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ABSTRACT

Transformers are now ubiquitous for sequence modeling tasks, but their extension
to multi-dimensional data remains a challenge due the to quadratic cost of the
attention mechanism. In this paper, we propose Higher-Order Transformers (HOT),
a novel architecture designed to efficiently process data with more than two axes,
i.e. higher order tensors. To address the computational challenges associated with
high-order tensor attention, we introduce a novel Kronecker factorized attention
mechanism that reduces the attention cost to quadratic in each axis’ dimension,
rather than quadratic in the total size of the input tensor. To further enhance
efficiency, HOT leverages kernelized attention, reducing the complexity to linear.
This strategy maintains the model’s expressiveness while enabling scalable attention
computation. We validate the effectiveness of HOT on two high-dimensional tasks,
including long-term time series forecasting, and 3D medical image classification.
Experimental results demonstrate that HOT achieves competitive performance
while significantly improving computational efficiency, showcasing its potential
for tackling a wide range of complex, multi-dimensional data.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has revolutionized sequence modeling across
various domains, including computer vision (Dosovitskiy et al., 2020), speech recognition (Dong
et al., 2018), and reinforcement learning (Parisotto et al., 2020), due to its self-attention mecha-
nism, which effectively captures long-range dependencies and complex patterns in sequential data.
However, extending Transformers to handle higher-order data—such as multidimensional arrays or
tensors—poses significant challenges due to the quadratic computational and memory costs of the
attention mechanism, limiting their application in tasks involving high-dimensional inputs, such as
video processing, multidimensional time series forecasting, and 3D medical imaging. High-order
data are prevalent in many real-world applications, including climate modeling, which relies on
multidimensional time series data capturing temporal and spatial variations (Nguyen et al., 2023); 3D
medical imaging, which adds depth to traditional 2D images (Yang et al., 2023); and recommendation
systems, where user-item interactions over time and context are modeled as multidimensional tensors
(Frolov & Oseledets, 2016). Efficiently processing such data requires models capable of capturing
intricate dependencies across multiple dimensions while avoiding prohibitive computational costs.

Several efforts have been made to adapt Transformers for multidimensional data. A common
approach is to reshape or flatten the multidimensional input into a sequence (Dosovitskiy et al., 2020),
effectively reducing the problem to a one-dimensional case. While this method allows the use of
standard Transformers, it disregards the inherent structural information and local dependencies present
in the data, as the positional encoding may also fail to communicate this information. Consequently,
models may fail to capture essential patterns and exhibit suboptimal performance. Another line of
research focuses on applying attention mechanisms along each dimension independently or in a
sequential manner. For example, axial attention (Ho et al., 2019) processes data along one axis at a
time, reducing computational complexity. As another example, (Song et al., 2016) applies spatial
and temporal attention sequentialy. However, this approaches may not fully capture interactions
between different dimensions simultaneously, potentially overlooking important cross-dimensional
dependencies.
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Figure 1: Overall structure of High Order Transformer (HOT) depicting the proposed method for 2D
data with size N1 ×N2 ×D. The model shares the same arrangement with the Transformer encoder
while employing Kronecker Factorized Multihead Attention, to reduce the computational complexity.
Each mode of the tensor (e.g., N1, N2) has its own attention matrix, and these are combined using
the Kronecker product.

In this paper, we introduce Higher-Order Transformers (HOT), a novel architecture designed to
efficiently process high-dimensional data represented as tensors. An overall view of our architecture
is presented in Figure 1. Our key contributions are as follows:

• We propose a Kronecker decomposition of the high-order attention matrix, significantly
reducing the computational complexity.

• To push the boundaries of efficiency, we integrate kernelized attention mechanism into our
model reducing the complexity from quadratic to linear with respect to the input size.

• We validate the effectiveness of HOT on two challenging high-dimensional tasks: long-
term time series forecasting and 3D medical image classification. In addition, we provide
comprehensive ablation study on various aspects of HOT.

Reproducibility The code of our method will be made publicly available.

2 RELATED WORK

In recent years, various strategies have been developed to make Transformers more efficient for
high-dimensional data. One common approach is to flatten the input tensor into a sequence, as
in the Vision Transformer (ViT) (Dosovitskiy et al., 2020), which treats image patches as tokens.
However, this approach disregards the structural dependencies within the data (Tolstikhin et al.,
2021; Lee et al., 2018). To better handle multidimensional structures, axial attention mechanisms
like the Axial Transformer (Ho et al., 2019; Wang et al., 2020) apply self-attention along each axis
sequentially, reducing complexity but often missing cross-dimensional dependencies crucial for tasks
like 3D medical imaging (Hatamizadeh et al., 2022) and climate modeling (Rühling et al., 2022).
Similarly, the Sparse Transformer (Child et al., 2019) reduces computation by attending to subsets of
the input but struggles with global interactions. Kronecker Attention Networks (Gao et al., 2020)
assumes the data to follow matrix-variate normal distributions and accordingly proposes Kronecker
attention operators that apply attention on 2D data without flattening. Although the name suggests
similarities to our method, it is different from our method as it does not use Kronecker product or
decomposition. Tensorized Transformers (Ma et al., 2019) utilize tensor decompositions to reduce
memory usage but focus primarily on compression rather than improving cross-dimensional attention.
Linear Transformers (Katharopoulos et al., 2020) and Performer (Choromanski et al., 2020) bypass
the quadratic softmax bottleneck with linearized attention, making them scalable for long sequences
but limited in capturing complex multidimensional relationships. Sparse methods like Longformer
(Beltagy et al., 2020) and Reformer (Kitaev et al., 2020) also reduce complexity by restricting attention
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to local neighborhoods, but they fail to handle global dependencies in higher-dimensional contexts.
Recent works have further improved efficiency and cross-dimensional attention. iTransformer (Liu
et al., 2024) optimizes for multivariate time series forecasting by reversing attention across variables,
while Crossformer (Zhang & Yan, 2023) uses cross-dimensional attention to capture dependencies
between spatial and temporal dimensions, specifically in time series tasks. CdTransformer (Zhu
et al., 2024) tackles the challenge of cross-dimensional correlations in 3D medical images with novel
attention modules, reducing computational costs and capturing 3D-specific dependencies.

3 PRELIMINARIES: TENSOR OPERATIONS

In this section, we introduce key tensor operations that are fundamental to the high-order attention
mechanism. Vectors are denoted by lowercase letters (e.g., v), matrices by uppercase letters (e.g.,
M ), and tensors by calligraphic letters (e.g., T ). We use ⊗ to represent the Kronecker product and
×i to denote the tensor product along mode i (Kolda & Bader, 2009). The notation [k] refers to the
set {1, 2, . . . , k} for any integer k.

