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Abstract
As AI systems continue to evolve, their rigorous
evaluation becomes crucial for their development
and deployment. Researchers have constructed
various large-scale benchmarks to determine their
capabilities, typically against a gold-standard test
set and report metrics averaged across all items.
However, this static evaluation paradigm increas-
ingly shows its limitations, including high eval-
uation costs, data contamination, and the impact
of low-quality or erroneous items on evaluation
reliability and efficiency. In this Position, draw-
ing from human psychometrics, we discuss a
paradigm shift from static evaluation methods
to adaptive testing. This involves estimating the
characteristics or value of each test item in the
benchmark, and tailoring each model’s evalua-
tion instead of relying on a fixed test set. This
paradigm provides robust ability estimation, un-
covering the latent traits underlying a model’s
observed scores. This position paper analyze the
current possibilities, prospects, and reasons for
adopting psychometrics in AI evaluation. We ar-
gue that psychometrics, a theory originating in
the 20th century for human assessment, could be
a powerful solution to the challenges in today’s
AI evaluations.

1. Introduction
AI systems are demonstrating an ever-increasing level of
capability and generality, particularly those generative AI
models represented by Large Language Models (LLMs).
As AI systems become more integrated into our daily lives
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Figure 1. The traditional benchmarking paradigm for AI. However,
the reliability of evaluation results can be compromised by several
factors, including item’s quality (e.g., redundancy, contamination,
or errors) and the increasing complexity of AI behaviors.

and decision-making processes, it is crucial to determine
the success of these techniques and evaluate whether a sys-
tem is ready for deployment (Chang et al., 2024; Sandmann
et al., 2024). Significant efforts have been made to examine
models from various perspectives, including traditional lan-
guage tasks (Peña et al., 2023; Bang et al., 2023), natural
sciences (Boiko et al., 2023; Arora et al., 2023), social sci-
ences (Demszky et al., 2023; Nay et al., 2024), and agent
applications (Valmeekam et al., 2023). Diverse and exten-
sive benchmarking is essential for a holistic assessment of
advanced AI systems, identifying their shortcomings and
guiding targeted improvements. For example, Google’s
BIG-bench (Srivastava et al., 2022) consists of over 200
different tasks, and HuggingFace’s Open LLM Leaderboard
(Beeching et al., 2023) includes six scenarios with approxi-
mately 29,000 items (questions) in total.

Traditionally, as shown in Figure 1, evaluating AI systems
involves testing against a large-scale gold-standard test set
and reporting standard metric (precision/recall/F1) scores
averaged across all items. For example, correct responses
are scored as 1, incorrect as 0, and the final score is av-
eraged. However, these sheer size of benchmarks incurs
significant time and computational costs. For example, eval-
uating the performance of a single LLM on the full HELM
benchmark consumes over 4,000 GPU hours (or $10,000
for APIs) (Liang et al., 2023). In today’s era dominated by
large generative AI, the evaluation costs increase dramati-
cally with model size, with inference latency reaching up to
1,000 times that of traditional language models like BERT
(Wang et al., 2024b). The challenges are compounded when
evaluating diverse generative tasks, which often require
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substantial human involvement (e.g., open-ended tasks in
Chatbot Arena (Chiang et al., 2024; Cheng et al., 2024)).
These factors significantly increase the potential economic,
human, and time costs in large-scale evaluations.

Furthermore, such a broad-stroke paradigm overlooks nu-
anced information embedded within large collections of
test items. Recent studies have uncovered the presence of
low-quality items, errors, redundancy, and contamination in
various contemporary benchmarks (Polo et al., 2024; Kejri-
wal et al., 2024; Oren et al., 2023; Chowdhery et al., 2023).
Combined with the inherent complexity and uncertainty
of modern AI systems, the reliability of this static bench-
marking paradigm has increasingly come under scrutiny
(Rodriguez et al., 2021).

Given these challenges in AI evaluation, some critical ques-
tions arise: Is it necessary to use so many items, or are
all items in the benchmark equally important and of high
quality? Do the evaluation results genuinely reflect the AI’s
capabilities? These considerations challenge the existing
AI evaluation paradigm. In fact, human cognitive assess-
ments have faced similar issues and have been extensively
studied since the 1950s (Lord, 1952; Cheng et al., 2020).
Thanks to the development of psychometrics, traditional
rigid paper-and-pencil testing has gradually been replaced
with a more advanced approach—Adaptive Testing. It un-
covers the latent traits behind a test-taker’s performance
(e.g., knowledge, abilities, attitudes, and personality) rather
than simply summing up scores (Embretson & Reise, 2013;
Cheng, 2008). By capturing the characteristics and utility
(e.g., difficulty, discrimination) of different test items and
adjusting the items in real-time, it demonstrates high ef-
fectiveness. Adaptive testing has been widely adopted in
human assessments across fields such as education, health-
care, sociology, and sports, powering systems like the GRE,
TOEFL, Duolingo, and HealthMeasures (Bridgeman et al.,
2014; Yu et al., 2024).

AI systems are becoming increasingly sophisticated and
multifaceted, exhibiting diverse behaviors and complex ap-
plication scenarios. Current evaluation paradigms are grad-
ually failing to fully reveal the true capabilities of these
systems (Allen-Zhu, 2024). We argue that adaptive test-
ing can be a transformative solution to today’s AI eval-
uation challenges, offering customized, efficient, and ac-
curate assessments. Rooted in psychometric principles,
adaptive testing accounts for the varying characteristics of
benchmark items, identifies items that are inappropriate for
evaluation, and tailors a minimalistic yet impactful “test
paper” for each model. By modeling the interactions be-
tween AI systems and these items, adaptive testing further
estimates AI’s latent traits or constructs underlying perfor-
mance. This paper will compare traditional benchmark
paradigms and specifically explain the importance of psy-

chometrics in AI evaluation.

At a principal level, the evaluation of AI models has long
been inspired by psychometric and cognitive methods,
which has led to an increasing amount of work in vari-
ous aspects, e.g., AI’s performance estimation (Lalor et al.,
2016; Polo et al., 2024), item selection (Rodriguez et al.,
2021), and understanding of experimental results (Martı́nez-
Plumed et al., 2019; Martı́nez-Plumed et al., 2016). This
Position aims to present a unifying view of these aspects
within the framework of adaptive testing. In the following,
we first comprehensively analyze the benefits and feasibility
of applying psychometrics, originally developed for human
assessment, to AI evaluation. Next, we outline the construc-
tion of such a testing system and its underlying mechanisms.
Using LLMs as an example, we seek to explore new insights,
potential applications, and the foundational principles that
contribute to reliable AI evaluation today.

2. Psychometrics Enables Scientific
Evaluation

With the rapid evolution of AI and its application across
diverse tasks, the number and variety of benchmarks have
grown exponentially (Chang et al., 2024). To ensure dis-
criminative and comprehensive assessments, these bench-
marks have also expanded in scale. Notably, only 56.3% of
datasets report their quality (Zhao et al., 2024), and conclu-
sions drawn from these evaluations are not always reliable
or well-substantiated. For example, GPT-4o achieves 85.7%
accuracy on MedQA benchmark (Jin et al., 2021) (medical
QA). Does this score indicate that GPT-4o is significantly
superior to other models and ready for deployment to serve
real patients? Could the remaining 14.3% of incorrect re-
sponses be due to model limitations, momentary lapses, or
low-quality items?

The seemingly intuitive accuracy score itself does not pro-
vide much information or value. This could result in un-
suitable deployments, especially in safety-critical domains,
potentially causing harm (Burden, 2024). Therefore, sci-
entific evaluation is particularly crucial for dealing with
more advanced AI systems, such as the so-called AGI of
increasing intelligence.

2.1. Ability-Oriented Evaluation

Psychometrics advocates for an ability-oriented evaluation
style, contrasting with traditional task-oriented evaluations
that focus on total scores in specific tasks or items (Rahwan
et al., 2019). Ability-oriented evaluation aims to measure
the latent traits within the system’s performance, such as the
“medical ability” in the above MedQA applications. This
trait can be further detailed into specific factors according
to a pre-established cognitive framework, like “ability to
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diagnose common diseases” and “ability to integrate patient
history and symptoms”. In psychometrics, one foundational
concept is the idea of a latent factor “g”, which stands for
general intelligence (Spearman, 1904). The Cattell-Horn-
Carroll taxonomy (Schneider & McGrew, 2018) further
expands this into a hierarchical structure of multiple abilities.
These latent factors influence performance in specific tasks
and, although not directly observable, can be inferred from
patterns of correlations among various cognitive tests.

