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Abstract

We study the problem of repeated two-sided matching with
uncertain preferences (two-sided bandits), and no explicit
communication between agents. Recent work has developed
algorithms that converge to stable matchings when one side
(the proposers or agents) must learn their preferences, but the
preferences of the other side (the proposees or arms) are com-
mon knowledge, and the matching mechanism uses simulta-
neous proposals at each round. We develop new algorithms
that converge to stable matchings for two more challenging
settings: one where the arm preferences are no longer com-
mon knowledge, and a second, more general one where the
arms are also uncertain about their own preferences. In our
algorithms, agents start with optimistic beliefs about arms’
preferences, updating these preferences over time, and com-
bining beliefs about preferences with beliefs about the value
of matching when choosing whom to propose to.

1 Introduction
The classic literature on two-sided matching (Gale and
Shapley 1962; Roth and Xing 1997; Haeringer and Wood-
ers 2011, e.g.), encompassing applications including long-
and short-term labor markets, dating and marriage, school
choice, and more, has typically focused on situations where
agents are aware of their own preferences. The problem of
learning preferences while participating in a repeated match-
ing market first started receiving attention in the AI litera-
ture in the work of Das and Kamenica [2005], and the gen-
eral idea of two-sided matching under unknown preferences
has since been studied in economics and operations research
as well (Lee and Schwarz 2009; Johari et al. 2022). This
area of research has received renewed attention in the last
few years, along with novel theoretical insights into conver-
gence properties of upper-confidence-bound (UCB) style al-
gorithms (Liu et al. 2021; Kong, Yin, and Li 2022; Zhang,
Wang, and Fang 2022).

The two-sided matching problem involves agents on two
sides of a market who have preferences for each other
but cannot communicate explicitly. The goal is to create a
matching process that ensures stability, where no pairs of
agents would rather be matched with each other over their
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current match. The existence of such matchings was fa-
mously demonstrated constructively in the Gale-Shapley al-
gorithm (Gale and Shapley 1962) which structured around
one side of the market proposing and the other side choos-
ing whether to accept proposals. This theory has been ap-
plied to various markets, such as matching medical students
to residencies (Roth and Peranson 1999) and students to
schools (Abdulkadiroğlu et al. 2005), with the assumption
that agents know their own preferences. Considerable inter-
est has also been shown in the AI community regarding two-
sided matching in the presence of various constraints, such
as diversity constraints (Aziz, Biró, and Yokoo 2022; Benab-
bou et al. 2018). A version of the problem, called two-sided
bandits, was introduced in Das and Kamenica [2005], where
agents engage in repeated matching without prior knowl-
edge of preferences, and the impact of the matching mech-
anism on convergence to stability was studied. Recent work
has also focused on computing the probability that a match-
ing is stable or finding the matching with the highest prob-
ability of being stable under different models of preference
uncertainty (Aziz et al. 2020).

The exploration-exploitation dilemma that characterizes
bandit problems is further complicated in two-sided bandits
by uncertainty on not just the values of the “arms” of the
bandit, but also uncertainty on whether the arms will ac-
cept or reject your attempt to pull them (your proposal). This
additional uncertainty arises from the multi-agent nature of
the problem; instead of there being just one player, there are
multiple players competing for the arms, and the arms also
have preferences associated with the players. A popular so-
lution choice for this type of problem involves the explore-
then-commit style of algorithms (Pagare and Ghosh 2023;
Zhang and Fang 2024). This flavor of solution involves a
first phase of “learning” preferences, and a second phase us-
ing what has been learned in the prior one to commit to a
choice. This requires the entire agent population coordinat-
ing on when the exploration phase ends and the commitment
phase begins. We are instead interested in approaches where
learning happens simultaneously with an ongoing matching
process. One such algorithm, CA-UCB (Liu et al. 2021), as-
sumes that at each round all the agents on the receiving side
get to view all their proposals before deciding which one to
accept. The algorithm provably converges to stability under
the assumptions that (1) all arms have complete knowledge



of their preferences, and (2) these preferences are common
knowledge, so the proposers also know them. The algorithm
is a variation of the well-known family of UCB algorithms.

Contributions In this paper, we are interested in the gen-
eral case where neither the agents nor the arms start off with
knowledge of their own preferences. This problem is signif-
icantly more complex because it adds a layer of uncertainty
that could potentially lead to agents converging to an unsta-
ble equilibrium more easily than in the case with one-sided
uncertainty and common knowledge of the other side’s pref-
erences. We tackle this in two steps. First, we relax the com-
mon knowledge assumption and assume only that arms are
aware of their own preferences.

Recent works have used frameworks where agents com-
municate with each other to find a matching in this set-
ting (Zhang, Wang, and Fang 2022; Zhang and Fang 2024).
While there are approaches which allow for and design ex-
plicit communication frameworks (Zhang, Wang, and Fang
2022), and also others where players only communicate in-
directly to the extent of carefully orchestrating “collisions”
(Zhang and Fang 2024), we resolve the question of conver-
gence in the more traditional non-cooperative setting of sta-
ble matching when arm preferences are not common knowl-
edge. Our algorithm uses the concept of “plausible sets”
(arms that an agent might be able to “win” in the next time
step) from the CA-UCB algorithm (Liu et al. 2021). We
show how to define and update these sets in order to de-
velop a provably convergent algorithm (which we call Op-
timistic CA-UCB or OCA-UCB). The case with two-sided
uncertainty is more challenging. We introduce a framework
(the Probabilistic Conflict Avoiding - Simultaneous Choice
Algorithm) that maintains and uses an additional optimistic
estimate on the probability of winning each possible con-
tentious situation. We show how to instantiate the algorithm
with both UCB and Thompson Sampling style estimates,
and empirically demonstrate convergence to stability. Fi-
nally, we experimentally evaluate the speed of convergence
as a function of the number of agents in the market and the
level of preference heterogeneity.