Definition 1 (Tensor). A k-th order tensor T ∈ RN1×N2×···×Nk generalizes the concept of a matrix
to higher dimensions. A tensor can be viewed as a multidimensional array, where each element is
indexed by k distinct indices, representing data that varies across k dimensions.
Definition 2 (Tensor Mode and Fibers). A mode-i fiber of a tensor T is the vector obtained by fixing
all indices of T except the i-th one, e.g., Tn1,n2,...,ni−1,:,ni+1,...,nk

∈ RNi .
Definition 3 (Tensor Slice). A tensor slice is a two-dimensional section of a tensor, obtained by fixing
all but two indices, e.g., Tn1,n2,...,ni−1,:,ni+1,...,nj−1,:,nj+1,...,nk

∈ RNi×Nj

Slices and fibers extend the familiar concept of matrix rows and columns to higher-dimensional
tensors, providing powerful ways to analyze and manipulate multi-way data.
Definition 4 (Tensor Matricization). The i-th mode matricization of a tensor rearranges the mode-i
fibers of the tensor into a matrix. It is denoted as T(i) ∈ RNi×(N1···Ni−1Ni+1···Nk).

Definition 5 (Mode n tensor product). The mode n product between a tensor T ∈ RN1×N2×···×Nk

and a matrix A ∈ Rd×Nn is denoted by T ×n A ∈ RN1×N2×···×Nn−1×d×Nn+1×···×Nk and defined
by (T ×n A)i1,··· ,ik =

∑
j Ti1,··· ,in−1,j,in+1,··· ,ikAin,j for all i1 ∈ [N1], · · · , ik ∈ [Nk].

We conclude this section by stating a useful identity relating matricization, mode n product and the
Kronecker product.
Proposition 1. For any tensor T ∈ RN1×N2×···×Nk×d of order k + 1 and any matrices A1 ∈
RM1×N1 , · · · , Ak ∈ RMk×Nk , we have (T ×1 A1×2 A2×3 · · · ×k Ak)(k+1) = T(k+1)(A1⊗A2⊗
· · · ⊗Ak)

⊤.

These definitions establish the foundational operations on tensors, which we will build upon to
develop the high-order attention mechanism in the next section.

4 HIGH ORDER TRANSFORMER

4.1 HIGH ORDER ATTENTION

In this section, we first review the self-attention mechanism in Transformer layers (Vaswani et al.,
2017), which we extend to higher orders by tensorizing queries, keys, and values, thereby formulating
higher order transformer (HOT) layers.

Standard Scaled Dot-Product Attention Given an input matrix X ∈ RN×D as an array of N
D-dimensional embedding vectors, we form the query, key, and value matrices for each attention
head h as:

Qh = XWh
Q, Kh = XWh

K , V h = XWh
V (1)

with weight matrices Wh
V ,W

h
K ,Wh

Q ∈ RD×DH and output matrix WO
h ∈ RDH×D, where DH is

the heads’ hidden dimension. The standard scaled dot-product attention gAttn : RN×D → RN×D is

3
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Figure 2: Visualization of a rank R Kronecker Decomposition of a high-order full attention matrix
S ∈ RN1N2...Nk×N1N2...Nk with factor matrices Si ∈ RNi×Ni . Note that the actual full attention
matrix on the LHS can be potentially much larger than what is depicted in the figure.

defined by (Vaswani et al., 2017):

gAttn(X) =
∑
h

ShV hWh
O where Sh = Softmax

(
Qh(Kh)⊤√

DH

)
(2)

is the N ×N attention matrix and the Softmax function is applied row-wise.

Although scaled dot-product attention is widely used and has shown great promise across various
domains, it comes with limitations that highly impact its scalability. In addition to its quadratic
computational complexity, it is originally designed for 1D sequences and can not directly handle
higher-order data (e.g., images, videos, etc.) without modification (such as flattening all the dimen-
sions into one). These limitations motivate the development of high-order attention mechanisms that
can efficiently handle tensor structured data with multiple positional dimensions.

Generalization to Higher Orders We now show how the full attention mechanism can be applied
to higher-order inputs. Given an input tensor X ∈ RN1×N2×···×Nk×D, where N1, N2, . . . , Nk are
the sizes of the positional modes and D is the hidden dimension, we start by generalizing the attention
mechanism to operate over all positional modes collectively. We first compute the query (Q), key
(K), and value (V) tensors for each head h by linear projections along the hidden dimension:

Qh = X ×k+1 (W
h
Q)

⊤ ∈ RN1×···×Nk×DH ,

Kh = X ×k+1 (W
h
K)⊤ ∈ RN1×···×Nk×DH ,

Vh = X ×k+1 (W
h
V )

⊤ ∈ RN1×···×Nk×DH

where ×k+1 denotes multiplication along the (k + 1)-th mode (the hidden dimension).

The scaled dot-product attention scores Sh ∈ R(N1N2...Nk)×(N1N2...Nk) are then given by

Sh = Softmax

(
(Qh

(k+1))
⊤Kh

(k+1)√
DH

)
(3)

where Qh
(k+1) ∈ R(N1N2...Nk)×DH and K(k+1) ∈ R(N1N2...Nk)×DH are the materializations of the

query and key tensors, and the Softmax function is again applied row-wise. Each positional index
is considered as a single entity in the attention calculation. The output of the high-order attention
function hAttn : RN1×N2×···×Nk×D → RN1×N2×···×Nk×D is computed by applying the attention
weights to the value tensor:

(hAttn(X ))(k+1) =
∑
h

(Wh
O)

⊤Vh
(k+1)S

h. (4)

Lastly, the output is reshaped back to the original tensor shape N1 ×N2 × · · · ×Nk ×D.

While the high-order attention mechanism enables models to capture complex dependencies across
multiple dimensions simultaneously, it suffers from significant computational and memory challenges.
Specifically, the attention weight tensor scales quadratically with the number of positions, leading
to the computational complexity of O((N1N2. . .Nk)

2), which is impractical for large tensors. To
address this issue, we propose a low-rank approximation of the high-order attention matrix using a
Kronecker product decomposition. This approach dramatically reduces computational complexity
while retaining the expressive power of the attention mechanism.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 LOW-RANK APPROXIMATION VIA KRONECKER DECOMPOSITION

We parameterize the potentially large high-order attention matrix Sh ∈ R(N1N2...Nk)×(N1N2...Nk)

using a first-order Kronecker decomposition (Figure 2) of the form:

Sh ≈ S
(1)
h ⊗ S

(2)
h ⊗ ...⊗ S

(k)
h (5)

where each S
(i)
h ∈ RNi×Ni is a factor matrix corresponding to the attention weights over the i-th

mode for head h. Note that having a first-order kronecker decomposition does not mean that Sh is of
rank one, as rank(Sh) =

∏
i rank(S

h
i ). Substituting Sh with its approximation in Eq. (4), we obtain

(hAttn(X ))(k+1) =

R∑
h=1

(Wh
O)

⊤Vh
(k+1)(S

(1)
h ⊗ S

(2)
h ⊗ ...⊗ S

(k)
h ) (6)

where each head independently considers one of the modalities.