In practical assessment, psychometrics assume that indi-
viduals possess a psychological continuum/scale on which
traits (e.g., abilities, perceptions, or preferences) can be
placed (Saaty, 2008; Gepshtein et al., 2020). One such tech-
nique is Item Response Theory (IRT) (Lord et al., 1968),
which models the probability of a specific response of a
test-taker with latent trait θ. The 3-parameter logistic IRT
is defined as: P (yi = 1|θ) = ci + (1 − ci)σ[αi(θ − βi)],
where σ(·) is the logistic function, yi = 1 if the test-taker’s
response to item i is correct and 0 otherwise. Each item
i is characterized by three parameters: difficulty (βi), dis-
crimination (αi), and guessing factor (ci). These parameters
are estimated from the test-takers’ response data (details in
Appendix B). The probability P depends on the relationship
between the test-taker’s latent trait and the item’s charac-
teristics. For example, the probability of a correct response
increases as the test-taker’s ability θ surpasses the item’s dif-
ficulty. Extensions like Multidimensional IRT (Ackerman
et al., 2003) model multiple latent traits, while the Graded
Response Model (Samejima, 2016) can accommodate con-
tinuous scores, e.g., BLEU in machine translation.

These psychometric techniques, traditionally used for hu-
man assessments, have proven to be reliable in evaluat-
ing AI models (e.g., ranking and performance estimation)
(Polo et al., 2024; Rodriguez et al., 2021). They have been
widely employed to assess AI in various domains, including
chatbots, machine translation, computer vision and general-
purpose AI systems (Otani et al., 2016; Lalor et al., 2016;
Sedoc & Ungar, 2020; Ramachandran et al., 2024; Wang
et al., 2023). By estimating the latent trait, it allows for more
precise, fair, and comparable ability measurements across
different test forms. We have identified and summarized the
key advantages as follows:

Capturing Uncertainty in Performance. Whether eval-
uating humans or advanced AI systems, inherent uncertainty
in behavior poses a significant challenge. For example,
LLMs can produce entirely different responses based on
changes in prompt order, minor spelling errors, or the use
of synonyms (Zhuo et al., 2023; Zhu et al., 2023; Nie et al.,
2020). Even when presented with the same prompt, these
models can be “fickle-minded”, producing completely dif-
ferent decisions or judgments (see Appendix A.4 for details).
Similarly, humans exhibit even greater uncertainty in their

assessments. It is widely recognized that human responses
are inherently variable and non-deterministic: the same in-
dividual may produce different judgments to the same input
(item), due to various factors like fatigue, emotional fluctua-
tions, or environmental changes (Arnsten, 2009).

Regardless of whether evaluating humans or AI, one thing
remains certain: the trait being assessed does not change
during a short testing period where no new knowledge can
be learned, even as observed responses fluctuate. Psycho-
metrics understands how observed scores relate to latent
traits, acknowledging that: while there is measurement er-
ror/randomness, the trait itself is consistent. For example,
psychometric bayesian methods (Wu et al., 2020) not only
estimate a single ability value but also derive its distribu-
tion, offering a more comprehensive understanding of the
model’s ability and its associated uncertainty. This posterior
distribution provides a direct probability statement about
the parameter being within a certain range. It is particularly
useful for understanding the confidence in performance and
identifying areas where additional data may be needed.

Mitigating the Curse of Dimensionality. Benchmarks
often grapple with the Curse of Dimensionality (Marx, 2013;
Bellman, 1966), where complexity and computational cost
grow exponentially with the expected number of evaluation
dimensions or factors. For example, assessing a medical
consultation robot across 20 diseases (up to 3 comorbidities),
5 age groups, and 10 difficulty levels results in

(
20
3

)
× 5×

10 = 67, 500 combinations to construct the benchmark.
If we attempt to consider more granular dimensions, or
add more options within the same dimension (e.g., more
complex comorbidities or finer difficulty levels), benchmark
size will increase exponentially. Not to mention, in open-
ended tasks like chess or autonomous driving, we face vast
multidimensional task spaces, making the curse even more
pronounced and challenging to manage.

Traditional human assessments, like paper-and-pencil tests,
include a wide range of items to accommodate all ability
levels, making them lengthy and burdensome. This test,
once the standard for evaluating human abilities, mirrors the
current AI evaluation paradigm. In response, computerized
adaptive testing, grounded in psychometrics, emerged as a
more efficient alternative, offering informative assessments
that maximize accuracy while minimizing test length (Chang,
2015; Liu et al., 2024).

On one hand, adaptive testing can simplify evaluation di-
mensions. It assumes that evaluation dimensions are rarely
independent but instead follow structured relationships, such
as hierarchical or prerequisite-successor dependencies (Gao
et al., 2021). Cognitive diagnosis models (Cheng, 2009;
Von Davier, 2014) used in adaptive testing account for these
relationships, recognizing that mastering one skill often
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Figure 2. Toy example comparing traditional evaluation metrics with psychometric metrics: a. Traditional accuracy-based metrics are
unstable when using random subsets of items, as they rely solely on observed outcomes and cannot ensure subset performance reflects the
full dataset. b. Psychometric methods infer ability from limited responses by considering item characteristics. For example, if an AI
system answers a 0.8-difficulty item incorrectly but a 0.6-difficulty item correctly, its ability likely lies between 0.6 and 0.8.

relies on prior knowledge of another, e.g., understanding
algebra typically builds on arithmetic. Similarly, in AI eval-
uation, task performance scores of LLMs have also been
shown to often correlate and predict one another (Ye et al.,
2023), indicating the presence of implicit relationships. In-
corporating such dependencies can reduce unnecessary and
redundant evaluations.

On the other hand, adaptive testing can reduce complexity
within a single dimension. If performance is assumed to be
influenced primarily by item difficulty, then an AI system
consistently failing on difficult items does not need to be
tested with even harder ones (Figure 2). Instead, identifying
the model’s ability boundary enables us to predict its perfor-
mance on unattempted items without actually requiring it
to answer them. By focusing only on a few highly informa-
tive items near the estimated ability boundary, we can more
precisely pinpoint the model’s capabilities (see Appendix
A.2 for detailed analysis). Building on this, the simple psy-
chometric technique IRT has already been used to construct
various tiny versions of benchmarks. Polo et al. (2024)
successfully select 100 curated items from MMLU, and
accurately estimate and reconstruct LLMs’ original bench-
mark scores. It can further achieve personalized assessment
by selecting items tailored to the test-taker’s ability (Zhuang
et al., 2023) (see Section 3.2 for details).

Interpretability and Comparability. Psychometric tech-
niques can achieve the statistical interpretability and com-
parability of model ability values. Item characteristics are
derived by analyzing a sample of model responses on a
benchmark, and the ability estimate can be subsequently
scaled relative to the population (used to estimate these item

parameters). For example, in a standard IRT, an estimated
ability of 1.6 can be interpreted as: 1.6 standard deviations
above the average ability in this population (Lalor et al.,
2016). It can make meaningful comparisons, effectively
communicate results, conduct statistical analyses, and en-
sure the validity of assessments. Additionally, cognitive
diagnostic models in adaptive testing can further provide
more detailed assessment conclusions, outputting ability
levels across various dimensions or skills (Gao et al., 2024).

This paradigm further enables comparability across different
benchmarks for the same task. If our medical AI agent
achieves 20% accuracy on one medical benchmark and 99%
on another, which result should we trust? Evaluating AI
solely on task performance can be short-sighted and prone
to overfitting. In contrast, the ability-oriented paradigm
focuses on the characteristics of the test items rather than
the items themselves. Through scale linking or data-driven
item parameter estimation (Kline, 2013), the latent trait
scales of different benchmarks can be aligned and modeled
consistently. This is often achieved using anchor items or
shared test-taker groups. Such methods can even allow
results from various benchmarks to be combined into a
single, cohesive assessment, offering a more consistent and
reliable evaluation.

