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ABSTRACT

In many classification applications, the prediction of a deep neural network (DNN)
based classifier needs to be accompanied by some confidence indication. Two pop-
ular approaches for that aim are: 1) Calibration: modifies the classifier’s softmax
values such that the maximal value better estimates the correctness probability;
and 2) Conformal Prediction (CP): produces a prediction set of candidate labels
that contains the true label with a user-specified probability, guaranteeing marginal
coverage but not, e.g., per class coverage. In practice, both types of indications
are desirable, yet, so far the interplay between them has not been investigated.
Focusing on the ubiquitous Temperature Scaling (TS) calibration, we start this
paper with an extensive empirical study of its effect on prominent CP methods. We
show that while TS calibration improves the class-conditional coverage of adaptive
CP methods, surprisingly, it negatively affects their prediction set sizes. Motivated
by this behavior, we explore the effect of TS on CP beyond its calibration ap-
plication and reveal an intriguing trend under which it allows to trade prediction
set size and conditional coverage of adaptive CP methods. Then, we establish a
mathematical theory that explains the entire non-monotonic trend. Finally, based
on our experiments and theory, we offer simple guidelines for practitioners to
effectively combine adaptive CP with calibration.

1 INTRODUCTION

Modern classification systems are typically based on deep neural networks (DNNs) (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017). In many applications, it is necessary to quantify
and convey the level of uncertainty associated with each prediction of the DNN. This is particularly
crucial in high-stakes scenarios, such as medical diagnoses (Miotto et al., 2018), autonomous vehicle
decision-making (Grigorescu et al., 2020), and detection of security threats (Guo et al., 2018), where
human lives are at risk.

In practice, DNN classification models typically generate a post-softmax vector, akin to a probability
vector with nonnegative entries that add up to one. One might, intuitively, be interested in using
the value associated with the prediction as the confidence (Cosmides & Tooby, 1996). However,
this value often deviates substantially from the actual correctness probability. This discrepancy,
known as miscalibration, is prevalent in modern DNN classifiers, which frequently demonstrate
overconfidence: the maximal softmax value surpasses the true correctness probability (Guo et al.,
2017). To address this issue, post-processing calibration methods are employed to adjust the values
of the softmax vector. In particular, Guo et al. (2017) demonstrated the usefulness of a simple
Temperature Scaling (TS) procedure (a single parameter variant of Platt scaling (Platt et al., 1999)).
Since then, TS calibration has gained massive popularity (Liang et al., 2018; Ji et al., 2019; Wang
et al., 2021; Frenkel & Goldberger, 2021; Ding et al., 2021; Wei et al., 2022). Thus studying it is of
high significance.

Another post-processing approach for uncertainty indication is Conformal Prediction (CP), which
was originated in (Vovk et al., 1999; 2005) and has attracted much attention recently. CP algorithms
are based on devising scores for all the classes per sample (based on the softmax values) that are used
for producing a set of predictions instead of a single predicted class. These methods have theoretical
guarantees for marginal coverage: given a user-specified probability, the produced set will contain
the true label with this probability, assuming that the data samples are exchangeable (e.g., the samples

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

are i.i.d.). Note that this property does not ensure conditional coverage, i.e., coverage of the true
label with the specified probability when conditioning the data, e.g., to a specific class. Consequently,
CP methods are usually compared by both their prediction set sizes and their conditional coverage
performance.

Clearly, in critical applications, both calibration and CP are desirable, as they provide complementary
types of information that can lead to a comprehensive decision. However, as far as we know, so far
the interplay between them has not been investigated. Specifically, the works (Angelopoulos et al.,
2021; Lu et al., 2022; Gibbs et al., 2023; Lu et al., 2023) apply initial TS calibration (rather than any
other calibration method) before applying their CP methods. Yet, none of them investigates what is
the effect of this procedure on the CP methods.

In this work, we study the effect of TS, arguably the most common calibration technique, on three
prominent CP methods: Least Ambiguous set-valued classifier (LAC) (Lei & Wasserman, 2014;
Sadinle et al., 2019), Adaptive Prediction Sets (APS) (Romano et al., 2020), and Regularized Adaptive
Prediction Sets (RAPS) (Angelopoulos et al., 2021). Note that LAC (aka THR), APS and RAPS are
probably the three most popular CP methods for classification. Indeed, important papers in this field,
such as (Angelopoulos et al., 2021) and (Stutz et al., 2022), do not consider any other CP method.
Our discoveries on the effect of TS calibration in this paper have motivated us to explore the TS
mechanism also beyond its calibration application.

Our contributions can be summarized as follows:

• We conduct an extensive empirical study on DNN classifiers that shows that an initial TS
calibration affects CP methods differently. Specifically, we show that its effect is negligible
for LAC, but intriguing for adaptive methods (APS and RAPS): while their class-conditional
coverage is improved, surprisingly, their prediction set sizes typically become larger.

• Following these findings, we investigate the impact of TS on CP for a wide range of
temperatures, beyond the values used for calibration. We reveal that by modifying the
temperature, TS enables to trade the prediction set sizes and the class-conditional coverage
performance for RAPS and APS. Moreover, metrics of these properties display a similar
non-monotonic pattern across all models and datasets examined.

• We present a rigorous theoretical analysis of the impact of TS on the prediction set sizes
of APS and RAPS, offering a comprehensive explanation for the complex non-monotonic
patterns observed empirically.

• Based on our theoretically-backed findings, we propose practical guidelines to effectively
combine adaptive CP methods with TS calibration, which allow users to control the predic-
tion set sizes and conditional coverage trade-off.

2 BACKGROUND AND RELATED WORK

Let us present the notations that are used in the paper, followed by some preliminaries on TS and CP.
We consider a C-classes classification task of the data (X,Y ) distributed on Rd × [C], where [C] :=
{1, . . . , C}. The classification is tackled by a DNN that for each input sample x ∈ Rd produces a
logits vector z = z(x) ∈ RC that is fed into a final softmax function σ : RC → RC , defined as

σi(z) =
exp (zi)∑C
j=1 exp (zj)

. Typically, the post-softmax vector π̂(x) = σ(z(x)) is being treated as an

estimate of the class probabilities. The predicted class is given by ŷ(x) = argmaxi π̂i(x).

2.1 CALIBRATION AND TEMPERATURE SCALING

The interpretation of π̂(x) as an estimated class probabilities vector promotes treating π̂ŷ(x)(x) as
the probability that the predicted class ŷ(x) is correct, also referred to as the model’s confidence.
However, it has been shown that DNNs are frequently overconfident — π̂ŷ(x)(x) is larger than
the true correctness probability (Guo et al., 2017). Formally, P

(
ŷ(X) = Y |π̂ŷ(X)(X) = p

)
< p

with significant margin. Post-processing calibration techniques aim at reducing the aforementioned
gap. They are based on optimizing certain transformations of the logits z(·), yielding a probability
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vector π̃(·) that minimizes an objective computed over a dedicated calibration set of labeled samples
{xi, yi}ni=1 (Platt et al., 1999; Zadrozny & Elkan, 2002; Naeini et al., 2015; Nixon et al., 2019). Two
popular calibration objectives are the Negative Log-Likelihood (NLL) (Hastie et al., 2005) and the
Expected Calibration Error (ECE) (Naeini et al., 2015), detailed in Appendix B.3.

Temperature Scaling (TS) (Guo et al., 2017) stands out as, arguably, the most common calibration
approach, surpassing many others in achieving calibration with minimal computational complexity
(Liang et al., 2018; Ji et al., 2019; Wang et al., 2021; Frenkel & Goldberger, 2021; Ding et al.,
2021; Wei et al., 2022). It simply uses the transformation z 7→ z/T before applying the softmax,
where T > 0 (the temperature) is a single scalar parameter that is set by minimizing NLL or ECE.
Additionally, TS preserves the accuracy rate of the network (the ranking of the elements – and in
particular, the index of the maximum – is unchanged), which may otherwise be compromised during
the calibration phase.

Hereafter, we use the notation π̂T (x) := σ(z(x)/T ) to denote the output of the softmax when
taking into account the temperature. Observe that T = 1 preserves the original probability vector.
Let us denote by T ∗ the temperature that is optimal for TS calibration. Since DNN classifiers are
commonly overconfident, TS calibration typically yields some T ∗ > 1, which “softens" the original
probability vector. Formally, TS with T > 1 raises the entropy of the softmax output (formally shown
in Proposition A.5 in the appendix).

The reliability diagram (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005) is a graphical
depiction of a model before and after calibration. The confidence range [0, 1] is divided into bins and
the validation samples (not used in the calibration) are assigned to the bins according to π̂ŷ(x)(x).
The average accuracy (Top-1) is computed per bin. In the case of perfect calibration, the diagram
should be aligned with the identity function. Any significant deviation from slope of 1 indicates
miscalibration. In Appendix B.4.1, we provide reliability diagrams for the dataset-model pairs
examined in our study.

2.2 CONFORMAL PREDICTION

Conformal Prediction (CP) is a methodology that is model-agnostic and distribution-free, designed
for generating a prediction set of classes Cα(X) for a given sample X , such that Y ∈ Cα(X) with
probability 1−α for a predefined α ∈ (0, 1), where Y is the true class associated with X (Vovk et al.,
1999; 2005; Papadopoulos et al., 2002). The decision rule is based on a calibration set of labeled
samples {xi, yi}ni=1, which we hereafter refer to as the CP set, to avoid confusion with the set used
for TS calibration. The only assumption in CP is that the random variables associated with the CP set
and the test samples are exchangeable (e.g., the samples are i.i.d.).

Let us state the general process of conformal prediction given the CP set {xi, yi}ni=1 and its deploy-
ment for a new (test) sample xn+1 (for which yn+1 is unknown), as presented in (Angelopoulos &
Bates, 2021):

1. Define a heuristic score function s(x, y) ∈ R based on some output of the model. A higher
score should encode a lower level of agreement between x and y.

2. Compute q̂ as the
⌈(n+ 1)(1− α)⌉

n
quantile of the scores {s(x1, y1), . . . , s(xn, yn)}.

3. At deployment, use q̂ to create prediction sets for new samples: Cα(xn+1) = {y :
s(xn+1, y) ≤ q̂}.

CP methods possess the following coverage guarantee.

Theorem 2.1 (Theorem 1 in (Angelopoulos & Bates, 2021)). Suppose that {(Xi, Yi)}ni=1 and
(Xn+1, Yn+1) are i.i.d., and define q̂ as in step 2 above and Cα(Xn+1) as in step 3 above. Then the
following holds:

P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α. (1)

The proof of this result is based on (Vovk et al., 1999). A proof of an upper bound of 1−α+1/(n+1)
also exists. This property is called marginal coverage since the probability is taken over the entire
distribution of (X,Y ).
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While achieving marginal coverage is practically feasible, it unfortunately does not imply the much
more stringent property of conditional coverage:

P (Yn+1 ∈ Cα(Xn+1)|Xn+1 = x) ≥ 1− α. (2)

Yet, coverage for any value x of the random X is impracticable (Vovk, 2012), (Foygel Barber et al.,
2021), and a useful intuitive relaxation is to consider class-conditional coverage.

CP methods are usually compared by the size of their prediction sets and by their proximity to the
conditional coverage property. Over time, various CP techniques with distinct objectives have been
developed (Angelopoulos & Bates, 2021). There have been also efforts to alleviate the exchangeability
assumption (Tibshirani et al., 2019; Barber et al., 2023). In this paper we will focus on three prominent
CP methods. Each of them devises a different score s(x, y) based on the output of the classifier’s
softmax π̂(·).
Least Ambiguous Set-valued Classifier (LAC) (Lei & Wasserman, 2014; Sadinle et al., 2019). In
this method, s(x, y) = 1− π̂y(x). Accordingly, given q̂LAC associated with α through step 2, the
prediction sets are formed as: CLAC(x) := {y : π̂y(x) ≥ 1− q̂LAC}. LAC tends to have small set
sizes (under the strong assumption that π̂(x) matches the posterior probability, it provably gives the
smallest possible average set size). On the other hand, its conditional coverage is limited.

