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Abstract

Bayesian neural networks are theoretically well-understood only in the infinite-
width limit, where Gaussian priors over network weights yield Gaussian priors over
network outputs. Recent work has suggested that finite Bayesian networks may
outperform their infinite counterparts, but their non-Gaussian function space priors
have been characterized only though perturbative approaches. Here, we derive
exact solutions for the function space priors for individual input examples of a class
of finite fully-connected feedforward Bayesian neural networks. For deep linear
networks, the prior has a simple expression in terms of the Meijer G-function. The
prior of a finite ReLU network is a mixture of the priors of linear networks of
smaller widths, corresponding to different numbers of active units in each layer.
Our results unify previous descriptions of finite network priors in terms of their tail
decay and large-width behavior.

1 Introduction

Modern Bayesian neural networks (BNNs) ubiquitously employ isotropic Gaussian priors over their
weights [1–22]. Despite their simplicity, these weight priors induce richly complex priors over the
network’s outputs [1, 4–22]. These function space priors are well-understood only in the limit of
infinite hidden layer width, in which they become Gaussian [4–8]. However, these infinite networks
cannot flexibly adapt to represent the structure of data during inference, an ability that is key to
the empirical successes of deep learning, Bayesian or otherwise [2, 3, 9–14, 16–20, 23, 24]. As a
result, elucidating how finite-width networks differ from their infinite-width cousins is an important
objective for theoretical study.

Progress towards this goal has been made through systematic study of the leading asymptotic cor-
rections to the infinite-width prior [12, 14–17], including approaches emphasizing the physical
framework of effective field theory [13, 14]. However, the applicability of these perturbative ap-
proaches to narrow networks, particularly those with extremely narrow bottleneck layers [9], remains
unclear. In this paper, we present an alternative treatment of a simple class of BNNs, drawing
inspiration from the study of exactly solvable models in physics [25–27]. Our primary contributions
are as follows:
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• We derive exact formulas for the priors over the output preactivations of finite fully-
connected feedforward linear or ReLU BNNs without bias terms induced by Gaussian
priors over their weights (§3). We only consider the prior for a single input example, not the
joint prior over the outputs for multiple input examples, as it can capture many finite-width
effects [9, 12]. Our result for the prior of a linear network is given in terms of the Meijer
G-function, which is an extremely general but well-studied special function [28–32]. The
prior of a ReLU network is a mixture of the priors of linear networks of narrower widths,
corresponding to different numbers of active ReLUs in each layer.

• We leverage our exact formulas to provide a simple characterization of finite-width network
priors (§4). The fact that the priors of finite-width networks become heavy-tailed with
increasing depth and decreasing width [21, 22], as well as the asymptotic expansions for
the priors at large hidden layer widths [12, 15], follow as corollaries of our main results.
Moreover, we show that the perturbative finite-width corrections do not capture the heavy-
tailed nature of the true prior.

To the best of our knowledge, our results constitute the first exact solutions for the priors over the
outputs of finite deep BNNs. As one might expect from knowledge of even the simplest interacting
systems in physics [25–27], these solutions display many intricate, non-Gaussian properties, despite
the fact that they are obtained for a somewhat simplified setting.

2 Preliminaries

In this section, we define our notation and problem setting. We use subscripts to index layer-dependent
quantities. We denote the standard `2 inner product of two vectors a,b ∈ Rn by a · b. Depending on
context, we use ‖ · ‖ to denote the `2 norm on vectors or the Frobenius norm on matrices.

We consider a fully-connected feedforward neural network f : Rn0 → Rnd with d layers and no bias
terms, defined recursively in terms of its preactivations h` as

h0 = x, (1)
h` = W`φ`−1(h`−1) (` = 1, . . . , d), (2)
f = φd(hd), (3)

where n` is the width of the `-th layer (i.e., h` ∈ Rn` ) and the activation functions φ` act elementwise
[2, 3]. Without loss of generality, we take the input activation function φ0 to be the identity. We
consider linear and ReLU networks, with φ`(x) = x or φ`(x) = max{0, x} for ` = 1, . . . , d − 1,
respectively. As we focus on the output preactivations hd, we do not impose any assumptions on the
output activation function φd.