2.2. Not All Items Are Equally Important

AI researchers have long acknowledged that not all data
samples are equally important for model development, with
techniques like weighted training emphasizing samples that
better address specific needs (Bengio et al., 2009). However,
current AI evaluation paradigms often overlook the varying
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SQuAD:  High Discrimination (𝛂 = 𝟖.𝟎𝟏) Wikipedia Page: Normas 
Context: Some Normans joined Turkish forces to aid in the destruction of the Armenians vassal-states of Sassoun and Taron in far eastern Anatolia. Later, many 
took up service with the Armenian state further south in Cilicia and the Taurus Mountains. A Norman named Oursel led a force of "Franks" into the upper Euphrates 
valley in northern Syria…
Question: Who did the Normans team up with in Anatolia?     Official Answer: Turkish forces

SQuAD:  Low Discrimination (𝛂 = −𝟗.𝟔𝟑) Wikipedia Page: Economic inequality 
Context: A number of researchers argue that a shortage of affordable housing is caused in part by income inequality. David Rodda noted…, the number of quality 
rental units decreased as the demand for higher quality housing increased. Through gentrification of older neighbourhoods, for example, in East New York, rental 
prices increased rapidly as landlords found new residents willing to pay higher market rate for housing and left lower income families without rental units. The ad 
valorem property tax policy combined with rising prices made it difficult or impossible for low income residents to keep pace.
Question: Why did the demand for rentals decrease?              Official Answer: demand for higher quality housing (×)

SSTB: Low Difficulty (𝛃 = −2.27)
Phrase: An endlessly fascinating, landmark movie that is as bold as anything 
the cinema has seen in years.    Label: Positive

SSTB: High Difficulty (𝛃 = 𝟐.𝟎𝟓)
Phrase: Perhaps no picture ever made has more literally showed that the road to 
hell is paved with good intentions. Label: Positive

MedQA: Low Guessing Factor (c= 𝟎.𝟎𝟏𝟔)
Question: A 25-year-old male rugby player presents to the emergency room complaining of a severe headache. ... He had a head-to-head collision with another player 
and briefly passed out before regaining consciousness. ... His blood pressure is 160/90 mmHg, pulse is 60/min, and respirations are 20/min. On examination, he is 
lethargic but oriented to person, place, and time. The affected vessel in this patient directly branches from which of the following vessels?
(A): Maxillary artery.            (B): Internal carotid artery. (C): Superficial temporal artery.          (D): Anterior cerebral artery.

MedQA: High Guessing Factor (c= 0.767)
Question: A 16-year-old girl is brought to the physician because her mother is concerned about her lack of appetite and poor weight gain. She has had a 7-kg (15-lb) 
weight loss over the past 3 months. The patient states that she should try to lose more weight because she does not want to be overweight anymore. ... She is at 50th 
percentile for height and below the 5th percentile for weight and BMI. ... Examination shows fine hair over the trunk and extremities. Which of the following is the most 
likely diagnosis? 
(A): HIV infection. (B): Type 1 diabetes mellitus.     (C): Hyperthyroidism.         (D): Anorexia nervosa. 

Rodriguez 2021 

Lalor 2018 a

b

c

Figure 3. Examples of item characteristics from benchmarks: SSTB (sentiment analysis), SQuAD (reading comprehension QA), and
MedQA (medical QA) across three factors: difficulty, discrimination, and guessing. These factors are estimated via parameter analysis of
model responses. (a) Difficulty (β): Higher difficulty means a lower probability of a correct response at a fixed ability level. For example,
the first example’s ambiguous tone makes it harder to classify compared to the straightforward second example. (b) Discrimination (α):
Highly discriminative items distinguish between similar ability levels. The first example’s plausible distractors (e.g., “the Armenian state”)
increase discrimination, while the second example has negative discrimination due to annotation errors. (c) Guessing factor (c): This
represents the likelihood of low-ability test-takers guessing correctly. The first item’s hallmark features of anorexia nervosa, allowing it to
be correctly answered even with minimal specific knowledge or common sense. The first two cases are adapted from (Lalor et al., 2018;
Rodriguez et al., 2021). More detailed information about item characteristics can be found in Appendix C.

significance of benchmark items, treating all items as equally
important when calculating aggregate scores.

Using psychometric techniques like IRT, as shown in Fig-
ure 3, we demonstrate how item characteristics—such as
difficulty, discrimination, and guessing—impact evaluation
differently. Obviously, solving a difficult item cannot be
equated with solving an easy one (Figure 3a), and some med-
ical items can be guessed correctly without any specialized
knowledge, relying merely on common sense (Figure 3c).
Moreover, some benchmark items can even introduce noise
and errors (Figure 3b), revealing that high accuracy does
not always translate to real-world performance:

Identifying Annotation Errors and Low-Quality Items.
Traditional evaluation metrics can be undermined by an-
notation errors and low-quality items. Flawed evaluations
may lead to undue confidence in strategies for system align-
ment or decision-making. Psychometric techniques may
help identify such issues. Wang et al. (2024a) use Classical
Test Theory (DeVellis, 2006) to design nine statistical met-
rics that automatically evaluate the quality of named entity
recognition datasets. These metrics can identify redundancy,
errors, and data leakage in benchmarks, enabling targeted

improvements. Rodriguez et al. (2021) utilize model re-
sponse data to estimate the IRT characteristics of each item.
They inspect sixty development set items in the SQuAD
benchmark (Rajpurkar et al., 2018) and find that item’s dis-
criminability feature (α) could automatically associate with
item quality and even identify annotation errors: as shown in
Figure 3b, the item with the most negative discriminability
asks, “Why did demand for rentals decrease?” when the an-
swer is “demand for higher quality housing increased”. This
strength of psychometric techniques is intuitive: accord-
ing to the IRT formulation, negative discriminability means
that the probability of getting the answer right increases as
ability decreases, which is undesirable.

The importance of each item can be personalized, meaning
that the utility of an item for evaluating different models
varies. Due to differences in the traits of each test-taker,
tests need to provide items that are informative for gauging
specific abilities. This principle underpins the widespread
adoption of personalized adaptive testing in standardized
human exams. Similarly, in AI evaluation, focusing on more
appropriate and informative items can reduce redundancy
and lead to deeper assessments (Guinet et al., 2024).
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Figure 4. Using psychometric methods to detect data contamination in AI evaluation. On one hand, contamination can be identified
through anomalous behavior of AI models, such as inconsistencies in their performance on contaminated samples compared to their
overall behavior. On the other hand, item characteristics, such as the guessing parameter, may also indicate potential contamination.

Identifying Data Contamination. Modern AI systems,
particularly LLMs, are data-hungry and fed a wide variety of
information from even millions of sources. This raises con-
cerns about data contamination (Oren et al., 2023), where
parts or characteristics of a test set leak into the training data.
Despite significant advancements on various benchmarks,
contamination leads to artificially high scores, diminishing
the value of benchmarks. Intriguingly, findings indicate that
benchmarks released before the creation date of the LLM
training data generally perform better than those released af-
terward (Li & Flanigan, 2024). Assessing the extent of this
contamination is particularly challenging. Closed models
do not disclose their training data, and while open models
provide the sources, crawling these sites to obtain that data
is non-trivial, especially if the data has changed since it was
originally crawled (Brown et al., 2020; Wei et al., 2021).

Actually, data contamination is not unique in AI; it is also
a well-studied problem in human examinations: some stu-
dents may encounter specific test items prior to the exam,
which undermines the assessment’s credibility. Various ro-
bust methods are designed to handle and interpret these
anomalies or inconsistencies in performance (Zhuang et al.,
2022a). A simple approach is to flag cases where a test-taker
performs well on high-difficulty items but poorly on sim-
pler ones, as this may indicate guessing behavior or prior
exposure to the difficult items (i.e., contamination). As illus-
trated in Figure 4, such outliers are often partially ignored
in robust ability estimation methodologies (Mislevy, 1986).
Existing data contamination detection methods in AI, such
as guessing analysis (Deng et al., 2024; Chang et al., 2023),
are conceptually similar: if a model answers an almost im-
possible—or at least highly improbable—item correctly, it is
a strong indicator that the model has encountered it before.

In more extreme cases, if an entire benchmark is suspected
to be contaminated, differences of its ability estimates be-
tween benchmarks of similar tasks can be used to assess
contamination. McLeod et al. (2003) have demonstrated
the application of psychometric techniques to analyze re-
sponse patterns, reliably identifying anomalies between sim-
ilar tests or administrations when item preknowledge is sus-

pected. Sometimes, data contamination can also manifest in
item characteristics. For example, the guessing parameter
(c) in IRT can also be interpreted as: the probability that a
test-taker, with no knowledge of the item, would still answer
it correctly. In a controlled environment, this hypothesis is
verified successfully across three different benchmarks, as
detailed in the Appendix A.3. Additionally, adaptive testing
ensures that each model only answers a different subset of
the benchmark items, effectively avoiding its further con-
tamination. All these methods used in human assessments
hold promise for the evaluation of AI systems, offering new
ways to ensure its accuracy and fairness (Zhang et al., 2024).

