
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIBS-MTL: TRANSFORMATION-INVARIANT
MULTITASK LEARNING WITH DIRECTION ORACLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Multitask learning (MTL) algorithms typically rely on schemes that combine dif-
ferent task losses or their gradients through weighted averaging. These methods
aim to find Pareto stationary points by using heuristics that require access to task
loss values, gradients, or both. In doing so, a central challenge arises because task
losses can be arbitrarily, nonaffinely scaled relative to one another, causing certain
tasks to dominate training and degrade overall performance. A recent advance in
cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS),
yields Pareto stationary solutions immune to task domination because of its invari-
ance to monotonic nonaffine task loss transformations. However, the convergence
behavior of DiBS in nonconvex MTL settings is currently not understood. To
this end, we prove that under standard assumptions, a subsequence of DiBS iter-
ates converges to a Pareto stationary point when task losses are possibly noncon-
vex, and propose DiBS-MTL, a computationally efficient adaptation of DiBS to
the MTL setting. Finally, we validate DiBS-MTL empirically on standard MTL
benchmarks, showing that it achieves competitive performance with state-of-the-
art methods while maintaining robustness to nonaffine monotonic transformations
that significantly degrade the performance of existing approaches, including prior
bargaining-inspired MTL methods.

1 INTRODUCTION

The successes of deep learning have inspired investigation into “generalist” networks—models si-
multaneously trained for learning multiple tasks. As a result, numerous multitask learning (MTL)
algorithms have been developed to tackle the inevitable conflict between task-specific loss gradients,
aiming to ensure that during training, no task is under-optimized compared to others (Kendall et al.,
2018; Sener & Koltun, 2018; Yu et al., 2020a; Liu et al., 2021a; Navon et al., 2022; Liu et al., 2023).
However, most existing MTL methods are not robust against non-affine (monotonic) transformations
to task losses, which is a crucial property desirable in the context of deep learning—where same
preferences can be represented with losses of different nonaffine scalings, and it is unclear which
relative scaling of the different losses ensures balanced learning without expensive and exhaustive
ablations. We consider the problem of multitask learning (MTL) through the lens of centralized,
cooperative bargaining methods that are invariant to non-affine monotonic task loss transformations.

The issue of different task losses being directly incomparable and scaled in different, non-affine
fashions arises very naturally in many deep learning domains. For instance, reinforcement learning
applications demand that a practitioner leverages prior, task-specific domain knowledge to design
an effective reward function (Yu et al., 2025). However, in a downstream MTL setting, the loss
corresponding to this reward function may dominate (or get dominated by) other task losses. At
the same time, the relative performance of a “good” task-specific policy does not change when the
corresponding task loss is monotonically transformed,i.e., the transformation does not change the
actual underlying preferences over options. Thus, in an MTL problem, the available task losses
can be seen as monotonic—possibly non-affine—transformations of some underlying set of ideal,
unknown task losses that are meaningfully scaled with respect to each other.

Recent work in MTL has developed a connection with cooperative game theory (Navon et al., 2022).
In this setting, each different loss function is a separate player in a bargaining game, and the idea is to
find a balanced Pareto optimum among the players’ objectives. Classical solutions to these bargain-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing games (e.g., Nash, as explored by Navon et al. (2022)) are not robust to non-affine monotonic
scalings, and only recently has a technique—Direction-based Bargaining Solution (DiBS)—been
developed which remains invariant to these transformations (Gupta et al., 2025). However, the con-
vergence of DiBS has only been analyzed in settings with strongly convex losses, and it is unclear
to what extent the favorable properties of DiBS will apply in realistic MTL applications where task
losses are almost always nonconvex. Inspired by this, we investigate the following:

1. What theoretical properties can be established for Direction-based Bargaining Solution
(DiBS) in the general setting where player objectives (task losses) can be non-convex?
Contribution 1. We show that under standard assumptions, for non-convex losses, a subse-
quence of the DiBS iterates provably converges to a Pareto stationary point asymptotically.
Notably, our result does not require the linear independence of task loss gradients at non-
Pareto stationary points, an assumption that is required by MTL methods using the Nash
bargaining solution to deliver the same asymptotic guarantee (Navon et al., 2022).

2. Can DiBS readily adapt to MTL applications? If so, how does it compare to existing MTL
methods?
Contribution 2. We extend DiBS to multitask learning, showing its natural compatibility
with existing bargaining-for-learning frameworks. Moreover, we propose an approxima-
tion, DiBS-MTL, which is computationally more efficient than DiBS, and also preserves
desirable invariance to non-affine monotonic task loss transformations. We empirically
show that DiBS-MTL performs competitively with existing MTL methods on widely used
multitask computer vision and reinforcement learning benchmarks.
Contribution 3. We further investigate multitask reinforcement learning settings in which
different task reward functions undergo non-affine monotonic transformations—causing
potentially non-monotonic critic loss transformations. We empirically demonstrate that in
this setting, DiBS-MTLmaintains robust performance, while existing state-of-the-art MTL
methods observe a significant drop in performance under the same transformations.

2 ON RELATED MTL WORKS AND EXISTING BARGAINING SOLUTIONS

2.1 RELATED MTL LITERATURE

The most popular MTL approach in practice is linear scalarization (LS)—constructing a scalarized
loss by taking the unweighted sum of task losses, or using known static coefficients to compute a
weighted average. While previous work has advocated for LSmethods (Kurin et al., 2022; Xin et al.,
2022), in practice, LS can lead to situations where certain tasks remain under-optimized. Further,
it has been shown that LS also does not necessarily recover the entire Pareto front generated by the
task losses (Hu et al., 2023). Other methods tackle the MTL problem through more sophisticated
multiobjective optimization approaches, aiming to find Pareto optimal (or stationary, in general non-
convex settings) points. Such methods seek to address the task imbalances arising during training
via heuristics that (i) use task-specific loss values to compute a scalar weighted average loss (but
with evolving weights, unlike LS) (Kendall et al., 2018; Liu et al., 2019; Lin et al., 2022; Liu et al.,
2023), or (ii) use task-specific loss gradients to find update directions iteratively during training
(Sener & Koltun, 2018; Yu et al., 2020a; Chen et al., 2020; Liu et al., 2021a;b; Navon et al., 2022).