We take the prior over the weight matrices to be an isotropic Gaussian distribution [1–14, 16–22],
with

[W`]ij ∼
i.i.d.
N (0, σ2

` ) (4)

for layer-dependent variances σ2
` . Depending on how one chooses σ`—in particular, how it scales with

the network width—this setup can account for most commonly-used neural network parameterizations
[24]. In particular, one usually takes σ2

` = ς2` /n`−1 for some width-independent ς2` [2–8, 12, 24].
This weight prior induces a conditional Gaussian prior over the preactivations at the `-th layer [4–8]:

h` |h`−1 ∼ N (0, σ2
`‖φ`−1(h`−1)‖2In`

), (5)

where the prior for the first hidden layer is conditioned on the input x, which we henceforth assume
to be non-zero. Thus, the joint prior of the preactivations at all layers of the network for a given input
x is of the form

p(h1, . . . ,hd |x) = p(hd |hd−1)p(hd−1 |hd−2) · · · p(h1 |x). (6)

To perform single-sample inference of the network outputs with a likelihood function pl(y |hd) for
some target output y = y(x), one must compute the posterior

p(hd |x,y) =
pl(y |hd,x)pd(hd |x)

p(y |x)
, (7)
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where p(y |x) =
∫
dhd pl(y |hd,x)pd(hd |x) [1, 4–13, 18–20]. Before computing the posterior, it

is therefore necessary to marginalize out the hidden layer preactivations h1, . . . , hd−1 to obtain the
prior density of the output preactivation pd(hd |x). Moreover, in this framework, all information
about the network’s inductive bias is encoded in the prior pd(hd |x), as the likelihood is independent
of the network architecture and the prior over the weights. This marginalization has previously been
studied perturbatively in limiting cases [4–9, 12, 14]; here we perform it exactly for any width.

To integrate out the hidden layer preactivations, it is convenient to work with the characteristic
function ϕd(qd |x) corresponding to the density pd(hd |x). Adopting a convention for the Fourier
transform such that

pd(hd |x) =

∫
dqd

(2π)nd
exp(iqd · hd)ϕd(qd |x), (8)

it follows from (5) that this characteristic function is given as

ϕd(qd |x) =

∫ d−1∏
`=1

dq` dh`
(2π)n`

exp

(
d−1∑
`=1

iq` · h` −
1

2

d∑
`=1

σ2
`‖q`‖2‖φ`−1(h`−1)‖2

)
. (9)

We immediately observe that the characteristic function is radial, i.e., ϕd(qd |x) = ϕd(‖qd‖ |x). As
the inverse Fourier transform of a radial function is radial [33], this implies that the preactivation
prior is radial, i.e., pd(hd |x) = pd(‖hd‖ |x). Moreover, as the prior at any given layer is separable
over the neurons of that layer, we can see that pd(hd |x) has the property that the marginal prior
distribution of some subset of k of the outputs of a network with nd > k outputs is identical to the
full prior distribution of a network with k outputs. As detailed in Appendix A, these properties enable
us to exploit the relationship between the Fourier transforms of radial functions and the Hankel
transform, which underlies our calculational approach.

3 Exact priors of finite deep networks

Here, we present our main results for the priors of finite deep linear and ReLU networks, deferring
their detailed derivations to Appendices A and B of the Supplemental Material.