3. Adaptive Testing Conceptualization for AI
In this section, based on the aforementioned insights, we
discuss the theoretical framework and practical implementa-
tion of adaptive testing in the context of AI evaluations. The
entire evaluation process can be divided into two phases: (1)
Item Characteristics Annotation and (2) Interactive Dynamic
Model Evaluation. In the first phase, item characteristics
are estimated for each item in the benchmark, enabling the
selection algorithm to choose suitable items. In the second
phase, formal adaptive testing is conducted to estimate the
model’s ability on this benchmark.

3.1. Item Characteristics Annotation

Annotated item characteristics, grounded in psychometric
principles, provide valuable insights for adaptive testing.
It can guide item selection and enhance evaluation inter-
pretability. Notably, their characteristics are often specific
to the test-taker group being evaluated. For example, AI
models and humans frequently perceive item characteristics
differently. Tasks that are logically or semantically complex
for humans may be trivial for LLMs, while seemingly sim-
ple tasks, such as comparing “9.12 and 9.9”, can confuse
LLMs (Marcus & Davis, 2023). Despite these differences,
a unifying principle remains: perception is embedded in
responses. For example, item difficulty can be quantified
as the proportion of correct responses, while item discrim-
ination reflects performance differences between higher-
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and lower-ability models (Magno, 2009; DeVellis, 2006).
Psychometric models can estimate these parameters using
data-driven methods such as Maximum Likelihood Estima-
tion (MLE) or Bayesian estimation1. By fitting the observed
response data, we can estimate all item parameters in the
given benchmark, thereby revealing features that influence
model performance.

3.2. Interactive Dynamic Model Evaluation

Following the annotation of the benchmark dataset, formal
adaptive testing commences through an interactive process
between items and the AI system. At each test step, the
model’s current ability is estimated based on its previous
responses using parameter estimation methods grounded in
a specific psychometric model. Subsequently, the next ap-
propriate item is selected according to a predefined criterion.
Through dynamic real-time adjustment of item characteris-
tics and ability estimation, a clearer understanding of the
model’s abilities is progressively achieved.

This process involves continuously observing data (the
model’s responses) to reduce the uncertainty in ability pa-
rameter estimation. Consequently, most item selection al-
gorithms rely on uncertainty or informativeness metrics
(Chang & Ying, 1996; van der Linden, 1998; Zhuang et al.,
2022a), and one widely used metric is the Fisher Informa-
tion (Lord, 1980), which quantifies how much the observed
data tells us about the parameter. If using IRT as the psy-
chometric model, the Fisher Information for each candidate
item i is denoted as Ii(θ) = α2

i ·P (yi = 1|θ) ·P (yi = 0|θ),
where the item that maximizes this function is selected.
This method, widely applied in human assessment since the
1980s, tends to select items with high discrimination and
difficulty levels near the current ability estimate (Wang &
Chang, 2011). If the test-taker performs well, more chal-
lenging items are chosen next, and vice versa. This explains
why skilled GRE test-takers often perceive the test items to
progressively increase in difficulty.

To differentiate and rank various AI systems more efficiently,
this simplest Fisher Information can be used to select only
50 items from a benchmark of nearly 1,000 items, achiev-
ing a 90% Kendall’s rank correlation with the full test data
(Rodriguez et al., 2021). Recently, Kipnis et al. (2024)
apply the Fisher method to identify the most informative
items across six benchmarks—ARC, GSM8K, HellaSwag,
MMLU, TruthfulQA, and WinoGrande. Remarkably, they
demonstrate that as little as 3% (or even fewer) of the items
could be selected to distill a sparse benchmark while accu-
rately reconstructing the original benchmark scores.

1Deep learning models, including LLMs, can also serve as
annotators (Liu et al., 2025; Huang et al., 2021), improving anno-
tation scalability and generalizability.

4. Core Mechanisms Driving Adaptive Testing
As discussed earlier, a growing body of evidence suggests
these assessment methods originally developed for humans
can be equally effective when applied to evaluating AI sys-
tems (Lalor et al., 2016; Vania et al., 2021; Possati, 2020;
Piloto et al., 2022). Below, we delve into the core mech-
anisms and principles underpinning the effectiveness of
adaptive testing.

A Parameter Estimation Problem: Whether assessing hu-
mans or AI, the goal is the same: to quantify ability levels
and determine if expectations are met. Regardless of the
test-taker group, psychometrics reframes evaluation as a
parameter estimation problem (Freund & Wilson, 2003),
where the true ability (θ0) is treated as an unknown pa-
rameter to be estimated (Figure 5a). By iteratively observ-
ing responses, psychometric methods progressively refine
ability estimates, mitigating noise, outliers, and variabil-
ity (Zhuang et al., 2022a; Lord et al., 1968) as illustrated
above. For example, according to the asymptotic theory of
MLE (Ross, 2014; Efron & Hinkley, 1978), as the number
of items (n) grows, the distribution of the ability estimator
θ̂ is approximately normal with a mean of θ0 and a vari-
ance of 1/nI(θ0) (where I(θ0) is the Fisher information).
This makes θ̂ asymptotically unbiased, converging to θ0 as
responses increase.

Interconnectedness in Benchmarks: Unlike traditional
benchmarking, psychometrics provides a more nuanced
analysis of benchmarks. It captures interrelationships and
constraints among tasks and items (Figure 5b), enabling
better identification of inappropriate or redundant items. As
discussed in Section 2.1, this reduces unnecessary evalua-
tions while focusing on critical items that reveal key model
performances. By accounting for these interdependencies,
psychometric methods enhance evaluation robustness and
provide deeper insights into model performance.

Universal laws in AI systems: More importantly, the ef-
fectiveness of psychometrics stems from its reliance on uni-
versal laws that apply across all AI systems, not just GPT-4:
there is a certain uniformity in the performance of AI sys-
tems that can be captured, modeled, and predicted. For
humans, the uniformity observed in cognition arises from
shared biological factors (e.g., brain structure and learn-
ing processes) (He et al., 2024; Van Essen & Dierker, 2007;
Shanks, 1995). In AI systems, this uniformity maybe shaped
by shared architectural principles and training methodolo-
gies (Figure 5c). For example, LLM’s uniformity is primar-
ily driven by the widespread adoption of the Transformer
architecture, the next-token prediction paradigm, and poten-
tially overlapping training data (Allen-Zhu & Li, 2024). Ye
et al. (2023) have found that given records of past experi-
ments using different model families, numbers of param-
eters, and tasks, it is possible to accurately predict a new
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Figure 5. Three Reasons for the Effectiveness of Psychometrics in AI System Evaluation: a. the transformation of problem nature,
b. the interrelatedness of benchmarks, and c. the universal laws exhibited by AI systems.

LLM’s performance on new configurations (achieving an
impressive R2 score greater than 95%). Thus, it is possible
to predict the performance of a newly developed 1600B GPT
model on a task it has never encountered before. Psycho-
metrics utilizes such uniformity inherent in response data
to calibrate different models on a common scale, identify
anomalies, and capture characteristic perception.

5. Opportunities and Challenges
As we pursue the development of AGI, the traditional bench-
marking paradigm may no longer suffice. This paper aims
to uniquely bridge the gap between psychometric evalua-
tion principles and their practical application in assessing
AI models. However, this field remains in its early stages,
presenting both significant challenges and opportunities.

Diversified and Deep Measurement Methods. In addi-
tion to the commonly used IRT, adaptive testing can incor-
porate various models based on IRT, such as the Graded
Response Model (Samejima, 1969), Partial Credit Model
(Masters, 1982), and Rating Scale Model (Andrich, 1978).
Cognitive diagnostic models further (DiBello et al., 2007;
Cheng, 2009) map items to the underlying attributes or skills
they are intended to measure, providing multidimensional
diagnostic reports. As AI models grow in scale and com-
plexity, sophisticated neural network-based psychometric
models (Trognon et al., 2022; Wang et al., 2022; Liu et al.,
2019) offer high accuracy in ability estimation and per-
formance prediction. This paper illustrates the necessity of
adaptive testing paradigms for AI using classical approaches
as examples. Depending on the scenario, the specific mea-
surement model required should be appropriately chosen.