Adaptive Prediction Sets (APS) (Romano et al., 2020). The objective of this method is to improve
the conditional coverage. Motivated by theory derived under the strong assumption that π̂(x) matches

the posterior probability, it uses s(x, y) =
∑Ly

i=1
π̂(i)(x), where π̂(i)(x) denotes the i-th element

in a descendingly sorted version of π̂(x) and Ly is the index that y is permuted to after sorting.
Following steps 2 and 3, yields q̂APS and CAPS(x).

Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021). A modification of APS
that aims at improving its prediction set sizes by penalizing hard examples to reduce their effect on

q̂. With the same notation as APS, in RAPS we have s(x, y) =
∑Ly

i=1
π̂(i)(x) + λ(Ly − kreg)+,

where λ, kreg ≥ 0 are regularization hyperparameters and we use the notation (·)+ := max{·, 0}.
Following steps 2 and 3, yields q̂RAPS and CRAPS(x).

Note that all these CP methods can be readily applied on πT∗(·) after TS calibration. This is done, in
(Angelopoulos et al., 2021; Lu et al., 2022; Gibbs et al., 2023; Lu et al., 2023), where the authors
stated that they applied TS calibration before examining the CP techniques. However, none of these
works has examined how TS calibration impacts any CP method. All the more so, no existing work
has experimented applying TS with a range of temperatures before employing CP methods.

3 THE EFFECT OF TS ON CP METHODS FOR DNN CLASSIFIERS

In this section, we empirically investigate the effect of TS on the performance of CP algorithms.
Specifically, we consider different datasets and models, and start by reporting the mean prediction
set size, marginal coverage, and class-conditional coverage of CP algorithms, with and without an
initial TS calibration procedure. Then, we extend the empirical study to encompass a wide range of
temperatures and discuss our findings.

3.1 EXPERIMENTAL SETUP

Datasets. We conducted our experiment on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009) chosen for their diverse content and varying levels of difficulty.

Models. We utilized a diverse set of DNN classifiers, based on ResNets (He et al., 2016), DenseNets
(Huang et al., 2017) and ViT (Dosovitskiy et al., 2021).

For CIFAR-10: ResNet34 and ResNet50. For CIFAR-100: ResNet50 and DenseNet121. For
ImageNet: ResNet152, DenseNet121 and ViT-B/16. Details on the training of the models are
provided in Appendix B.1.

TS calibration. For each dataset-model pair, we create a calibration set by randomly selecting 10%
of the validation set. We obtain the calibration temperature T ∗ by optimizing the ECE objective. The
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Table 1: Prediction Set Size. AvgSize metric along with T ∗ and accuracy for dataset-model pairs
using LAC, APS, and RAPS algorithms with α = 0.1, CP set size 10%, pre- and post-TS calibration.

Accuracy(%) AvgSize AvgSize after TS
Dataset-Model T∗ Top-1 Top-5 LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 1.227 78.3 94.0 1.95 6.34 2.71 1.92 11.11 4.30
ImageNet, DenseNet121 1.024 74.4 91.9 2.73 9.60 4.70 2.76 11.32 4.88

ImageNet, ViT-B/16 1.180 83.9 97.0 2.22 10.10 1.93 2.23 19.27 2.34
CIFAR-100, ResNet50 1.524 80.9 95.4 1.62 5.31 2.88 1.57 9.14 4.96

CIFAR-100, DenseNet121 1.469 76.1 93.5 2.13 4.26 2.98 2.06 6.51 4.27
CIFAR-10, ResNet50 1.761 94.6 99.7 0.91 1.04 0.98 0.91 1.13 1.05
CIFAR-10, ResNet34 1.802 95.3 99.8 0.91 1.03 0.94 0.93 1.11 1.05

Table 2: Coverage Metrics. MarCovGap and TopCovGap metrics for dataset-model pairs using
LAC, APS, and RAPS algorithms with α = 0.1, CP set size 10%, pre- and post-TS calibration.

MarCovGap(%) MarCovGap TS(%) TopCovGap(%) TopCovGap TS(%)
Dataset-Model LAC APS RAPS LAC APS RAPS LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 0.1 0 0 0 0 0 23.1 16.0 17.6 23.9 13.8 15.2
ImageNet, DenseNet121 0 0.1 0 0.1 0 0 24.9 15.7 18.0 25.2 14.9 17.6

ImageNet, ViT-B/16 0 0 0 0.1 0.1 0 24.8 14.2 14.7 24.9 12.2 12.5
CIFAR-100, ResNet50 0.1 0 0 0 0.1 0 13.9 12.6 11.7 12.9 9.0 7.9

CIFAR-100, DenseNet121 0 0 0 0 0 0.1 11.5 9.5 9.7 12.2 7.8 8.0
CIFAR-10, ResNet50 0 0 0 0 0.1 0 11.1 5.0 4.8 11.2 2.4 2.6
CIFAR-10, ResNet34 0 0 0.1 0 0 0 9.5 3.0 2.8 9.1 2.2 2.2

optimal temperatures when using the NLL objective are very similar, as displayed in Table 3 in the
Appendix B.3.1. This justifies using ECE as the default for the experiments.

CP Algorithms. For each of the dataset-model pairs, we construct the “CP set" (used for computing
the thresholds of CP methods) by randomly selecting {5%, 10%, 20%} of the validation set, while
ensuring not to include in the CP set samples that are used in the TS calibration. The CP methods
that we examine are LAC, APS, and RAPS, detailed in Section 2.2 (we use the randomized versions
of APS and RAPS, as done in (Angelopoulos et al., 2021)). For each technique, we use α = 0.1 and
α = 0.05, so the desired marginal coverage probability is 90% and 95%, as common in most CP
literature (Romano et al., 2020; Angelopoulos et al., 2021; Angelopoulos & Bates, 2021).

Metrics. We report metrics over the validation set samples that were not included in the calibration
set or CP set. The metrics are as follows:

• Average set size (AvgSize) - The mean prediction set size of the CP algorithm. (See equation 15 for
the definition.)
• Marginal coverage gap (MarCovGap) - The deviation of the marginal coverage from the desired
1− α. (See equation 16 for the definition.)
• Top-5% class-coverage gap (TopCovGap) - The deviation from the desired 1−α coverage, averaged
over the 5% of classes with the highest deviation. We use top-5% classes deviation due to the high
variance in the maximal class deviation. (See equation 17 for the definition.)

The mathematical definitions of the metrics, along with additional details about the experimental
setup, are presented in Appendix B.4. Note that for these metrics: the lower the better. Similar
metrics have been used in (Ding et al., 2023; Angelopoulos et al., 2021). All the reported results, per
metric, are the median-of-means along 100 trials where we randomly select the calibration/CP sets,
similarly to (Angelopoulos et al., 2021).

3.2 THE EFFECT OF TS CALIBRATION ON CP METHODS

For each of the dataset-model pairs we compute the aforementioned metrics with and without an
initial TS calibration procedure. In Table 1, we report the the calibration temperature T ∗, the accuracy
(not affected by TS), and the median-of-means of the prediction set sizes metric, AvgSize. In Table 2,
we report the median-of-means of the marginal and conditional coverage metrics, MarCovGap and
TopCovGap. In both tables, the specified coverage probability is 90% (α = 0.1), and we use 10% of
the samples for the CP set and 10% of the samples for the calibration set. Due to space limitation, the
results for coverage probability of 95% (α = 0.05) and sizes {5%, 20%} of the CP sets are deffer to
Appendix B.5. The insights gained from Tables 1 and 2 hold also for the deferred results.

Examining the results, we first see that the TS calibration temperatures, T ∗, in Table 1 are greater
than 1, indicating that the models exhibit overconfidence. The reliability diagrams before and after
TS calibration are presented in Appendix B.4.1.
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By examining MarCovGap in Table 2, we see that all CP methods maintain marginal coverage both
with and without the initial TS procedure (the gap is at most 0.1%, i.e., 0.001). That is, TS calibration
does not affect this property, which is consistent with CP theoretical guarantees (Theorem 2.1).

As for the conditional coverage, as indicated by the TopCovGap metric in Table 2, there is no distinct
trend observed for the LAC method. On the other hand, in the adaptive CP methods, APS and RAPS,
there is a noticeable improvement (TopCovGap decreases), especially when T ∗ is high. We turn
to examine Table 1, which reports the effect of TS calibration on the prediction set size of the CP
methods. First, we see that for the CIFAR-10, where the models’ accuracy is very high, the effect on
AvgSize is minor. Second, we see that the effect on LAC is negligible also for other datasets. (Note
that while LAC has lower AvgSize than APS and RAPS, its conditional coverage is worse, as shown
by TopCovGap in Table 2). Third, perhaps the most thought provoking observation, for APS and
RAPS the TS calibration procedure has led to increase in the mean prediction set size. Especially,
when the value of the optimal temperature T ∗ is high. For instance, for ResNet50 on CIFAR-100, TS
calibration increases AvgSize of APS from 5.31 to 9.14. This behavior is quite surprising.

CIFAR100, ResNet50, APS CIFAR100, ResNet50, RAPS

Figure 1: Mean sorted differences in prediction
set sizes before and after TS calibration. More
samples exhibit an increase than a decrease, and
the extent of the increase is greater.

In order to verify that the increase in the mean
set size for APS and RAPS is not caused by
a small number of extreme outliers, we “mi-
croscopically” analyze the change per sample.
Specifically, for each sample in the validation
set, we compare the prediction set size after the
CP procedure with and without the initial TS cal-
ibration (i.e., set size with TS calibration minus
set size without). Sorting the differences in a de-
scending order yields a staircase-shaped curve.
The smoothed version of this curve, which is
obtained after averaging over the 100 trials, is
presented in Figure 1 for ResNet50 trained on
CIFAR-100, both for APS and for RAPS. Similar behavior is observed for other dataset-model pairs,
as displayed by the figures in Appendix B.5.

In Figure 1, approximately one third of the samples experience a negative impact on the prediction
set size due to the TS calibration. For about half of the samples, there is no change in set size. Only
the remaining small minority of samples experience improvement but to a much lesser extent than
the harm observed for others. Interestingly, the existence of samples (though few) where the TS
procedure causes a decrease in set size indicates that we cannot make a universal (uniform) statement
about the impact of TS on the set size of arbitrary sample, but rather consider a typical/average case.

3.3 TS BEYOND CALIBRATION

The intriguing observations regarding TS calibration — especially, both positively and negatively
affecting different aspects of APS and RAPS — prompt us to explore the effects of TS on CP, beyond
calibration. In Figure 2 we present the average prediction set size, AvgSize, the class-conditional
coverage metric, TopCovGap, and the threshold value of the CP methods, q̂, for temperatures ranging
from 0.5 to 5 with an increment of 0.1. The reported results are the median-of-means for 100 trials.
We present here three diverse dataset-model pairs, and defer the others to Appendix B.6 due to space
limitation. The appendix also includes different settings, such as various calibration set sizes and
coverage probability levels, detailed in Section 3.1.

Figure 2 displays interesting non-monotonic trends of AvgSize and TopCovGap for APS and RAPS.
Across all dataset-model combinations, these metrics exhibit similar patterns: AvgSize (top row)
increases until reaching a peak, and then starts declining; TopCovGap (middle row) decreases until
reaching a minimum, then reverses and starts increasing. The threshold value q̂ (bottom row), on the
other hand, decreases monotonically for APS and RAPS. For LAC no clear pattern is evident.