Existing loss-based heuristics include maximizing improvement of the worst-performing task (Liu
et al., 2023), forcing improvements to be similar across tasks (Liu et al., 2019), weighting task
losses randomly (Lin et al., 2022), and adapting weights according to task-based uncertainty mea-
sures (Kendall et al., 2018). Heuristics for gradient-based approaches include finding mutual task
improvement directions (Yu et al., 2020a), probabilistically masking task gradients according to
their sign (Chen et al., 2020), computing weights that minimize the norm of the convex combination
of task gradients (Sener & Koltun, 2018), using gradient-based approaches to maximize improve-
ment of the worst-performing task (Liu et al., 2021a), and finding the Nash bargaining solution for a
bargaining subproblem (Navon et al., 2022). However, as we empirically demonstrate in Section 5,
these existing methods are not robust to monotonic, nonaffine task loss transformations, potentially
experiencing significant performance drops in such settings. We remark than one gradient-based
method, IMTL-G (Liu et al., 2021b), in principle can produce solutions invariant to monotonic non-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

affine task loss transformations. However, we show in Appendix D that even for simple convex
problems, IMTL-G can converge to Pareto solutions that heavily favor one task over the other.

Finally, we note that other approaches also exist for the MTL problem, such as (i) task clustering,
where methods first cluster tasks to reduce conflicts, and then update model training parameters for
each cluster (Standley et al., 2020; Fifty et al., 2021; Song et al., 2022; Shen et al., 2024); and (ii)
parameter sharing methods, which design neural network architectures consisting of task-specific
and task-shared modules/parameters (Kokkinos, 2017; Guo et al., 2020; Gao et al., 2020). These
approaches differ from the proposed approach at a fundamental level, in that they try to design a
suite of models for the space of tasks, or design model architectures suitable for MTL, whereas
the proposed approach aims to optimize a a single model (with a pre-defined architecture), which
balances the performance of all tasks.

2.2 PRELIMINARIES ON COOPERATIVE BARGAINING GAMES

We provide a brief background of cooperative bargaining theory, which we utilize in our main contri-
bution. A thorough description can be found in classical literature (Thomson, 1994; Narahari, 2014).
A centralized bargaining game consists of N agents and a mediator; and x ∈ S ⊆ Rn denotes the
state of the game. We assume the ith agent has a differentiable cost ℓi(x) : S → R, i ∈ [N ]. In the
context of MTL, every task can be thought of as being represented by one agent, with the agent’s
cost being the task loss.

Each agent want’s to minimize its cost, and has preferred states x∗,i ∈ argminx∈S ℓi(x) it wants the
game to go towards. For nonconvex costs, this could be a local minimum. The goal of the mediator
is to execute a bargaining strategy and find a solution state x†. Let ℓ(x) = [ℓi(x), . . . , ℓN (x)]. For
convenience, we denote such a bargaining game by BS(ℓ). Numerous bargaining solutions have
been proposed in economics literature (Thomson, 1994), each employing different heuristics to find
a Pareto optimal point—a point at which no update direction exists, which simultaneous decreases
the losses for all agents. In the case when the agent losses ℓi(x) are nonconvex, a more appropriate
goal for the mediator is to find a Pareto stationary point, which is a first-order necessary condition
for Pareto optimality.

Definition 1 (Pareto stationarity). For BS(ℓ), a point x† ∈ S is Pareto stationary if ∃ βi ≥ 0, i ∈
[N ], such that

∑
i∈[N ] β

i∇xℓ
i(x†) = 0, and

∑
i∈[N ] β

i = 1.

We now highlight the Direction-based Bargaining Solution (DiBS), which we use in our method.
For a bargaining game BS(ℓ), DiBS finds a Pareto stationary point by taking an initial point x1 ∈ S
and running the iterations

xk+1 = xk − h(xk) := xk − αk ·
∑
i∈[N ]

(
∥xk − x∗,i∥2 ·

∇xℓ
i(xk)

∥∇xℓi(xk)∥2

)
. (1)

Remark 1 (Invariance of DiBS). For monotonic, possibly nonaffine transformations h1, . . . , hN ,
let h(ℓ)(x) = [h1(ℓi)(x), . . . , hN (ℓN )(x)]. Then DiBS produces the same solution for the bar-
gaining games BS(h(ℓ)) and BS(ℓ), for the same initial point x1 ∈ S and sequence of stepsizes
{αk}k≥0. This invariance to monotonic nonaffine transformations is because DiBS only utilizes
normalized gradients and locally preferred states, i.e., local minima, both of which do not change
under such transformations.

We also note that prior has work has used the classical Nash bargaining solution (NBS) (Nash et al.,
1950) in the context of MTL (Navon et al., 2022). However, the NBS is invariant to only affine
agent (or task) loss transformations, and can change if the agent (or task) losses undergo monotonic
nonaffine transformations.

As highlighted in Section 1, the need for MTL methods which are robust to monotonic non-affine
transformations makes it natural to consider incorporating DiBS—which is invariant to such
distortions—in an MTL approach. However, since practical MTL problems typically involve non-
convex losses, it is crucial to examine the behavior of DiBS in the nonconvex regime, a setting not
yet analyzed in prior work. This serves as our motivation for the next section.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 WHAT CAN WE SAY ABOUT DIBS IN THE NONCONVEX REGIME?

In this section we establish a convergence guarantee for DiBS in the setting when agent losses
can be nonconvex, which is often the case in practical MTL problems. Currently, guarantees only
exist for the case when all agents have strongly convex losses, under which DiBS enjoys global
asymptotic convergence to a Pareto stationary point (Gupta et al., 2025). We begin by highlighting
our assumptions.

Assumption 1. For BS(ℓ), the set of Pareto stationary points lies in the interior of S, and all x∗,i

exist, are finite, and are also in the interior of S. The agent costs ℓi are differentiable, and bounded
below.

Assumption 2 (Relaxed in Section C). The sequence {xk}∞k=1 generated by the DiBS iterations
given in Equation (1) are bounded, i.e., there is a bounded set D ⊆ S such that xk ∈ D ∀ k ∈ N.

Assumption 1 is standard and ensures that the problem is well posed. Assumption 2 is a temporary
assumption that we make for a clear exposition of our arguments while studying convergence of
DiBS in nonconvex settings. Assumption 2 makes the DiBS iterates bounded, and we relax this
assumption in Section C, showing that standard techniques from dynamical systems theory can be
used to ensure DiBS iterates are bounded, forgoing the need for Assumption 2.

We now present our main theorem, the proof of which is in Appendix B.

Theorem 1. Let {xk}∞k=1 be the sequence generated by the DiBS algorithm given in Equation (1),
for an initial point x1 ∈ S and stepsizes that follow the Robbins-Monro conditions, i.e.,

∑
k αk =

∞,
∑

k α
2
k < ∞ (Robbins & Monro, 1951). Then, under Assumptions 1 and 2, the sequence

{xk}∞k=1 has a subsequence that asymptotically converges to a Pareto stationary point x†, i.e.,
h(x†) = 0.