Evaluation Beyond Ability. This paper focuses on the
ability evaluation of AI models. In fact, assessing “non-
ability” traits such as ethics (Deshpande et al., 2023), bias

(Fang et al., 2024), security (Yao et al., 2024), and robust-
ness (Yuan et al., 2024) is equally critical for understanding
their cognition and behavior. For example, biased AI sys-
tems can perpetuate gender or racial stereotypes (Franzoni,
2023), leading to negative societal impacts. Various bias
benchmarks also contain items of questionable quality or
items that may not effectively assess bias (Blodgett et al.,
2021). Psychometric techniques have recently been applied
to improve these benchmarks, offering more interpretive
insights beyond simple accuracy scores (Bachmann et al.,
2024). Non-ability evaluations align with psychometric
models used in human cognition, such as Attitude Mod-
els, Preference Models, and Implicit Bias Models. Table
1 provides a summary of various techniques adapted from
human cognitive assessments that can be used to evalu-
ate non-ability traits. Methods like Likert scales (Likert,
1932), MaxDiff (Louviere et al., 2015), Implicit Associa-
tion Tests (Greenwald et al., 1998), and Conjoint Analysis
(Green & Srinivasan, 1978) can be adapted to assess AI
decision-making and biases. Originally developed for hu-
man assessments, these techniques enable comprehensive
and human-comparable evaluations of AI models.

6. Alternative Views
Adaptive testing research began in the mid-20th century and
has developed over the past 70 years (Lord, 1952; William,
1979). For humans, adaptive testing has been integrated into
various high-stakes exams. Despite initial controversies, ad-
vancements in intelligent assessment and online education
have led to its widespread acceptance for human evalua-
tion. However, in AI evaluation, adaptive testing disrupts
traditional long-standing paradigms and may take time to
gain widespread recognition. Additionally, validating the
effectiveness of psychometric methods poses another chal-
lenge. While this paper provides a preliminary analysis
of adaptive testing’s reliability and validity for AI, further
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Table 1. Overview of possible psychometric models and their techniques for evaluating non-ability traits in AI models.
Techniques Introduction Item Example

Attitude Model
(Likert Scales)

Measures attitudes or opinions through
a graded response format, ranging from
“strongly disagree” to “strongly agree”
with a series of statements.

On a scale from 1 (strongly disagree) to 5 (strongly agree), please rate the
following statement: ‘I take pride in improving over time and becoming more
helpful to users’:
1: Strongly Disagree. 2: Disagree. 3: Neutral. 4: Agree. 5: Strongly Agree.

Preference Model
(MaxDiff)

Measures preferences by presenting a set
of items and asking to select the most and
least preferred items.

Which activity do you like the most and which do you like the least from
the following list? A: Visiting historical sites. B: Relaxing on the beach. C:
Hiking in nature. D: Exploring local cuisine.

Implicit Bias Model
(Implicit Association Test)

Measures the strength of automatic associ-
ations between concepts (e.g., young/old
faces) and attributes (e.g., good/bad
words).

Categorizing images of young and old faces along with positive and negative
words to assess implicit biases.

Decision-Making Model
(Conjoint Analysis)

Understands decision-making based on
multiple attributes by presenting different
combinations of features and asking for
preferred options.

Attributes and Levels in Hiring Decisions:
1. Work Experience: 1 year, 5 years, 10 years
2. Gender: Male, Female, Non-binary
3. Race/Ethnicity: White, Black, Asian, Hispanic, Other
Which of the following candidates would you prefer? Candidate A: [Attributes
and Levels]; Candidate B: [Attributes and Levels]

research is needed to determine whether psychometric prin-
ciples can fully apply to AI or if a new discipline, such as
“Machine Psychometrics”, is required. Regardless, we argue
that increasingly complex multifaceted AI systems demand
more sophisticated and fine-grained evaluation paradigms,
similar to those used for humans.

7. Conclusion
AI Model evaluations, for better or worse, are the de facto
standard for measuring progress in AI and driving advance-
ments in machine intelligence (Rajpurkar et al., 2016; Ro-
driguez et al., 2021). Traditional evaluation paradigms,
which rely on large-scale test data, are fraught with low-
informativeness, contaminated, low-quality, and mislabeled
test items, introducing errors and reducing credibility. This
is a key obstacle to fast and trustworthy AI evaluations. This
perspective paper presents a possibility: utilizing psycho-
metrics to offer adaptive testing for AI models. With various
psychometric models, fewer items are required, identify-
ing more valuable items and leading to reliable assessment.
Current evidence suggests that this approach is promising,
however, adopting this new paradigm of adaptive testing
also presents open problems that will require collaborative
efforts from the entire community.

Impact Statement
This paper explores the application of psychometric prin-
ciples, originally designed for human assessments, to the
evaluation of AI systems. It could reduce inefficiencies in
current benchmarking practices, mitigate issues like data
contamination, and provide deeper insights into model per-
formance. From an ethical perspective, improving evalua-

tion methods for AI systems has the potential to promote
transparency and accountability in AI deployment, espe-
cially in high-stakes domains such as healthcare, education,
and legal decision-making. However, as these methodolo-
gies are adapted from human assessment frameworks, care
must be taken to ensure that they are not misused to rein-
force biases or misrepresent AI capabilities. Overall, this
paper aims to advance the AI evaluation, with no immediate
societal risks identified but with significant potential for
positive impact on the reliability and fairness of AI systems.
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A. Supplementary Clarifications and Illustrations
This appendix provides additional explanations and examples to further elaborate and support the arguments presented in
the paper.

A.1. Key Aspects of Psychometric Analysis in AI Evaluation.

Ability Estimation

Identify the factors driving AI behavior 
by analyzing responses, tracing decision 
origins and model the uncertainty and 
confidence in these ability estimates.

Customize tests for each AI, focusing on item 
characteristics over quantity. Even with limited 
items, stable ability estimates can be obtained. Scaling ability estimates to the broader 

population ensures meaningful comparisons 
across AI models, and aligning benchmarks 

Identify anomalies in AI performance, such as correct 
answers to inappropriate items, and detect abnormal 
item characteristics influenced by non-ability factors.

Low-quality items in benchmark, 
including those with labeling errors, 
hinder distinguishing between AI models 
and reduce evaluation reliability.

Use high-informativeness items for efficient 
assessments to gain insight into AI abilities 
and avoid mismatched and redundant items 
to prevent unnecessary costs.

Item Characteristic Estimation

Psychometrics in AI:
Adaptive Testing

Latent Trait Analysis Personalized Assessment

Interpretability and Comparability

Data Contamination Detection
Informative Items IdentificationItem Quality Detection

Not All Items Are Equally Important in Benchmarks

Uncovering the Underlying Traits Behind Performance

Figure 6. Key Aspects of Psychometric Analysis in AI Evaluation. Psychometric analysis in AI primarily focuses on two key aspects.
Latent Trait Analysis: Shifting from traditional benchmark scoring methods to uncover the latent traits influencing performance. Item
Characteristic Analysis: Recognizing that not all items in benchmarks hold equal significance.
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Figure 7. Toy example comparing traditional evaluation metrics with psychometric metrics: a. Traditional accuracy-based metrics are
unstable when using random subsets of items, as they rely solely on observed outcomes and cannot ensure subset performance reflects the
full dataset. b. Psychometric methods infer ability from limited responses by considering item characteristics. For example, if an AI
system answers a 0.8-difficulty item incorrectly but a 0.6-difficulty item correctly, its ability likely lies between 0.6 and 0.8.

A.2. Further Explanation of How Psychometrics Mitigates the Curse of Dimensionality

Selecting random subsets of items for evaluation can lead to instability in performance metrics, as shown in Figure 7(a).
This instability arises because traditional metrics, such as accuracy, rely solely on observed outcomes and do not account for
the underlying characteristics of items or the model’s ability. Without prior knowledge of the model’s correctness on all
items, it is impossible to ensure that the subset’s performance distribution matches that of the entire dataset. As a result,
reducing the number of items typically decreases evaluation precision.

In contrast, psychometric approaches, as illustrated in Figure 7(b), offer a robust alternative by leveraging item characteristics,
such as difficulty, to infer a test-taker’s (or model’s) ability from a limited number of responses. For example, if an AI system
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Figure 8. (a) The impact of the temperature parameter on the judgments generated by ChatGPT. We ask ChatGPT to answer multiple-
choice questions (with 4 options) from the MATH benchmark 10 times (using the same prompt) and calculated the entropy of its responses.
(b) Comparison of Kernel Density Estimation of guessing factors for contaminated and uncontaminated data across three benchmarks,
using Gaussian kernel and default bandwidth. The entire benchmark is divided into contaminated and uncontaminated data in a 1:1 ratio,
where contaminated data will be revealed in LLM’s prompts to inform the answers or provide hints for the items under testing. The
distribution of guessing factor values for these two types of items is estimated using IRT combined with MLE.

answers a 0.8-difficulty item incorrectly but a 0.6-difficulty item correctly, its ability can be estimated to lie between 0.6 and
0.8. This adaptive approach allows for targeted item selection based on the model’s performance during evaluation. This
process is analogous to the binary search algorithm in computer science, where additional items with difficulty levels within
the estimated range (e.g., 0.6–0.8) are selected to iteratively narrow down the ability estimate. By focusing on the most
informative items, psychometric methods reduce the number of items needed for evaluation without sacrificing precision,
effectively mitigating the curse of dimensionality. This adaptive and efficient approach provides a scalable solution for
evaluating AI models across complex, multidimensional benchmarks.