If we restrict our view to, e.g., T < Tcritical (before AvgSize reaches the peak), we see generalization
of the observations in the TS calibration experiments in Section 3.2. Specifically, for the APS and
RAPS algorithms, as T increases AvgSize increases while TopCovGap decreases. This reveals
that in this range of T , there is a trade-off between the two crucial properties of APS and RAPS –
prediction set sizes and conditional coverage – which can be controlled by increasing/decreasing T .
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ImageNet, ViT CIFAR-100, ResNet50 CIFAR-10, ResNet34

Figure 2: AvgSize (top), TopCovGap (middle), and mean threshold q̂ (bottom) for LAC, APS and
RAPS with α = 0.1 versus the temperature T . The vertical line marks T ∗ obtained by calibration.

In fact, overall, the trade-off remains also beyond the maximum/minimum of AvgSize/TopCovGap.
Nevertheless, the existence of the extreme points is surprising and not intuitive.

4 THEORETICAL ANALYSIS

In this section, we provide mathematical reasoning for empirical observations regarding the effect of
TS on the prediction set size of APS and RAPS presented in Section 3. Theoretically analyzing our
other findings, such as the effect of TS on the conditional coverage, are left for future research. All
the proofs are provided in Appendix A.

4.1 THE THRESHOLD OF APS AND RAPS DECREASES AS T INCREASES

In Section 3.3, we observe that increasing the temperature monotonically reduces the threshold of
APS and RAPS. Let us prove this theoretically. Later, we will use this result in our theory on the
effect of TS on the prediction set size.

Let z = z(x) be the logits vector of a sample x. Let π̂T = σ(z/T ) be the softmax vector after
TS with temperature T . We denote by sT (x, y) the score of the APS method when applied on π̂T .

Namely, sT (x, y) =
∑Ly

i=1
π̂T,(i), where π̂T,(i) denotes the i-th element in a descendingly sorted

version of π̂T and Ly is the index that y is permuted to after sorting. Recall that the RAPS algorithm
is based on the same score with an additional regularization term that is not affected by TS.

The following theorem states that a cumulative sum of a sorted softmax vector, analogous to the APS
score, decreases as the temperature T increases.
Theorem 4.1. Let z ∈ RC be a sorted logits vector, i.e., z1 ≥ z2 ≥ . . . ≥ zC , and let L ∈ [C]. Let

π̂T = σ(z/T ) and π̂T̃ = σ(z/T̃ ) with T > T̃ > 0. Then, we have
∑L

j=1
πT̃ ,j ≥

∑L

j=1
πT,j .

The inequality is strict, unless L = C or z1 = . . . = zC .

Note that Theorem 4.1 is universal: it holds for any sorted logits vector. Denote the threshold obtained
by applying the CP method after TS by q̂T . Based on the universality of the theorem, we can establish
that increasing the temperature T decreases q̂T for APS and RAPS.
Corollary 4.2. The threshold value q̂T of APS and RAPS decreases monotonically as T increases.
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4.2 THE EFFECT OF TS ON PREDICTION SET SIZES OF APS

In Section 3.3, we observe a consistent dependency on the temperature parameter T across all models
and datasets: the mean prediction set size of APS and RAPS switches from increasing to decreasing
as T passes some value Tcritical. In this section, we provide a theoretical analysis to elucidate this
behavior. For simplification we focus on APS.

Let q̂T and q̂ denote the thresholds of APS when applied with and without TS, respectively. For
a new test sample x with logits vector z that is sorted in descending order, π̂T = σ(z/T ) and
π̂ = σ(z) are the softmax outputs with and without TS, which are sorted as well. We denote

LT = min{l :
∑l

i=1
π̂T,i ≥ q̂T }, L = min{l :

∑l

i=1
π̂i ≥ q̂} as the prediction set sizes for this

sample according to APS with and without TS, respectively.

We aim to investigate the conditions under which the events LT ≥ L and LT ≤ L occur. Since
analyzing these events directly seems to be challenging, we leverage the following proposition that
establishes alternative events that are sufficient conditions.

Proposition 4.3. Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC , π̂T = σ(z/T ) and π̂ = σ(z). Let
q̂, q̂T ∈ (0, 1] such that if T > 1 then q̂ ≥ q̂T and if 0 < T < 1 then q̂ ≤ q̂T . Let L = min{l :∑l

i=1
π̂i ≥ q̂} , LT = min{l :

∑l

i=1
π̂T,i ≥ q̂T }. The following holds:

If 0 < T < 1, then : ∀M ∈ [L] :
∑M

i=1
π̂i −

∑M

i=1
π̂T,i ≤ q̂ − q̂T =⇒ L ≥ LT

If T > 1, then : ∀M ∈ [L] :
∑M

i=1
π̂i −

∑M

i=1
π̂T,i ≥ q̂ − q̂T =⇒ L ≤ LT

(3)

The right-hand side of the new inequalities pertains to the difference between the threshold values
before and after applying TS. Analyzing this term requires understanding the properties of the quantile
sample of APS.

Figure 3: ∆z for each sample
sorted by score value (from low to
high) with and without TS calibra-
tion, for CIFAR100-ResNet50.

Let zq and πq denote the sorted logits vector and the softmax
vector associated with the sample associated with APS thresh-
old (without applying TS), that we dub “the quantile sample”.
The CP theory builds on the quantile sample being larger than
(1− α)% of the scores of other samples with high probability.
As illustrated in Figure 3, beyond a certain score threshold,
there is a strong correlation between the score value and the
difference ∆z := z(1) − z(2). This implies that, for typical
values of α (e.g., 0.1), the quantile sample exhibits a highly
dominant first entry in its softmax vector, i.e., πq

(1) ≫ πq
(2)

(recall that πi = exp(zi)/c where c is the denominator of the
softmax shared by all entries). Similar behaviour occurs with
TS calibration, see Figure 3. Thus, if we denote zqT and πq

T
as the quantile sample when TS is used, we still have πq

T,(1) ≫ πq
T,(2). Consequently, πq ≈ πq

T .
Therefore, it is reasonable to make the technical assumption that both q̂ and q̂T correspond to the
same sample in the CP set, denoted here by the sorted logits vector zq .

For the rest of the analysis, we define the “gap function” as follows:

g(z;T,M) =
∑M

i=1
σi(z)−

∑M

i=1
σi(z/T ) =

∑M
i=1 exp(zi)∑C
j=1 exp(zj)

−
∑M

i=1 exp(zi/T )∑C
j=1 exp(zj/T )

(4)

where z is a logits vector sorted in descending order.

With our assumption that q̂ and q̂T are associated with the same quantile sample zq, we have
that q̂ − q̂T in equation 3 can be written as g(zq;T, Lq), where Lq denotes the rank of the true
label of zq. Empirically, we observed that g(zq, T,M) ≈ g(zq, T, Lq) in our experiments (where
∆zq = zq(1)−zq(2) ≫ 1). Furthermore, in Proposition A.6, we prove that |g(zq, T,M)−g(zq, T, Lq)|
decays exponentially with ∆zq. See Appendix A.1 for more details. This justifies studying the
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following events: {
g(z;T,M) ≤ g(zq;T,M) if 0 < T < 1

g(z;T,M) ≥ g(zq;T,M) if T > 1
(5)

Returning to consider z as the sorted logits vector of a test sample, typically it has lower score than
the quantile sample zq , and thus as illustrated in Figure 3 also lower ∆z. Consequently, it is intuitive
to associate an increase in the score with an increase in the first entry of the sorted logits vector, z1.
We now present our key theorem that establishes a connection between the difference ∆z and the
sign of ∇z1g(z;T,M), depending on T .

Theorem 4.4. Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC and denote ∆z = z1 − z2. Then, the
following holds:

If 0 < T < 1 : ∆z > max

{
T

T − 1
ln

(
T

4

)
,

T

T + 1
ln

(
4(C − 1)2

T

)}
=⇒ ∇z1g(z;T,M) > 0

If T > 1 : ∆z > max

{
T

T − 1
ln(4T ),

T − 1

T + 1
ln(4T (C − 1)2)

}
=⇒ ∇z1g(z;T,M) < 0

(6)

Denote the lower bounds in Theorem 4.4 as bT<1(T ) and bT>1(T ). Let us consider the case of
TS with T > 1. The theorem establishes that for a sample with a sorted logits vector z satisfying
∆z > bT>1(T ), we have that g(z) decreases monotonically as z1 increases (indeed, when z1
increases then ∆z increases, and thus the inequality ∆z > bT>1(T ) remains satisfied). Since zq has
larger dominant entry than typical z, this implies that g(z;T,M) > g(zq;T,M). Thus, under our
single technical assumption that q̂ and q̂T correspond to the same sample, we can apply Proposition
4.3 and get LT ≥ L — a larger prediction set of APS. Conversely, by the same logic, the effect of
TS with 0 < T < 1 on a sample with a sorted logits vector z satisfying ∆z > bT<1(T ), is a smaller
prediction set of APS.

We now show that the bounds in Theorem 4.4 do not require unreasonable values of ∆z and T . In
particular, the theorem explains the phenomenon for a “typical” z — e.g., the sample with the median
score in Figure 3 — which in turn explains why we see the increase/decrease of the mean prediction
set. Indeed, for this sample, according to Figure 3 we have ∆z ≈ 8. For C = 100 (as in this CIFAR-
100 experiment), the bounds in the theorem are complied by this sample for the temperature ranges
0 < T < 0.831 and 1.25 < T < 4.81. Since the calibrated temperature in this CIFAR100-ResNet50
experiment is T ∗ = 1.524, which falls in this range, we rigorously proved increased prediction set for
the median sample after TS calibration. Interestingly, the broad temperature range that is covered by
our theory indicates that our bounds are sufficiently tight to establish additional fine-grained insights.

Figure 4: Theorem 4.4 bounds b(T ),
for C = {10, 100, 1000}.

Implications of the theorem’s bounds. To demonstrate the
significance of our theory, we analyze the bounds established
in Theorem 4.4, unitedly denoted as b(T ), T > 0. We lever-
age our theory to explain the entire non-monotonic trend in
the empirical results on the effect of TS on the mean predic-
tion set size of APS (and the closely related RAPS), showed
in Figure 2.

In Figure 4 we present the bound as a function of T for
C = {10, 100, 1000}. According to the analysis, samples
whose ∆z is above the bound are those for which the TS
operation yields a larger (resp. smaller) prediction set size
when T > 1 (resp. T < 1). We denote by Tcritical the temperature value at which the bound attains
its minimum value for T > 1. This value can be computed (numerically) by the intersection of the
functions in the max operation at the T > 1 branch in equation 4.4. Note that it is affected by the
number of classes C. Inspecting Figure 4 we gain the following insights.

• For 0 < T < 1: The bound increases as a function of T . Thus, as T decreases, a greater proportion
of samples satisfy the bound (have LT ≤ L), which is aligned with a reduction in the mean
prediction set sizes.

• For 1 < T < Tcritical: The bound decreases as T increases, indicating that more samples comply
with the bound (have LT ≥ L), which is aligned with an increase in the mean prediction set sizes.

9
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• At T = Tcritical: The bound attains a minimum, corresponding to the maximum number of
samples satisfying the bound, which is aligned with the largest mean prediction set size.

• For T > Tcritical: The bound again increases, indicating that as T continues to rise, fewer samples
satisfy the bound, which is aligned with a decrease in the prediction set sizes.

