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ABSTRACT

Multitask learning (MTL) algorithms typically rely on schemes that combine dif-
ferent task losses or their gradients through weighted averaging. These methods
aim to find Pareto stationary points by using heuristics that require access to task
loss values, gradients, or both. In doing so, a central challenge arises because task
losses can be arbitrarily, nonaffinely scaled relative to one another, causing certain
tasks to dominate training and degrade overall performance. A recent advance in
cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS),
yields Pareto stationary solutions immune to task domination because of its invari-
ance to monotonic nonaffine task loss transformations. However, the convergence
behavior of DiBS in nonconvex MTL settings is currently not understood. To
this end, we prove that under standard assumptions, a subsequence of DiBS iter-
ates converges to a Pareto stationary point when task losses are possibly noncon-
vex, and propose DiBS-MTL, a computationally efficient adaptation of DiBS to
the MTL setting. Finally, we validate DiBS-MTL empirically on standard MTL
benchmarks, showing that it achieves competitive performance with state-of-the-
art methods while maintaining robustness to nonaffine monotonic transformations
that significantly degrade the performance of existing approaches, including prior
bargaining-inspired MTL methods.

1 INTRODUCTION

The successes of deep learning have inspired investigation into “generalist” networks—models si-
multaneously trained for learning multiple tasks. As a result, numerous multitask learning (MTL)
algorithms have been developed to tackle the inevitable conflict between task-specific loss gradients,
aiming to ensure that during training, no task is under-optimized compared to others (Kendall et al.,
2018; Sener & Koltun, 2018; Yu et al., 2020a; Liu et al., 2021a; Navon et al., 2022; Liu et al., 2023).
However, most existing MTL methods are not robust against non-affine (monotonic) transformations
to task losses, which is a crucial property desirable in the context of deep learning—where same
preferences can be represented with losses of different nonaffine scalings, and it is unclear which
relative scaling of the different losses ensures balanced learning without expensive and exhaustive
ablations. We consider the problem of multitask learning (MTL) through the lens of centralized,
cooperative bargaining methods that are invariant to non-affine monotonic task loss transformations.

The issue of different task losses being directly incomparable and scaled in different, non-affine
fashions arises very naturally in many deep learning domains. For instance, reinforcement learning
applications demand that a practitioner leverages prior, task-specific domain knowledge to design
an effective reward function (Yu et al., 2025). However, in a downstream MTL setting, the loss
corresponding to this reward function may dominate (or get dominated by) other task losses. At
the same time, the relative performance of a “good” task-specific policy does not change when the
corresponding task loss is monotonically transformed,i.e., the transformation does not change the
actual underlying preferences over options. Thus, in an MTL problem, the available task losses
can be seen as monotonic—possibly non-affine—transformations of some underlying set of ideal,
unknown task losses that are meaningfully scaled with respect to each other.

Recent work in MTL has developed a connection with cooperative game theory (Navon et al., 2022).
In this setting, each different loss function is a separate player in a bargaining game, and the idea is to
find a balanced Pareto optimum among the players’ objectives. Classical solutions to these bargain-
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ing games (e.g., Nash, as explored by Navon et al. (2022)) are not robust to non-affine monotonic
scalings, and only recently has a technique—Direction-based Bargaining Solution (DiBS)—been
developed which remains invariant to these transformations (Gupta et al., 2025). However, the con-
vergence of DiBS has only been analyzed in settings with strongly convex losses, and it is unclear
to what extent the favorable properties of DiBS will apply in realistic MTL applications where task
losses are almost always nonconvex. Inspired by this, we investigate the following:

1. What theoretical properties can be established for Direction-based Bargaining Solution
(DiBS) in the general setting where player objectives (task losses) can be non-convex?
Contribution 1. We show that under standard assumptions, for non-convex losses, a subse-
quence of the DiBS iterates provably converges to a Pareto stationary point asymptotically.
Notably, our result does not require the linear independence of task loss gradients at non-
Pareto stationary points, an assumption that is required by MTL methods using the Nash
bargaining solution to deliver the same asymptotic guarantee (Navon et al., 2022).

2. Can DiBS readily adapt to MTL applications? If so, how does it compare to existing MTL
methods?
Contribution 2. We extend DiBS to multitask learning, showing its natural compatibility
with existing bargaining-for-learning frameworks. Moreover, we propose an approxima-
tion, DiBS-MTL, which is computationally more efficient than DiBS, and also preserves
desirable invariance to non-affine monotonic task loss transformations. We empirically
show that DiBS-MTL performs competitively with existing MTL methods on widely used
multitask computer vision and reinforcement learning benchmarks.
Contribution 3. We further investigate multitask reinforcement learning settings in which
different task reward functions undergo non-affine monotonic transformations—causing
potentially non-monotonic critic loss transformations. We empirically demonstrate that in
this setting, DiBS-MTLmaintains robust performance, while existing state-of-the-art MTL
methods observe a significant drop in performance under the same transformations.

2 ON RELATED MTL WORKS AND EXISTING BARGAINING SOLUTIONS

2.1 RELATED MTL LITERATURE

The most popular MTL approach in practice is linear scalarization (LS)—constructing a scalarized
loss by taking the unweighted sum of task losses, or using known static coefficients to compute a
weighted average. While previous work has advocated for LSmethods (Kurin et al., 2022; Xin et al.,
2022), in practice, LS can lead to situations where certain tasks remain under-optimized. Further,
it has been shown that LS also does not necessarily recover the entire Pareto front generated by the
task losses (Hu et al., 2023). Other methods tackle the MTL problem through more sophisticated
multiobjective optimization approaches, aiming to find Pareto optimal (or stationary, in general non-
convex settings) points. Such methods seek to address the task imbalances arising during training
via heuristics that (i) use task-specific loss values to compute a scalar weighted average loss (but
with evolving weights, unlike LS) (Kendall et al., 2018; Liu et al., 2019; Lin et al., 2022; Liu et al.,
2023), or (ii) use task-specific loss gradients to find update directions iteratively during training
(Sener & Koltun, 2018; Yu et al., 2020a; Chen et al., 2020; Liu et al., 2021a;b; Navon et al., 2022).