3.1 Two-layer linear networks

As a warm-up, we first consider a linear network with a single hidden layer. In this case, we can
easily evaluate the integral (9) to obtain the characteristic function

ϕ2(q2 |x) = (1 + κ22‖q2‖2)−n1/2, (10)

where we define the quantity κ2 ≡ σ1σ2‖x‖ for brevity. We can now directly evaluate the required
Hankel transform to obtain the prior density (see Appendix A.1), yielding

p2(h2 |x) =
1

(4πκ22)n2/2

2

Γ(n1/2)

(
‖h2‖
2κ2

)(n1−n2)/2

K(n1−n2)/2

(
‖h2‖
κ2

)
, (11)

where Γ is the Euler gamma function and Kν(z) is the modified Bessel function of the second kind
of order ν [28–30].

Interestingly, we recognize this result as the distribution of the sum of n1/2 independent n2-
dimensional multivariate Laplace random variables with covariance matrix 2κ22In2

[34]. Moreover,
we can see from the characteristic function (10) that we recover the expected Gaussian behavior
at infinite width provided that κ22 ∝ 1/n1 [4–8], as one would expect from the interpretation of
this prior as a sum of i.i.d. random vectors. To our knowledge, this simple correspondence has
not been previously noted in the literature, though it provides a succinct explanation of the slight
heavy-tailedness of this prior distribution noted by Vladimirova et al. [21, 22]. The fact that the
function space prior is heavy-tailed at finite width is a particularly important non-Gaussian feature.
These results are plotted in Figure 1.
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Figure 1: Priors of deep linear networks of depths d = 2, 3, and 4. In each panel, the prior density
is plotted only for positive values of the output preactivation hd, as it is symmetric about zero. For
each depth, all hidden layers are of the same width n, which is indicated by line color. The black line
indicates the Gaussian infinite-width limit discussed in §4.3. Thick lines show the exact priors, while
thin jagged lines show experimental estimates from 108 examples. Further details on the numerical
methods used to generate these figures are provided in Appendix E.

3.2 General deep linear networks

We now consider a general deep linear network. Deferring the details of our derivation to Appendix
A, we find that the characteristic function and density of the function space preactivation prior for
such a network can be expressed in terms of the Meijer G-function [28, 29]. The Meijer G-function
is an extremely general special function, of which most classical special functions are special cases.
Despite its great generality, it is quite well-studied, and provides a powerful tool in the study of
integral transforms [28–31]. Its standard definition, introduced by Erdélyi [29], is as follows: Let
0 ≤ m ≤ q and 0 ≤ n ≤ p be integers, and let a1, . . . , ap and b1, . . . , bq be real or complex
parameters such that none of ak − bj are positive integers when 1 ≤ k ≤ n and 1 ≤ j ≤ m. Then,
the Meijer G-function is defined via the Mellin-Barnes integral

Gm,np,q

(
z

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫
C

ds zs
∏m
j=1 Γ(bj − s)

∏n
k=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
k=n+1 Γ(ak + s)

, (12)

where empty products are interpreted as unity and the integration path C separates the poles of
Γ(bj − s) from those of Γ(1− ak + s) [28, 29]. Expressing the density or characteristic function of a
radial distribution in terms of the Meijer G-function is useful because one can then immediately read
off its Mellin spectrum and absolute moments [28, 29]. Moreover, one can exploit integral identities
for the Meijer G-function to compute other expectations and transformations of the density [28–31].

With this definition, the characteristic function and density of the prior of a deep linear network are
given as

ϕlin
d (qd |x) = γdG

1,d−1
d−1,1

(
2d−2κ2d‖qd‖2

∣∣∣∣ 1− n1/2, . . . , 1− nd−1/2
0

)
(13)

and

plin
d (hd |x) =

γd
(2dπκ2d)

nd/2
Gd,00,d

(
‖hd‖2

2dκ2d

∣∣∣∣ −
0, (n1 − nd)/2, . . . , (nd−1 − nd)/2

)
, (14)

respectively, where we define the quantities

κd ≡ σ1 · · ·σd‖x‖ and γd ≡
d−1∏
`=1

1

Γ(n`/2)
(15)

