 10: More comparisons of stylization results against other image editing models.

Table 6: Quantitative evaluation of DeStyleNet’s style reduced results.

Test Set	ID Score	Style Removal Score	Image Quality	Image Aesthetic
Set 1	4.9467	4.0046	4.6123	4.5120
Set 2	4.9397	3.9755	4.6123	4.5267
Set 3	4.9190	3.9770	4.6229	4.5218
Set 4	4.9314	3.9545	4.6202	4.5100
Set 5	4.9358	3.9219	4.6193	4.5210
Mean	4.9345	3.9667	4.6174	4.5183

840
841
842 To further quantify the effectiveness of DeStyleNet, we conducted a comprehensive quantitative
843 evaluation of its de-stylization results, as shown in Table 6. Specifically, we evaluated the de-
844 stylization results by randomly selecting 1,000 samples at a time, repeating this process across five
845 separate trials. To ensure a thorough assessment, we designed four evaluation metrics: **ID Score**,
846 which measures the identity consistency of the de-stylized images; **Style Removal Score**, which
847 quantifies the degree to which style information is removed; **Image Quality**, which evaluates the
848 overall quality of the de-stylized images; and **Image Aesthetic**, which reflects the aesthetic appeal
849 of the resulting images.

850 For scoring, we employed QwenVL-Max, utilizing carefully designed prompts for each metric. The
851 scoring range for all metrics was standardized to 0–5, where, for instance, an ID Score of 0 indicates
852 entirely inconsistent identities, while a score of 5 denotes complete consistency.

853 As demonstrated in Table 6, DeStyleNet consistently achieves high-quality de-stylization results.
854 Specifically, it preserves identity information with remarkable fidelity (mean ID Score of 4.9345)
855 while demonstrating effective style removal (mean Style Removal Score of 3.9667). Furthermore,
856 the de-stylized images exhibit high levels of image quality score (4.6174) and aesthetics
857 score (4.5183). These results collectively validate the effectiveness of DeStyleNet in achieving
858 de-stylization while maintaining both identity consistency and image quality.

859 860 A.3.4 IMPACT OF BACKBONE MODEL SIZE

861
862 To investigate the effect of model scale on style transfer performance, we compare SD3-Medium
863 (2B parameters) with Flux-Dev (12B parameters) fine-tuned on our DeStyle-100K dataset. The
quantitative results are presented in Table 7.

Figure 11: More stylization results of DeStyle2Style.

Quantitative Analysis. From Table 7, we observe that the larger Flux-Dev model demonstrates advantages in several metrics: it achieves higher DINO-Score (0.8203 vs 0.7473) and CLIP-Score (0.2702 vs 0.2356), indicating better semantic feature preservation and text-image alignment. On the other hand, the smaller SD3-Medium model excels in Style Loss (0.0518 vs 0.1170), Qwen-Content-Score (8.4413 vs 8.1385), and Qwen-Aesthetic-Score (9.2032 vs 8.7326).

Notably, despite having 6x fewer parameters, SD3-Medium achieves comparable or even better performance on the core style transfer metrics: CSD-Score (0.5341 vs 0.5606), Style Loss (0.0518 vs 0.1170) and Qwen-Style-Score (7.4789 vs 7.5763). This suggests that our DeStyle-100K dataset

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 12: Style transfer results of stable-diffusion-3-medium (2B) fine-tuned on our DeStyle-100K dataset.

enables effective style transfer training even with significantly smaller models, without substantial degradation in style quality.

Qualitative Analysis. Figure 12 presents SD3-Medium’s style transfer results across diverse content and style combinations. The model successfully transfers various artistic styles including cartoon animation, geometric abstraction, pixel art, line art and 3D Papercraft, while preserving the semantic content of the original images. The results demonstrate high-quality stylization with vibrant colors, clear structural details, and faithful style representation, confirming the quantitative findings.

The above quantitative and qualitative results further validate the effectiveness of our DeStyle-100K dataset and training pipeline, demonstrating their architecture-agnostic reliability. Notably, SD3-Medium with only 2B parameters achieves competitive style transfer performance compared to the 12B Flux-Dev model, confirming that our approach generalizes effectively across different model scales and architectures.

Table 7: Quantitative comparison of different backbone finetuned on our DeStyle-100K dataset.