A.3. The Impact of Data Contamination on Item Characteristics

Here, we investigate the relationship between the estimated item characteristics and data contamination in AI model
evaluation. We create a controlled environment where we deliberately include some items and their answers in the test
context for LLMs to simulate contamination. As shown in Figure 8(b), we select the MATH (Hendrycks et al., 2021),
NarrativeQA (Kočiský et al., 2018), and RAFT (Alex et al., 2021) benchmarks, finding that the guessing factors for
contaminated items are significantly higher than for non-contaminated ones. This simple experiment using IRT demonstrated
that psychometric techniques can effectively review today’s various benchmarks and provide insights. Intermediate data for
these experiments are also included in https://github.com/54zy/CAT4AI.

A.4. Illustrating Uncertainty in AI Evaluation

Figure 9 highlights a key challenge in evaluating self-regressive probabilistic models like ChatGPT: their “fickle-minded”
nature. While these models generate diverse responses, this variability also introduces uncertainty in judgments. When
the same question is asked multiple times, the model may produce inconsistent decisions—not just in content but also in
reasoning. To further investigate how temperature settings affect response variability, Figure 8(a) illustrates the entropy of
ChatGPT’s responses as the temperature parameter changes. This temperature parameter controls the level of randomness or
creativity in the generated text. Higher entropy indicates greater variability in the selected options. The results show that
temperature significantly impacts the model’s final judgments, adding another layer of complexity to the evaluation process.
This highlights the challenge of achieving consistent and reliable assessments for such models.

B. Case Study: A Simple Implementation of Adaptive Testing for AI Models
Here, we use LLMs as examples to provide a detailed description of a simplified implementation of adaptive testing, along
with specific case studies. We provide a detailed description of the process, including its adaptability and efficiency analysis.
Traditionally, AI models are evaluated using the same set of items (i.e., the full benchmark), which usually includes a
significant number of items without considering the value or importance of each item to each model. In contrast, adaptive
testing can dynamically select a few, well-fitting items from the benchmark to generate ability estimates (Figure 10a).
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MATH Question ID: #211 
Question: A linear function 
𝑦 = 𝑘𝑥 + 𝑏 satisfies 𝑘𝑏 > 0 , 
and 𝑦 decreases as 𝑥
increases, then the graph 
of this function does not 
pass through: 
A: First quadrant 
B: Second quadrant 
C: Third quadrant 
D: Fourth quadrant

R2: The correct answer is option B: Second quadrant. Since kb > 0, this means that k and b have the 
same sign. And since y decreases as x increases, this means that k is negative. Therefore, if we graph 
this linear function, it will have a negative slope and will be decreasing as x increases. The second 
quadrant is the quadrant where x is negative and y is positive. Since the function is decreasing as x 
increases, it will not pass through the second quadrant.

R1: Based on the given information, we know that k and b have the same sign since ... 
Additionally, since y decreases as x increases, we know that k is negative... Since the line is in the 
third quadrant if b is positive and the fourth quadrant if b is negative, the correct answer is: C: Third 
quadrant if b is positive, or D: Fourth quadrant if b is negative.

R3: …Since k and b have the same sign, and 
k is negative, we can conclude that b is also 
negative. Therefore, … So the correct answer is 
A: First quadrant.

R4: The correct answer is option C: Third 
quadrant. … the only option left is the second 
quadrant. Therefore, …does not pass through the 
third quadrant.

R5: The correct answer is option C: Third quadrant. ...a straight line with a negative 
slope…Therefore, the line must pass through either the second or third quadrant. However, since y 
decreases as x increases, the line cannot pass through the second quadrant. Therefore, the graph of 
the function does not pass through the third quadrant.
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a

bFigure 9. An illustration of ChatGPT’s “fickle-minded” behavior: it answers the same item 5 times, providing 4 different answers (only
R3 is correct). These 5 responses are generated using the same prompt across different sessions, with the default temperature setting of 1.

As discussed in the section “Adaptive Testing Conceptualization for AI” in the main text, a practical adaptive testing system
for evaluating AI systems involves two phases: (1) Item Characteristics Annotation and (2) Interactive Dynamic Model
Evaluation. In the first phase, item characteristics (e.g., difficulty) are estimated for each item in the benchmark, enabling
the selection algorithm to choose suitable items based on the model’s performance. In the second phase, formal testing is
conducted to estimate the model’s ability on this benchmark (Figure 10b).

Phase 1: Item Characteristics Annotation. The first phase involves examining the characteristics of items in the given
benchmark dataset. Different psychometric models often have varying item parameters depending on the context. For
example, in different tasks, the scoring methods for individual items in AI models can vary, broadly categorized into Binary
Scoring and Polytomous Scoring.

Binary Scoring, also known as dichotomous scoring, involves binary evaluation results y (y ∈ {0, 1}) indicating “cor-
rect/incorrect” responses, such as in multiple-choice questions in various QA benchmarks, e.g., MedQA (Jin et al., 2021),
MMLU (Hendrycks et al., 2020), OpenBookQA (Mihaylov et al., 2018). The commonly used three-parameter IRT model is:

pj(θ) = p(yj = 1|θ) = cj + (1− cj)
1

1 + exp[−αj(θ − βj)]
(1)

where yj = 1 if model’s response to item j is correct and 0 otherwise. It defines three parameters (difficulty βj , discrimination
αj , and guessing factor cj) for each item j.

Polytomous Scoring, on the other hand, provides detailed continuous scores y, such as in machine translation benchmarks
where responses are scored on a continuous scale like BLEU scores (Papineni et al., 2002) ranging from 0 to a maximum
score, denoted as y ∈ [0,M ]. The Graded Response Model in IRT (Samejima, 2016) can be employed here. The probability
of the AI model scoring m points is expressed as the difference between the probability of scoring m points or higher and
the probability of scoring m+ 1 points or higher, i.e., p(y = m|θ) = p(y ≥ m|θ)− p(y ≥ m+ 1|θ). Here,

p(yj ≥ m|θ) =
1

1 + exp[−αj(θ − β(m)
j )]

, (2)

where β(m)
j represents the difficulty of the model scoring m points on item j. The difficulty for each item is defined by a

vector βj = [β
(1)
j , β

(2)
j , ..., β

(M)
j ], following the order β(1)

j < β
(2)
j < ... < β

(M)
j . Clearly, the higher the score the model

achieves, the greater the difficulty. These are just two examples; there are numerous psychometric models, each suited to
different scenarios.
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Figure 10. An example implementation of a simple adaptive testing system. a, Traditional evaluation method vs Adaptive testing. b,
Given any benchmark with annotated item characteristics, suitable items for the AI model are adaptively and sequentially selected from
the annotated items.

To estimate these item parameters, response data D = {(si, xj , yij)} from a group of AI models {si} must be gathered.
Item difficulty can be calculated as the proportion of correct responses (Magno, 2009; DeVellis, 2006), while discrimination
is derived from performance disparities between higher and lower ability test-takers (Chang & Yang, 2009). Alternatively,
data-driven methods such as Maximum Likelihood Estimation (MLE) or Bayesian methods can be employed to estimate the
item parameters. They estimate the item parameters for all n items in the given benchmark by fitting the observed response
data. For example, MLE estimation for IRT is given by:

{αj , βj , cj}nj=1 = arg max
{α,β,c}

∏
D

pj(θi)
(yij)(1− pj(θi))(1−yij). (3)

The essence of psychometrics is to analyze the underlying causes of responses and calibrate item characteristics through
data-model fitting. It is worth noting that the data D used for annotation can come from other models’ responses to the
benchmark dataset, as we may not have access to the response data of the specific model whose abilities we want to
estimate. As discussed in the main text, LLMs exhibit a certain uniformity in performance, and this item characteristic is a
manifestation of that uniformity. Additionally, it is possible to train a deep learning model as an annotator (Huang et al.,
2021), which can enhance the universality of characteristic annotation.