for brevity. Here, the horizontal dash in the upper row of arguments to Gd,00,d indicates the absence
of ‘upper’ arguments to the G-function, denoted by a1, . . . , ap in (12), because p = 0. For d = 2,
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Figure 2: Priors of depth d = 4 linear networks with narrow bottlenecks. The left panel shows a
diagram of a depth d = 4 network with two wide hidden layers of widths n1 and n3 separated by
a narrow bottleneck of width n2 = 2. The right panel shows prior densities for networks of this
structure with n1 = n3 = 100 and variable bottleneck widths n2, which is indicated by line color.
The prior density is plotted only for positive values of the output preactivation hd, as it is symmetric
about zero. The black line indicates the Gaussian limit in which the widths of all three hidden layers
are taken to infinity, as discussed in §4.3. Further details on the numerical methods used to generate
this figure are provided in Appendix E.

we can use G-function identities to recover our earlier results (10) and (11) for a two-layer network
(see Appendix A) [29]. We plot the exact density for networks of depths d = 2, 3, and 4 and various
widths along with densities estimated from numerical sampling in Figure 1, illustrating that our exact
result displays the expected perfect agreement with experiment (see Appendix E for details of our
numerical methods).

For any depth, the density (14) has the intriguing property that its functional form depends only
on the difference between the hidden layer widths and the output dimensionality. This suggests
that the priors of networks with large input and output dimensionalities but narrow intermediate
bottlenecks—as would be the case for an autoencoder—will differ noticeably from those of networks
with only a few outputs. However, it is challenging to visualize a distribution over more than two
variables. We therefore plot the marginal prior over a single component of the output of a network
with a bottleneck layer of varying width in Figure 2. Qualitatively, the prior for a network with a
narrow bottleneck layer sandwiched between two wide hidden layers is more similar to that of a
uniformly narrow network than that of a wide network without a bottleneck. These observations
are consistent with previous arguments that wide networks with narrow bottlenecks may possess
interesting priors [9, 35].

3.3 Deep ReLU networks

Finally, we consider ReLU networks. For this purpose, we adopt a more verbose notation in which
the dependence of the prior on width is explicitly indicated, writing plin

d (hd;κd;n1, . . . , nd−1, nd)
for the prior density (14) of a linear network with the specified hidden layer widths. Similarly, we
write pReLU

d (hd;κd;n1, . . . , nd−1, nd) for the prior density of the corresponding ReLU network. As
shown in Appendix B, we find that

pReLU
d (hd;κd;n1, . . . , nd)

=

(
1− (2n1 − 1)(2n2 − 1) · · · (2nd−1 − 1)

2n1+···+nd−1

)
δ(hd)

+
1

2n1+···+nd−1

n1∑
k1=1

· · ·
nd−1∑
kd−1=1

(
n1
k1

)
· · ·
(
nd−1

kd−1

)
plin
d (hd;κd; k1, . . . , kd−1, nd), (16)

where δ(hd) is the nd-dimensional Dirac distribution. We prove this result by induction on network
depth d, using the characteristic function corresponding to this density. The base case d = 2 follows
by direct integration and the binomial theorem, and the inductive step uses the fact that the linear
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Figure 3: The prior of a deep ReLU network. (a) Schematic depiction of the ReLU prior as a mixture
of the priors of linear networks of different widths (16). Grey nodes indicate ‘inactive’ units, while
the linear network of active units is shown by the orange nodes. (b) ReLU prior densities for networks
of depths d = 2, 3, and 4 and varying width. Here, we choose κd such that the variance of the
preactivations matches that of the linear networks shown in Figure 1. In each panel, the prior density
is plotted only for positive values of the output preactivation hd, as it is symmetric about zero. For
each depth, all hidden layers are of the same width n, which is indicated by line color. The black line
indicates the Gaussian infinite-width limit discussed in §4.3. Thick lines show the exact priors, while
thin jagged lines show experimental estimates from 108 examples. Further details on the numerical
methods used to generate these figures are provided in Appendix E.

network prior (14) is radial and has marginals equal to the priors of linear networks with fewer
outputs. This result has a simple interpretation: the prior for a ReLU network is a mixture of priors
of linear networks corresponding to different numbers of active ReLU units in each hidden layer,
along with a Dirac distribution representing the cases in which no output units are active. As we did
for linear networks, we plot the exact density along with numerical estimates in Figure 3, showing
perfect agreement.