While not all matrices can be factored into a single Kronecker product as in Eq. (5), we show in
Theorem 4.2 below that any attention matrix can be decomposed as a sum of such Kronecker products.
The summation across all heads appearing in Eq. (6) functions analogously to a rank R Kronecker
decomposition, where the Kronecker rank R correspond to the number of heads. The following
theorem shows that a rank R Kronecker decomposition is capable of approximating any high-order
attention matrix arbitrarily well, as R increases; ensuring that no significant interactions are missed.
This theoretical aspect is crucial for ensuring that the attention mechanism can potentially adapt to
any dataset or task requirements.

Theorem (Universality of Kronecker decomposition). Given any high-order attention matrix S ∈
R(N1N2...Nk)×(N1N2...Nk), there exists an R ∈ N such that S can be expressed as a rank R Kronecker
decomposition, i.e., S =

∑R
r=1 S

(1)
r ⊗ S

(2)
r ⊗ ... ⊗ S

(k)
r . As R approaches minj=1,··· ,k

∏
i ̸=j N

2
i ,

the approximation is guaranteed to become exact, meaning the Kronecker decomposition is capable
of universally representing any high-order attention matrix S.

Proof. Proof is presented in the Appendix.

Now we delve into the computation of the factor matrices S(i)
h . As mentioned before, each matrix

S
(i)
h represents first-order attention weights over the mode i. Thus, they can be computed indepen-

dently using the standard scaled dot-product attention mechanism. Since the input to the attention
module is a high-order tensor, computing first-order attention matrices require reshaping of the
input query, key, and value tensors. We propose to use a permutation-invariant pooling functions
gpool : RN1×N2×...×Nk×DH → RNi×DH that takes a high-order tensor as input and only preserves
the i-th mode and the hidden dimension. In this work, we consider summation over all modes except
the i-th and last one as the pooling function. We then compute the i-th mode attention matrix

S
(i)
h = Softmax

(
Q̃h

i (K̃
h
i )

⊤
√
DH

)
(7)

with pooled matrices Q̃h
i = gpool(Qh) ∈ RNi×DH and K̃h

i = gpool(Kh) ∈ RNi×DH at a computa-
tional cost of O(N2

i DH +DH

∏
j Nj).

Explicitly constructing the full attention matrix Sh = S
(1)
h ⊗ S

(2)
h ⊗ ...⊗ S

(k)
h in Eq. (6) from the

factor matrices S(i)
h would negate the computational savings of the Kronecker decomposition. Instead,

we exploit properties of the Kronecker product and associative law of matrix and tensor multiplication
to apply the attention without forming Sh. Formally, it is easy to check that

Sh(Vh
(k+1))

⊤ =
(
S
(1)
h ⊗ S

(2)
h ⊗ ...⊗ S

(k)
h

)
(Vh

(k+1))
⊤ (8)

=
(((
Vh ×1 S

(1)
h

)
×2 S

(2)
h

)
×3 ...×k S

(k)
h

)⊤
(k+1)

(9)

We can thus multiply each of the attention matrices one by one with the value tensor. The operation
on each mode i yields a computational complexity of O(NiDH(

∏
j Nj)), resulting in an overall

5
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complexity ofO(DH(
∑

i Ni)(
∏

j Nj)). Thus, for an HOT layer with R heads of width DH = D/R,
the total complexity is O(D(

∑
i Ni)(

∏
j Nj)).

While using factorized attention dramatically reduces the computational cost compared to naive high-
order attention, the quadratic terms appearing in the final complexity reflect the inherent computational
demand of the scaled dot-product attention mechanism, which can itself become substantial for large
tensors. To mitigate this final challenge, we integrate kernelized linear attention into the proposed
high-order attention mechanism.

4.3 LINEAR ATTENTION WITH KERNEL TRICK

Following the work by (Choromanski et al., 2020), we approximate the Softmax function in Eq. (7)
using a kernel feature map ϕ : RD → RM :

S
(i)
h ≈ (Zh

i )
−1ϕ(Q̃h

i )ϕ(K̃
h
i )

⊤, (Zh
i )jj = ϕ(Q̃h

i )j

Ni∑
l=1

ϕ(K̃h
i )

⊤
l . (10)

where Zh
i ∈ RNi×Ni is the diagonal normalization matrix serving as a normalizing factor. Substitut-

ing the Softmax function with Eq. (10) instead of the Softmax in the multiplication between the value
tensor Vh and factor matrix S

(i)
h on mode i results in:

Vh ×i S
(i)
h = Vh ×i

(
(Zh

i )
−1ϕ(Q̃h

i )ϕ(K̃
h
i )

⊤
)

(11)

=
((
Vh ×i ϕ(K̃h

i )
⊤
)
×i ϕ(Q̃h

i )
)
×i (Z

h
i )

−1 (12)

The choice of kernel function ϕ is flexible, and we utilize the same kernel function as in (Choromanski
et al., 2020), which has been validated both theoretically and empirically. In Eq. (12), we simply used
the associative law of matrix multiplication again to reduce the computational complexity of applying
a first-order attention matrix on one mode from O(NiDH(

∏
j Nj)) to O(D2

H(
∏

j Nj)) giving us a
final complexity of the proposed multi-head factorized high-order attention of O(D2(

∏
j Nj)). We

include the pseudo code for the whole HOT method in Algorithm A.

5 EXPERIMENTS

We thoroughly evaluate HOT on two high order data tasks, validating the generality of the proposed
framework. At each subsection, we introduce the task, benchmark datasets, and baselines used, and
discuss the performance results. Implementation details are presented in the appendix. We close the
section by reviewing ablation studies that further confirm our theory and design choices.

5.1 LONG-RANGE TIME-SERIES FORECASTING

Given historical observations X = {x1, . . . ,xT } ∈ RT×N with T time steps and N variates, we
predict the future S time steps Y = {xT+1, . . . ,xT+S} ∈ RS×N .

Datasets We extensively include 5 real-world datasets in our experiments, including ECL, Ex-
change, Traffic, Weather used by Autoformer Wu et al. (2021), and Solar-Energy proposed in LSTNet
Lai et al. (2017). Further dataset details are in the Appendix.

Baselines We choose 11 well-acknowledged forecasting models as our benchmark, including (1)
Transformer-based methods: ITransformer Liu et al. (2024), Crossformer Zhang & Yan (2023),
Autoformer Wu et al. (2021), FEDformer Zhou et al. (2022), Stationary Liu et al. (2023), PatchTST
Nie et al. (2023); (2) Linear-based methods: DLinear Zeng et al. (2022), TiDE Das et al. (2024),
RLinear Li et al. (2023); and (3) TCN-based methods: SCINet Liu et al. (2021), TimesNet Wu et al.
(2023).