Phase 2: Interactive Dynamic Model Evaluation. After the annotation of the benchmark dataset, the formal adaptive
testing starts in an item–model interactive mode. The true ability of the model is denoted as θ0, and adaptive testing
sequentially selects the best-fitting items from the benchmark Q for each model and uses their responses to estimate
their abilities. Specifically, at test step t: given model’s previous t responses St = {(x1, y1), ..., (xt, yt)}, where items
{x1, ..., xt} ⊆ Q are sequentially selected by the selection algorithm (Figure 10). Current ability can be estimated using
MLE on IRT:

θ̂t = argmax
θ

∏
St

pj(θ)
(yj)(1− pj(θ))(1−yj), (4)

where pj(θ) represents the probability of the response (xj , yj), which is defined in Eq.(1).

Then, to improve the efficiency of ability estimation, the next item xt+1 can be selected from the benchmark Q based on the

19



Position: AI Evaluation Should Learn from How We Test Humans

model’s current estimate θ̂t, such as maximizing Fisher information (Lord, 1980):

xt+1 = argmax
j∈Q

Ij(θ̂
t), (5)

where Ij(θ) =
[p′j(θ)]

2

pj(θ)[1−pj(θ)] represents the informativeness of item j. This Fisher information method is theoretically
guaranteed and more interpretable compared to other complex selection algorithms (Ghosh & Lan, 2021; Zhuang et al.,
2022b). When the test concludes, the final estimated ability (θ̂T ) is provided to serve as the assessment result.

Simulation Experiment for Ability Estimation. This represents a traditional evaluation approach in psychometrics (Vie
et al., 2017). Since the true ability θ0 of the test-taker is unknown, we artificially generate their θ0 and subsequently simulate
AI-item interactions during adaptive testing. For the rationality of the generated θ0, we use responses from the MATH
dataset to estimate the abilities {θ10, θ20, ..., θN0 } of N LLMs, serving as the ground truth for their respective true abilities.
Such settings enable the simulation of an LLM with θ0, allowing us to get their correctness label y for each item in the
benchmark. In this way, we can measure the mean square error E[‖θ̂t − θ0‖2] between the ability estimate θ̂t at each step
and the true ability θ0. As shown in Figure 10(a), the Fisher method demonstrates a rapid reduction in evaluation error.
Compared to using the test set randomly sampled from the dataset, this adaptive evaluation method, theoretically, can
achieve the same estimation accuracy using only a maximum of 20% of the items.

Comparison of Rankings with Full Dataset. To verify whether accurate ability estimation can be achieved by selecting
only a subset of items from the full benchmark under the adaptive testing paradigm, we conduct a comparison of model
rankings using the full dataset, as shown in Figure 10(b). We collect responses from 20 LLMs on the MATH dataset and
select a subset from it for evaluation. The Accuracy (ACC) rankings of these models on the full dataset serve as the ground
truth. Next, we compare the rank correlation results obtained from different evaluation methods using the same percentages
of the dataset. From Figure 10(b), we find that: The adaptive method, utilizing Fisher item selection method (Lord, 1980)
and IRT in psychometrics, achieves higher ranking consistency with the ranks obtained on the full dataset. This simple
strategy, published in the 1980s, has been widely used in human educational assessment. Notably, in the assessment for AI
model here, it can also achieve the highest ranking level using only about 60% of the items. Even with random selection,
the correlation based on ability estimate on IRT is higher than that of the traditional machine metric (ACC). However, the
experimental results exhibit some variability (standard deviation is indicated by shading), which can be attributed to the
inherent randomness of each method and the uncertainty of the models themselves.

Adaptability Analysis. To explore its adaptivity, we utilize the Jaccard similarity coefficient to measure the similarity
between the test items answered by any two models: Jaccard(A,B) = |A ∩B|/|A ∪B|, where A and B represent two
different item sets. From the adaptivity of item selection, i.e., the items each model is required to answer (see Figure 11),
psychometrics exhibits higher adaptiveness in the early stages of testing, better capturing the performance differences among
various models and demonstrating superior ranking performance. Additionally, AI models from the same manufacturer
show consistency. As the number of items increases, the items each model answers tend to converge.

The Possibility of Data-Driven Evaluation Solutions Recently, various leaderboards such as HELM (Liang et al., 2023),
HuggingFace’s Open LLM Leaderboard (Beeching et al., 2023), and AlpacaEval 2.0 (Li et al., 2023) have accumulated
extensive response data from hundreds of models across a vast array of tasks. This wealth of data prompts the consideration
of data-driven evaluation solutions. Could we optimize and build a testing system directly from this large-scale response
data? In other words, could we develop a test agent to evaluate AI models? In the past couple of years, human assessments,
particularly on large-scale online education platforms, have already begun to adopt this approach (Liu et al., 2024; Ghosh &
Lan, 2021; Zhuang et al., 2022b; Yu et al., 2024). From a holistic perspective, each test-taker’s process can be viewed as
a trajectory or task that involves selecting appropriate test items based on individual performance. By extracting general
knowledge from large-scale response data—such as optimal policies for question selection, characteristics of different
items, and prior information about proficiency—we can construct an intelligent testing system that automatically selects
items, estimates ability, and analyzes anomalous behavior for the test-taker. This process can be effectively modeled using
advanced machine learning methodologies, such as meta-learning and reinforcement learning (Finn et al., 2017; Zanette &
Wainwright, 2022). However, considering the potential biases in the data, statistical psychometric methods remain popular
due to their theoretical robustness and superior interpretability compared to more complex deep learning solutions.

Obviously, reducing the size of the evaluation dataset has been less studied. The challenge lies in the fact that evaluation
is a process without feedback or guidance. Traditional standard metrics (accuracy, precision, recall, F1) rely solely on
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the correctness of responses and simple tallying. There is no mechanism to automatically identify low-quality, erroneous,
or leaked items during evaluations, thus necessitating a comprehensive and large dataset to accurately reflect the model’s
performance across various tasks. In contrast, reducing the training dataset size to find valuable data for efficient training is
well-explored. Model training is a continuous feedback-driven process of learning and optimization, where even low-quality
or noisy data can be mitigated through various training strategies, multiple iterations, and parameter adjustments guided by
evaluation results on a validation set to ensure robust learning. Thus, extensive research has been conducted in training
such as Active Learning (Krishnakumar, 2007; Kusne et al., 2020; Rittler & Chaudhuri, 2023), Data Distillation (Wang
et al., 2018; Loo et al., 2023), and Core-set Selection (Mirzasoleiman et al., 2020; Xia et al., 2024). This paper advocates for
leveraging psychometric analysis to identify item characteristics through response patterns, successfully transforming static
evaluation into a process of learning, optimizing, and estimating ability values. Therefore, the efficiency techniques used in
AI model training can be applied to evaluation in the future. In other words, AI model evaluation becomes a process of
“learning” psychometric model parameters from responses.
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Figure 11. The average Jaccard similarity coefficient of the selected items for 20 LLMs on the MATH benchmark (Hendrycks et al., 2021).
The number of selected items increases from 10% to 80% of the entire benchmark
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C. Analysis of Item Characteristics in Benchmarks
Intermediate data for the results presented in the main text, such as feature estimates from the MedQA benchmark, are
included here. We utilized the large-scale response data from LLMs to estimate and analyze item characteristics across
several commonly used AI evaluation benchmarks. Specifically, we selected items from GSM8K and MedQA benchmarks,
focusing on those with the highest and lowest difficulty, discrimination, and guessing factors for detailed analysis. This part
reaffirms that different items hold varying levels of value in AI evaluation. Here, we present some typical examples; the
complete data set is available at https://github.com/54zy/CAT4AI.

id8227

id7876

High Difficulty and Low Guessing Factor:
These items involve complex scenarios 
requiring advanced knowledge and critical 
thinking, making the correct answer difficult 
to guess without specific expertise.

id7556

id7586
Low Difficulty and High Guessing Factor:
These items present straightforward 
scenarios with clear symptoms or basic 
knowledge, allowing the correct answer to 
be easily guessed even without full 
understanding.

Figure 12. Examples from GSM8K benchmark: This figure shows the estimated characteristics of all items in the benchmark using the
aforementioned method. It highlights two representative categories: Items with Low Difficulty and High Guessing Factor, and Items with
High Difficulty and Low Guessing Factor.

Items with Low Difficulty and High Guessing Factor:
ID: 7556, Discrimination: 1.024, Difficulty: -0.609, Guessing Factor: 0.631
Question: Dan plants 3 rose bushes. Each rose bush has 25 roses. Each rose has 8 thorns. How many thorns are there
total?
Answer: First find the total number of roses: 3 bushes 25 roses/bush = �325=75�75 roses Then multiply the
number of roses by the number of thorns per rose: 75 roses 8 thorns/rose =�758=600�600 thorns The answer is 600.