4 Properties of these priors

Having obtained exact expressions for the priors of deep linear or ReLU networks, we briefly
characterize their properties, and how those properties relate to prior analyses of finite network priors.

4.1 Moments

We first consider the moments of the output preactivation. As the prior distributions are zero-centered
and isotropic, it is clear that all odd raw moments vanish. However, the moments of the norm of the
output preactivation are non-vanishing. In particular, using basic properties of the Meijer G-function
[28, 29], we can easily read off the moments for a linear network as

Elin‖hd‖m = 2dm/2κmd

d∏
`=1

(n`
2

)m/2
(m ≥ 0), (17)
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where ab = Γ(a+ b)/Γ(a) is the rising factorial [28]. This result takes a particularly simple form for
the even moments m = 2k, in which case (n/2)k = 2−k

∏k−1
j=0 (n+ 2j). Most simply, for m = 2,

we have Elin‖hd‖2 = κ2dn1 · · ·nd.

Similarly, for ReLU networks, we have

EReLU‖hd‖m = 2dm/2κmd

(nd
2

)m/2 d−1∏
`=1

[
1

2n`

n∑̀
k`=1

(
n`
k`

)(
k`
2

)m/2]
. (18)

Each term in the product over ` expands in terms of generalized hypergeometric functions evaluated
at unity [28]. As for linear networks, this expression has a particularly simple form for even moments,
particularly if m = 2, for which EReLU‖hd‖2 = 21−dκ2dn1 · · ·nd. Therefore, for identical weight
variances, the variance of the output preactivation of a ReLU network is 21−d times that of a linear
network of the same width and depth. However, one can compensate for this variance reduction by
simply doubling the variances of the priors over the hidden layer weights.

Using the property that the marginal prior distribution of a single component of the output is identical
to the prior of a single-output network, these results give the marginal absolute moments of the prior
of a linear or ReLU network. Moreover, these results can also be used to obtain joint moments of
different components by exploiting the fact that the prior is radial. By symmetry, the odd moments
vanish, and the even moments are given up to combinatorial factors by the corresponding moments of
any individual component of the preactivation. For example, the covariance of two components of
the output preactivation is Ehd,ihd,j = (Eh2d,1)δij for all i, j = 1, . . . , nd.

4.2 Tail bounds

Vladimirova et al. [21, 22] have shown that the marginal prior distributions of the preactivations
of deep networks with ReLU-like activation functions and fixed, finite widths become increasingly
heavy-tailed with depth. This behavior contrasts sharply with the thin-tailed Gaussian prior of infinite-
width networks [4–8]. In particular, Vladimirova et al. [21, 22] showed that the prior distributions are
sub-Weibull with optimal tail parameter θ = d/2, meaning that they satisfy

P(|hd,j | ≥ ρ) ≤ C exp(−ρ1/θ) (19)

for each neuron j ∈ {1, . . . , nd}, all ρ > 0, and some constant C > 0 if θ ≥ d/2, but not if θ < d/2.
A sub-Gaussian distribution is sub-Weibull with optimal tail parameter at most 1/2; distributions
with larger tail parameters have increasingly heavy tails. As shown in Appendix C, we can use the
results of §4.1 to give a straightforward derivation of this result, showing that the norm ‖hd‖ of the
output preactivation for either linear or ReLU networks is sub-Weibull with optimal tail parameter
d/2. Due to the aforementioned fact that the marginal prior for a single output of a multi-output
network is identical to the prior for a single-output network, this implies (19).