Results Comprehensive forecasting results are provided in Table 1, with the best results highlighted
in bold and the second-best underlined. Lower MSE/MAE values reflect more accurate predictions.
As seen in the table, our proposed method, HOT, outperforms all baseline models across all datasets,
achieving the best MSE and MAE scores in every case. Specifically, HOT provides significant im-
provements on larger, more complex datasets such as ECL and Traffic, where capturing multivariate

6
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Table 1: Multivariate forecasting results with prediction lengths S ∈ {96, 192, 336, 720} and fixed
lookback length T = 96 with the best in Bold and second-best in underline. Results are averaged
from all prediction lengths. HOT outperforms all baselines over all the datasets while having a low
computational complexity. Full results are available in Table 12 in the appendix.

Models Params Complexity
ECL Weather Traffic Solar Exchange

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

AutoFormer (2021) 15M O(NTlogT ) 0.227 0.338 0.338 0.382 0.628 0.379 0.885 0.711 0.613 0.539
SCINet (2022) - O(NTlogT ) 0.268 0.365 0.292 0.363 0.804 0.509 0.282 0.375 0.750 0.626

FedFormer (2022) 21M O(NTlogT ) 0.214 0.327 0.309 0.360 0.610 0.376 0.291 0.381 0.519 0.429
Stationary (2022) - O(NTD) 0.193 0.296 0.288 0.314 0.624 0.340 0.261 0.381 0.461 0.454

TiDE (2023) - O(NTD) 0.251 0.344 0.271 0.320 0.760 0.473 0.347 0.417 0.370 0.417
Crossformer (2023) - O(NTlogT +N2T ) 0.244 0.334 0.259 0.315 0.550 0.304 0.641 0.639 0.940 0.707

RLinear (2023) - O(NT ) 0.219 0.298 0.272 0.291 0.626 0.378 0.369 0.356 0.378 0.417
DLinear (2023) 140K O(NT ) 0.212 0.300 0.265 0.317 0.625 0.383 0.330 0.401 0.354 0.414

TimesNet (2023) 301M O(NTlogT ) 0.192 0.295 0.259 0.287 0.620 0.336 0.301 0.319 0.416 0.443
PatchTST (2023) 1.5M O(NTD) 0.205 0.290 0.259 0.281 0.481 0.304 0.270 0.307 0.367 0.404

iTransformer (2024) 3M O(N2D +NTD) 0.178 0.270 0.258 0.278 0.428 0.282 0.233 0.262 0.360 0.403

HOT (Ours) 620K O(NTD2) 0.172 0.268 0.250 0.275 0.422 0.280 0.229 0.256 0.343 0.394

dependencies is critical. For smaller datasets like Exchange and Weather, HOT also outperforms
baselines, but the gap between HOT and other models, like iTransformer, is narrower, which could
be due to the smaller number of variates in these datasets, reducing the advantage of higher-order
attention. Moreover, while other high-performing models like iTransformer and PatchTST deliver
competitive results, they come with higher computational complexities. For example, iTransformer,
with a complexity of O(N2D + NTD), scales poorly with the number of time steps and vari-
ates, making it less efficient for large datasets. In contrast, HOT maintains a lower complexity of
O(NTD2), which scales better with both dimensions and time, especially for higher-dimensional
data. This efficiency is particularly important for large datasets such as ECL and Traffic, where
HOT balances performance and computational cost, outperforming even models like FedFormer and
Crossformer, which have similar or higher complexity. Overall, HOT not only achieves superior
accuracy but also offers improved scalability and efficiency for multivariate time series forecasting
tasks with much fewer parameters.

5.2 3D MEDICAL IMAGE CLASSIFICATION

Given a 3D image X ∈ RW×H×D with width W , height H , and depth D, we predict the image class
probability y ∈ RC over a set of C classes.

Dataset MedMNIST v2 Yang et al. (2023) is a large-scale benchmark for medical image classifi-
cation on standardized MNIST-like 2D and 3D images with diverse modalities, dataset scales, and
tasks. We primarily experiment on the 3D portion of MedMNIST v2, namely the Organ, Nodule,
Fracture, Adrenal, Vessel, and Synapse datasets. The size of each image is 28× 28× 28 (3D).

Baselines We choose 11 medical image classifier models including ResNet-18/ResNet-50 (He et al.,
2015) with 2.5D / 3D / ACS (Yang et al., 2021) convolutions (Yang et al., 2023), DWT-CV (Cheng
et al., 2022), Auto-Keras, and Auto-sklearn (Yang et al., 2023), MDANet (Huang et al., 2022), and
CdTransformer (Zhu et al., 2024).

Results The results presented in Table 2 demonstrate the superior performance of our Higher Order
Transformer (HOT) across multiple medical imaging datasets. HOT achieves the highest accuracy and
AUC on Organ, Fracture, Adrenal, and Vessel datasets, and the second-best performance in Synapse
and Nodule showcasing its robust classification capabilities. While models like CdTransformer
achieve better performance on Nodule and Synapse, they do so with a significantly increased
computational complexity of O(N3D2 +N4D) compared to HOT’s O(N3D2). Additionally, HOT
consistently outperforms other state-of-the-art methods such as DWT-CV and MDANet over both
metrics, balancing high performance with lower computational demands and much fewer parameters.

5.3 ABLATION STUDY

To verify the rational business of the proposed HOT, we provide detailed ablations covering analyses
on rank of the attention factorization, attention order, attention type, and lastly, individual model
components namely high-order attention module and the feed-forward module.
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Table 2: 3D image classification results on MedMNIST3D with the best in Bold and second-best in
underline. Our method (HOT) achieves top performance across several datasets while maintaining a
low computational complexity with respect to the input size (N ) and hidden dimension size (D).

Models Params Complexity Organ Nodule Fracture Adrenal Vessel Synapse
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18+2.5D (2016) 12M O(N3D2) 97.7 78.8 83.8 83.5 58.7 45.1 71.8 77.2 74.8 84.6 63.4 69.6
ResNet-18+3D (2016) 12M O(N3D2) 99.6 90.7 86.3 84.4 71.2 50.8 82.7 72.1 87.4 87.7 82.0 74.5

ResNet-18+ACS (2016) 12M O(N3D2) 99.4 90.0 87.3 84.7 71.4 49.7 83.9 75.4 93.0 92.8 70.5 72.2
ResNet-50+2.5D (2016) 26M O(N3D2) 97.4 76.9 83.5 84.8 55.2 39.7 73.2 76.3 75.1 87.7 66.9 73.5
ResNet-50+3D (2016) 26M O(N3D2) 99.4 88.3 87.5 84.7 72.5 49.4 82.8 74.5 90.7 91.8 85.1 79.5

ResNet-50+ACS (2023) 26M O(N3D2) 99.4 88.9 88.6 84.1 75.0 51.7 82.8 75.8 91.2 85.8 71.9 70.9
Auto-sklearn (2015) - - 97.7 81.4 91.4 87.4 62.8 45.3 82.8 80.2 91.0 91.5 63.1 73.0
Auto-Keras (2019) - - 97.9 80.4 84.4 83.4 64.2 45.8 80.4 70.5 77.3 89.4 53.8 72.4
DWT-CV (2022) 12-25M O(N3D2) 99.4 91.2 91.2 91.2 72.3 53.1 86.6 81.2 90.5 91.2 - -
MDANet (2022) 7M O(N3D2) 98.9 89.7 86.8 86.00 - - 83.9 81.5 90.1 92.9 71.2 75.0