Backbone	Parameters Size	DINO Score	CLIP Score	CSD Score	Style Loss	Content	Qwen Style	Aesthetic
Flux-Dev	12B	0.8203	0.2702	0.5606	0.1170	8.1385	7.5763	8.7326
SD3-Medium	2B	0.7473	0.2356	0.5341	0.0518	8.4413	7.4789	9.2032

A.4 ADDITIONAL DETAILS ON DATASET CONSTRUCTION

In this section, we provide detailed information on the dataset construction process. Specifically, Section A.4.1 describes the collection of real artistic images, Section A.4.2 explains the synthesis of

972 Table 8: Construction of a content tree comprising six major categories, including Human, Scene,
 973 Architecture, Object, Animal, and Plant, each with ten fine-grained subcategories. This hierarchical
 974 taxonomy serves as the content basis for generating style images.

Category	Fine-grained Subcategories
Human	Single portrait (face close-up), Half-body (upper body), Full-body (standing), Two people (interaction or pose), Group of people (3–5 individuals), Child (toddler or school age), Elderly person, Person in traditional clothing, Fantasy character, Professional (e.g., doctor)
Scene	Urban street (with buildings and people), Modern cityscape (skyscrapers, skyline), Indoor room (bedroom, kitchen, office), Park (trees, paths, benches), Countryside (fields, rural roads), Mountain landscape, Forest scene, Beach or coast, Night city scene, Fantasy or magical landscape
Architecture	Modern house or villa, Apartment building, Traditional Asian architecture, Classical European building, Futuristic building, Cottage or cabin, Bridge, Skyscraper, Church or mosque, Historic ruin or monument
Object	Chair or sofa, Table or desk, Laptop or smartphone, Camera, Musical instrument (e.g., guitar), Vehicle (car, bicycle, motorcycle), Book, Backpack or bag, Watch or jewelry, Toy (e.g., teddy bear)
Animal	Dog, Cat, Horse, Bird (e.g., parrot, owl), Fish (e.g., goldfish, clownfish), Lion or tiger, Elephant, Butterfly, Snake or lizard, Fantasy creature (e.g., dragon)
Plant	Flower (e.g., rose, sunflower), Tree (e.g., pine, cherry blossom), Potted plant (e.g., monstera, cactus), Bush or shrub, Field of flowers, Bonsai tree, Grass or lawn, Hanging plant or vine, Tropical plant, Forest vegetation

977 Table 9: We define 65 mainstream artistic styles for synthesizing style images.

978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025
978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	10	

Figure 13: (a) Style image collection and (b) text-guided destylization pipeline.

Figure 14: Examples of real artistic images that were excluded due to their overly abstract nature and lack of clearly interpretable semantic content, which makes them unsuitable for the destylization task.

A.4.3 FILTERING AND QUALITY CONTROL

As shown in Figure 15, we utilize GPT-4o to filter low-quality style-desty image pairs, assessing their quality from two key perspectives: content preservation and style discrepancy. As described in the main text, we adopt a fine-grained, multi-stage assessment strategy based on Chain-of-Thought reasoning. Figures 16 and 17 show the prompt templates used for the two evaluation tasks.

For content preservation, GPT-4o is first instructed to identify all key semantic regions and objects in the style (left) image. Then, for each identified region, it evaluates whether the corresponding content is faithfully preserved in the destylized (right) image. The final score is computed by aggregating the evaluations of all key regions. To ensure scoring consistency, we define a detailed scoring criterion summarized below:

- **5:** All objects and regions are perfectly preserved with no perceptible errors.
- **4:** Nearly perfect; all objects are present and clearly reconstructed, with only extremely minor, barely visible issues.
- **3:** At least one object or region is slightly degraded or inaccurately rendered (e.g., blurry, simplified, off-shape).
- **2:** Multiple objects show errors or degradation; several elements are not well-preserved.
- **1:** Major objects are missing, malformed, or hallucinated.
- **0:** Most content is lost or the scene is unrecognizable.

The evaluation strictly focuses on the preservation of semantic content. Style-related differences (e.g., color, brushstroke, artistic texture) must be ignored. If any meaningful object or region from the left image is not properly preserved in the right image, the score should be reduced accordingly. A similar multi-stage, fine-grained reasoning process is applied for the assessment of style discrepancy.

A.4.4 DATASET STATISTICS AND VISUALIZATIONS

As shown in Figure 18, we visualize the distribution of synthesized stylized images. The left plot shows a balanced coverage of six content categories: Animal, Human, Scene, Plant, Object, and Architecture. The right plot shows an even distribution across 65 styles, which helps mitigate long-tail

Figure 15: The pipeline of DestyleCoT-Filter. DestyleCoT-Filter assesses each `(style, destylized)` pair from two aspects: content preservation and style discrepancy, using GPT-4o with region-level and attribute-level Chain-of-Thought reasoning.