4.3 Asymptotic behavior

Most previous studies of the priors of deep Bayesian networks have focused on their asymptotic
behavior for large hidden layer widths. Provided that one takes

κd = (n1 · · ·nd−1)−1/2κd (20)

for κd independent of the hidden layer widths such that the preactivation variance remains finite,
the prior tends to a Gaussian as n1, · · · , nd−1 → ∞ for fixed d, n0, and nd [4–10, 12, 24]. This
behavior is qualitatively apparent in Figures 1 and 3. Here, we exploit our exact results to study this
asymptotic regime. An ideal approach would be to study the asymptotic behavior of the characteristic
function (13) and apply Lévy’s continuity theorem [36] to obtain the Gaussian limit, but we are not
aware of suitable doubly-scaled asymptotic expansions for the Meijer G-function [28, 29]. Instead,
we use a multivariate Edgeworth series to obtain an asymptotic expansion of the density [37]. As
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Figure 4: The large-width Edgeworth approximation for the prior density is thin-tailed. From left
to right, the panels show the priors of linear networks of depths d = 2, 3, and 4 of varying widths.
In each panel, solid lines show the exact prior density (14), while dashed lines show the asymptotic
Edgeworth approximation (21). The exact prior density is computed numerically as described in
Appendix E.

detailed in Appendix D, we find that the prior of a linear network has an Edgeworth series of the form

plin
d (hd |x) ≈ 1

(2πκ2
d)nd/2

exp

(
−‖hd‖

2

2κ2
d

)
×

[
1 +

1

4

(
d−1∑
`=1

1

n`

)(
‖hd‖4

κ4
d

− 2(nd + 2)
‖hd‖2

κ2
d

+ nd(nd + 2)

)
+O

(
1

n2

)]
.

(21)

The Edgeworth expansion of the prior of a ReLU network is of the same form, with the factor of
1/4 scaling the finite-width correction being replaced by 5/4, and the variance κ2

d re-scaled by 21−d.
Heuristically, this result makes sense given that the binomial sums in (16) will be dominated by
k` ≈ n`/2 in the large-width limit.

These results succinctly reproduce the leading finite-width corrections formally written down by
Antognini [15] and recursively computed by Yaida [12]. However, importantly, this approxi-
mate distribution is sub-Gaussian: it cannot capture the depth-dependent heaviness of the tails
of the true finite-width prior described in §4.2. More generally, one can see that the heavier-than-
Gaussian tails of the finite width prior are an essentially non-perturbative effect. At any finite
order of the Edgeworth expansion, the approximate density for a network of any fixed depth is of
the form (2πκ2

d)−nd/2 exp(−‖hd‖2/2κ2
d)[1 + f(‖hd‖2/κ2

d)], where f is a polynomial satisfying∫
dh exp(−‖h‖2/2)f(‖h‖2) = 0 [37]. Such a density is sub-Gaussian. In Figure 4, we illustrate the

discrepancy between the thin tails of the Edgeworth expansion and the heavier tails of the exact prior.
Even at the relatively modest depths shown, the increasing discrepancy between the tail behavior of
the approximate prior and the true tail behavior with increasing depth is clearly visible. We emphasize
that low-order Edgeworth expansions will capture some qualitative features of the finite-width prior,
but not all. It is therefore important to consider approximation accuracy on a case-by-case basis
depending on what features of finite BNNs one aims to study.

5 Related work

As previously mentioned, our work closely relates to a program that proposes to study finite BNNs
perturbatively by calculating asymptotic corrections to the prior [12, 14]. Though these approaches
are applicable to the prior over outputs for multiple input examples and to more general activation
functions, they are valid only in the regime of large hidden layer widths. As detailed in §4.3, these
asymptotic results can be obtained as a limiting case of our exact solutions, though the Edgeworth
series does not capture the heavier-than-Gaussian tails of the true finite-width prior. In a similar
vein, recent works have perturbatively studied the finite-width posterior for a Gaussian likelihood

8



[12, 13, 38]. Our work is particularly similar in spirit to that of Schoenholz et al. [13], who considered
asymptotic approximations to the partition function of the single-example function space posterior.
Our exact solutions for simple models provide a broadly useful point of comparison for future
perturbative study [12–15, 25–27].