Theorem 1 establishes that the sequence produced by the DiBS iterates has a subsequence which
converges to a Pareto stationary point, even when the agent losses are nonconvex. Note that this
result is similar to a guarantee presented for the Nash bargaining solution in prior work (Navon
et al., 2022). However, the existing result in prior work requires the assumption that agents’ loss
gradients are linearly independent at all non-Pareto stationary points. It is unclear to what extent
realistic MTL problems satisfy this assumption. In comparison, our result does not require such a
linear independence assumption.

4 ADAPTING DIBS TO MULTITASK LEARNING

We now extend DiBS to the multitask learning setting. We begin by introducing some notation, and
then describe the underlying bargaining game for MTL, which has been proposed in previous work
(Navon et al., 2022).

Notation. We use 0 to denote a zero vector of appropriate dimensions, and V(x, r) denotes a ball
of radius r, centered at x. The vector θ ∈ Rn represents shared task parameters; any additional task-
specific parameters are suppressed for notational convenience and do not influence the calculation
of θ iterates in this section.

Bargaining for MTL. The goal in MTL is to train a model to perform multiple tasks. Every
learning task has an associated task loss ℓi(θ) : Rn → R. During training, given parameters θ,
bargaining is iteratively conducted to find the next set of parameters θ +∆θ.

To this end, every task is represented as a distinct bargaining agent with the (minimization) objective
being an approximation of the difference ℓi(θ+∆θ)−ℓi(θ). We consider a first-order approximation,
in line with prior bargaining work for a fair comparison (Navon et al., 2022), with the ith agent’s
objective being

min
∥∆θ∥2≤ϵ

(
∇θℓ

i(θ)
)⊤

∆θ︸ ︷︷ ︸
:=ωi(∆θ)

,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where we constrain the update vector ∆θ to lie in V(0, ϵ), to prevent overshooting caused by
large update steps. Thus, for an MTL problem with N tasks—the bargaining game becomes
BV(0,ϵ)([ω

1, . . . , ωN ]).

DiBS for MTL. We now proceed to apply DiBS to the bargaining game BV(0,ϵ)([ω
1, . . . , ωN ]).

Note that the bargaining game has linear objectives, and thus the normalized gradient

∇∆θω
i

∥∇∆θωi∥2
=

∇θℓ
i(θ)

∥∇θℓi(θ)∥2

only needs to be computed once at the starting of a bargaining game. Further, the quantity x∗,i in
Equation (1) has a closed form solution x∗,i = −

(
∇θℓ

i(θ)/∥∇θℓ
i(θ)∥2

)
· ϵ for the linear objectives,

i.e., the furthest point in the negative gradient direction, given that ∆θ is constrained to lie in V(0, ϵ).
Thus, for an initial choice ∆θ1 and stepsize sequence {αk}, the DiBS iterates for MTL become

∆θk+1 = ∆θk − αk ·
∑
i∈[N ]

(∥∥∥∥∆θk + ϵ · ∇θℓ
i(θ)

∥∇θℓi(θ)∥2

∥∥∥∥
2

· ∇θℓ
i(θ)

∥∇θℓi(θ)∥2

)
, k ∈ N

(Multi-step DiBS-MTL)

In practice, naively applying Multi-step DiBS-MTL can be slow. We propose the following
approximation to DiBS, which is more computationally efficient and still preserves the desirable
invariance to monotonic, nonaffine task loss transformations:

∆θ = −ϵ ·
∑
i∈[N ]

∇θℓ
i(θ)

∥∇θℓi(θ)∥2
(DiBS-MTL)

DiBS-MTL can be viewed as an approximation of Multi-step DiBS-MTL, obtained by setting
the initial ∆θ1 = 0, running the system for a single step, i.e., only for k = 1, and outputting ∆θ2
as ∆θ. Such single step approximations are common for ensuring practical computational speedups
in MTL methods where an iterative processes are involved, c.f. FAMO (Liu et al., 2023). As we will
show in Section 5, DiBS-MTL offers competitive performance on MTL tasks, even with a single
step approximation. We remark that unlike equation 1, the single step update rule DiBS-MTL that
does not have explicit dependencies on x∗,i due to the first-order approximation combined with the
ball constraint. In Section F we provide results on a demonstrative two dimensional nonconvex
example showing that the single-step version performs similarly to the multi-step version despite
being relatively simpler.

5 EXPERIMENTS

We now evaluate DiBS-MTL in standard MTL benchmarks extensively used in literature (Yu et al.,
2020a; Liu et al., 2021a; Navon et al., 2022; Liu et al., 2023), a demonstrative two objective exam-
ple, a computer vision benchmark (NYU-v2) (Silberman et al., 2012), and a multitask reinforce-
ment learning dataset (Meta-World MT10) (Yu et al., 2020b). Our main aims are: (i) to verify that
DiBS-MTL reliably converges to Pareto solutions from varying initializations, (ii) to compare the
overall performance of solutions identified by DiBS-MTL to those produced by state of the art
approaches across a variety of large-scale MTL benchmarks, and (iii) to verify the robustness of
DiBS-MTL to nonaffine task loss transformations that skew the results of other methods.

5.1 DOES DIBS-MTL RELIABLY CONVERGE TO PARETO SOLUTIONS?

Setting. We first test DiBS-MTL on a demonstrative two-dimensional, nonconvex multi-objective
optimization example with two objectives (L1,L2), which is a standard benchmark for illustrat-
ing the ability of MTL methods to achieve balanced Pareto solutions (Yu et al., 2020a; Liu et al.,
2021a; Navon et al., 2022; Liu et al., 2023). The explicit forms of the objectives are provided in Ap-
pendix E.1. As shown in Figure 1, each objective in this example has deep valleys, with the bottoms
having a large magnitude difference between the objective gradients, and a high (positive) curvature.
Such phenomenon has been documented to exist when optimizing neural networks as well, and can
lead to one objective (task) dominating others (Goodfellow et al., 2014; Yu et al., 2020a).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: The loss functions used in the demonstrative two-dimensional example. The transforma-
tion we use is h(L) = sign(L) · L4.

Original loss pair (L1,L2)

Transformed loss pair (h(L1),L2)

Figure 2: Results for the demonstrative two objective nonconvex problem. Each initialization is rep-
resented by •, and denotes the Pareto front. We retain the original L1 axis in the transformed
case to better visualize the different results reached by baselines. DiBS-MTL provides balanced
Pareto solutions invariant to monotonic nonaffine task-loss transformations, while competing meth-
ods display degraded fairness, favoring task 1.