We see that Tcritical describes the temperature at which the trend of the prediction set size shifts from
increasing to decreasing as T increases. Our theory shows that Tcritical shifts to lower temperatures
as C increases. A similar trend is observed in the empirical results shown in Figure 2. Specifically,
for ImageNet-ViT (C = 1000), the empirical maximum of the mean prediction set size occurs at
T = 1.802, while the bound’s minimum is at T = 1.778. For CIFAR100-DenseNet121, the empirical
maximum is at T = 2.317 and the bound’s minimum at T = 2.120. For CIFAR10-ResNet50, the
empirical maximum is at T = 3.404, and the bound’s minimum at T = 3.289. The temperature
values derived from our theoretical bounds closely match the empirical results, indicating that our
theory effectively captures the impact of the number of classes on the observed behavior.

5 GUIDELINES FOR PRACTITIONERS

Figure 5: Guideline for using TS calibration and
adaptive CP.

Based on our theoretically-backed findings, we
propose a guideline, depicted in Fig. 5, for prac-
titioners that wish to use adaptive CP methods
(e.g., due to their better conditional coverage).

Specifically, we suggest to use TS with two
different temperature parameters on separate
branches: T ∗ that is optimized for TS calibra-
tion, and T̂ that allows trading the prediction
set sizes and conditional coverage properties of APS/RAPS to better fit the task’s requirements.
Our experiments and theory show that T̂ should be scanned up to a value Tcritical, which can be
approximated by our theory (approximately 2 for ImageNet and CIFAR-100).

A limitation is that one does not know in advance what values of the metrics are obtained per value
of T̂ . However, since we propose to separate the calibration and the CP procedure, the calibration
set can also be used to evaluate the CP algorithms without dangering exchangeability. Indeed, in
Appendix C, we demonstrate how using a small amount of calibration data we can approximate the
curves of AvgSize and TopCovGap vs. T that appear in Figure 2 (which were generated using the
entire validation set that is not accessible to the user in practice). According to the approximate
trends, the user can choose T̂ that best fit their requirements. Furthermore, note that the procedure
required to produce approximated curves of metrics vs. T is done offline during the calibration phase
and its runtime is negligible compared to the offline training of DNNs.

In Appendix D, we further show the practical significance of our guidelines. Specifically, for users
that prioritize class-conditional coverage, we show that applying TS with Tcritical followed by RAPS
outperforms Mondrian CP (Vovk, 2012) (a method that is based on classwise CP) in both TopCovGap
and AvgSize in our CIFAR-100 and ImageNet settings.

6 CONCLUSION

In this work, we studied the effect of the widely used temperature scaling (TS) calibration on the
performance of conformal prediction (CP) techniques. These popular complementary approaches are
useful for assessing the reliability of classifiers, in particular those that are based DNNs. Yet, their
interplay has not been examined so far. We conducted an extensive empirical study on the effect
of TS, even beyond its calibration application, on prominent CP methods. Among our findings, we
discovered that TS enables trading prediction set size and class-conditional coverage performance of
adaptive CP methods (APS and RAPS) through a non-monotonic pattern, which is similar across
all models and datasets examined. We presented a theoretical analysis on the effect of TS on the
prediction set sizes of APS and RAPS, which offers a comprehensive explanation for this pattern.
Finally, based on our findings, we provided practical guidelines for combining APS and RAPS with
calibration while adjusting them via a dedicated TS mechanism to better fit specific requirements.
As in this paper we focused on classification, we believe that investigation of the interplay between
calibration and CP in regression is an interesting direction for future research.
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REPRODUCIBILITY

Please refer to Sections 3.1, 3.3 , B.1 for all the necessary information for reproducing the results.
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A PROOFS.

Theorem A.1. Let z ∈ RC be a sorted logits vector, i.e., z1 ≥ z2 ≥ . . . ≥ zC , and let L ∈ [C]. Let

π̂T = σ(z/T ) and π̂T̃ = σ(z/T̃ ) with T > T̃ > 0. Then, we have
∑L

j=1
πT̃ ,j ≥

∑L

j=1
πT,j .

The inequality is strict, unless L = C or z1 = . . . = zC .

Before we turn to prove the theorem, let us prove an auxiliary lemma.

Lemma. Let zi, zj ∈ R such that zi ≥ zj and let T ≥ T̃ ≥ 0. Then, the following holds

exp(zi/T̃ ) · exp(zj/T ) ≥ exp(zi/T ) · exp(zj/T̃ ).

The inequality is strict, unless T = T̃ or zi = zj .

Proof. Since zi − zj ≥ 0 and T̃ − T̃ /T ≥ 0 we have that

exp

[
(zi − zj)

(
T̃ − T̃

T

)]
≥ 1,

where the inequality is strict, unless T = T̃ or zi = zj . Next, observe that

exp

[
(zi − zj)

(
T̃ − T̃

T

)]
= exp

[
zi

(
T̃ − T̃

T

)
− zj

(
T̃ − T̃

T

)]

=
exp

(
zi
T̃
+

zj
T

)
exp

(
zi
T +

zj
T̃

)
=

exp(zi/T̃ ) · exp(zj/T )
exp(zi/T ) · exp(zj/T̃ )

.

Using the inequality we have
exp(zi/T̃ ) · exp(zj/T )
exp(zi/T ) · exp(zj/T̃ )

≥ 1, which concludes the proof of the

lemma.

Proof. Back to the proof of the theorem.

Let I = {1, 2, . . . , L} and J = {L+ 1, L+ 2, . . . , C}. Because z is sorted, ∀i ∈ I, j ∈ J we have
zi > zj . Therefore, according to the auxiliary lemma in Theorem A.1: exp(zi/T̃ ) · exp(zj/T ) ≥
exp(zi/T ) · exp(zj/T̃ ) for any combination of i ∈ I, j ∈ J . Consequently, summing this inequality
over all i ∈ I, j ∈ J , we get

L∑
i=1

C∑
j=L+1

exp(zi/T̃ ) · exp(zj/T ) ≥
L∑

i=1

C∑
j=L+1

exp(zi/T ) · exp(zj/T̃ )

⇕
L∑

i=1

exp(zi/T̃ ) ·
C∑

j=L+1

exp(zj/T ) ≥
L∑

i=1

exp(zi/T ) ·
C∑

j=L+1

exp(zj/T̃ ).

In the last line, we separated the summation of the indexes i ∈ I, j ∈ J .
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Adding
L∑

i=1

exp(zi/T̃ ) ·
L∑

j=1

exp(zj/T ) to both sides, we get

L∑
i=1

exp(zi/T̃ )

 L∑
i=1

exp (zi/T ) +

C∑
j=L+1

exp (zj/T )

 ≥
L∑

j=1

exp (zj/T )

 L∑
i=1

exp(zi/T̃ ) +

C∑
j=L+1

exp(zj/T̃ )


⇕

L∑
i=1

exp(zi/T̃ )

C∑
j=1

exp (zj/T ) ≥
L∑

i=1

exp (zi/T )

C∑
j=1

exp(zj/T̃ )

⇕∑L
i=1 exp(zi/T̃ )∑C
j=1 exp(zj/T̃ )

≥
∑L

i=1 exp (zi/T )∑C
j=1 exp (zj/T )

⇕
L∑

j=1

exp(zj/T̃ )∑C
c=1 exp (zc/T̃ )

≥
L∑

j=1

exp(zj/T )∑C
c=1 exp (zc/T )

as stated in the theorem. Note that the inequality is strict unless L = C (both sides equal 1) or T = T̃
or z1 = . . . = zC (all the pairs are equal).

Corollary A.2. The threshold value q̂T of APS and RAPS decreases monotonically as the temperature
T increases.

Proof. Let us start with APS. Set T ≥ T̃ . For each sample (x, y) in the CP set, we get the post
softmax vectors π̂T and π̂, with and without TS, respectively. By Theorem 4.1, applied on the sorted
vector π = [π̂(1), . . . , π̂(C)]

⊤ with L = Ly (the index that y is permuted to after sorting), we have
that ∑Ly

j=1
πT̃ ,j ≥

∑Ly

j=1
πT,j (7)

That is, the score of APS decreases universally for each sample in the CP set. This implies that q̂, the
⌈(n+ 1)(1− α)⌉

n
quantile of the scores of the samples of the CP set, decreases as well.

We turn to consider RAPS. In this case, a decrease due to TS in the score of each sample (x, y) in the
CP set, i.e.,

Ly∑
i=1

π̂T̃ ,(i)(x) + λ(Ly − kreg)+ ≥
Ly∑
i=1

π̂T,(i)(x) + λ(Ly − kreg)+,

simply follows from adding λ(Ly − kreg)+ to both sides of equation 7. The rest of the arguments
are exactly as in APS.

Proposition A.3. Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC , π̂T = σ(z/T ) and π̂ = σ(z). Let
q̂, q̂T ∈ (0, 1] such that if T > 1 then q̂ ≥ q̂T and if 0 < T < 1 then q̂ ≤ q̂T . Let L = min{l :∑l

i=1
π̂i ≥ q̂} , LT = min{l :

∑l

i=1
π̂T,i ≥ q̂T }. The following holds:

If 0 < T < 1, then : ∀M ∈ [L] :
∑M

i=1
π̂i −

∑M

i=1
π̂T,i ≤ q̂ − q̂T =⇒ L ≥ LT

If T > 1, then : ∀M ∈ [L] :
∑M

i=1
π̂i −

∑M

i=1
π̂T,i ≥ q̂ − q̂T =⇒ L ≤ LT

(8)
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Proof. We start with T > 1 branch: for which q̂ ≥ q̂T :

∀M ∈ [L] :

M∑
i=1

π̂i −
M∑
i=1

π̂T,i ≥ q̂ − q̂T ⇐⇒ ∀M ∈ [L] :

M∑
i=1

π̂i ≥ q̂ − q̂T +

M∑
i=1

π̂T,i

Note that for every 0 < x ≤ q̂ we have Mx := min{l :
l∑

i=1

π̂i ≥ x} ≤ L. For Mx > 1 (i.e., not

minimal possible value), the event implies q̂ − q̂T +

Mx−1∑
i=1

π̂T,i ≤
Mx−1∑
i=1

π̂i < x. This implies that

min{l : q̂ − q̂T +

l∑
i=1

π̂T,i ≥ x} cannot be smaller than Mx. This also trivially holds for Mx = 1

(the minimal set size). That is,
=⇒ ∀ 0 < x ≤ q̂ : min{l :

l∑
i=1

π̂i ≥ x} ≤ min{l : q̂ − q̂T +

l∑
i=1

π̂T,i ≥ x}

Let us pick x = q̂:

min{l :
l∑

i=1

π̂i ≥ q̂} ≤ min{l : q̂ − q̂T +

l∑
i=1

π̂T,i ≥ q̂}

⇐⇒ min{l :
l∑

i=1

π̂i ≥ q̂} ≤ min{l :
l∑

i=1

π̂T,i ≥ q̂T } ⇐⇒ L ≤ LT

We continue with 0 < T < 1 branch:, for which q̂T ≥ q̂, we will take similar steps:

∀M ∈ [L] :

M∑
i=1

π̂i −
M∑
i=1

π̂T,i ≤ q̂ − q̂T ⇐⇒ ∀M ∈ [L] :

M∑
i=1

π̂T,i ≥ q̂T − q̂ +

M∑
i=1

π̂i

Note that for every 0 < x ≤ q̂T we have Mx := min{l :
l∑

i=1

π̂i,T ≥ x} ≤ L. For Mx > 1 (i.e., not

minimal possible value), the event implies q̂T − q̂ +

Mx−1∑
i=1

π̂i ≤
Mx−1∑
i=1

π̂i,T < x. This implies that

min{l : q̂T − q̂ +

Mx−1∑
i=1

π̂i ≥ x} cannot be smaller than Mx. That is,

=⇒ ∀ 0 < x ≤ q̂T : min{l :
l∑

i=1

π̂i,T ≥ x} ≤ min{l : q̂T − q̂ +

Mx−1∑
i=1

π̂i ≥ x}

Let us pick x = q̂T :

min{l :
l∑

i=1

π̂i,T ≥ q̂T } ≤ min{l : q̂T − q̂ +

Mx−1∑
i=1

π̂i ≥ q̂T }

⇐⇒ min{l :
l∑

i=1

π̂i,T ≥ q̂T } ≤ min{l :
Mx−1∑
i=1

π̂i ≥ q̂} ⇐⇒ LT ≤ L
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Theorem A.4. Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC and denote ∆z = z1 − z2. Then, the
following holds:

If 0 < T < 1 : ∆z > max

{
T

T − 1
ln

(
T

4

)
,

T

T + 1
ln

(
4(C − 1)2

T

)}
=⇒ ∇z1g(z;T,M) > 0

If T > 1 : ∆z > max

{
T

T − 1
ln(4T ),

T − 1

T + 1
ln(4T (C − 1)2)

}
=⇒ ∇z1g(z;T,M) < 0

(9)

Proof. Let us start with T > 1 branch: The gap function is defined as follows:

gz(z;T,M) =

∑M
i=1 exp(zi)∑C
j=1 exp(zj)

−
∑M

i=1 exp(zi/T )∑C
j=1 exp(zj/T )

Let us differentiate with respect to z1

∇z1gz(z;T,M) =
exp(z1)

[∑C
j=1 exp(zj)−

∑M
i=1 exp(zi)

]
[∑C

j=1 exp(zj)
]2 −

1
T exp(z1/T )

[∑C
j=1 exp(zj/T )−

∑M
i=1 exp(zi/T )

]
[∑C

j=1 exp(zj/T )
]2

=
exp(z1)

∑C
c=M+1 exp(zc)[∑C

c=1 exp(zc)
]2 −

1
T exp(z1/T )

∑C
c=M+1 exp(zc/T )[∑C

c=1 exp(zc/T )
]2

Therefore,

∇z1gz(z;T,M) < 0 ⇐⇒ exp

(
z1

(
1− 1

T

))
<

1

T

∑C
c=M+1 exp(zc/T )∑C
c=M+1 exp(zc)

[ ∑C
c=1 exp(zc)∑C

c=1 exp(zc/T )

]2
(10)

where we arranged the inequality and used exp(z1)/ exp(z1/T ) = exp

(
z1

(
1− 1

T

))
.

According to the auxiliary lemma in Theorem A.1, if we substitute T̃ = 1 we get: for all zi > zj and
T > 1 we have exp(zi) · exp(zj/T ) > exp(zi/T ) · exp(zj).
Therefore, taking i = M + 1 and summing both sides of the inequality over j = M + 1, ..., C, the
following holds: ∑C

c=M+1 exp(zc/T )∑C
c=M+1 exp(zc)

>
exp(zM+1/T )

exp(zM+1)
(11)

In addition, note that ∀A such that A > max (2(C − 1) exp(−∆z/T ), 2) we get:

A > (C − 1) exp(−∆z/T ) + 1 =⇒ A exp(z1/T ) >

C∑
c=1

exp(zc/T ) (12)

where the implication follows from

C∑
c=1

exp(zc/T )/ exp(z1/T ) = 1 +

C∑
c=2

exp(−(z1 − zc)/T ) ≤ 1 + (C − 1) exp(−(z1 − z2)/T ).

Using the above inequalities (equation 11 and equation 12) we obtain

1

T

∑C
c=M+1 exp(zc/T )∑C
c=M+1 exp(zc)

[ ∑C
c=1 exp(zc)∑C

c=1 exp(zc/T )

]2
>

1

T

exp(zM+1/T )

exp(zM+1)

[
exp(z1)

A exp(z1/T )

]2
≥ 1

A2T
exp

(
(2z1 − z2)

(
1− 1

T

))
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where in the last inequality we used

exp(zM+1/T )

exp(zM+1)

exp(z1)

exp(z1/T )
= exp

(
(z1 − zM+1)

(
1− 1

T

))
≥ exp

(
(z1 − z2)

(
1− 1

T

))
.

Hence, according to equation 10: exp
(
z1

(
1− 1

T

))
<

1

A2T
exp

(
(2z1 − z2)

(
1− 1

T

))
=⇒

∇z1gz(z;T,M) < 0

Note that

exp

(
z1

(
1− 1

T

))
<

1

A2T
exp

(
(2z1 − z2)

(
1− 1

T

))
⇐⇒ 1 <

1

A2T
exp

(
(z1 − z2)

(
1− 1

T

))
⇐⇒ ∆z >

T

T − 1
ln(A2T )

And by using the definition of A we obtain:

∆z > max

(
T

T − 1
ln(4T ),

T − 1

T + 1
ln(4T (C − 1)2)

)
=⇒ ∇z1gz(z;T,M) < 0

We continue with 0 < T < 1 branch: Based on steps we took for the previous branch:

∇z1gz(z;T,M) > 0 ⇐⇒ exp

(
z1

(
1− 1

T

))
>

1

T

∑C
c=M+1 exp(zc/T )∑C
c=M+1 exp(zc)

[ ∑C
c=1 exp(zc)∑C

c=1 exp(zc/T )

]2
(13)

Note that according to the auxiliary lemma in Theorem A.1, if we substitute T̃ = 1 we get: for all
zi > zj and 0 < T < 1 we have exp(zi) · exp(zj/T ) > exp(zi/T ) · exp(zj) and therefore the
following holds: ∑C

c=M+1 exp(zc)∑C
c=M+1 exp(zc/T )

>
exp(zM+1)

exp(zM+1/T )

In addition, note that ∀A such that A > max (2(C − 1) exp(−∆z), 2) we get:

A > (C − 1) exp(−∆z) + 1 =⇒ A exp(z1) >

C∑
c=1

exp(zc) (14)

Using above inequalities we obtain

1

T

∑C
c=M+1 exp(zc/T )∑C
c=M+1 exp(zc)

[ ∑C
c=1 exp(zc)∑C

c=1 exp(zc/T )

]2
<

1

T

exp(zM+1/T )

exp(zM+1)

[
A exp(z1)

exp(z1/T )

]2
≤ A2

T
exp

(
(2z1 − z2)

(
1− 1

T

))

Hence, according to equation 13: exp

(
z1

(
1− 1

T

))
>

A2

T
exp

(
(2z1 − z2)

(
1− 1

T

))
=⇒

∇z1gz(z;T,M) > 0

Note that

exp

(
z1

(
1− 1

T

))
>

A2

T
exp

(
(2z1 − z2)

(
1− 1

T

))
⇐⇒ ∆z >

T

T − 1
ln

(
T

A2

)
The sign of the in-equality changed because 1− 1

T
< 0.
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And by using the definition of A we obtain:

∆z > max

(
T

T − 1
ln

(
T

4

)
,
T − 1

T + 1
ln

(
4(C − 1)2

T

))
=⇒ ∇z1gz(z;T,M) > 0

Proposition A.5. Let z ∈ RC , σ(·) be the softmax function, and ∆C−1 denote the simplex in RC .

Consider Shannon’s entropy H : ∆C−1 → R, i.e., H(π) = −
C∑
i=1

πi ln(πi). Unless z ∝ 1C (then

σ(z/T ) = σ(z)), we have that H(σ(z/T )) is strictly monotonically increasing as T grows.

Proof. To prove this statement, let us show that the function f(T ) = H(σ(z/T )) monotoni-
cally increases (as T increases, regardless of z). To achieve this, we need to show that f ′(T ) =
d

dT
H(σ(z/T )) ≥ 0.

By the chain-rule, f ′(T ) =
d

dT
(H(σ(z/T ))) =

∂H(σ)

∂σ

∂σ(z)

∂z

∂

∂T
(z/T ). Let us compute each

term:
∂H(σ)

∂σi
= − ln(σi)−

1

σi
· σi = − ln(σi)− 1 =⇒ ∂H(σ)

∂σ
= − ln(σ)⊤ − 1⊤

C

∂σi(z)

∂zj
= σi(z) · (1{i = j} − σj(z)) =⇒

∂σ(z)

∂z
= diag(σ(z))− σ(z)σ(z)⊤

∂

∂T
(z/T ) = − 1

T 2
z

where in ln(σ) the function operates entry-wise and 1{i = j} is the indicator function (equals 1 if
i = j and 0 otherwise).

Next, observe that 1⊤
C

(
diag(σ)− σσ⊤) = σ⊤ − σ⊤ = 0⊤. Consequently, we get

d

dT
(H(σ(z/T ))) =

1

T 2
ln(σ(z))⊤(diag(σ(z))− σ(z)σ(z)⊤)z

=
1

T 2
(z− s(z)1C)

⊤
(diag(σ(z))− σ(z)σ(z)⊤)z

=
1

T 2
z⊤(diag(σ(z))− σ(z)σ(z)⊤)z

where in the second equality we used [ln(σ(z))]i = ln

(
exp(zi)∑C
j=1 exp(zj)

)
= zi − s(z).

Therefore, for establishing that
d

dT
(H(σ(z/T ))) ≥ 0, we can show that (diag(σ) − σσ⊤) is a

positive semi-definite matrix. Let σ̃i = exp(zi) and notice that σi =
σ̃i∑C
j=1 σ̃j

. Indeed, for any

u ∈ RC \ {0} we have that

u⊤(diag(σ)− σσ⊤)u =

C∑
i=1

u2
iσi −

(
C∑
i=1

uiσi

)2

=

∑C
i=1 u

2
i σ̃i ·

∑C
j=1 σ̃j −

(∑C
i=1 uiσ̃i

)2
(∑C

j=1 σ̃j

)2
≥ 0,
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where the inequality follows from Cauchy–Schwarz inequality:
C∑
i=1

uiσ̃i =

C∑
i=1

ui

√
σ̃i

√
σ̃i ≤√√√√ C∑

i=1

u2
i σ̃i

√√√√ C∑
j=1

σ̃j .

Cauchy–Schwarz inequality is attained with equality iff ui

√
σ̃i = c

√
σ̃i with the same constant c for

i = 1, . . . , C, i.e., when u = c1C . Recalling that
d

dT
(H(σ(z/T ))) =

1

T 2
z⊤(diag(σ)− σσ⊤)z,

this implies that
d

dT
(H(σ(z/T ))) = 0 ⇐⇒ z1 = . . . = zC , and otherwise

d

dT
(H(σ(z/T ))) >

0.

A.1 ON THE LINK BETWEEN EQUATION 3 AND EQUATION 5

With our assumption that q̂ and q̂T are associated with the same quantile sample zq, we have that
q̂− q̂T in equation 3 can be written as g(zq;T, Lq), where Lq denotes the rank of the true label of zq .
The left-hand side in equation 3 can be written as g(z;T,M). Thus, it would facilitate the analysis to
study the relation between g(z;T,M) and g(zq;T,M), as in equation 5, rather than by g(z;T,M)
and g(zq;T, Lq). Since ∆zq = zq(1) − zq(2) ≫ 1, we have found both empirically and theoretically
that g(zq, T,M) ≈ g(zq, T, Lq), which justifies studying equation 5.

A.1.1 EMPIRICAL JUSTIFICATION

Here, we demonstrate empirically that the difference |g(zq;T,M)− g(zq;T, Lq)| is negligible
compared to the difference |g(z;T,M)− g(zq;T,M)|.
We consider the quantile sample zq associated with 1− α = 0.9 and Lq as the rank of its true label.
Similarly to the analysis in Section 4, we treat a “typical” sample z as one with the median score, for
which L is chosen by the number of sorted softmax entries require for exceeding the score of zq .

For the CIFAR100-ResNet50 pair we get:

max
M∈[L],T∈[0.5,5]

|g(zq;T,M)− g(zq;T, Lq)| = 0.0031,

min
M∈[L],T∈[0.5,5]

|g(z;T,M)− g(zq;T,M)| = 0.0513.