2 Setting
There are N proposers (henceforth players) and K pro-
posees (henceforth arms). To ensure that each player can be
matched, we assume that N ≤ K (Liu, Mania, and Jordan
2020; Liu et al. 2021; Basu, Sankararaman, and Sankarara-
man 2021; Sankararaman, Basu, and Abinav Sankararaman
2021). The set of players is denoted by {pi}Ni=1 and the set of
arms by {ak}Kk=1. For each pi, there is a distinct (unknown)
mean reward µk

i associated with each arm ak with unit vari-
ance. If µk

i > µj
i , we say that pi prefers ak over aj denoted

by ak ≻pi
aj . Similarly, the arms also have distinct mean

rewards associated with each player. The arms may or may
not have this information available to them a priori depend-
ing on the setting in consideration.

At each time-step t ∈ {1, · · · , T}, player pi attempts to
pull an arm ak. Let Ai(t) and Āi(t) denote, respectively,
the arm that player pi attempted to pull, and the arm that

player pi successfully pulled at time t. If multiple players
attempt to pull the same arm, a conflict will arise. If the arms
are aware of their preferences, the player that is the most
preferred by the arm will be picked in the event of a conflict
(if the arms are not fully aware of their preferences, then
the chosen player will depend on the arm’s decision-making
algorithm). At the end of each time-step, if a player pi is
successfully matched with an arm i.e. Āi(t) = mi(t), it will
receive a stochastic reward X

mi(t)
i ∼ N (µ

mi(t)
i , 1). Players

that fail to successfully pull an arm will receive a reward of
0 and Āi(t) = ∅. The final matching is made public to all
the agents at the end of each time step.

We use the classic notion of a stable matching: a bipar-
tite matching from the group of players to the group of
arms such that no player and arm prefer each other over
their current matching i.e ∄(pi,mi(t)) such that pi prefers
an arm aj ̸= mi(t) and aj also prefers pi over its current
match. There may be more than one stable match. Our pri-
mary focus in this work is on convergence to stability. An-
other quantity we study is maximum Player Pessimal Re-
gret. We use the Gale-Shapley algorithm with arms as pro-
posers in order to calculate the player-pessimal stable match
(Gale and Shapley 1962). Denote the reward received by
player pi in a player pessimal match by Xi. Then, we de-
fine maximum player-regret at each time-step as R(t) =

max
i∈N

[
Xi −X

m(t)
i

]
which is the maximum difference (over

players) between the reward a player received in its cur-
rent match and the reward it would have received in a stable
matching that is player-pessimal.

In this work we consider matching markets with varying
levels of information availability. As is standard in models of
learning in two-sided matching, we assume no explicit com-
munication between players on the proposing side. Through-
out the rest of the paper we assume that the players do not
have access to their own preferences and need to learn them
over time. As mentioned above, we consider several scenar-
ios in terms of arm’s preferences. For convenience, we name
those as follows:

• Scenario 0: Players have access to arm preferences. Arms
have access to arm preferences. We call this the Arm
Preferences Common Knowledge (APCK) model.

• Scenario 1: Players do not have access to arm prefer-
ences. Arms have access to arm preferences. We call
this the Arm Preferences Known but Private (APKP)
model.

• Scenario 2: Players do not have access to arm prefer-
ences. Arms do not have access to arm preferences. We
call this the Arm Preferences Unknown (APU) model.

The APCK model has been studied and a decentralized so-
lution approach is described in the Conflict Avoiding Upper
Confidence Bound (CA-UCB) algorithm (Liu et al. 2021).
Our main contribution is to detail decentralized approaches
to solutions for Scenarios 1 and 2. We begin with a quick
recap of CA-UCB in the APCK model.



3 APCK Model and CA-UCB
In a recent paper, Scenario 0 was studied (Liu, Mania, and
Jordan 2020). Subsequently, a solution was proposed that is
decentralized, the CA-UCB algorithm (Liu et al. 2021). CA-
UCB finds a stable match in Scenario 0 by avoiding conflicts
using the notion of a “plausible set.” The plausible set for a
player pi at time-step t is defined as Si(t) := {ak : pi ≻ak

pj , where Āj(t − 1) = ak} i.e. the set of all arms ak such
that at time-step (t − 1) another player pj ̸= pi success-
fully pulled the arm, but pi knows that ak prefers pi over pj .
This set also includes the arms the player successfully pulled
(if any) and all the arms that were unmatched at the previ-
ous time-step. This makes it so that pi only attempts arms
where there is a possibility of it successfully pulling the arm,
avoiding conflicts. Then, pi attempts to pull the arm with the
highest UCB value among Si(t).