Baselines. We test DiBS-MTL along with 5 baselines—(1) linear scalarization (LS), which opti-
mizes the unweighted loss average, (2) CAGrad (Liu et al., 2021a), (3) PCGrad (Yu et al., 2020a),
(4) Nash-MTL (Navon et al., 2022), and (5) FAMO1 (Liu et al., 2023).

DiBS-MTL yields Pareto solutions from diverse initializations, which are unaffected by mono-
tonic nonaffine transformations. Figure 2 plots the solutions generated by DiBS-MTL for dif-
ferent initializations, for the costs (L1,L2) above, as well as for (h (L1) ,L2) where we apply the
monotonic nonaffine transformation h(x) = sign(x) ·x4 to L1. We observe that DiBS-MTL consis-
tently leads to balanced Pareto solutions for all initializations, and these solutions remain invariant
to the transformation. It is also observed that unlike DiBS-MTL, all other MTL methods produce
significantly biased solutions once L1 is transformed (i.e., comparing the top and bottom rows of
Figure 2), signaling that they are susceptible to task domination when tasks are differently scaled.

5.2 HOW DOES DIBS-MTL COMPARE TO EXISTING MTL METHODS?

To compare DiBS-MTL with existing methods in large-scale learning examples, we perform ex-
periments in supervised learning (computer vision) and multitask reinforcement learning (MTRL)

1We were unable to reproduce the baseline plots reported in the original FAMO paper (Liu et al., 2023). The
results shown here were obtained by strictly following the default parameters and instructions in the publicly
available FAMO repository https://github.com/Cranial-XIX/FAMO.

6

https://github.com/Cranial-XIX/FAMO


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results for supervised learning NYU-v2 benchmark. DiBS-MTL is competitive across
all tasks, and displays healthy overall performance, with the best average relative performance drop
(∆m%), and second-best mean rank (MR). Bold, underlined values indicate best, second-best per-
formances per column respectively.

Segmentation Depth Estimation Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Median ↓ Mean ↓ < 30 ↑ < 22.5 ↑ < 11.25 ↑ ∆m% ↓ MR ↓
STL 38.30 63.76 0.6754 0.2780 19.21 25.01 69.15 57.20 30.14
MGDA 32.03 60.77 0.6103 0.2453 19.00 24.64 69.83 57.78 30.55 -0.6944 3.22
UW 39.08 64.73 0.5464 0.2285 23.04 27.34 62.85 49.23 23.49 3.7667 4.89
NashMTL 40.16 65.65 0.5332 0.2204 19.96 25.25 68.29 55.72 28.62 -3.9833 2.33
FAMO 37.58 64.08 0.5595 0.2297 19.15 25.04 69.36 57.44 30.23 -3.8200 3.33
LS 40.16 65.63 0.5446 0.2223 23.03 27.50 62.66 49.32 23.61 3.0569 4.22
DiBS-MTL 40.92 66.60 0.5337 0.2217 20.06 25.35 68.15 55.54 28.54 -4.1140 2.89

domains that are standard benchmarks in MTL literature (Yu et al., 2020a; Liu et al., 2021a; Navon
et al., 2022; Liu et al., 2023). We begin by describing the set-up, baselines and metrics for both. We
keep the default training procedures established in prior work for a fair comparison. All implemen-
tation details are given in Appendix E.

Supervised learning set-up. The setting is a supervised learning computer vision problem with
3 tasks. Specifically, we use the NYU-v2 indoor scene dataset (Silberman et al., 2012) with
1449 RGBD images and dense per-pixel labeling for 3 learning tasks—semantic segmentation (13
classes), depth estimation, and surface normal prediction. Similar to prior work, we train a multitask
attention network (MTAN) (Liu et al., 2019).

Supervised learning baselines. We use 5 baselines—(1) LS, (2) uncertainty weighting (UW)
(Kendall et al., 2018), and 3 methods which have consistently outperformed other MTL approaches
for this particular dataset in prior work—(3) MGDA (Sener & Koltun, 2018), (4) Nash-MTL (Navon
et al., 2022), and (5) FAMO (Liu et al., 2023).

Supervised learning metrics. We report several task-specific metrics covering each prediction
type. For semantic segmentation, we use the mean Intersection-over-Union (mIoU), which aver-
ages the per-class overlap between predicted and ground-truth regions, and the overall pixel accu-
racy across the image. For depth estimation, we report the mean absolute error and mean rela-
tive error. For surface normal prediction, we include the mean and median angular error between
estimated and true normals, along with the percentage of pixels whose angular error falls below
30◦, 22.5◦, and 11.25◦ (Silberman et al., 2012). In addition, we report two MTL-specific metrics
used in previous work—average relative per-task performance drop ∆m%, and mean rank (MR)
across tasks (Navon et al., 2022; Liu et al., 2023). ∆m% is calculated relative to STL—single-
task learning, corresponding to learning a separate model for each task—given for a method m as
∆m% =

(
1/N ·

∑
k∈[N ]

(Mm,k−MSTL,k)/MSTL,k

)
× 100, where Mi,k is method i’s value on metric

Mk. All reported results have been averaged over 3 seeds, as done in prior work.

MTRL set-up. The setting is a multitask reinforcement learning (MTRL) problem with 10 tasks.
Following prior work, we evaluate DiBS-MTL on the Meta-World MT10 benchmark (Yu et al.,
2020b), where a robot arm manipulator has 10 tasks, each with distinct reward functions. The
complete list of tasks is given in Appendix E.

MTRL metric and baselines. We compare DiBS-MTL with (1) LS, (2) UW, and (3) FAMO. We
note that results for Nash-MTL could not be collected due to its excessive run-time for this MTRL
example (c.f., Section F.1 for a runtime comparison, where Nash-MTL is slow even for the simpler
demonstrative example). Following prior work, for every method, we use Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) as the underlying reinforcement learning algorithm. Following prior work,
we report the fraction of tasks successfully completed (Navon et al., 2022; Liu et al., 2023), where
the definition of task success is as described in the Meta-World benchmark (Yu et al., 2020b). All
reported results have been averaged over 10 random seeds. The implementation details are included
in Appendix E.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DiBS-MTL (ours) FAMO UW LS

a Nominal (original rewards) b Transformed (reach)

c Transformed (peg insert side) d Transformed (window open)

Figure 3: Training Curves for MTRL Meta-World MT10 benchmark. Reward transformations sig-
nificantly degrade performance of baseline MTL methods, while DiBS-MTL displays robustness.