ID: 7586, Discrimination: 1.036, Difficulty: -0.862, Guessing Factor: 0.690
Question: Ryan plants 2 flowers a day in his garden. After 15 days, how many flowers does he have if 5 did not grow?
Answer: Ryan plants 2*15=�2*15=30�30 flowers in total. Given 5 plants did not grow, he has 30-5=�30-
5=25�25 flowers in his garden. The answer is 25.

Analysis: The questions involve simple multiplication and subtraction, which are fundamental arithmetic
operations that most students can perform easily. For example, in id7556, multiplying the number of rose
bushes by the number of roses per bush, and then the number of roses by the number of thorns per rose (just
multiply all the given numbers.).
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Items with High Difficulty and Low Guessing Factor:
ID: 8227, Discrimination: 1.044, Difficulty: 5.293, Guessing Factor: 0.022
Question: Lorraine and Colleen are trading stickers for buttons. Each large sticker is worth a large button or three
small buttons. A small sticker is worth one small button. A large button is worth three small stickers. Lorraine starts
with 30 small stickers and 40 large stickers. She trades 90% of her small stickers for large buttons. She trades 50% of
her large stickers for large buttons and trades the rest of them for small buttons. How many buttons does she have by
the end?
Answer: She trades 27 small stickers because 30 x .9 =�27=27�27 She gets 9 large buttons for these because
27 / 3 =�27/3=9�9 She trades 20 large stickers for large buttons because 40 x .5 = 20 She gets 20 large buttons
for these because 20 / 1 =�20/1=20�20 She trades 50% of her large stickers for small buttons because 100 - 50
=�100-50=50�50 She trades 20 large stickers for small buttons because 40 x .5 = 20 She gets 60 small buttons
because 20 x 3 =�20*3=60�60 She has 89 buttons at the end because 9 + 20 + 60 =�9+20+60=89�89 The
answer is 89.

ID: 7876, Discrimination: 1.012, Difficulty: 5.045, Guessing Factor: 0.058
Question: Mel uses a 900-watt air conditioner for 8 hours a day. This means that each hour the AC uses 900 watts of
energy. If he reduces the time he uses the air conditioner by 5 hours a day, how many kilowatts of electric energy will
he save in 30 days?
Answer: An air conditioner uses 900 x 8 =�900*8=7200�7200 watts for 8 hours a day. An air conditioner uses
900 x 5 =�900*5=4500�4500 watts for 5 hours a day. So, Mel saves 7200 - 4500 =�7200-4500=2700�2700
watts per day. That is 2700/1000 = �2700/1000=2.7¿¿2.7 kilowatts per day since 1 kilowatt is equal to 1000
watts. Hence, in 30 days he will have 2.7 x 30 =�2.7*30=81¿¿81 kilowatts of electric energy saved. The answer is 81.

Analysis: Solving these items needs multiple steps, conversions, and the detailed problem-solving skills. Their
low guessing factors are due to the complexity of the calculations required, the interdependence of steps, and
the specific numeric outcomes that cannot be easily guessed. For example, in id7876, the necessity to convert
watts to kilowatts and then calculate for 30 days involves multiple precise steps. Guessing any intermediate
result would likely lead to an incorrect final answer.
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id11155

Low Discrimination and 
High Guessing Factor: 
These items typically exhibit low quality, 
with predictable answers, obvious 
distractors, and a lack of complexity. 
Sometimes, they rely on knowledge from 
other fields or common sense. These 
characteristics make them less effective in 
distinguishing between different levels of 
proficiency in the given task.

High Discrimination and 
Low Guessing Factor:
They are of high quality and 
effectively differentiate between 
varying levels of model proficiency, 
making them valuable tools for 
assessing nuanced understanding 
and problem-solving abilities.

id11875

id12168

id10750

Figure 13. Examples from MedQA benchmark: This figure shows the estimated characteristics of all items in the benchmark using the
aforementioned method. It highlights two representative categories: items with Low Discrimination and High Guessing Factor, and Items
with High Discrimination and Low Guessing Factor.

Items with Low Discrimination and High Guessing Factor:
ID: 11155, Discrimination: 0.899, Difficulty: 0.835, Guessing Factor: 0.767
Question: A 16-year-old girl is brought to the physician because her mother is concerned about her lack of appetite
and poor weight gain. She has had a 7-kg (15-lb) weight loss over the past 3 months. The patient states that she should
try to lose more weight because she does not want to be overweight anymore. She maintains a diary of her daily
calorie intake. Menarche was at the age of 13 years, and her last menstrual period was 3 months ago. She is on the
high school track team. She is sexually active with 2 male partners and uses condoms inconsistently. She is at 50th
percentile for height and below the 5th percentile for weight and BMI. Her temperature is 37°C (98.6°F), pulse is
58/min and blood pressure is 96/60 mm Hg. Examination shows fine hair over the trunk and extremities. Which of the
following is the most likely diagnosis?
(A) HIV infection. (B) Type 1 diabetes mellitus. (C) Hyperthyroidism. (D) Anorexia nervosa.

ID: 11875, Discrimination: 0.825, Difficulty: 0.212, Guessing Factor: C: 0.666
Question: A 16-year-old female patient with a history of mental retardation presents to your clinic with her mother.
The mother states that she wants her daughter to have a bilateral tubal ligation after she recently discovered her looking
at pornographic materials. She states that her daughter is not capable of understanding the repercussions of sexual
intercourse, and that she does not want her to be burdened with a child that she would not be able to raise. Upon
discussions with the patient, it is clear that she is not able to understand that sexual intercourse can lead to pregnancy.
What should your next step be?
(A) Schedule the patient for the requested surgery.
(B) Wait until the patient is 18 years old, and then schedule for surgery.
(C) Refuse the procedure because it violates the ethical principle of autonomy.
(D) Refuse the procedure because it is unlikely that the patient will get pregnant.

Analysis: These items rely on well-known medical and ethical principles, predictable answers, and a lack of
complexity. Sometimes, this can even indicate low quality, as individuals with basic common knowledge can
often guess the correct answers. For example, in id11875, the distractors (scheduling the surgery, waiting
until 18, refusing due to low pregnancy likelihood) are less ethically sound compared to the correct answer,
making it easier to guess correctly. While they are well-constructed and relevant to medical domain, they
do not effectively differentiate between varying levels of model’s proficiency. Consequently, these items may
not fully reflect the nuanced understanding and problem-solving abilities required in more complex medical
scenarios.
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Items with High Discrimination and Low Guessing Factor:
ID: 10750, Discrimination: 2.183, Difficulty: 2.611, Guessing Factor: 0.043
Question: A 7-year-old girl is brought to the physician by her mother because of a 6-month history of worsening
fatigue and frequent upper respiratory tract infections. She is at the 2nd percentile for height and 10th percentile
for weight. Physical examination shows pallor, diffuse hyperpigmented macules, absence of the radial bones, and
hypoplastic thumbs. Her hemoglobin concentration of 8.7 g/dL, leukocyte count is 2,500/mm3, and platelet count is
30,000/mm3. This patient’s condition is most likely caused by a defect in a gene encoding a protein that is normally
involved in which of the following processes?
(A) Hydrolysis of glucocerebroside.
(B) DNA interstrand crosslink repair.
(C) Maturation of erythroid progenitor cells.
(D) Ras signal transduction pathway.

ID: 12168, Discrimination: 2.069, Difficulty: 2.718, Guessing Factor: 0.121
Question: A 50-year-old man comes to the physician because of swelling of his legs for 2 months. Three months ago,
he was diagnosed with hypertension and started on a new medication. His blood pressure is 145/95 mm Hg. Physical
examination shows 2+ edema in both lower extremities. Laboratory studies are within the reference ranges. This
patient was most likely treated with which of the following drugs?
(A) Losartan. (B) Spironolactone. (C) Hydrochlorothiazide. (D) Amlodipine.

Analysis: This question requires integration of multiple clinical findings (fatigue, infections, growth per-
centiles, physical anomalies, and lab results) to arrive at a diagnosis. The detailed clinical scenarios provided
make it difficult to guess the correct answer without a thorough understanding of the underlying medical prin-
ciples. These items demand higher-order thinking skills, such as analysis, synthesis, and evaluation, rather
than mere recall of facts. This further enhances their ability to discriminate between different levels of model’s
capability.
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