4 APKP Model and OCA-UCB
Note that the CA-UCB approach works only when both
players and arms have full knowledge of the arms’ prefer-
ences, which players use to construct Si(t). When players
lack this information, they must learn their positions in the
arms’ preference orderings and recreate plausible sets. Re-
cent game-theoretic approaches address this scenario. For
instance, (Etesami and Srikant 2024) allows proposers to
maintain and update probability distributions over potential
arms based on feedback from previous rounds. Accepted
proposals increase the likelihood of future proposals to that
arm, while rejections decrease it. These methods guarantee
convergence to a stable matching without centralized coor-
dination or full knowledge of preferences, achieving loga-
rithmic regret in hierarchical (Etesami and Srikant 2024)
markets. Similarly, some approaches use mood-based state
variables—like “content,” “discontent,” and “watchful”—to
govern each player’s strategy at each time-step (Shah, Fergu-
son, and Marden 2024). Based on utility feedback, proposers
decide whether to stick with their current match or experi-
ment with new proposals. This ensures that over repeated
interactions, proposers learn their preferences and the sys-
tem converges to the proposer-optimal stable match, even
in fully decentralized and information-limited markets. We
present a much simpler approach to the solution which re-
quires “collisions” with other players at most once for the
players to learn arm preferences. We call it OCA-UCB (Op-
timistic CA-UCB) which exploits the fact that the arms still
have full knowledge of their own preferences in order to
achieve this.

Following the general structure of the CA-UCB algo-
rithm, all players initially set their UCB estimates for the
arms to ∞. However, now in addition to the UCB estimates,
each player will also keep track of their position in the arms’
preference orderings. This can be done simply by having
each player maintain two sets: Okh

(i) the set of all players
that pi believes are ranked higher than itself in ak’s pref-
erence ordering, and Okl

(i) which is the set of all players
that pi believes are ranked lower than itself. Initially, for
each player pi, these sets are initialized to Okh

(i) = ∅ and

Okl

(i) = {pj}Nj=1 \ pi. Thus, each player starts with the opti-
mistic belief that it is the most preferred by each of the arms.

Notice, when updating plausible sets, the only informa-
tion that pi requires is its’ relative positioning in ak’s pref-
erence with respect to pj if Āj(t− 1) = ak. This can be ac-
complished using the two sets described above. Since each
player starts out with an optimistic view of itself in the arms’
preference orderings, conflicts are almost inevitable. This
is because according to each player, all the arms are in the
plausible set, even when they ought not to be. Suppose con-
flict occurs between two players, say pi and pj , for an arm ak
at time-step t, and player pj wins the conflict, then pi’s be-
lief with respect to pj and ak gets updated. More precisely,
Okh

(i) = Okh

(i) ∪ {pj} and Okl

(i) = Okl

(i) \ {pj}. At future time
steps, pi can use this information when considering ak in
its plausible set. Functionally the rest of the algorithm is the
same as CA-UCB. The only difference is that, at the end of
each time-step, the players make use of the matching infor-
mation and update Okh

(i) and Okl

(i) accordingly.
Eventually, each of the players will have complete sets

that represent the arms’ true preferences with respect to the
other players. In fact, we show theoretically that this ap-
proach to the solution does not affect the convergence guar-
antee of the CA-UCB algorithm in the APCK Model. First,
let us define some terminology. A triplet Qk

ij = (pi, pj , ak)
is inconsistent if pi believes pi ≻ak

pj but the opposite
is true. Then, let us define a plausible set constructed by
pi to be inconsistent with respect to pj and ak if ak ∈
Si(t), denoted by Ŝk

ij(t). Finally, let us define an incon-
sistent plausible set as being inconsequential at time t if
argmaxm{UCBm

i : am ∈ Si(t)} ̸= k i.e. pi does not at-
tempt ak OR if argmax

m
{UCBm

j : am ∈ Sj(t)} ≠ k i.e. pj

does not attempt ak. We begin the proof of the convergence
guarantee by first presenting two lemmas:

Lemma 4.1. At each time-step, inconsistent sets Ŝk
ij(t) are

either inconsequential or get resolved such that Si(t+ 1) is
no longer inconsistent.

Proof. Consider an inconsistent triplet Qk
ij = (pi, pj , ak)

such that Āj(t − 1) = ak. Then, at time t, Ŝk
ij(t)-

the plausible set constructed by pi will be inconsistent.
One of three things must happen at time t with regard
to Ŝk

ij(t). (1) pj attempts ak either due to λ, or because
argmax

m
{UCBm

j : am ∈ Sj(t)} = k. pi also attempts

ak because argmax
m

{UCBm
i : am ∈ Ŝk

ij(t)} = k. This

leads to a conflict, resulting in the inconsistency getting
resolved via pi receiving feedback about matching infor-
mation. (2) pj attempts ak but pi does not. This implies
argmax

m
{UCBm

i : am ∈ Ŝk
ij(t)} ≠ k, which in turn im-

plies Ŝk
ij(t) is inconsequential with respect to pj and ak. (3)

pj does not attempt ak but pi does. This implies Ŝk
ij(t) is in-

consequential with respect to pj and ak. However, two fur-
ther distinct sub-cases follow from this. First, if Āi(t) = ak



then pi was the most preferred among ak’s incoming pull re-
quests. The plausible set constructed at (t + 1) is no longer
inconsistent with respect to pj and ak because ak will be
included in it by virtue of it being successfully pulled by
pi at t, and not because of pi’s belief Qk

ij . And second, if
Āi(t) ̸= ak then ak will not be included in plausible set
constructed at (t + 1) as pi will lose a conflict with M(ak)
and pi’s belief will be updated with respect to M(ak) and
ak if it has not already.

Lemma 4.2. Eventually all inconsistent plausible sets con-
structed are resolved or are inconsequential.