DiBS-MTL performs competitively to state-of-the-art MTL methods. Table 1 shows the results
for the 3 task supervised learning NYU-v2 dataset. We find that DiBS-MTL performs consistently
well for all tasks and is competitive with the baselines. Notably, DiBS-MTL achieves state-of-the-
art performance in ∆m% (overall average relative per-task performance drop), and second-best MR
(mean rank) overall—both these metrics correspond to how well rounded an MTL method is with
respect to all tasks. DiBS-MTL also achieves the state-of-the-art, and second-best performance in
the segmentation and depth estimation tasks, respectively. In the 10 task robotic MTRL experiment
as well, Table 2 and Figure 3a show that DiBS-MTL performs competitively, and achieves the
second-best performance for the nominal case, where the reward functions for all tasks are the ones
provided in Meta-World.

5.3 HOW ROBUST ARE DIBS-MTL & EXISTING MTL METHODS AGAINST NONAFFINE
TRANSFORMATIONS?

We now conduct experiments in the MTRL Meta-World MT10 benchmark Yu et al. (2020b) to in-
vestigate how DiBS-MTL and baseline MTL methods perform when some tasks undergo nonaffine
transformations. We begin by describing the setup for the transformations. All training procedures
are taken to be the same as in Section 5.2. We limit our study in this section to MTRL, because
task-specific losses in computer vision are relatively standardized in the literature and thus trans-
formations there will be unwarranted (Wang et al., 2022; Azad et al., 2023). In comparison, as we
mention in Section 1, in the MTRL setting, rewards for different tasks might be designed on very
different scales.

Transformed MTRL setup. We consider transformation of 3 different tasks—for each, we apply
monotonic, nonaffine transformations to the underlying reward function. For actor-critic algorithms
like SAC, this transformation corresponds to potentially nonmonotonic, nonaffine critic loss trans-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Best-checkpoint success (evaluated every 200 episodes) results for MTRL Meta-World
MT10 benchmark. Results are mean ± standard error over 10 seeds. Bold values indicate best
performances per column.

Method Nominal Reach Window Open Peg Insert

DiBS-MTL 0.890± 0.023 0.850± 0.022 0.920± 0.025 0.700± 0.037

FAMO 0.920± 0.020 0.700± 0.075 0.830± 0.033 0.570± 0.070

LS 0.850± 0.040 0.480± 0.044 0.200± 0.026 0.230± 0.030

UW 0.830± 0.033 0.650± 0.081 —2 0.420± 0.074

formations. This is because the losses fit the collected rewards to value functions rather than fitting
the state dependent rewards. Thus, these task reward transformations can lead to potentially non-
monotonic task loss transformations. However, we remark that in the policy landscape, a good policy
for the nominal reward is also likely to perform well for the transformed reward.

Reward transformations. We consider the following task-transformation pairs: (i) h(r) =
sign(r) · r4 for reach, (ii) h(r) = (5 + r)4 for peg insert side, (h is monotonic over
the reward range), and (iii) h(r) = exp(r) for window open. These transformations were arbi-
trarily selected to illustrate a broad range of functional forms and tasks. We use the same baselines,
metric, seed values, and training procedure as the nominal MTRL experiment in Section 5.2.

DiBS-MTL retains performance under nonaffine reward transformations. Figures 3a to 3d
and Table 2 show that DiBS-MTL achieves remarkable robustness to the different reward transfor-
mations compared to existing MTL methods. DiBS-MTL achieves state-of-the-art overall perfor-
mance for all transformed cases, while other methods face significant performance degradation in
one or more cases compared to their performance in the nominal setting.

6 CONCLUSION

We consider the problem of constructing multitask learning (MTL) methods that are robust to mono-
tonic, nonaffine task loss transformations. In practice, different task losses can be arbitrarily scaled
with respect to one another, and those scalings can be understood as monotonic, possibly nonaffine
transformations of some ideal, unknown losses which are meaningfully comparable. To address this
problem, we present DiBS-MTL, an MTL method which is invariant to such transformations be-
cause it uses only normalized task loss gradients. Building upon recent work which formalizes the
MTL training update step as a bargaining game played between tasks (Navon et al., 2022), we adapt
the recently introduced DiBS bargaining approach (Gupta et al., 2025) in order to find a Pareto sta-
tionary (and monotonic transformation-invariant) update direction. While DiBS enjoys convergence
guarantees when losses are strongly convex, practical MTL problems almost always have noncon-
vex task losses. To bridge this gap, we prove that a subsequence of the DiBS iterates asymptotically
converges to a Pareto stationary point even in the nonconvex regime. Empirically, we demonstrate
that DiBS-MTL achieves performance competitive with state-of-the-art methods on standard large-
scale MTL benchmarks. Moreover, when task losses are nonaffinely transformed other leading MTL
methods suffer degraded performance, with some tasks dominating others, whereas DiBS-MTL still
maintains high performance, demonstrating robustness to such transformations.

2UW results could not be collected for the window open case, because the training iterations became too
unstable and the underlying MuJoCo simulator (Todorov et al., 2012) consistently gave out-of-bounds errors.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper presents work in the field of multitask learning. Our work has many potential applica-
tions, but we do not feel any ethical concerns need to be highlighted at this time.

REPRODUCIBILITY STATEMENT

Implementation details for all experiments are given in Section E. Additionally, we provide all of
our code in the supplementary materials. We provide setup instructions in our README, including
python and package versions. The theoretical proof is given in Appendix B.

REFERENCES

Reza Azad, Moein Heidary, Kadir Yilmaz, Michael Hüttemann, Sanaz Karimijafarbigloo, Yuli Wu,
Anke Schmeink, and Dorit Merhof. Loss functions in the era of semantic segmentation: A survey
and outlook. arXiv preprint arXiv:2312.05391, 2023.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 39(12):2481–2495, 2017.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identify-
ing task groupings for multi-task learning. Advances in Neural Information Processing Systems,
34:27503–27516, 2021.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural
architecture search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition, pp. 11543–11552, 2020.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problems. arXiv preprint arXiv:1412.6544, 2014.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
International conference on machine learning, pp. 3854–3863. PMLR, 2020.

Kushagra Gupta, Surya Murthy, Mustafa O Karabag, Ufuk Topcu, and David Fridovich-Keil. Co-
operative bargaining games without utilities: Mediated solutions from direction oracles. arXiv
preprint arXiv:2505.14817, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Yuzheng Hu, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, and Han Zhao. Revisiting scalar-
ization in multi-task learning: A theoretical perspective. Advances in Neural Information Pro-
cessing Systems, 36:48510–48533, 2023.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 6129–6138, 2017.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
defense of the unitary scalarization for deep multi-task learning. Advances in Neural Information
Processing Systems, 35:12169–12183, 2022.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021a.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
Advances in Neural Information Processing Systems, 36:57226–57243, 2023.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021b. URL https://openreview.net/forum?id=IMPnRXEWpvr.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

Yadati Narahari. Game theory and mechanism design, volume 4. World Scientific, 2014.