As discussed in §4.2, our exact results recapitulate the observation of Vladimirova et al. [21, 22] that
the prior distributions of finite networks become increasingly heavy-tailed with depth. Moreover,
our results are consistent with the work of Gur-Ari and colleagues, who showed that the moments
we compute should remain bounded at large widths [16, 17]. Similar results on the tail behavior of
deep Gaussian processes, of which BNNs are a degenerate subclass, have recently been obtained
by Lu et al. [39] and by Pleiss and Cunningham [40]. Our approach complements the study of tail
bounds and asymptotic moments. Exact solutions provide a finer-grained characterization of the
prior, but it is possible to compute tail bounds and moments for models for which the exact prior
is not straightforwardly calculable. We note that, following the appearance of our work in preprint
form and after the submission deadline, parallel results on exact marginal function-space priors were
announced by Noci et al. [41].

After the completion of our work, we became aware of the close connection of our results on deep
linear network priors to previous work in random matrix theory (RMT). In the language of RMT, the
marginal function-space prior of a deep linear BNN is a particular linear statistic of the product of
rectangular real Ginibre matrices (i.e., matrices with independent and identically distributed Gaussian
entries) [42]. An alternative proof of the result (14) then follows by using the rotational invariance
of what is known in RMT as the one-point weight function of the singular value distribution of the
product matrix [43]. However, to the best of our knowledge, this connection had not previously been
exploited to study the properties of finite linear BNNs. Further non-asymptotic study of random
matrix products, and of nonlinear compositions as in the deep ReLU BNNs considered here, will be
an interesting objective for future work [42–44].

Finally, previous works have theoretically and empirically investigated how finite-width network
priors affect inference [9–11, 18–20, 23]. Some of these studies observed an intriguing phenomenon:
better generalization performance is obtained when inference is performed using a “cold” posterior
that is artificially tempered as p(hd |x,y)1/T for 0 < T < 1 [11, 18, 19]. This contravenes the
expectation that the Bayes posterior (i.e., T = 1) should be optimal. It has been suggested that
this effect reflects misspecification either of the prior over the weights—namely, that a distribution
other than an isotropic Gaussian should be employed —or of the likelihood [11], but the true cause
remains unclear [20]. The exact function space priors computed in this work should prove useful in
ongoing dissections of simple models for BNN inference. Most simply, they provide a finer-grained
understanding of how hyperparameter choice affects the prior than that afforded by tail bounds alone
[21, 22, 40]. Though we do not compute function-space posterior distributions, knowing the precise
form of the prior would allow one to gain an intuitive understanding of the shape of the posterior
for a given likelihood [10]. For instance, one could imagine a particular degree of heavy-tailedness
in the prior being optimal for a dataset that is to some degree heavy-tailed. This could allow one
to gain some intuition for when the prior or likelihood is misspecified for a given dataset. Detailed
experimental and analytical investigation of these questions is an important objective of our future
work.

6 Conclusions

In this paper, we have performed the first exact characterization of the function-space priors of
finite deep Bayesian neural networks induced by Gaussian priors over their weights. These exact
solutions provide a useful check on the validity of perturbative studies [12, 14, 15], and unify previous
descriptions of finite-width network priors [12, 14–17, 21, 22]. Our solutions were, however, obtained
for the relatively restrictive setting of the marginal prior for a single input example of a feedforward
network with no bias terms. As our approach relies heavily on rotational invariance, it is unclear how
best to generalize these methods to networks with non-zero bias terms, or to the joint prior of the
output preactivations for multiple inputs. We therefore leave detailed study of those general settings
as an interesting objective for future work.
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