Proof. First, begin by noting that there are only finitely
many inconsistent triplets in any given APKP model. Then,
a simple recursive argument will suffice to show that each
one gets resolved or becomes inconsequential. The first and
second cases from Lemma 4.1 are base cases. The first case
corrects pi belief altogether, and in the second case the in-
correct belief never gets used in any significant way. In the
first sub-case of case three, if ak is in-fact pi’s best possi-
ble achievable arm, then it will continue getting matched
with ak regardless of it’s wrong belief (inconsequential
w.r.t ak). Nonetheless, if ∃pj at (t + 1) such that triplet
Qk

ij = (pi, pj , ak) exists, then we can apply Lemma 4.1
recursively. And finally, in the second sub-case of case three
from Lemma 4.1, pi loses the conflict to some other player
which implies that some belief gets updated resulting in the
resolution of some triplet. However, if ∃pj at (t + 1) such
that triplet Qk

i,j = (pi, pj , ak) exists, then again we can ap-
ply Lemma 4.1 recursively.

Theorem 4.1. Under the belief update scheme described
above, OCA-UCB shares CA-UCB’s guarantee of conver-
gence to stability.

The proof of Theorem 4.1 is the immediate consequence
of lemmas 4.1, and 4.2. Once all the inconsistent plausible
sets are either resolved, or are inconsequential, the best arm
picked from each player’s plausible set will be the same as
the one picked from CA-UCB’s plausible set. This implies
that this approach to updaing beliefs has no effect on CA-
UCB algorithm’s guarantee on convergence.
We present empirical evidence on the performance of OCA-
UCB in Section 6.

5 APU Model and PCA-SCA
The previous section looked at the APKP model where the
agents did not have access to arms’ preferences. Instead, the
players relied on the fact that the arms had perfect knowl-
edge about their own preferences and used deterministic
feedback obtained to recreate something similar to the plau-
sible set from the CA-UCB algorithm. However, in the APU
model, even arms lack knowledge of their preferences, mak-
ing feedback received from them noisy, invalidating the ap-
proach from the previous section.

Given this dilemma of unreliable feedback associated
with conflict results, we must formulate an approach in
which agents can pick the best possible arms while avoid-
ing conflicts. To accomplish this, we introduce a notion of

highest expected reward. The players keep track of esti-
mated conflict win probabilities and attempt arms that max-
imize the product of reward estimates and win probability.
We detail the algorithmic approach to using this heuristic in
Algorithm 1 (PCA-SCA).

Algorithm 1: Probabilistic Conflict Avoiding-Simultaneous
Choice Algorithm (PCA-SCA)

1: procedure PCA-SCA(λ ∈ [0, 1))
2: for t ∈ {1, · · · , T} do
3: for i ∈ {1, · · · , n} do
4: if t = 1 then
5: Set reward to∞ for all arms
6: Set Zwin = 1 for all arms
7: Sample j ∈ [1,K] uniformly at random
8: Set Ai(t)← aj

9: else
10: Di(t) ∼ Ber(λ)
11: if Di(t) = 0 then
12: Ai(t)← GET-BEST-ARM(pi, t)
13: else
14: Ai(t)← Ai(t− 1)

15: for aj ∈ {a1, · · · , ak} do
16: pwin ← RESOLVE-CONFLICT(aj , t)
17: rplayer, rarm ∼ SAMPLE-REWARD (pwin , aj)
18: UPDATE-ARM-REWARDS(aj , rplayer)
19: UPDATE-PLAYER-REWARDS(pwin, rarm)
20: for pi ∈ {p1, · · · , pn} do
21: UPDATE-PROBABILITY (pi, aj , pwin)

1: procedure GET-BEST-ARM (Player pi, Time t)
2: for aj ∈ {a1, · · · , ak} do
3: pprev ← Player that pulled aj at (t− 1)
4: REWARDS[j]← pi trackedR for aj

5: Z[j]← probability of winning: pi against pprev for aj

6: j ← argmax (REWARDS ◦ Z)
7: return aj

1: procedure RESOLVE-CONFLICT (Arm ai, Time t)
2: players← Requesting players at time t
3: values← Arm tracked rewards of players
4: player← argmax{pi∈players} (values)
5: return player

The algorithm is parameterized by λ ∈ [0, 1), used to in-
troduce a random delay mechanism to reduce the likelihood
of conflicts (Liu et al. 2021; Kong, Yin, and Li 2022). This
is controlled in line 10 where each player draws a Bernoulli
Random Variable Di(t) with expectation λ. If Di(t) = 0,
the player attempts the arm with the highest expected re-
ward, else it will attempt the arm that it did in the previous
time step.

Initially, like CA-UCB, each player sets the reward esti-
mate for the arms to ∞. Unlike CA-UCB however, the play-
ers also keep track of some probability estimates. Each prob-
ability estimate Z(i)

j (ak) represents player pi’s belief about
how likely it is that it will win a conflict against player pj for
arm ak. Each of these entries are initially set to 1. (line 5 and
6 in Algorithm 1). With these initial beliefs, at each subse-
quent time step, the players will attempt to pull the arm that
maximizes the product of the reward estimate and the prob-
ability of winning (line 6 of procedure GET-BEST-ARM).



Another important distinction is how the arms pick the play-
ers. The arms no longer know their preferences and need to
learn them. So, each arm will also keep track of beliefs about
the payoffs associated with the players. Then, at the end of
each time step, the arms will pick the player that it believes
will give the highest reward (similar to how arms behave in
the simultaneous choice mechanism of (Das and Kamenica
2005)). A player and arm both receive a reward and update
their beliefs when an arm is pulled successfully. No reward
is given if an arm is not pulled or if a pull request is not re-
ceived. Players update their beliefs about winning after all
matches are made.