For the ImageNet-ViT pair we get:

max
M∈[L],T∈[0.5,5]

|g(zq;T,M)− g(zq;T, Lq)| = 0.051,

min
M∈[L],T∈[0.5,5]

|g(z;T,M)− g(zq;T,M)| = 0.2597.

The difference |g(zq;T,M)− g(zq;T, Lq)| is more than an order of magnitude smaller than
|g(z;T,M)− g(zq;T,M)|. Similar results are obtained for the other pairs as well. This obser-
vation reinforces the study of |g(z;T,M)− g(zq;T,M)|.

A.1.2 THEORETICAL JUSTIFICATION

Below, in Proposition A.6 we show that ∀M,Lq ∈ [C] the difference |g(zq;T,M)− g(zq;T, Lq)|
decays exponentially with ∆zq. As demonstrated in Figure 3, ∆zq of the quantile sample is very
high, which indicates the small value of the bound. The proof of the proposition appears in Section
A.2.
Proposition A.6. Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC . Consider the following functions:

d(z;T, i) =
exp(zi)∑C
j=1 exp(zj)

− exp(zi/T )∑C
j=1 exp(zj/T )
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Figure 6: Considering CIFAR100-ResNet50 with sorted logits vectors. Left: the last index increased
by TS with T = 0.5; Right: the last index decreased by TS with T = 1.5, for each sample sorted by
score value. We see that sT<1 = 1 and sT>1 = 1 for the quantile sample.

g(z;T,M) =

∑M
i=1 exp(zi)∑C
j=1 exp(zj)

−
∑M

i=1 exp(zi/T )∑C
j=1 exp(zj/T )

=
M∑
i=1

d(z;T, i)

Let sT>1 = max {i ∈ [C] : d(z;T, j) > 0}, i.e., the last index where d(z, T, ·) is positive. Similarly,
let sT<1 = max {i ∈ [C] : d(z;T, j) < 0}, i.e., the last index where d(z, T, ·) is negative. The
following holds:

If 0 < T < 1 : sT<1 = 1 =⇒ ∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| < (C − 1) exp (−∆z)

(C − 1) exp (−∆z) + 1

If T > 1 : sT>1 = 1 =⇒ ∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| < (C − 1) exp (−∆z/T )

(C − 1) exp (−∆z/T ) + 1

When applying the proposition on the quantile sample zq, since it has ∆zq ≫ 1 we get small upper
bounds.

As can be seen in the proposition, the bounds require that sT<1 and sT=1 equal 1. Recall also that the
logits vector is sorted. For T > 1 (resp. T < 1), this means that the TS attenuates (resp. amplifies)
only the maximal softmax bin. This is expected to hold for the quantile sample, due to having a
very dominant entry in zq. We show it empirically in Figure 6, which presents the curves for sT<1

and sT>1 across samples sorted by their scores for CIFAR100-ResNet50. Both curves indicate that
approximately the first third of the samples correspond to s > 1, while higher-score samples align
with s = 1. Notably, for the quantile sample zq —characterized by scores exceeding 90% of the
samples — we observe that sT<1 = 1 and sT>1 = 1.

A.2 PROOF OF PROPOSITION A.6

We start by stating and proving Lemmas A.7 and A.8, which serve as auxiliary to Proposition A.6.
Lemma A.7. Let π be a descendingly sorted softmax vector and πT the same vector after temperature
scaling . Define the difference vector d := π − πT . Then, there exists an index such that the vector
d is partitioned into two segments, where all elements in one segment have the opposite sign to those
in the other segment.

Proof. First, let us formulate this proposition:
Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC . Consider the following function difference:

d(z;T, i) =
exp(zi)∑C
j=1 exp(zj)

− exp(zi/T )∑C
j=1 exp(zj/T )

= πi − πT,i

The following holds:

{
If 0 < T < 1 and ∃i ∈ [C] s.t. d(z;T, i) > 0 : ∀k > i d(z;T, k) > 0

If T > 1 and ∃i ∈ [C] s.t. d(z;T, i) < 0 : ∀k > i d(z;T, k) < 0
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Denote A :=
1∑C

j=1 exp(zj)
and B :=

1∑C
j=1 exp(zj/T )

. Notice that z and T are constants and

only i is changing in the theorem condition. Let us rewrite d(z;T, i):

d(z;T, i) = d(zi) = A exp (zi)−B exp (zi/T )

Notice that d(zi) is a discrete function because zi ∈ z. To understand when is it possible that
d(zi) = 0 we convert the function to continuous, i.e., zi can be any value. The continuous function
(that gets single variable instead of vector) is as follows:

d(x) = A exp (x)−B exp (x/T )

There is a single solution of the equation d(x) = 0 which is x =
T

T − 1
ln(B/A) := x∗. We will

now divide the rest of the proof into two temperature branches:

• T > 1 branch: Assume x1 < x∗, d(x1) < 0 then, ∀x < x1 we have d(x) < 0.
In our discrete case, we know that d(z1) > 0 (substitute L = 1 in Theorem A.1), and
that d(zi) < 0 (therefore zi < z∗ in our analogy to the continuous case), consequently
∀zk < zi, d(zk) < 0. Overall, because k > i, zk < zi and we get that d(z;T, k) < 0.

• 0 < T < 1 branch: Assume x2 > x∗, d(x2) > 0 then, ∀x > x2 we have d(x) > 0.
In our discrete case, we know that d(z1) < 0 (substitute L = 1 in Theorem A.1), and
that d(zi) > 0 (therefore zi < z∗ in our analogy to the continuous case), consequently
∀zk < zi, d(zk) > 0. Overall, because k > i, zk < zi and we get that d(z;T, k) > 0.

Lemma A.8. Let z ∈ RC such that z1 ≥ z2 ≥ · · · ≥ zC . Consider the following functions:

d(z;T, i) =
exp(zi)∑C
j=1 exp(zj)

− exp(zi/T )∑C
j=1 exp(zj/T )

g(z;T,M) =

∑M
i=1 exp(zi)∑C
j=1 exp(zj)

−
∑M

i=1 exp(zi/T )∑C
j=1 exp(zj/T )

=

M∑
i=1

d(z;T, i)

Then, if we denote by sT>1 = max {i ∈ [C] : d(z;T, j) > 0} the last index where d(z, T, ·) is
positive and similarly by sT<1 = max {i ∈ [C] : d(z;T, j) < 0} the last index where d(z, T, ·) is
negative, the following holds:

If 0 < T < 1 : ∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| <

∣∣∣∣∣
sT<1∑
i=1

d(zq;T, i)

∣∣∣∣∣
If T > 1 : ∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| <

∣∣∣∣∣
sT>1∑
i=1

d(zq;T, i)

∣∣∣∣∣
Proof. Let us begin by rewriting |g(z;T,M)− g(z;T, Lq)|, assume M > Lq without loss of
generality:

|g(z;T,M)− g(z;T, Lq)| =

∣∣∣∣∣
∑M

i=1 exp(zi)∑C
j=1 exp(zj)

−
∑M

i=1 exp(zi/T )∑C
j=1 exp(zj/T )

−

(∑Lq

i=1 exp(zi)∑C
j=1 exp(zj)

−
∑Lq

i=1 exp(zi/T )∑C
j=1 exp(zj/T )

)∣∣∣∣∣
=

∣∣∣∣∣
M∑
i=1

d(z;T, i)−
Lq∑
i=1

d(z;T, i)

∣∣∣∣∣ =
∣∣∣∣∣

M∑
i=Lq+1

d(z;T, i)

∣∣∣∣∣
Henceforth we denote s := sT>1 or s := sT<1 depending on the temperature. By Lemma A.7,
∀i < s we have d(z;T, i) > 0 and ∀i > s we have d(z;T, i) < 0, therefore we can divide the

analysis of

∣∣∣∣∣
M∑

i=Lq+1

d(z;T, i)

∣∣∣∣∣ into 3 cases:
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• Lq + 1 ≥ s - in this case, we sum only on differences with the same sign, and we can create
an upper bound for this case by summing all the differences with the same sign:∣∣∣∣∣

M∑
i=Lq+1

d(z;T, i)

∣∣∣∣∣ ≤
∣∣∣∣∣

C∑
i=s+1

d(z;T, i)

∣∣∣∣∣
• M ≤ s - in this case like previous case, we sum only on differences with the same sign, and

we can create an upper bound for this case by summing all the differences with the same
sign, note that in any case the starting index of the summation is 2 or higher (Lq + 1 ≥ 2),
therefore we can exclude the first difference:∣∣∣∣∣

M∑
i=Lq+1

d(z;T, i)

∣∣∣∣∣ ≤
∣∣∣∣∣

s∑
i=2

d(z;T, i)

∣∣∣∣∣
• Lq +1 < s and M > s - in this case, we sum both on positive and negative differences, and

we can create an upper bound for this case by taking the maximum between previous cases
bounds: ∣∣∣∣∣

M∑
i=Lq+1

d(z;T, i)

∣∣∣∣∣ ≤ max

{∣∣∣∣∣
C∑

i=s+1

d(z;T, i)

∣∣∣∣∣ ,
∣∣∣∣∣

s∑
i=2

d(z;T, i)

∣∣∣∣∣
}

Overall , we can write the upper bound of

∣∣∣∣∣
M∑

i=Lq+1

d(z;T, i)

∣∣∣∣∣ as in case 3:

∣∣∣∣∣
M∑

i=Lq+1

d(z;T, i)

∣∣∣∣∣ ≤ max

{∣∣∣∣∣
C∑

i=s+1

d(z;T, i)

∣∣∣∣∣ ,
∣∣∣∣∣

s∑
i=2

d(z;T, i)

∣∣∣∣∣
}

Note that the summation of all differences is zero, I.e.
C∑
i=1

d(z;T, i) = 0, therefore,

s∑
i=1

d(z;T, i) = −
C∑

i=s+1

d(z;T, i) and

∣∣∣∣∣
s∑

i=1

d(z;T, i)

∣∣∣∣∣ =

∣∣∣∣∣
C∑

i=s+1

d(z;T, i)

∣∣∣∣∣. because both sum-

mations contain differences with the same sign, subtracting elements from them decrease them,
therefore, ∣∣∣∣∣

s∑
i=2

d(z;T, i)

∣∣∣∣∣ <
∣∣∣∣∣

C∑
i=s+1

d(z;T, i)

∣∣∣∣∣
⇓

max

{∣∣∣∣∣
C∑

i=s+1

d(z;T, i)

∣∣∣∣∣ ,
∣∣∣∣∣

s∑
i=2

d(z;T, i)

∣∣∣∣∣
}

=

∣∣∣∣∣
C∑

i=s+1

d(z;T, i)

∣∣∣∣∣ =
∣∣∣∣∣

s∑
i=1

d(z;T, i)

∣∣∣∣∣
And overall we get:

∀M,Lq ∈ [C] |d(z;T,M)− g(z;T, Lq)| <

∣∣∣∣∣
s∑

i=1

d(z;T, i)

∣∣∣∣∣

We now turn to proving Proposition A.6.