CdTransformer (2024) - O(N3D2 +N4D) - - 94.3 90.3 72.4 52.9 88.4 83.6 95.9 92.9 87.9 83.2

HOT (Ours) 7M O(N3D2) 99.7 94.0 90.8 87.7 73.2 57.5 88.6 85.2 97.6 96.3 83.4 80.9

5.3.1 ATTENTION RANK

In this section, we evaluate the impact of the number of attention heads on the performance of HOT
across both medical imaging and time series datasets. The attention rank, governed by the number of
heads, plays a critical role in the model’s ability to capture diverse patterns across multiple dimensions
by approximating the original high-order attention. We conduct ablation experiments by varying the
number of heads to observe how it affects model accuracy and error rates. For 3D medical image
datasets (Figure 3 Left), increasing the number of attention heads initially improves accuracy, however,
after a certain threshold, performance declines. This drop is due to the fixed hidden dimension, which
causes the dimension of each head to decrease as the number of heads increases, reducing each
head’s ability to capture rich features and leading to less expressive attention mechanisms. For the
time series datasets (Figure 3 Right), the use of more heads improves performance, with the MSE
consistently decreasing as the number of heads increases.

Although the effective rank for the Kronecker decomposition varies for different tasks and datasets
and is highly dependent on the data size and its characteristics, in practice as shown in Figures 3, we
see that low-rank approximation (where the rank or the number of heads is not a large number) is
expressive enough to yield good results. To that end, we treat the rank as a hyper-parameter of the
model and choose it by hyper-parameter search based on validation metrics for each dataset. This
approach makes it quite easy to achieve a proper performance, without any need for exhaustive rank
analysis on the data.

Figure 3: Effect of increasing attention heads on model performance. Left: 3D medical image
datasets, Right: For multivariate timeseries datasets.

5.3.2 ATTENTION ORDER

We conducted an ablation study to explore the effects of increasing the attention order on the
performance of our proposed HOT. The attention order refers to the number of dimensions over
which attention is applied, extending beyond traditional sequence-based attention to handle high-
dimensional data effectively. We evaluate performance on both time series forecasting and 3D
medical image classification tasks under different attention configurations. As shown in Tables 3
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Figure 4: Left: Memory footprint and training time of HOT under various attention orders. Right:
Performance vs. training time of HOT under various attention types. The size of each circle indicates
its relative memory consumption. Note that the number of model parameters is fixed for each dataset.

and 4, applying higher-order attention consistently improves the performance across all datasets,
outperforming configurations with lower-order attention. However, the training time and memory
consumption of the model increases linearly with the order of the attention as depicted in Figure 4
(Left). It is worth mentioning that the model with no attention is equivalent to an MLP with residual
connections and normalizations. Importantly, all models maintain the same number of parameters and
the same computational and memory complexity for each dataset, highlighting that the performance
gains are attributable to the increased attention order without adding. Details of memory consumption
and training time are presented in the appendix.

Table 3: Quantitative evaluation of timeseries forecasting performance under different attention orders.
Results are averaged from all prediction lengths. Higher-order attention outperforms lower-order
attention while maintaining the same computational complexity. HOT is highlighted in green.

Attention Dimensions
Complexity

Solar Weather Electricity
Variable Time MSE MAE MSE MAE MSE MAE

✗ ✗ O(NTD2) 0.240 0.269 0.265 0.283 0.193 0.288
✓ ✗ O(NTD2) 0.237 0.262 0.257 0.282 0.184 0.284
✗ ✓ O(NTD2) 0.235 0.260 0.254 0.278 0.180 0.272
✓ ✓ O(NTD2) 0.229 0.256 0.250 0.275 0.172 0.268

Table 4: Quantitative evaluation of 3D image classification performance under different attention
orders. Higher-order attention outperforms lower-order attention with the same computational
complexity. HOT is highlighted in green.

Attention Dimensions
Complexity

Organ Nodule Vessel
Height Width Depth AUC ACC AUC ACC AUC ACC

✗ ✗ ✗ O(N3D2) 99.4 90.1 81.9 83.7 88.7 94.2
✓ ✗ ✗ O(N3D2) 99.6 92.2 82.1 84.8 90.9 95.6
✓ ✓ ✗ O(N3D2) 99.6 93.9 84.3 85.8 91.4 96.0
✓ ✓ ✓ O(N3D2) 99.7 94.0 90.8 87.7 97.6 96.3

5.3.3 ATTENTION TYPE

In this section, we compare naive full attention with the proposed factorized attention approach. To
implement the full high-order attention, we flatten all dimensions except for the batch and hidden
dimensions, then apply standard scaled dot-product attention to the flattened input. Finally, the output
is reshaped back to its original dimensions. As discussed earlier, the quadratic complexity of standard
attention results in significantly higher computational and memory requirements. To address this,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

we also incorporated kernelized attention into the naive full attention, reducing its complexity to
linear—matching the efficiency of our proposed method. As shown in Tables 6 and 5, with proper
hyperparameter tuning, our proposed HOT (highlighted in green) achieves results comparable to
standard full attention while requiring far less computation, memory, and training time.

An interesting observation from the results is that combining factorization with the kernel trick
improves performance compared to factorization alone. This is achieved by introducing additional
inductive bias into the attention computation. While linear attention without factorization performs
similarly to the combined approach in 3D medical image classification tasks, factorization offers
several distinct advantages: 1. It enables the control of model expressivity by adjusting the rank
based on the computational cost. 2. It enables the explanation of large high-order attentions, which
are otherwise infeasible to analyze, using smaller first-order attention matrices that are already
well-studied and interpretable. 3. It allows flexible treatment of attention across different dimensions
by enabling the application of independent attention masks on each axis without interference. 4.
When combined with linear attention, it results in lower MAE and reduced memory consumption
compared to linear attention alone as shown in Figure 4 (Right).

Table 5: Quantitative Analysis for the effect of applying Kronecker factorization and kernel trick in
attention on HOT performance for timeseries forecasting. Results are averaged from all prediction
lengths. HOT is highlighted in green.

Attention Setting
Complexity

Solar Weather Electricity
Factorized Linear MSE MAE MSE MAE MSE MAE

✗ ✗ O(N2T 2D) 0.219 0.257 0.245 0.275 0.162 0.261
✗ ✓ O(NTD2) 0.229 0.261 0.248 0.278 0.171 0.270
✓ ✗ O(NTD(N + T )) 0.236 0.267 0.258 0.279 0.187 0.280
✓ ✓ O(NTD2) 0.229 0.256 0.250 0.275 0.172 0.268

Table 6: Quantitative Analysis for the effect of applying Kronecker factorization and kernel trick in
attention on HOT performance for 3D image classification. HOT is highlighted in green.