One thing to note is that the arms might not have fully
accurate estimates for all the players in the given horizon.
However, the arms only need accurate estimates for the play-
ers who have the arm in their ‘achievable set’ i.e. the set of
players that an arm can form a stable match with given their
respective preference orderings. The algorithm structure is
such that the arms are only picking from the set of available
proposals. As long as the players get an accurate enough es-
timation of their preferences in the APU model, the arms
will get the information necessary about the subset of play-
ers required to make the match stable.

Finally, the structure of the algorithm allows us to use dif-
ferent methods to keep track of beliefs about expected re-
wards and the probability of conflict wins. In this paper we
use two: first, UCB, as used by (Liu et al. 2021), and second,
a Thompson Sampling variant, as used by (Kong, Yin, and
Li 2022).

Using UCB
We use the Upper Confidence Bound (UCB) approach to
keep track of reward estimates, as used in multi-armed ban-
dit literature by (Auer, Cesa-Bianchi, and Fischer 2002). We
use UCB in the PCA-SCA algorithm and refer to it as PCA-
UCB. Players must keep track of beliefs about payoffs and
the probability of winning conflicts. The UCB heuristic can
be used to estimate both, while the arms only needing to es-
timate rewards. Equation 1 describes how beliefs about re-
ward payoffs are estimated.

UCBk
i (t) =

{
∞ if Nk

i (t) = 0

µ̂k
i +

√
3 log t

2Nk
i (t−1)

otherwise
(1)

where Nk
i (t) is the number of times player pi has pulled

arm ak at time-step t, and µ̂k
i is the empirical mean tracked

by player pi for arm ak. Next, to estimate the probabilities
of conflict wins, we use a similar quantity that shares the
optimism property of UCB.

Zj
i (ak) =

1 if nj
i = 0

wj
i (ak)

nj
i (ak)

+

√
3 log(t)

2·nj
i (ak)

otherwise
(2)

where Zj
i (ak) represents player pi’s belief about the prob-

ability of winning a conflict against player pj for arm ak.
wj

i (ak) is the number of times player pi has won this con-
flict and nj

i (ak) is the total number of times this conflict

has happened thus far. We upper-censor Zj
i (ak) at 1. At the

end of each time step, belief estimates are updated once re-
wards are sampled and matching information made public.
If a player wins a conflict, the corresponding probability es-
timate increases, otherwise, it decreases. This is handled by
the UPDATE-PROBABILITY function in Algorithm 1.

Using Thompson Sampling
Thompson Sampling (Thompson 1933) (TS) is another ap-
proach to solving the MAB problem which has seen a re-
cent resurgence in the literature (Agrawal and Goyal 2012;
Chapelle and Li 2011; Kong, Yin, and Li 2022). In the PCA-
SCA algorithm, TS can be used to keep track of both the be-
liefs about rewards as well as probability estimates for win-
ning a conflict. The arms also use TS to keep track of reward
estimates. Henceforth, we will refer to this approach as the
PCA-TS algorithm. The players and arms keep track of the
same information as in UCB, i.e. the total reward obtained
for an arm/player, the total number of pulls of an arm, and
the total number of conflict wins against each player. The
distinction is in how this information is used to update be-
liefs.

First, we estimate the rewards. We assume the variance
(σ2 = 1) in rewards of the arms and the players are known.
Then, we update the mean and precision (τ = 1

σ2 ) as:

µnew, τnew =
τ0µ0 + τ

∑n
i=1 xi

τ0 + nτ
, τ0 + nτ (3)

where {µnew, τnew} are the new mean and precision, {µ0, τ0}
are the old mean and precision, τ = 1 is the known true pre-
cision, and

∑
xi is the sum of rewards for the agent in ques-

tion. This reward estimate is analogous for both the play-
ers and the arms. When an agent needs an estimate for a
reward for a particular player or an arm, it samples from
N (µ0,

1
τ0
) where µ0 and τ0 is the corresponding mean and

precision tracked by the agent for the specific player/arm. A
Bernoulli distribution is used to keep track of the probabil-
ity of a player pi winning a conflict against player pj for arm
ak.

Zj
i (ak) =

ωj
i (ak)

ωj
i (ak) + νji (ak)

(4)

where ωj
i (ak) is the number of times pi has won the conflict

and νji (ak) is the number of times pi has lost the conflict
against player pj for arm ak.

6 Simulation Results
We run simulation experiments where (1) preferences are
uniformly random on both sides of the market with varying
market sizes N = K ∈ {5, 10, 15, 20}; (2) player prefer-
ence heterogeneity is varied with market size N = K = 10.
The maximum reward an agent can get is (K + 1), when
matched with its most preferred arm, and the minimum is
1, when matched with the least preferred. The reward gaps
(of the means) between consecutively ranked agents are kept



0 1000 2000 3000

0

20

40

60

80

100

=0
=10
=100
=1000

0 1000 2000 3000

0

1

2

3

4

5

6
=0
=10
=100
=1000

0 2000 4000 6000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 N=5
N=10
N=15
N=20