Proof. T > 1 branch:
Substituting s = 1 in Lemma A.8 we get:

∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| <

∣∣∣∣∣
s=1∑
i=1

d(z;T, i)

∣∣∣∣∣ = |d(z;T, 1)| = d(z;T, 1)
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We can remove the absolute value because d(z;T, 1) > 0 for T > 1.
We continue by bounding d(z;T, 1):

d(z;T, 1) =
exp(z1)∑C
j=1 exp(zj)

− exp(z1/T )∑C
j=1 exp(zj/T )

< 1− exp(z1/T )∑C
j=1 exp(zj/T )

= 1− exp(z1/T )

exp(z1/T )
[∑C

j=2 exp(−(z1 − zj)/T ) + 1
] = 1− 1∑C

j=2 exp(−(z1 − zj)/T ) + 1

≤ 1− 1

(C − 1) exp(−∆z/T ) + 1
=

(C − 1) exp(−∆z/T )

(C − 1) exp(−∆)/T ) + 1

Overall, we get:

∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| < (C − 1) exp (−∆z/T )

(C − 1) exp (−∆z/T ) + 1

0 < T < 1 branch:
Substituting s = 1 in Lemma A.8 we get:

∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| <

∣∣∣∣∣
s=1∑
i=1

d(z;T,M)

∣∣∣∣∣ = |d(z;T, 1)| = −d(z;T, 1)

We can remove the absolute value and add minus sign because d(z;T, 1) < 0 for T > 1.
We continue by bounding −d(z;T, 1):

|d(z;T, 1)| = −d(z;T, 1) =
exp(z1/T )∑C
j=1 exp(zj/T )

− exp(z1)∑C
j=1 exp(zj)

< 1− exp(z1)∑C
j=1 exp(zj)

= 1− exp(z1)

exp(z1)
[∑C

j=2 exp(−(z1 − zj)) + 1
] = 1− 1∑C

j=2 exp(−(z1 − zj)) + 1

≤ 1− 1

(C − 1) exp(−∆z) + 1
=

(C − 1) exp(−∆z)

(C − 1) exp(−∆z)) + 1

Overall, we get:

∀M,Lq ∈ [C] |g(z;T,M)− g(z;T, Lq)| < (C − 1) exp (−∆z)

(C − 1) exp (−∆z) + 1
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B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 TRAINING DETAILS

For ImageNet models, we utilized pretrained models from the TORCHVISION.MODELS sub-
package. For full training details, please refer to the following link:

https://github.com/pytorch/vision/tree/8317295c1d272e0ba7b2ce31e3fd2c048235fc73/
references/classification

For CIFAR-100 and CIFAR-10 models, we use: Batch size: 128; Epochs: 300; Cross-Entropy loss;
Optimizer: SGD; Learning rate: 0.1; Momentum: 0.9; Weight decay: 0.0005.

B.2 EXPERIMENTS COMPUTE RESOURCES

We conducted our experiments using an NVIDIA GeForce GTX 1080 Ti. Given the trained models,
each experiment runtime is within a range of minutes.

B.3 TEMPERATURE SCALING CALIBRATION

As mentioned in Section 2.1, two popular calibration objectives are the Negative Log-Likelihood
(NLL) (Hastie et al., 2005) and the Expected Calibration Error (ECE) (Naeini et al., 2015).

NLL, given by L = −
∑n

i=1
ln(π̃yi

(xi)), measures the cross-entropy between the true conditional
distribution of data (one-hot vector associated with yi) and π̃(xi).

ECE aims to approximate E
[∣∣P (ŷ(X) = Y |π̃ŷ(X)(X) = p

)
− p
∣∣]. Specifically, the confidence

range [0, 1] is divided into L equally sized bins {Bl}. Each sample (xi, yi) is assigned to a bin Bl

according to π̃yi
(xi). The objective is given by ECE =

∑L

l=1

|Bl|
n

|acc(Bl)− conf(Bl)|, where

acc(Bl) =
1

|Bl|
∑

i∈Bl

1{ŷ(xi) = yi} and conf(Bl) =
1

|Bl|
∑

i∈Bl

π̂yi
(xi). Here, 1(·) denotes

the indicator function.

B.3.1 ECE VS NLL MINIMIZATION

Above, we defined the two common minimization objectives for the TS calibration procedure.
Throughout the paper, we employed the ECE objective. Here, we justify this choice by demonstrating
the proximity of the optimal calibration temperature T ∗ for both objectives.

Table 3: Optimal Temperature for NLL and ECE objectives

Dataset-Model T ∗ - NLL loss T ∗ - ECE loss
CIFAR-100, ResNet50 1.438 1.524

CIFAR-100, DenseNet121 1.380 1.469
ImageNet, ResNet152 1.207 1.227

ImageNet, DenseNet121 1.054 1.024
ImageNet, ViT-B/16 1.18 1.21
CIFAR-10, ResNet50 1.683 1.761
CIFAR-10, ResNet34 1.715 1.802

Using both objectives, we obtain similar optimal calibration temperatures T ∗, resulting in minor
changes to the values in Tables 1 and 2, presented in Section 3.2. Furthermore, in Section 3.3,
we examine the effect of TS over a range of temperatures, which naturally includes both optimal
temperatures.
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B.4 METRICS DEFINITIONS

In section 3.1, we use metrics to represent average prediction set size, marginal coverage and
conditional coverage. Here, we present the formulas for these metrics. Note that similar metrics have
been used in (Ding et al., 2023; Angelopoulos et al., 2021).

We report metrics over the validation set which we denote by {(X(val)
i , Y

(val)
i )}N

(val)

i=1 , comprising
of the samples that were not included in the calibration set or CP set. The metrics are as follows.

• Average set size (AvgSize) – The mean prediction set size of the CP algorithm:

AvgSize =
1

N (val)

N(val)∑
i=1

|C(X
(val)
i )|. (15)

• Marginal coverage gap (MarCovGAP) – The deviation of the marginal coverage from the
desired 1− α:

MarCovGap =

∣∣∣∣∣∣ 1

N (val)

N(val)∑
i=1

1{Y (val)
i ∈ C(X

(val)
i )} − (1− α)

∣∣∣∣∣∣ . (16)

• Top-5% class-coverage gap (TopCovGap) – The deviation from the desired 1− α coverage,
averaged over the 5% of classes with the highest deviation:

TopCovGap = Top5y∈[C]

∣∣∣∣∣∣ 1

|Iy|
∑
i∈Iy

1

{
Y

(val)
i ∈ C

(
X

(val)
i

)}
− (1− α)

∣∣∣∣∣∣ , (17)

where Top5 is an operator that returns the mean of the 5% highest elements in the set
and Iy = {i ∈ [N (val)] : Y

(val)
i = y} is the indices of validation examples with label y.

We use top-5% classes deviation due to the high variance in the maximal class deviation.
For example, in CIFAR-100, the average is computed over the 5 classes with the highest
deviation from 1− α coverage. Thus, TopCovGap is a class-conditional coverage metric.
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B.4.1 RELIABILITY DIAGRAMS

Below, we present reliability diagrams for dataset-model pairs examined in our study. We divided the
confidence range into 10 bins and displayed the accuracy for each bin as a histogram. The red bars
represent the calibration error for each bin.

ImageNet, ResNet152 CIFAR-100, ResNet50 CIFAR-10, ResNet50

Figure 7: Reliability diagrams before (top) and after (bottom) TS calibration with ECE objective.

ImageNet, DenseNet121 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 8: Reliability diagrams before (top) and after (bottom) TS calibration with ECE objective.
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B.5 THE EFFECT OF TS CALIBRATION ON CP METHODS

As an extension of Section 3.2, we provide additional experiments where we examine the effect of TS
calibration on CP methods with different settings of hyper-parameters (α and CP set size). The tables
below present prediction set sizes and coverage metrics before and after TS calibration for different
CP set sizes and an additional CP coverage probability value.

Table 4: Prediction Set Size. AvgSize metric along with T ∗ and accuracy for dataset-model pairs
using LAC, APS, and RAPS algorithms with α = 0.1, CP set size 5%, pre- and post-TS calibration.

Accuracy(%) AvgSize AvgSize after TS
Dataset-Model T ∗ Top-1 Top-5 LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 1.227 78.3 94.0 1.94 7.24 3.20 1.95 10.3 4.35
ImageNet, DenseNet121 1.024 74.4 91.9 2.70 10.1 4.71 2.77 11.2 4.91

ImageNet, ViT-B/16 1.180 83.9 97.0 2.75 10.18 2.01 2.33 19.19 2.41
CIFAR-100, ResNet50 1.524 80.9 95.4 1.62 5.75 2.78 1.57 9.76 4.93

CIFAR-100, DenseNet121 1.469 76.1 93.5 2.10 4.30 2.99 2.08 6.61 4.38
CIFAR-10, ResNet50 1.761 94.6 99.7 0.92 1.05 0.95 0.91 1.13 1.01
CIFAR-10, ResNet34 1.802 95.3 99.8 0.91 1.03 0.94 0.93 1.11 1.05

Table 5: Prediction Set Size. AvgSize metric along with T ∗ and accuracy for dataset-model pairs
using LAC, APS, and RAPS algorithms with α = 0.1, CP set size 20%, pre- and post-TS calibration.

Accuracy(%) AvgSize AvgSize after TS
Dataset-Model T ∗ Top-1 Top-5 LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 1.227 78.3 94.0 1.95 7.34 3.30 1.92 12.5 4.40
ImageNet, DenseNet121 1.024 74.4 91.9 2.73 13.1 4.70 2.76 13.3 4.88

ImageNet, ViT-B/16 1.180 83.9 97.0 2.69 10.03 1.89 2.24 19.05 2.48
CIFAR-100, ResNet50 1.524 80.9 95.4 1.62 5.35 2.68 1.57 9.34 4.96

CIFAR-100, DenseNet121 1.469 76.1 93.5 2.13 4.36 2.95 2.06 6.81 4.37
CIFAR-10, ResNet50 1.761 94.6 99.7 0.91 1.04 0.98 0.91 1.13 1.05
CIFAR-10, ResNet34 1.802 95.3 99.8 0.91 1.03 0.94 0.93 1.11 1.05

Table 6: Coverage Metrics. MarCovGap and TopCovGap metrics for dataset-model pairs using
LAC, APS, and RAPS algorithms with α = 0.1, CP set size 5%, pre- and post-TS calibration.

MarCovGap(%) MarCovGap TS(%) TopCovGap(%) TopCovGap TS(%)
Dataset-Model LAC APS RAPS LAC APS RAPS LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 0 0 0 0 0.1 0 23.5 15.7 16.9 24.1 13.6 15.0
ImageNet, DenseNet121 0 0.1 0 0 0 0.1 24.9 15.7 18 25.2 14.9 17.6

ImageNet, ViT-B/16 0 0 0.1 0.1 0 0 24.1 14.9 14.5 24.8 12.4 12.6
CIFAR-100, ResNet50 0.1 0 0.1 0 0.1 0 13.9 11.9 10.7 12.5 8.2 7.5

CIFAR-100, DenseNet121 0 0 0.1 0 0 0.1 11.6 9.5 9.0 11.7 7.8 7.7
CIFAR-10, ResNet50 0 0 0 0 0.1 0 11.1 5.0 4.8 11.2 2.4 2.6
CIFAR-10, ResNet34 0 0.1 0.1 0 0 0 9.5 3.0 2.8 9.1 2.2 2.2

Table 7: Coverage Metrics. MarCovGap and TopCovGap metrics for dataset-model pairs using
LAC, APS, and RAPS algorithms with α = 0.1, CP set size 20%, pre- and post-TS calibration.

MarCovGap(%) MarCovGap TS(%) TopCovGap(%) TopCovGap TS(%)
Dataset-Model LAC APS RAPS LAC APS RAPS LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 0.1 0.1 0 0.1 0 0 23.6 16.3 17.5 23.6 13.9 15.6
ImageNet, DenseNet121 0 0.1 0 0 0 0 24.9 15.7 18 25.2 14.9 17.6

ImageNet, ViT-B/16 0 0 0.1 0.1 0 0 23.9 15.2 14.1 24.3 12.7 12.6
CIFAR-100, ResNet50 0.1 0.1 0 0 0.1 0 11.4 9.9 10.0 13.0 7.7 8.2

CIFAR-100, DenseNet121 0 0 0 0 0 0.1 11.5 9.5 9.7 12.2 7.8 8.0
CIFAR-10, ResNet50 0 0 0 0 0.1 0 10.8 5.1 4.6 11.0 2.1 2.6
CIFAR-10, ResNet34 0 0 0.1 0 0 0 9.1 3.1 2.6 9.3 2.1 2.3

We can see from the above tables that the results for different CP sizes are very similar. The goal of
the CP set is to be large enough to represent the rest of the data from the same distribution. In our
experiments, we see that even 5% of the validation set is sufficient for this purpose.