Attention Setting
Complexity

Organ Nodule Vessel
Factorized Linear AUC ACC AUC ACC AUC ACC

✗ ✗ O(N6D) 99.6 92.6 91.2 87.8 97.7 96.6
✗ ✓ O(N3D2) 99.7 94.0 89.7 87.7 98.1 96.3
✓ ✗ O(N4D) 99.5 91.3 86.1 86.4 97.2 96.1
✓ ✓ O(N3D2) 99.7 94.0 90.8 87.7 97.6 96.3

6 CONCLUSION

In this paper, we addressed the challenge of extending Transformers to high-dimensional data, often
limited by the quadratic cost of attention mechanisms. While methods like flattening inputs or
sparse attention reduce computational overhead, they miss essential cross-dimensional dependen-
cies and structural information. We introduced Higher-Order Transformers (HOT) with Kronecker
factorized attention to lower complexity while preserving expressiveness. This approach processes
high-dimensional data efficiently, with complexity scaling quadratically per dimension. We further
integrated kernelized attention for additional scalability and a complexity scaling linearly per di-
mension. HOT demonstrated strong performance in tasks such as time series forecasting and 3D
medical image classification, proving both its effectiveness and efficiency. Future work could enhance
HOT’s interpretability by analyzing attention maps or exploring alternative pooling methods for better
information aggregation. Additionally, adapting HOT as an autoregressive model could enhance
spatial and temporal coherency for generative tasks like video synthesis and climate forecasting.
Lastly, although the use of the proposed factorized linear attention was only studied in the context of
the Transformers architecture in this work, its capabilities in other architectures such as Attention
U-Net Oktay et al. (2018) is yet to be explored.
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A HOT ALGORITHM

Algorithm 1 High-Order Attention with Kronecker Decomposition and Linear Approximation

Require: Input tensorX ∈ RN1×N2×···×Nk×D, Number of heads H , Hidden dimension DH , Kernel
feature map ϕ

Ensure: Output tensor Y ∈ RN1×N2×···×Nk×D

1: Initialize query, key, value projection matrices Wh
Q,W

h
K ,Wh

V ∈ RD×DH , output projection
matrices Wh

O ∈ RDH×D

2: Initialize empty output tensor Y ∈ RN1×N2×···×Nk×D ← 0
3: for each head h = 1 to H do
4: Compute query, key, and value tensors:

Qh = X ×k+1 W
h
Q, Kh = X ×k+1 W

h
K , Vh = X ×k+1 W

h
V

5: Initialize output tensor P ← Vh

6: for each mode i = 1 to k do
7: Pool the query and key tensors across all modes except i:

Q̃h
i = gpool(Qh), K̃h

i = gpool(Kh)

8: Compute first-order attention matrix for mode i with kernel trick:

S
(i)
h ≈ (Zh

i )
−1ϕ(Q̃h

i )ϕ(K̃
h
i )

⊤

9: Apply the Kronecker attention to P:

P = P ×i S
(i)
h

10: end for
11: Update the output tensor:

Y = Y + Ph ×k+1 W
h
O

12: end for
13: return Y

B UNIVERSALITY OF THE KRONECKER DECOMPOSITION

Theorem (4.2). Given any high-order attention matrix S ∈ R(N1N2...Nk)×(N1N2...Nk), there exists
an R ∈ N such that S can be expressed as a rank R Kronecker decomposition, i.e., S =

∑R
r=1 S

(1)
r ⊗

S
(2)
r ⊗...⊗S(k)

r . As R approaches minj=1,··· ,k
∏

i ̸=j N
2
i , the approximation is guaranteed to become

exact, meaning the Kronecker decomposition is capable of universally representing any high-order
attention matrix S.

Proof. Let S be the tensor obtained by reshaping the attention matrix S into a tensor of size
N1 ×N2 × · · · ×Nk ×N1 ×N2 × · · · ×Nk and let T ∈ RN2

1×N2
2×···×N2

k be the tensor obtained
by merging each pair of modes corresponding to one modality1. Let R be the CP rank of T and let
T =

∑R
r=1 s

(1)
r ◦ s(2)r ◦ · · · ◦ s(k)r be a CP decomposition, where ◦ denotes the outer product and

each s
(i)
r ∈ RN2

i for i = 1, · · · , k (see, e.g., (Kolda & Bader, 2009) for an introduction to the CP
decomposition). By reshaping each s

(i)
r ∈ RN2

i into a matrix S
(i)
r ∈ RNi×Ni , one can check that

Si1,··· ,ik,j1,··· ,jk =

R∑
r=1

(S(1)
r )i1,j1 ⊗ (S(2)

r )i2,j2 ⊗ · · · ⊗ (S(k)
r )ik,jk

from which it follows that S =
∑R

r=1 S
(1)
r ⊗ S

(2)
r ⊗ ...⊗ S

(k)
r , as desired.

1i.e., in pytorch T would be obtained obtained by permuting the modes of S and reshaping:
torch.transpose(S, [0, k + 1, 1, k + 2, · · · , k − 1, 2k − 1].reshape([N2

1 , · · · , N2
k ])
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The second part of the theorem comes from the fact that mini=1,··· ,p
∏

j ̸=i dj is a well known upper
bound on the CP rank of a tensor of shape d1× d2×· · ·× dk (see again (Kolda & Bader, 2009)).

It is worth noting that based on the given proof, the CP decomposition of the attention matrix reshaped
into a tensor of size N2

1 ×N2
2 × · · · ×N2

k is exactly equivalent to the Kronecker factorization of the
attention matrix used in HOT.

C DATASETS DETAILS

C.1 LONG-RANGE TIME-SERIES FORECASTING

We evaluate the performance of the proposed HOT model on seven real-world datasets: (1) Exchange
(Wu et al., 2021), which contains daily exchange rates for eight countries from 1990 to 2016, (2)
Weather (Wu et al., 2021), consisting of 21 meteorological variables recorded every 10 minutes in
2020 at the Max Planck Biogeochemistry Institute, (3) ECL (Wu et al., 2021), which tracks hourly
electricity consumption for 321 clients, (4) Traffic (Wu et al., 2021), collecting hourly road occupancy
data from 862 sensors on San Francisco Bay area freeways between January 2015 and December
2016, and (5) Solar-Energy (Lai et al., 2017), recording solar power production from 137 photovoltaic
(PV) plants, sampled every 10 minutes in 2006.

We follow the data processing and train-validation-test split protocol used in TimesNet (Wu et al.,
2023), ensuring datasets are chronologically split to prevent any data leakage. For forecasting tasks,
we use a fixed lookback window of 96 time steps for the Weather, ECL, Solar-Energy, and Traffic
datasets, with prediction lengths of 96, 192, 336, 720. Further dataset details are presented in Table 7.

Table 7: Timeseries forecasting dataset details.