0 2000 4000 6000

0

20

40

60

80

100

N=5
N=10
N=15
N=20

0 1000 2000 3000

0

2

4

6

8 =0
=10
=100
=1000

0 1000 2000 3000

0

20

40

60

80

100

=0
=10
=100
=1000

0 2000 4000 6000

0

5

10

15

20
N=5
N=10
N=15
N=20

0 2000 4000 6000

0

20

40

60

80

100

N=5
N=10
N=15
N=20

Pr(Market Stable) Average Player Regret

U
ni

fr
om

ly
 R

an
do

m
Pr

ef
er

en
ce

s 
on

 B
ot

h 
S
id

es
 o

f 
th

e 
M

ar
ke

t
Pl

ay
er

s'
 P

re
fe

re
nc

e 
H

om
og

en
ei

ty
 is

 V
ar

ie
d
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Figure 1: The left sub-figures show the APCK models using CA-UCB and the right sub-figures show the APKP model using OCA-UCB.
Results are averaged over 1000 runs. The first row varies market size with uniformly random preferences, the second row varies player
preference heterogeneity while keeping market size constant at N = K = 10. OCA-UCB converges to stability even with uncertainty on
both sides, though it takes longer (expected because of increased complexity)

constant at ∆ = 1. To control the level of heterogene-
ity in player preferences, we use a method due to (Ash-
lagi, Kanoria, and Leshno 2017), as also used by (Liu et al.
2021). The level of heterogeneity is controlled by a parame-
ter β ∈ [0, 10, 100, 1000]. Heterogeneity in preferences de-
creases with β, and as β → ∞ all players have the same
preferences with probability 1. To translate β to preference
orderings we sample the mean reward µk

i of arm ak for
player pi using the following process:

xk
i.i.d∼ Uniform([0,1])

ϵk,i
i.i.d∼ Logistic(0, 1)

µk
i = β · xk + ϵk,i

µk
i = #{j : µj

i ≤ µk
i }

(7)

These random utilities µk
i are mapped so that the gap in re-

wards between consecutively ranked arms is kept constant
at ∆ = 1. The hyper-parameter λ is set to 0.9.1

To objectively quantify the quality and rate of conver-
gence, we introduce a notion of a “convergence proxy”: It
measures, in sliding windows of size X , the percentage of
time-steps where market stability was greater than θ. It ef-
fectively measures the tendency of a market to converge
within the next X time-steps. We calculate the “convergence

1There are alternative methods for controlling heterogeneity in
player preferences, for example notions like uncoordinated/coordi-
nated markets (Ackermann et al. 2008). The method we use corre-
sponds to uncoordinated markets when β is low. However, coordi-
nated markets are different, with correlation defined on the edges
of the matching graph rather than the vertices. We find that the con-
vergence time in these edge-correlated cases is actually comparable
to when preferences are uniformly random, compared with node-
correlation, where convergence time increases (see Supplement).

proxy” line for PCA-UCB vs PCA-TS for random prefer-
ences and varied market sizes. This allows us to objectively
visualize the convergence behavior of the two approaches
and draw conclusions about their behaviors.

We run simulations in each of the aforementioned scenar-
ios 1000 times and monitor the market state. More specifi-
cally, we take a snap-shot of the maximum player regret and
market stability every 10 time-steps for each experiment and
average the results over all the runs. To evaluate the trend
in the quantities we study, Loess smoothing was run on the
data points to yield the graphs presented in the following
sections.

OCA-UCB in the APKP model
Recall that, in this scenario the players must learn their own
position in the arms’ preference order and their own prefer-
ences. We compare the performance of this model with the
APCK model using CA-UCB. Both models were run with
their respective algorithms, with 6000 time-steps for ran-
dom preferences and 3000 time-steps for varied preference
homogeneity. The results are shown in Figure 1.

The figures in the first row of Figure 1 show results from
the experiments where agents’ preferences are uniformly
random. We can see that OCA-UCB converges to stability in
the APKP model, with increasing market sizes correspond-
ing to slower convergence. This trend in similar to the APCK
model running CA-UCB, albeit OCA-UCB convergence is
the APKP model is slightly slower.

The second row in Figure 1 details experimental results
for varying player preference heterogeneity. As can be seen
from the APCK Model running CA-UCB, decrease in player
preference heterogeneity in the APCK model does not have
any effect on the convergence of CA-UCB. This trend car-
ries over to OCA-UCB in the APKP model, with conver-
gence slightly slower. This shows that in the setting with



varying levels of player preference homogeneity, OCA-UCB
does not show any noticeable difference in the rate at which
the markets converge to stability.

PCA-UCB and PCA-TS in the APU Model
Recall that, in this scenario, both the players and the arms do
not have access to any preference information. Our proposed
approach is to make use of a simultaneous choice algorithm,
where at each time-step the players attempt the arm with the
highest expected reward. As the arms become more confi-
dent about their reward estimates for players, the probability
estimates that the players keep track of will be more rep-
resentative of true probabilities. Given the structure of Al-
gorithm 1 (PCA-SCA), we propose two methods in Section
5 to keep track of agents’ beliefs: UCB (PCA-UCB), and
Thompson Sampling (PCA-TS). In this section, we detail
the results of our experiments when using these approaches.