John F Nash et al. The bargaining problem. Econometrica, 18(2):155–162, 1950.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. In International Conference on Machine
Learning, pp. 16428–16446. PMLR, 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Jiayi Shen, Qi Wang, Zehao Xiao, Nanne Van Noord, and Marcel Worring. Go4align: Group
optimization for multi-task alignment. Advances in Neural Information Processing Systems, 37:
111382–111405, 2024.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In European conference on computer vision, pp. 746–760.
Springer, 2012.

Shagun Sodhani and Amy Zhang. Mtrl - multi task rl algorithms. Github, 2021. URL https:
//github.com/facebookresearch/mtrl.

Xiaozhuang Song, Shun Zheng, Wei Cao, James Yu, and Jiang Bian. Efficient and effective multi-
task grouping via meta learning on task combinations. Advances in Neural Information Process-
ing Systems, 35:37647–37659, 2022.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International conference on
machine learning, pp. 9120–9132. PMLR, 2020.

William Thomson. Cooperative models of bargaining. Handbook of game theory with economic
applications, 2:1237–1284, 1994.

11

https://openreview.net/forum?id=IMPnRXEWpvr
https://github.com/facebookresearch/mtrl
https://github.com/facebookresearch/mtrl


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of loss functions in
machine learning. Annals of Data Science, 9(2):187–212, 2022.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-
task optimization methods in deep learning even help? Advances in neural information processing
systems, 35:13597–13609, 2022.

Rui Yu, Shenghua Wan, Yucen Wang, Chen-Xiao Gao, Le Gan, Zongzhang Zhang, and De-
Chuan Zhan. Reward models in deep reinforcement learning: A survey. arXiv preprint
arXiv:2506.15421, 2025.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

A LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

The authors used LLMs in the following ways.

• We used GPT-5 for spelling checks, grammar checks, and paraphrasing after the initial text
is written by the authors.

• We used GPT-5 for help with understanding axis labeling options for plotting figures in the
matplotlib package (Hunter, 2007).

• We used GPT-5 to resolve package dependency and python version issues that arose while
installing the MuJoCo simulator (Todorov et al., 2012).

B PROOF OF THEOREM 1

Proof sketch. As the iterates are bounded, there exists a subsequence which converges to some
cluster point x†. To show that x† is a Pareto stationary point, we will show by contradiction that
h(x†) = 0.

Proof. Because the DiBS iterates {xk}∞k=1 is a bounded sequence from Assumption 2 (relaxed in
Section C), by Bolzano-Weierstrass theorem, ∃ x† ∈ S such that a subsequence of the sequence
{xk}∞k=1 converges to x†, and that for every neighborhood U of x†, there exist infinite n ∈ N such
that xn ∈ U . We will show by contradiction that h(x†) = 0. Let there exist an a > 0 such that
∥h(x†)∥2 = a. We define

M := sup
x∈D

∥h(x)∥2, u :=
h(x†)

∥h(x†)∥2

Then, by continuity of u⊤h(x), we have

∀ δ > 0, ∃ ϵ > 0 such that ∥x− x†∥2 ≤ δ =⇒ u⊤h(x) ≥ aϵ, (2)

and ∃ N ∈ N such that k ≥ N =⇒ αk ≤ a

C
for some C > 0. (3)

Let V(x, r) denote a ball in Rn centered at x ∈ Rn, with radius r. Let us pick a δ̃ > 0, and analyse
the DiBS iterations when they are in V(x†, δ̃). Because there an infinite number of n such that
xn ∈ V(x†, δ̃), there are two possibilities:

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

1. Case 1. ∃ δ > δ̃ such that the DiBS iterates enter V(x†, δ̃), exit V(x†, δ), and then re-enter
V(x†, δ̃)—an infinite number of times.

2. Case 2. The DiBS iterates enter V(x†, δ̃) and then exit it at most a finite number of times
before eventually remaining in V(x†, δ̃) forever.

Case 1. Consider the counts when the DiBS iterates are inside V(x†, δ̃), n < t1 < t2 < . . . such
that xtk ∈ V(x†, δ̃) ∀ k ∈ N, and let the earliest corresponding counts when the DiBS iterates are
outside V(x†, δ) be ek := min{t ≥ tk|xt /∈ V(x†, δ)}. Then, from Equation (2), we have

u⊤h(xt) ≥ aϵ ∀ t = tk, tk+1, . . . , ek − 1.

Now, from the definition of tk and ek, we have

∥xek − xtk∥2 ≥ δ − δ̃ > 0

=⇒

∥∥∥∥∥
ek−1∑
t=tk

(xt+1 − xt)

∥∥∥∥∥
2

≥ δ − δ̃

=⇒
ek−1∑
t=tk

∥xt+1 − xt∥2 ≥ δ − δ̃ (triangle inequality)

=⇒
ek−1∑
t=tk

αt =

ek−1∑
t=tk

∥xt+1 − xt∥2
∥h(xt)∥2

≥
ek−1∑
t=tk

∥xt+1 − xt∥2
M

≥

(
δ − δ̃

)
M

=⇒ u⊤ (xek − xtk) =

ek−1∑
t=tk

u⊤ (xt+1 − xt) = −
ek−1∑
t=tk

αtu
⊤h(xt)

≤ −aϵ

ek−1∑
t=tk

αt (from Equation (2))

=⇒ u⊤ (xek − xtk) ≤ −
aϵ

(
δ − δ̃

)
M

. (4)

Here, the first equality could be legitimately written as the definition of case 1 implies that h(xt) ̸=
0, t = tk, . . . , ek − 1, otherwise the iterates would have remained within V(x†, δ) forever. Now,
from the definition of case 1, tk+1 and ek, we have that the DiBS iterates cannot remain outside
V(x†, δ̃) for an infinite amount of time, and thus ∃ C ′ > 0 such that C ′ >

∑tk+1−1
t=ek

1 ∀ k. Thus

u⊤ (
xtk+1

− xek

)
=

tk+1−1∑
t=ek

u⊤(xt+1 − xt)

≤
tk+1−1∑
t=ek

αtM (Cauchy-Schwarz)

= M

tk+1−1∑
t=ek

αt

≤ aMC ′

C
(from Equation (3))

=⇒ u⊤ (
xtk+1

− xek

)
≤ aMC ′

C
:= aγ. (5)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Combining Equations (4) and (5), we get

u⊤ (
xtk+1

− xtk

)
≤ a

γ −
ϵ
(
δ̃ − δ

)
M


=⇒ u⊤xtk+1

≤ u⊤xt1 + k · a

γ −
ϵ
(
δ̃ − δ

)
M

 (6)

From Cauchy-Schwarz inequality, ∥u⊤xtk+1
∥2 ≤ ∥xtk+1

∥2 is bounded for all k ∈ N as the
DiBS sequence is bounded. However, from Equation (6), as k increases ∥u⊤xtk+1

∥2 becomes
unbounded, which is a contradiction.