The increased coverage probability is reflected in both prediction set sizes and the conditional coverage
metric. We observe an increase in prediction set sizes compared to Table 1, which is expected due
to the stricter coverage probability requirement. Note that the tendency for prediction set sizes to
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Table 8: Prediction Set Size. AvgSize metric along with T ∗ and accuracy for dataset-model pairs
using LAC, APS, and RAPS algorithms with α = 0.05, CP set size 10%, pre- and post-TS calibration.

Accuracy(%) AvgSize AvgSize after TS
Dataset-Model T∗ Top-1 Top-5 LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 1.227 78.3 94.0 3.28 14.9 4.10 3.22 24.1 5.1
ImageNet, DenseNet121 1.024 74.4 91.9 3.33 20.1 5.02 3.61 22.8 5.88

ImageNet, ViT-B/16 1.180 83.9 97.0 2.91 22.80 4.51 3.02 39.8 5.55
CIFAR-100, ResNet50 1.524 80.9 95.4 3.97 11.10 3.98 2.21 16.2 6.80

CIFAR-100, DenseNet121 1.469 76.1 93.5 4.89 8.81 5.01 4.23 12.16 6.11
CIFAR-10, ResNet50 1.761 94.6 99.7 1.02 1.08 1.08 1.02 1.21 1.21
CIFAR-10, ResNet34 1.802 95.3 99.8 1.01 1.06 1.19 1.01 1.06 1.19

Table 9: Coverage Metrics. MarCovGap and TopCovGap metrics for dataset-model pairs using
LAC, APS, and RAPS algorithms with α = 0.05, CP set size 10%, pre- and post-TS calibration.

MarCovGap(%) MarCovGap TS(%) TopCovGap(%) TopCovGap TS(%)
Dataset-Model LAC APS RAPS LAC APS RAPS LAC APS RAPS LAC APS RAPS

ImageNet, ResNet152 0.1 0 0 0 0 0 16.1 11.5 14.3 16.5 10.1 12.4
ImageNet, DenseNet121 0 0.1 0 0.1 0 0 15.5 12.0 15.0 16.0 11.7 14.3

ImageNet, ViT-B/16 0.1 0 0 0 0.1 0.1 14.6 11.6 11.5 15.0 9.27 9.78
CIFAR-100, ResNet50 0.1 0 0 0 0.1 0 7.51 8.81 6.82 7.28 4.9 4.48

CIFAR-100, DenseNet121 0 0 0 0 0 0.1 6.72 5.91 6.50 6.50 5.41 5.41
CIFAR-10, ResNet50 0 0 0 0 0.1 0 6.50 4.22 4.22 7.03 2.13 1.98
CIFAR-10, ResNet34 0 0 0.1 0 0 0 4.12 2.71 2.73 4.17 1.27 1.29

increase with T remains. Regarding the coverage metric TopCovGap, we see an improvement (lower
values), which can be explained by the increase in prediction set sizes. Here, the tendency for the
metrics to improve as T increases also remains.

In addition to the tables, in Section 3.2, we microscopically investigated the effect of TS calibration
on PS sizes. Figure 1 represents the sorted differences in prediction set sizes for each sample in the
validation set for CIFAR100-ResNet50. Here, in Figure 9, we provide similar figures for additional
dataset-model pairs.

ImageNet, ResNet152 ImageNet, DenseNet121 CIFAR-100, ResNet50 CIFAR-100, DenseNet121

Figure 9: Mean sorted differences in prediction set sizes before and after TS calibration for APS (top)
and RAPS (bottom) CP algorithms with α = 0.1 and CP set size 10%.
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B.6 TS BEYOND CALIBRATION

As an extension of Section 3.3, we provide additional experiments with different settings to examine
the effect of TS beyond calibration on CP methods. The figures below present prediction set sizes and
conditional coverage metrics for a range of temperatures for additional dataset-model pairs, different
CP set sizes and an additional CP coverage probability value. Overall, the temperature T allows to
trade off between AvgSize and TopCovGap, as discussed in the paper.

B.6.1 PREDICTION SET SIZE

ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 10: Prediction Set Size. AvgSize using LAC, APS and RAPS with α = 0.1 and CP set size
10% versus the temperature T for additional dataset-model pairs.

ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 11: Prediction Set Size. AvgSize using LAC, APS and RAPS with α = 0.1 and CP set size
5%, versus the temperature T for additional dataset-model pairs.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 12: Prediction Set Size. AvgSize using LAC, APS and RAPS with α = 0.05 and CP set size
10% versus the temperature T for additional dataset-model pairs.

B.6.2 TOPCOVGAP METRIC

ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 13: Conditional Coverage Metric. TopCovGap using LAC, APS and RAPS with α = 0.1
and CP set size 10% versus the temperature T for additional dataset-model pairs.
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ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 14: Conditional Coverage Metric. TopCovGap using LAC, APS and RAPS with α = 0.05
and CP set size 10% versus the temperature T for additional dataset-model pairs.

B.6.3 CP THRESHOLD VALUE q̂

ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 15: CP threshold value q̂ using LAC, APS and RAPS with α = 0.1 and CP set size 10%
versus the temperature T for additional dataset-model pairs.
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ImageNet, ViT-B/16 CIFAR-100, ResNet50 CIFAR-10, ResNet50

ImageNet, ResNet152 CIFAR-100, DenseNet121 CIFAR-10, ResNet34

Figure 16: CP threshold value q̂ using LAC, APS and RAPS with α = 0.05 and CP set size 10%
versus the temperature T for additional dataset-model pairs.

B.6.4 THE IMPACT OF TS AT EXTREMELY LOW TEMPERATURES

Figure 17: Prediction Set Size. Mean prediction
set size for LAC, APS and RAPS versus low tem-
peratures, for CIFAR100-DenseNet121.

In our experiments presented in Section 2, we
lower bound the temperature range at T = 0.3.
This choice was motivated by the deviation from
the desired marginal coverage guarantee ob-
served at extremely small temperatures. Specifi-
cally, we observe that for too small T the thresh-
old value reaches maximal value, q̂ → 1, and,
presumably due to numerical errors, this leads
to an impractical CP procedure, with signifi-
cant over-coverage and excessively large predic-
tion set sizes, as demonstrated in Figure 17 for
CIFAR100-DenseNet121, α = 0.1 and CP set
size 10%.

C APPROXIMATING THE TRADE-OFF VIA THE CALIBRATION SET

As discussed in Section 5, exploring the trade-off between prediction set size and class-conditional
coverage through the temperature parameter T̂ is beneficial when using adaptive CP algorithms.

We propose using TS with two separate temperature parameters on distinct branches: T ∗, optimized
for TS calibration, and T̂ , which allows for trading prediction set sizes and conditional coverage
properties of APS/RAPS to align better with task requirements. One limitation is that the metrics’
values for different T̂ are not known a priori. However, since we decouple calibration from the
CP procedure, the calibration set can be used to evaluate CP algorithms without compromising
exchangeability.

The curves in Figure 2 were generated by evaluating the CP methods on the entire validation set
(excluding the calibration set and CP set) and averaging over 100 trials. Both are not feasible in
practice, where the practitioner only has the calibration set and the CP set of a single trial. Here, we
show that these curves can be approximated using only the calibration set for evaluation. In Figure
18, we plot the curves using calibration set + CP set, which together are 20% of the validation set (as
in the main body of the paper). Specifically, 10% of the validation set is used for the CP operation
(computing the threshold), and the remaining 10% (the original calibration set) serves as a “validation
set” to evaluate the CP performance. Therefore, no additional samples are used compared to the
common practice of performing calibration and CP calibration sequentially rather than in parallel.
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Run 1

MarCovGap AvgSize TopCovGap

Run 2

MarCovGap AvgSize TopCovGap

Run 3

MarCovGap AvgSize TopCovGap

Figure 18: Performance evaluation with small data. Examining the performance of APS and RAPS
with small evaluation data for ImageNet-ViT-B/16 with α = 0.1 and CP set size 10%. Each row
displays the marginal coverage, prediction size and conditional coverage metrics that are computed
over 1 trial using 10% of the validation set.

Unlike the curves in Figure 2, the curves in Figure 18 are not averaged over 100 trials but are based
on a single trial. Due to randomization, the curves will vary between runs, so to better reflect the
practitioner’s experience, we present results from 3 separate runs. In each of the runs in Figure 18
the marginal coverage is preserved and the curves of AvgSize and TopCovGap closely resemble the
averaged ones shown in Figure 2, demonstrating the user’s ability to select T̂ based on these single-
trial graphs generated using small amount of data. Additionally, note that the procedure required to
produce these approximated curves is executed offline during calibration and has a negligible runtime
compared to the offline training of DNNs.

D ADVANTAGES OF THE PROPOSED GUIDELINES OVER MONDRIAN
CONFORMAL PREDICTION

In this section, we consider the case of a user that prioritizes class-conditional coverage. In this case,
our study recommends applying TS with Tcritical followed by an adaptive CP method like RAPS.
Recall that using TS with Tcritical yields high AvgSize, but by the trade-off TopCovGap is low.
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Table 10: Comparison between MCP vs TS with Tcritical, both based on RAPS, for CIFAR100-
ResNet50 and ImageNet-ViT.

CIFAR100-ResNet50 ImageNet-ViT
MCP TS MCP TS

Metric
CP set size (%) 10% 20% 10% 20% 10% 20% 10% 20%

AvgSize 5.5 4.2 4.2 4.1 NA 5.1 2.6 2.7
MarCovGap 0.04 0.02 0.00 0.00 NA 0.03 0.00 0.00
TopCovGap 0.28 0.20 0.08 0.08 NA 0.28 0.15 0.14

An existing alternative is to use the Mondrian Conformal Prediction (MCP) approach (Vovk, 2012).
MCP aims to construct prediction sets with group-conditional coverage guarantees. Considering the
groups to be the classes, the method is based on partitioning the data used for calibration (i.e., the
CP set) by classes and obtaining a threshold per class. At deployment, the thresholds are used in a
classwise manner. However, a major drawback of MCP is its limited applicability to classification
tasks with many classes, since its performance degrades when the number of samples used for
calibrating CP per class is small (Ding et al., 2023).

Note that in our experiments, we consider CIFAR-100 that has 100 classes and CP set (used to
calibrate the CP) of size up to 2000 (20% of the validation set), and ImageNet that has 1000 classes
and CP set of size up to 10000 (20% of the validation set). This means that, approximately, we have
up to 20 samples per class to calibrate CP for CIFAR-100 and up to 10 samples per class to calibrate
CP for ImageNet.

Table 10 presents the metrics AvgSize, MarCovGap and TopCovGap for our proposed approach and
for MCP, when both utilize RAPS, for the dataset-model pairs CIFAR100-ResNet50 and ImageNet-
ViT. “NA” indicates the inability to compute the metric, which occurs in this case due to the absence
of samples for certain classes in the CP set (samples in the CP set are chosen randomly at each of the
100 trials), making it impossible to determine thresholds for those classes.

The results demonstrate the superiority of using TS with T = Tcritical (computed based on Theorem
4.4) over MCP across all metrics. Recall that we consider the case where class-conditional coverage
is preferred, and indeed, TS with T = Tcritical constantly yields better TopCovGap than MCP. Yet,
interestingly, it outperforms MCP also at AvgSize.

To conclude, the experiments presented in this section further shows the practical significance of our
guidelines.
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