Using PCA-UCB The results of the experiments using
PCA-UCB in the APU model are summarized in Figure 2.
We run PCA-UCB for 20,000 time steps for markets with
random preferences on both sides, and for 10,000 time steps
for when player preference heterogeneity is varied. The for-
mer results are in the first row of the figure, whereas the
results of the latter are detailed in the second row of Figure
2.
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Figure 2: Results of experiments run in the APU model using
UCB to keep track of beliefs: first row has preferences uniformly
random, second row has varied player preference heterogeneity
with N = K = 10. Key Takeaways: the markets converge to sta-
bility in expectation. Using UCB, there is a dependence on player
preference heterogeneity and the time taken to convergence. If you
compare this figure against Figure 4, Thompson Sampling con-
verges to stability slightly faster than UCB and smoother, showing
no dependence on player preference heterogeneity.

Firstly, notice that the APU model using PCA-UCB takes
longer to stabilize compared to the APKP model using
OCA-UCB, as seen in Figures 1 and 2. This is due to the fact

that both players and arms need to learn their beliefs from
scratch. Regardless, when market preferences are random,
the trends in both figures are similar, with market stabiliza-
tion probabilities approaching 1 and player regret tending
to 0. This shows that PCA-UCB can find stable matches in
a decentralized fashion with unknown preferences on both
sides of the market when preferences are random.

The second row of sub-figures in Figure 2 shows what
happens when the players’ preference heterogeneity is var-
ied.There is a trend associated with the time taken to sta-
bilize with changes in the parameter β, with higher values
of beta (more homogeneity) leading to slower convergence.
We hypothesize that, given the structure of the algorithm,
this is largely due to the fact that, with more preference ho-
mogeneity, it takes longer for players to learn to avoid con-
flicts, because the arms’ own uncertainty allows optimism to
prevail for longer among more players. This is further cor-
roborated by Figure 3 which shows the average number of
conflicts in the experiments where β is varied as a function
of time. We can see that increases in the values of β corre-
spond to more conflicts in the early stages of the algorithm.
Ultimately though, markets still converge to stability for all
the values of β across all 1000 runs, with the conflict counts
also tending to 0. Hence, this demonstrates that PCA-UCB
can find stable matches when the players have varying levels
of preference heterogeneity as well.

Average number of conflicts for varying 
levels of player preference heterogeneity
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Figure 3: The number of conflicts as a function of time for dif-
ferent values of β when using PCA-UCB in the APU model. As
time progresses, the number of conflicts decreases and after a cer-
tain point they converge to 0 (converge to stability). Higher values
of β result in an overall higher number of conflicts when using
UCB. This explains the trend seen in Figure 2 where we can see
that the probability of market stability depends on the value of β
when player preference heterogeneity is varied.

Using PCA-TS Results for when PCA-TS was used in the
APU model are shown in Figure 4. Like Figure 2 (the UCB
results), the first row in Figure 4 is when the agent prefer-
ences are sampled uniformly at random, and the second row
is where the players’ preference heterogeneity is varied.

Results from PCA-UCB (Figure 2) and PCA-TS (Fig-
ure 4) show similarities in market stability and player re-
gret for all market sizes with uniformly random preferences,
with larger markets stabilizing slower. However, PCA-TS



does not show dependency on β when player preference het-
erogeneity is varied, likely due to quicker convergence of
Thompson beliefs. We can also see that PCA-TS converges
faster and more smoothly than PCA-UCB. We will discuss
this particular property in further detail in the next subsec-
tion. The results demonstrate that Algorithm 1 can find a sta-
ble match in the APU model using both UCB and Thompson
Sampling.
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Figure 4: Results of experiments run in the APU model using
Thompson Sampling to keep track of beliefs. The first row shows
market stability and average player regret when preferences are
uniformly random on both sides of the market whereas the sec-
ond row is for when player preference heterogeneity is varied. All
the markets stabilize and player regret tends to 0. Performance was
better than UCB in terms of convergence rate and smoothness.

Convergence Comparison: UCB vs. Thompson Sampling
When looking at Figures 2 and 4, we can see that the Thomp-
son Sampling approach of keeping track of beliefs appears
better than UCB in terms of both speed and smoothness
of convergence. To quantify this behavior, we turn to the
convergence proxy we defined earlier, this time compar-
ing the stability graphs of PCA-UCB and PCA-TS. We set
X = 1000, θ = 90 and generate these lines, the results of
which are summarized in Figure 5. Each color on the graph
corresponds to the market size with the solid line represent-
ing PCA-UCB and the dotted line representing PCA-TS. We
can see that the lines associated with Thompson Sampling
reach 1.0 (i.e. 100% of the time-steps in question have sta-
bility > 90%) quicker and tend to stay that way.

In comparison, the convergence proxy for UCB reaches
1.0 slower for each of the market sizes, and often the proxy
value dips before going back up again. By nature of the
way beliefs are kept track of, whenever a player chooses
to explore, it causes a disturbance in the believed prefer-
ence ordering of the player. When the internal belief state
for a player changes, the player’s set of arms in considera-
tion changes, leading to a different matching. This behavior
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Convergence Comparison of Thompson 
Sampling vs. UCB in the APU model

Figure 5: Convergence Comparison of UCB and Thompson Sam-
pling in the APU model with varying market sizes and uniformly
random preferences on both sides of the market. The Thompson
Sampling approach (dotted) converges slightly faster and stays that
way compared to the UCB (solid) which tends to dip time and again
before ultimately reaching convergence.

causes the match to be unstable at some time-steps. This is
more frequent in the early stages of the algorithm and be-
comes less frequent as confidence increases about player
preferences. PCA-TS does not exhibit this dipping effect and
reaches 1.0 in an overall much smoother manner. The com-
bination of these two reasons suggests that Thompson Sam-
pling might be a better approach for keeping track of agent
beliefs in the APU model.