Dataset Variables Prediction Length Train/Val/Test Size Sample Frequency

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly
Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min

C.2 3D MEDICAL IMAGE CLASSIFICATION

We conduct experiments on the 3D subset of the Medical MNIST dataset (Yang et al., 2023). All
datasets have an image size of 28× 28× 28 voxels, allowing for consistent 3D image classification
across different medical domains. The images come from various sources, ranging from human CT
scans to animal microscopy, and have been adapted to create challenging classification tasks. Details
are presented in Table 8.

• OrganMNIST3D is based on the same CT scan data used for the Organ{A,C,S}MNIST
datasets, but instead of 2D projections, it directly uses the 3D bounding boxes of 11 different
body organs. The dataset is adapted for a multiclass classification on organ identification
from volumetric medical data.

• NoduleMNIST3D originates from the LIDC-IDRI dataset, a public repository of thoracic CT
scans designed for lung nodule segmentation and malignancy classification. For this study,
the dataset has been adapted for binary classification of lung nodules based on malignancy
levels, excluding cases with indeterminate malignancy. The images are center-cropped and
spatially normalized to retain a consistent voxel spacing.

• AdrenalMNIST3D features 3D shape masks of adrenal glands collected from patients at
Zhongshan Hospital, Fudan University. Each shape is manually annotated by an expert
endocrinologist using CT scans, though the original scans are not included in the dataset to

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

protect patient privacy. Instead, the dataset focuses on binary classification of normal versus
abnormal adrenal glands based on the processed 3D shapes derived from the scans.

• FractureMNIST3D is derived from the RibFrac dataset, which contains CT scans of rib
fractures. The dataset classifies rib fractures into three categories (buckle, nondisplaced, and
displaced), omitting segmental fractures due to the resolution of the images.

• VesselMNIST3D uses data from the IntrA dataset, which includes 3D models of intracranial
aneurysms and healthy brain vessels reconstructed from magnetic resonance angiogra-
phy (MRA) images. The dataset focuses on classifying healthy vessel segments versus
aneurysms, with the models voxelized into 3D volumes.

• SynapseMNIST3D is based on high-resolution 3D electron microscopy images of a rat’s
brain, with the dataset focusing on classifying synapses as either excitatory or inhibitory.
The data were annotated by neuroscience experts, and each synapse is cropped from the
original large-scale volume and resized.

Table 8: MedMNIST 3D datasets details.

Dataset Modality Number of Classes Train/Val/Test Size

Organ Abdominal CT 11 (972, 161, 610)
Nodule Chest CT 2 (1158, 165, 310)
Adrenal Shape from Abdominal CT 2 (1188, 98, 298)
Fracture Chest CT 3 (1027, 103, 240)
Vessel Shape from Brain MRI 2 (1335, 192, 382)
Synapse Electron Microscope 2 (1230, 177, 352)

D IMPLEMENTATION DETAILS

Table 9: Hyperparameter Search Space.

Hyperparameter Value List

Number of HOT Blocks [1, 2, 3, 4]
Number of Hidden Dimensions [64, 128, 256]
Dropout [0, 0.1, 0.2, 0.3, 0.4]
Number of Attention Heads [1, 4, 8]
Convolution Kernel Size (3D Image Classification) [3, 5, 7]
Convolution Kernel Size (TimeSeries Forecasting) [1, 4, 8, 16]
Pooling Function [Mean, Flatten]

Timeseries Forecasting The convolution encoder is a single 1D convolution layer with kernel size
and stride both set to 4 applied on the temporal axis. This is equal to dividing the input timeseries into
patches of size 4 and applying a linear projection to the hidden space of the model. Rotary positional
encoding Su et al. (2021) is used only for the time axis. The output of the transformer is pooled before
being fed to the final MLP layer by either taking the average or flattening. We conduct forecasting
experiments by training models on each dataset. Following the same split of training/validation/test
sets as in Liu et al. (2024), the model weights from the epoch with the lowest MAE on the validation
set are selected for comparison on the test set.

3D Medical Image Classification The convolution encoder is implemented as a multilayer 3D
convolution with a total downsampling by a factor of 4, while Rotary positional encoding is used
for all three spatial dimensions. The output of the transformer is pooled before being fed to the final
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MLP classifier by either taking the average or flattening. We conduct classification experiments by
training models on each dataset. Following the official split of training/validation/test sets, we train
all models on the training sets for 100 epochs. The model weights from the epoch with the highest
AUC score on the validation set are selected for comparison on the test set.

We fixed the feature map function in the linear attention to SMReg from Performer Choromanski et al.
(2020) for all our models, as it was shown to be the most stable, fast converging and expressive by
the authors. All the experiments are implemented in PyTorch and conducted on a single NVIDIA
A100 GPU. We utilize ADAM (Kingma & Ba, 2017) with an initial learning rate of 2× 10−4 and L2
loss for the timeseries forecasting task and cross-entropy loss for the medical image classification
task. The batch size is uniformly set to 32 and the number of training epochs is fixed to 100. We
conduct hyperparameter tuning based on the search space shown in Table 9.

E ADDITIONAL RESULTS

We report the standard deviation of HOT performance over five runs with different random seeds in
Tables 10 and 11, which exhibits that the performance of HOT is stable on both tasks. We also report
symmetric MAPE (SMAPE) for timeseries forecasting in Table 11.

Table 10: Robustness of HOT performance on 3D medical image classification. The results are
obtained from five random seeds.

Organ Nodule Fracture

AUC ACC AUC ACC AUC ACC

99.7 ± 0.1 94.0 ± 0.5 90.8 ± 0.5 87.7 ± 1 73.2 ± 0.2 57.5 ± 0.3

Adrenal Vessel Synapse

AUC ACC AUC ACC AUC ACC

88.6 ± 0.1 85.2 ± 0.4 97.6 ± 0.7 96.3± 0.3 83.4 ± 0.7 80.9 ± 0.2

Table 11: Robustness of HOT performance on timeseries forecasting. The results are obtained from
five random seeds.