You are an image evaluator. You are given a horizontally concatenated image, where: - The left half is a stylized image (reference). - The right half is a de-stylized reconstruction intended to faithfully preserve all visible content in the left image. Your task is to evaluate the **local detail consistency** from left to right, with the left image as ground truth. You should follow these steps:

Step 1: Identify all meaningful content objects or regions in the **left image.**
 This includes:
 - Human features (face, eyes, mouth, hands, hair)
 - Small objects (glasses, hat, bag, accessories)
 - Scene elements (text, signs, windows, doors, lights, vehicles, trees, etc.)
 - Background structures or patterns

Step 2: For each identified object/region, determine whether it is **clearly and accurately preserved in the **right** image.**
 Check for:
 - Missing or hallucinated objects
 - Distorted or incorrectly reconstructed features
 - Blurred, simplified, or broken edges
 - Unexpected content replacement

Step 3: Assign a score from 0 to 5 **based on the strictest failure principle:**
 - **5**: All objects and regions are perfectly preserved with no perceptible errors.
 - **4**: Nearly perfect; all objects are present and clearly reconstructed, with only extremely minor, barely visible issues.
 - **3**: At least one object or region is slightly degraded or inaccurately rendered (e.g., blurry, simplified, off-shape).
 - **2**: Multiple objects show errors or degradation; several elements are not well-preserved.
 - **1**: Major objects are missing, malformed, or hallucinated.
 - **0**: Most content is lost or severely distorted; unrecognizable scene.
 > **Important:**
 > If **any** meaningful object or region from the left image is not properly preserved in the right image, you must reduce the score accordingly. Also: Style differences (e.g., color, brushstroke, artistic texture) should be ignored. Focus purely on whether content details are preserved.

 Please return your result in **valid JSON format only** (no markdown, no triple backticks). The format should be:
 { "local_detail_consistency": { "score": [0-5], "key_objects": [list of objects], "object_checks": [list of checks], "explanation": [text] } }

Figure 16: Text prompt used by DestyleCoT-Filter for content preservation assessment.

effects from data imbalance. As shown in Table 10, we summarize 117 real-world artistic movements based on authentic artworks. Due to the large number of associated artists, we omit the full list of artist names.

LARGE LANGUAGE MODEL (LLM) USAGE

Parts of the manuscript were polished for grammar and style using LLM under the authors' direction. The authors verified and edited all generated text, and the model was not involved in generating research ideas, experimental design, or results.

1134

1135 You are an image evaluator. You are given a horizontally concatenated image, where: The ****left**** half is a stylized reference image. The ****right**** half is a de-stylized reconstruction. Your task is to evaluate the ****style difference**** between the two halves. Focus only on ****stylistic aspects**** — do ****not**** consider object preservation or semantic content.

1136

1137

1138 **Step 1: Observe all stylistic features in the left image.**

1139 This includes:

1140 - Color tones, saturation, and palettes

1141 - Texture characteristics (e.g., smooth, rough, brush-like, paper-like)

1142 - Artistic effects (e.g., oil painting, watercolor, sketch, cartoon, photorealism)

1143 - Lighting style, shading, shadows

1144 - Rendering irregularities or stylization patterns

1145

1146 **Step 2: Compare these style features with the right image.**

1147 Identify and describe:

1148 - Which stylistic elements were ****removed, softened, or preserved****

1149 - Whether the right image has become ****neutralized****, ****photorealistic****, or ****completely different****

1150 - Whether any ****stylization patterns**** are still visible

1151

1152 **Step 3: Assign a score from 0 to 5 based on ****how much the style has changed**** from left to right:**

1153 - ****0****: Completely different styles; all stylization removed or transformed. The right image looks natural or neutral.

1154 - ****1****: Most stylistic features removed, only faint traces remain (e.g., slight texture or lighting retained).

1155 - ****2****: Mixed: some styles clearly removed, but some textures or colors are still similar.

1156 - ****3****: Many stylistic features still remain; only partial de-stylization achieved.

1157 - ****4****: Only very subtle changes; most stylization patterns are still present.

1158 - ****5****: No visible difference in style between the two images.

1159 > **⚠ Important:** Ignore all content differences. Only judge ****visual style and artistic appearance****.

1160

1161 Please return your result in ****valid JSON format only**** (no markdown, no triple backticks). The format should be:

1162 `{"style_difference": {"score": [0-5], "style_features": ["color palette", "texture", "brushstroke", "lighting"], "change_analysis": {"color palette": "completely removed", "texture": "mostly neutralized", "brushstroke": "still faintly visible", "lighting": "unchanged"}, "explanation": "The right image has lost most artistic elements but retains some subtle brushstroke texture."}}`

1163

1164

1165

1166

1167

Figure 17: Text prompt used by DestyleCoT-Filter for style discrepancy assessment.