Case 2. By definition of case 2, ∃ t∗ < ∞ such that xt ∈ V(x†, δ) ∀ t ≥ t∗. Thus for T > t∗, we
have

u⊤ (xT − xt∗) =

T−1∑
t=t∗

u⊤ (xt+1 − xt)

= −
T−1∑
t=t∗

αtu
⊤h(xt)

≤ −aϵ

T−1∑
t=t∗

αt (from Equation (2))

=⇒ u⊤xT ≤ u⊤xt∗ − aϵ

T−1∑
t=t∗

αt (7)

Similar to the argument of contradiction in case 1, ∥u⊤xt∗∥2, ∥u⊤xT ∥2, T ≥ t∗ are bounded.
However, Equation (7) suggests that ∥u⊤xT ∥ becomes unbounded as T increases, because of the
Robbins-Monro stepsize condition

∑
k αk = ∞, and

∑t∗−1
k=1 αk is finite. Hence, we arrive at a

contradiction.

Thus, from both cases, we get that h(x†) = 0, and from Definition 1, x† is a Pareto stationary point
with convex coefficients

βi =
∥x†−x∗,i∥2/∥∇xℓ

i(x†)∥2∑
i
∥x†−x∗,i∥2/∥∇xℓ

i(x†)∥2

.

C RELAXING ASSUMPTION 2

In the case when all agent (task) losses ℓi are convex, it has been established that the DiBS it-
erates are bounded (Gupta et al., 2025). In the non-convex setting, while the boundedness of the
DiBS iterates intuitively holds for a problem with gradient conflict, i.e., task loss gradients point in
opposite directions, we show that boundedness can be formally guaranteed with standard concepts
from dynamical systems theory.

In particular, the following simple modification to DiBS allows us to guarantee boundedness, with-
out changing the fact that the only fixed points of the dynamics are Pareto stationary points.

xk+1 =


f1(xk) := xk − h(xk), if ∥xk∥2 ≤ R (standard DiBS)
f2(xk) := xk − α xk

∥xk∥2
, if ∥xk∥2 ≥ R+ r (radially attractive)

f(xk, tk), if R < ∥xk∥2 < R+ r (convex combination)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where f(xk) = (1− g(xk)) f1(xk) + g(xk)f2(xk) + z(xk, tk),

z(xk, tk) =

(
∥xk∥2 −R

r

)
·
(
1− ∥xk∥2 −R

r

)
· sin(t)a

g(x) =
e
− r

∥x∥2−R

e
− r

∥x∥2−R + e
− 1

1−∥x∥2−R
r

, and tk =

k∑
i=1

1{R < ∥xi∥2 < R+ r}

Here, a ∈ Rn is any constant vector of the same dimension as the iterates xk. The radius R can be
taken to be some large positive number, larger that maxi ∥x∗,i∥2, and r can be any positive constant.
This modification ensures that (i) near the Pareto front, the DiBS iterates act as usual, (ii) in case the
optimization landscape is such that due to a lack of conflicting gradient nature, the iterates somehow
move away from the Pareto region and outside the ∥x∥2 ≤ R + r ball, the iterates switch to the
radially attractive dynamics and return to the ball and remain bounded, (iii) the dynamics switch is
smoothly carried out in between the ∥x∥2 ≤ R and ∥x∥2 ≤ R+ r balls, and (iv) the fixed points of
the dynamics do not change— the time varying term z(xk, tk) ensures that only Pareto stationary
points (all inside the ∥x∥R ball) are the fixed points of the modified dynamics, and the dynamics do
not converge to non-Pareto stationary points.

D DISCUSSION ON IMTL-G

We elaborate on our claim made in Section 2 that though IMTL-G (Liu et al., 2021b) can be invariant
to monotonic nonaffine transformations, it can produce Pareto solutions that are heavily favor one
task over the other, possibly leading to task domination issues.

IMTL-G is a gradient-based method, which tries to find an update direction which has an equal
projection on all task gradient vectors. Though this equal projection property brings invariance to
monotonic nonaffine transformations, it also renders IMTL-G susceptible to task domination, as
illustrated by the following simple two dimensional example.

Let S = [−1, 1]× [−1, 1], with two tasks ℓ1(x, y) = x2 + (y − 1)2 and ℓ2(x, y) = x2 + (y + 1)2.
Then any point of the form (0, y), y ∈ [−1, 1] is a valid solution that IMTL-G can give. Even
though all such points are Pareto stationary solutions, only (0, 0) is balanced in the sense that it is
equidistant to these symmetric functions (one function is a reflection of the other with respect to the
X-axis). Thus IMTL-G can output a point like (0, 0.9) which is heavily biased towards task 1. In
contrast, even if the iteratations are started at (0, 0.9), DiBS will return the balanced point (0, 0) as
a solution.

E EXPERIMENTAL DETAILS AND CODE BASE

E.1 DEMONSTRATIVE EXAMPLE

Loss Functions. The non-convex objectives used in (L1,L2) are given by
L1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ), L2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ)

c1(θ) = max
(
tanh(0.5 θ2), 0

)
, c2(θ) = max

(
tanh(−0.5 θ2), 0

)
,

f1(θ) = log
(
max

(
|0.5(−θ1 − 7)− tanh(−θ2)|, 10−6

))
+ 6,

f2(θ) = log
(
max

(
|0.5(−θ1 + 3)− tanh(−θ2) + 2|, 10−6

))
+ 6,

g1(θ) =
(−θ1 + 7)2 + 0.1(−θ2 − 8)2

10
− 20, g2(θ) =

(−θ1 − 7)2 + 0.1(−θ2 − 8)2

10
− 20.

As mentioned in Section 5, the transformation used on L1 for the transformed case is the monotonic,
nonaffine transformation h(ℓ) = sign(ℓ) · ℓ4.

E.2 NYUV2

Benchmark and Setup. The NYU-v2 indoor scene dataset Silberman et al. (2012) provides 1,449
RGB-D images with dense per-pixel annotations for three tasks: semantic segmentation (13 classes),

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters used for MT10 (v1) SAC.