7 Conclusion and Future Work

In this paper, we investigated two-sided matching with un-
certain preferences in two challenging settings: the APKP
model (where only arms know their preferences) and the
APU model (where neither side initially knows preferences).
Building on prior work that assumes arms’ preferences are
common knowledge, we extended the analysis and designed
algorithms that learn preferences on both sides without di-
rect communication.

In the APKP model, we showed that players can reliably
learn their positions in each arm’s preference ordering, en-
abling convergence to a stable match only slightly slower
than CA-UCB. In the more complex APU model, we pro-
posed an algorithm where each player selects arms based on
highest expected reward, taking into account both conflict
probabilities and reward estimates. Empirically, we found
that both UCB and Thompson Sampling converge to a sta-
ble match, with Thompson Sampling doing so more quickly
and smoothly—paralleling its advantages in simpler multi-
armed bandit settings.

While we proved convergence in the APKP model, the
APU setting is more challenging. Our results suggest that
stable matching can still be achieved when all preferences
are unknown, but formal theoretical guarantees for APU re-
main an important direction for future work.
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Aziz, H.; Biró, P.; Gaspers, S.; de Haan, R.; Mattei, N.; and
Rastegari, B. 2020. Stable Matching with Uncertain Linear
Preferences. Algorithmica, 82(5): 1410–1433.
Basu, S.; Sankararaman, K. A.; and Sankararaman, A. 2021.
Beyond log2(T ) regret for decentralized bandits in matching
markets. In Meila, M.; and Zhang, T., eds., Proceedings
of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research,
705–715. PMLR.
Benabbou, N.; Chakraborty, M.; Ho, X.-V.; Sliwinski, J.;
and Zick, Y. 2018. Diversity Constraints in Public Housing
Allocation. In Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, 973–
981.
Chapelle, O.; and Li, L. 2011. An empirical evaluation of
Thompson Sampling. Advances in Neural Information Pro-
cessing Systems, 24.
Das, S.; and Kamenica, E. 2005. Two-Sided Bandits and
the Dating Market. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’05,
947–952. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Etesami, S. R.; and Srikant, R. 2024. Decentral-
ized and Uncoordinated Learning of Stable Match-
ings: A Game-Theoretic Approach. (arXiv:2407.21294).
ArXiv:2407.21294 [cs, eess].
Gale, D.; and Shapley, L. S. 1962. College Admissions
and the Stability of Marriage. The American Mathematical
Monthly, 69(1): 9.

Haeringer, G.; and Wooders, M. 2011. Decentralized job
matching. International Journal of Game Theory, 40(1):
1–28.
Johari, R.; Li, H.; Liskovich, I.; and Weintraub, G. Y. 2022.
Experimental design in two-sided platforms: An analysis of
bias. Management Science, 68(10).
Kong, F.; Yin, J.; and Li, S. 2022. Thompson Sampling
for Bandit Learning in Matching Markets. ArXiv Preprint.
ArXiv:2204.12048 [cs].
Lee, R.; and Schwarz, M. 2009. Interviewing in Two-Sided
Matching Markets. Cambridge, MA.
Liu, L. T.; Mania, H.; and Jordan, M. I. 2020. Competing
Bandits in Matching Markets. arXiv:1906.05363 [cs, stat].
ArXiv: 1906.05363.
Liu, L. T.; Ruan, F.; Mania, H.; and Jordan, M. I. 2021. Ban-
dit Learning in Decentralized Matching Markets. J. Mach.
Learn. Res., 22(1).
Pagare, T.; and Ghosh, A. 2023. Two-Sided Bandit Learning
in Fully-Decentralized Matching Markets. In ICML 2023
Workshop The Many Facets of Preference-Based Learning.
Roth, A. E.; and Peranson, E. 1999. The redesign of the
matching market for American physicians: Some engineer-
ing aspects of economic design. American economic review,
89(4): 748–780.
Roth, A. E.; and Xing, X. 1997. Turnaround Time and
Bottlenecks in Market Clearing: Decentralized Matching in
the Market for Clinical Psychologists. Journal of Political
Economy, 105(2): 284–329.
Sankararaman, A.; Basu, S.; and Abinav Sankararaman, K.
2021. Dominate or Delete: Decentralized Competing Ban-
dits in Serial Dictatorship. In Banerjee, A.; and Fuku-
mizu, K., eds., Proceedings of The 24th International Con-
ference on Artificial Intelligence and Statistics, volume 130
of Proceedings of Machine Learning Research, 1252–1260.
PMLR.
Shah, V.; Ferguson, B. L.; and Marden, J. R. 2024.
Learning Optimal Stable Matches in Decentralized Mar-
kets with Unknown Preferences. (arXiv:2409.04669).
ArXiv:2409.04669 [cs, eess].
Thompson, W. R. 1933. On the Likelihood that One Un-
known Probability Exceeds Another in View of the Evidence
of Two Samples. Biometrika, 25(3/4): 285–294.
Zhang, Y.; and Fang, Z. 2024. Decentralized Two-Sided
Bandit Learning in Matching Market. In The 40th Confer-
ence on Uncertainty in Artificial Intelligence.
Zhang, Y.; Wang, S.; and Fang, Z. 2022. Matching in Multi-
arm Bandit with Collision. In Oh, A. H.; Agarwal, A.; Bel-
grave, D.; and Cho, K., eds., Advances in Neural Informa-
tion Processing Systems.