Dataset ECL Weather

Horizon MSE MAE SMAPE MSE MAE SMAPE

96 0.142 ± 0.001 0.242 ± 0.001 0.453± 0.001 0.169± 0.003 0.214± 0.002 0.554 ± 0.002
192 0.158 ± 0.002 0.257 ± 0.002 0.502± 0.002 0.214± 0.002 0.251± 0.001 0.618 ± 0.002
336 0.176 ± 0.002 0.273 ± 0.003 0.522± 0.003 0.268± 0.001 0.292± 0.000 0.665 ± 0.001
720 0.212 ± 0.001 0.301 ± 0.003 0.563± 0.003 0.350± 0.001 0.343± 0.000 0.728 ± 0.001

Dataset Solar Exchange

Horizon MSE MAE SMAPE MSE MAE SMAPE

96 0.194 ± 0.003 0.229± 0.004 0.365± 0.002 0.083 ± 0.005 0.202 ± 0.005 0.180± 0.003
192 0.227 ± 0.003 0.254± 0.003 0.394± 0.001 0.173± 0.004 0.295± 0.004 0.278± 0.001
336 0.244 ± 0.002 0.267± 0.004 0.417± 0.004 0.313± 0.005 0.405± 0.006 0.396± 0.002
720 0.252 ± 0.003 0.274± 0.005 0.431± 0.004 0.804 ± 0.005 0.673± 0.006 0.644± 0.005

Dataset Traffic

Horizon MSE MAE SMAPE
96 0.388± 0.003 0.268 ± 0.000 0.492± 0.001

192 0.407± 0.002 0.275 ± 0.001 0.496± 0.002
336 0.431± 0.002 0.287 ± 0.001 0.509± 0.003
720 0.464± 0.002 0.300 ± 0.002 0.538± 0.003
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Table 12: Full performance comparison between HOT and other baselines on timeseries forecasting
with best in Bold and second-best in underline. HOT achieves the best performance over the majority
of the datasets and all horizons.

Baselines ECL Weather Traffic Solar Exchange
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

AutoFormer (2021)

96 0.201 0.317 0.266 0.336 0.613 0.388 0.884 0.711 0.197 0.323
192 0.222 0.334 0.307 0.367 0.616 0.382 0.834 0.692 0.300 0.369
336 0.231 0.338 0.359 0.395 0.622 0.337 0.941 0.723 0.509 0.524
720 0.254 0.361 0.419 0.428 0.660 0.408 0.882 0.717 1.447 0.941

SCINet (2022)

96 0.247 0.345 0.221 0.306 0.788 0.499 0.237 0.344 0.267 0.396
192 0.257 0.35 0.261 0.340 0.789 0.505 0.280 0.380 0.351 0.459
336 0.269 0.369 0.309 0.378 0.797 0.508 0.304 0.389 1.324 0.853
720 0.299 0.390 0.377 0.427 0.841 0.523 0.308 0.38 1.058 0.797

FedFormer (2022)

96 0.193 0.308 0.217 0.296 0.587 0.366 0.242 0.342 0.148 0.278
192 0.201 0.315 0.276 0.336 0.604 0.373 0.285 0.380 0.271 0.315
336 0.214 0.329 0.339 0.380 0.621 0.383 0.282 0.376 0.460 0.427
720 0.246 0.355 0.403 0.428 0.626 0.382 0.357 0.427 1.195 0.695

Stationary (2022)

96 0.169 0.273 0.173 0.223 0.612 0.338 0.215 0.249 0.111 0.237
192 0.182 0.286 0.245 0.285 0.613 0.340 0.254 0.272 0.219 0.335
336 0.200 0.304 0.321 0.338 0.618 0.328 0.290 0.296 0.421 0.476
720 0.222 0.321 0.414 0.410 0.653 0.355 0.285 0.295 1.092 0.769

TiDE (2023)

96 0.237 0.329 0.202 0.261 0.805 0.493 0.312 0.399 0.094 0.218
192 0.236 0.330 0.242 0.298 0.756 0.474 0.339 0.416 0.184 0.307
336 0.249 0.344 0.287 0.335 0.762 0.477 0.368 0.430 0.349 0.431
720 0.284 0.373 0.351 0.386 0.719 0.449 0.370 0.425 0.852 0.698

Crossformer (2023)

96 0.219 0.314 0.158 0.230 0.522 0.290 0.310 0.331 0.256 0.367
192 0.231 0.322 0.206 0.277 0.530 0.293 0.734 0.725 0.470 0.509
336 0.246 0.337 0.272 0.335 0.558 0.305 0.750 0.735 1.268 0.883
720 0.280 0.363 0.398 0.418 0.589 0.328 0.769 0.765 1.767 1.068

RLinear (2023)

96 0.201 0.281 0.192 0.232 0.649 0.389 0.322 0.339 0.093 0.217
192 0.201 0.28 0.240 0.271 0.601 0.366 0.359 0.356 0.184 0.307
336 0.215 0.298 0.292 0.307 0.609 0.369 0.397 0.369 0.351 0.432
720 0.257 0.331 0.364 0.353 0.647 0.387 0.397 0.356 0.886 0.714

DLinear (2023)

96 0.197 0.282 0.196 0.255 0.650 0.396 0.290 0.378 0.088 0.218
192 0.196 0.285 0.237 0.296 0.598 0.370 0.320 0.398 0.176 0.315
336 0.209 0.301 0.283 0.335 0.605 0.373 0.353 0.415 0.313 0.427
720 0.245 0.333 0.345 0.381 0.645 0.394 0.356 0.413 0.839 0.695

TimesNet (2023)

96 0.168 0.272 0.172 0.220 0.593 0.321 0.250 0.292 0.107 0.234
192 0.184 0.289 0.219 0.261 0.617 0.336 0.296 0.318 0.226 0.344
336 0.198 0.300 0.280 0.306 0.629 0.336 0.319 0.330 0.367 0.448
720 0.220 0.320 0.365 0.359 0.640 0.350 0.338 0.337 0.964 0.746

PatchTST (2023)

96 0.181 0.270 0.177 0.218 0.462 0.295 0.234 0.286 0.088 0.205
192 0.188 0.274 0.225 0.259 0.466 0.296 0.267 0.310 0.176 0.299
336 0.204 0.293 0.278 0.297 0.482 0.304 0.290 0.315 0.301 0.397
720 0.246 0.324 0.354 0.348 0.514 0.322 0.289 0.317 0.901 0.714

iTransformer (2024)

96 0.148 0.240 0.174 0.221 0.395 0.268 0.203 0.237 0.086 0.206
192 0.162 0.253 0.221 0.254 0.417 0.276 0.233 0.261 0.177 0.299
336 0.178 0.269 0.278 0.296 0.433 0.283 0.248 0.273 0.331 0.417
720 0.225 0.317 0.358 0.347 0.467 0.302 0.249 0.275 0.847 0.691

HOT (Ours)

96 0.142 0.242 0.169 0.214 0.388 0.268 0.194 0.229 0.083 0.202
192 0.158 0.257 0.214 0.251 0.407 0.275 0.227 0.254 0.173 0.295
336 0.176 0.273 0.268 0.292 0.431 0.287 0.244 0.267 0.313 0.405
720 0.212 0.301 0.350 0.343 0.464 0.300 0.252 0.274 0.804 0.673

18


	Introduction
	Related Work
	Preliminaries: Tensor Operations
	High Order Transformer
	High Order Attention
	Low-rank Approximation Via Kronecker Decomposition
	Linear Attention With Kernel Trick

	Experiments
	Long-range Time-series Forecasting
	3D Medical Image Classification
	Ablation Study
	Attention Rank
	Attention Order
	Attention Type


	Conclusion
	HOT Algorithm
	Universality of the Kronecker Decomposition
	Datasets Details
	Long-range Time-series Forecasting
	3D Medical Image Classification

	Implementation Details
	Additional Results