Component Value
Encoder feature dim 50
Discount γ 0.99
Initial temperature α0 1.0
Actor update freq. 1 step / env step
Critic target τ 0.005
Target update freq. 1 step / env step
Encoder EMA τenc 0.05
Learning Rate 0.025
Update-weights cadence every step (= 1)

depth estimation, and surface normal prediction. Training uses standard task losses: per-pixel cross-
entropy for segmentation, masked L1 for depth estimation over valid pixels, and a masked cosine
loss over valid pixels for surface normal prediction. These choices match the NYU-v2 multitask
protocol followed by prior multitask learning work (Liu et al., 2023; Navon et al., 2022). Our imple-
mentation builds on the official Nash-MTL code base3 and incorporates the FAMO implementation4.

Model. The model architecture used in our experiments is a Multitask Attention Network
(MTAN) (Liu et al., 2019) built on top of SegNet (Badrinarayanan et al., 2017). The network takes
an RGB image as input and produces three task-specific outputs via separate heads: (i) a per-pixel
class-score map for semantic segmentation, (ii) a scalar depth map for depth estimation, and (iii) a
3-channel surface-normal map for surface-normal prediction. Following the experimental setup of
Nash-MTL (Navon et al., 2022), all multitask learning methods train this shared architecture using
their respective update rules.

Training Protocol. For training, we follow the procedure outlined in (Navon et al., 2022). We
train for 200 epochs with Adam (Kingma & Ba, 2014), using an initial learning rate of 1 × 10−4

reduced to 5 × 10−5 after 100 epochs. All reported results are averaged over three random seeds,
namely 1, 7, and 42.

E.3 META-WORLD MT10

Benchmark and Setup. The MetaWorld MT10 (v1) benchmark comprises ten robotic
manipulation tasks: Reach, Push, Pick-and-Place, Door Open, Drawer Open,
Drawer Close, Button Press (Top-Down), Peg Insert (Side), Window Open,
and Window Close (Yu et al., 2020b). Each task has distinct reward functions and success crite-
ria. We build on the MTRL code base (Sodhani & Zhang, 2021)5 with MetaWorld6.

Policy and Training Protocol. We train a single Soft Actor–Critic (SAC) policy shared across
all ten tasks. Multitask learning (MTL) methods are applied to balance the actor and critic updates
within the shared SAC. For each MTL method, we train for 2,000,000 environment steps in total.
Episodes have length 150; this corresponds to ≈ 13,333 episodes overall. Evaluation is performed
every 200 episodes (30,000 steps) on all tasks, and reported metrics are averaged over 10 random
seeds: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Hyperparameters. Key hyperparameter values are provided in Table 3. We follow the same hy-
perparemeters defined in prior works (Navon et al., 2022; Liu et al., 2023).

Reproducibility Note. During preliminary experiments, we observed that using the same random
seed did not always produce identical training curves. This discrepancy arose because the original

3https://github.com/AvivNavon/nash-mtl
4https://github.com/Cranial-XIX/FAMO
5https://github.com/facebookresearch/mtrl
6https://github.com/Farama-Foundation/Metaworld

16

https://github.com/AvivNavon/nash-mtl
https://github.com/Cranial-XIX/FAMO
https://github.com/facebookresearch/mtrl
https://github.com/Farama-Foundation/Metaworld


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Nash-MTL DiBS-MTL FAMO
0

1,000

2,000

108.32

1,092.87

2,125.96

It
er

at
io

ns
pe

rs
ec

on
d

Figure 4: Average iterations per second in the non-transformed setting

MTRL code (Sodhani & Zhang, 2021) did not seed the initial action sampling during the exploration
phase. As a result, small differences in early exploratory actions (first 10 steps) propagated through
training and produced slight variation in learning behavior even with fixed seeds.

F ADDITIONAL RESULTS

F.1 ANALYSIS OF DIBS-MTL RUNTIME

In addition to examining the solutions obtained in the demonstrative example, we also evaluated the
computational speed of the different MTL methods. Specifically, we compared DiBS-MTL with
Nash-MTL and FAMO. We measured the number of iterations processed per second, with higher
values indicating faster performance.

In Figure 4, we compare the runtimes of DiBS-MTL , FAMO, and Nash-MTL. DiBS-MTL runs
substantially faster than Nash-MTL, achieving roughly half the speed of FAMO. This behavior is
expected: unlike Nash-MTL, DiBS-MTL does not solve a separate optimization problem at each
iteration, but it does recompute gradients and preferred states, which increases runtime relative to
FAMO, which is a loss-based method and is expected to be faster.

F.2 ADDITIONAL RESULTS IN THE DEMONSTRATIVE EXAMPLE

In addition to the results reported in section Section 5.1, we also ran additional methods in the
demonstrative two-objective example. Specifically, we ran the Multiple Gradient Descent Algorithm
(MGDA) (Désidéri, 2012), Uncertainty Weighting (UW) (Kendall et al., 2018), Impartial Multitask
Learning (IMTL-G) (Liu et al., 2021b), and Multi-step DiBS-MTL. We run Multi-step
DiBS-MTL for 10 steps per update. The loss functions and number of steps are identical to the
experiment described in Section 5.1.

In Figure 5, we observe that the additional baseline methods of MGDA, UW, IMTL-G are not
invariant to the transform, with UW failing to reach the Pareto-front in both cases. We note
that Multi-step DiBS-MTL performs similarly to single step DiBS-MTL . Multi-step
DiBS-MTL reaches the same points on the Pareto-front in both cases, showing it is also invariant to
monotone non-affine transforms.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Nominal

Transformed

Figure 5: Additional experiments performed in the demonstrative two-objective example. We ob-
serve that, Multi-step DiBS-MTL exhibits the same invariance to monotone non-affine trans-
forms as single-step DiBS-MTL, and also demonstrates similar behaviour.

18


	Introduction
	On related MTL works and existing bargaining solutions
	Related MTL literature
	Preliminaries on cooperative bargaining games

	What can we say about DiBS in the nonconvex regime?
	Adapting DiBS to multitask learning
	Experiments
	Does DiBS-MTL reliably converge to Pareto solutions?
	How does DiBS-MTL compare to existing MTL methods?
	How robust are DiBS-MTL & existing MTL methods against nonaffine transformations?

	Conclusion
	Large language model (LLM) usage disclosure
	Proof of thm: subsequence converges to pareto
	Relaxing Assumption 2
	Discussion on IMTL-G
	Experimental Details and Code base
	demonstrative Example
	NYuV2
	Meta-World MT10

	Additional Results
	Analysis of DiBS-MTL  Runtime
	Additional Results in the demonstrative Example