Existing loss-based heuristics include maximizing improvement of the worst-performing task (Liu
et al., 2023), forcing improvements to be similar across tasks (Liu et al., 2019), weighting task
losses randomly (Lin et al., 2022), and adapting weights according to task-based uncertainty mea-
sures (Kendall et al., 2018). Heuristics for gradient-based approaches include finding mutual task
improvement directions (Yu et al., 2020a), probabilistically masking task gradients according to
their sign (Chen et al., 2020), computing weights that minimize the norm of the convex combination
of task gradients (Sener & Koltun, 2018), using gradient-based approaches to maximize improve-
ment of the worst-performing task (Liu et al., 2021a), and finding the Nash bargaining solution for a
bargaining subproblem (Navon et al., 2022). However, as we empirically demonstrate in Section 5,
these existing methods are not robust to monotonic, nonaffine task loss transformations, potentially
experiencing significant performance drops in such settings. We remark than one gradient-based
method, IMTL-G (Liu et al., 2021b), in principle can produce solutions invariant to monotonic non-
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affine task loss transformations. However, we show in Appendix D that even for simple convex
problems, IMTL-G can converge to Pareto solutions that heavily favor one task over the other.

Finally, we note that other approaches also exist for the MTL problem, such as (i) task clustering,
where methods first cluster tasks to reduce conflicts, and then update model training parameters for
each cluster (Standley et al., 2020; Fifty et al., 2021; Song et al., 2022; Shen et al., 2024); and (ii)
parameter sharing methods, which design neural network architectures consisting of task-specific
and task-shared modules/parameters (Kokkinos, 2017; Guo et al., 2020; Gao et al., 2020). These
approaches differ from the proposed approach at a fundamental level, in that they try to design a
suite of models for the space of tasks, or design model architectures suitable for MTL, whereas
the proposed approach aims to optimize a a single model (with a pre-defined architecture), which
balances the performance of all tasks.

2.2 PRELIMINARIES ON COOPERATIVE BARGAINING GAMES

We provide a brief background of cooperative bargaining theory, which we utilize in our main contri-
bution. A thorough description can be found in classical literature (Thomson, 1994; Narahari, 2014).
A centralized bargaining game consists of N agents and a mediator; and x ∈ S ⊆ Rn denotes the
state of the game. We assume the ith agent has a differentiable cost ℓi(x) : S → R, i ∈ [N ]. In the
context of MTL, every task can be thought of as being represented by one agent, with the agent’s
cost being the task loss.

Each agent want’s to minimize its cost, and has preferred states x∗,i ∈ argminx∈S ℓi(x) it wants the
game to go towards. For nonconvex costs, this could be a local minimum. The goal of the mediator
is to execute a bargaining strategy and find a solution state x†. Let ℓ(x) = [ℓi(x), . . . , ℓN (x)]. For
convenience, we denote such a bargaining game by BS(ℓ). Numerous bargaining solutions have
been proposed in economics literature (Thomson, 1994), each employing different heuristics to find
a Pareto optimal point—a point at which no update direction exists, which simultaneous decreases
the losses for all agents. In the case when the agent losses ℓi(x) are nonconvex, a more appropriate
goal for the mediator is to find a Pareto stationary point, which is a first-order necessary condition
for Pareto optimality.

Definition 1 (Pareto stationarity). For BS(ℓ), a point x† ∈ S is Pareto stationary if ∃ βi ≥ 0, i ∈
[N ], such that

∑
i∈[N ] β

i∇xℓ
i(x†) = 0, and

∑
i∈[N ] β

i = 1.

We now highlight the Direction-based Bargaining Solution (DiBS), which we use in our method.
For a bargaining game BS(ℓ), DiBS finds a Pareto stationary point by taking an initial point x1 ∈ S
and running the iterations

xk+1 = xk − h(xk) := xk − αk ·
∑
i∈[N ]

(
∥xk − x∗,i∥2 ·

∇xℓ
i(xk)

∥∇xℓi(xk)∥2

)
. (1)

Remark 1 (Invariance of DiBS). For monotonic, possibly nonaffine transformations h1, . . . , hN ,
let h(ℓ)(x) = [h1(ℓi)(x), . . . , hN (ℓN )(x)]. Then DiBS produces the same solution for the bar-
gaining games BS(h(ℓ)) and BS(ℓ), for the same initial point x1 ∈ S and sequence of stepsizes
{αk}k≥0. This invariance to monotonic nonaffine transformations is because DiBS only utilizes
normalized gradients and locally preferred states, i.e., local minima, both of which do not change
under such transformations.

We also note that prior has work has used the classical Nash bargaining solution (NBS) (Nash et al.,
1950) in the context of MTL (Navon et al., 2022). However, the NBS is invariant to only affine
agent (or task) loss transformations, and can change if the agent (or task) losses undergo monotonic
nonaffine transformations.

As highlighted in Section 1, the need for MTL methods which are robust to monotonic non-affine
transformations makes it natural to consider incorporating DiBS—which is invariant to such
distortions—in an MTL approach. However, since practical MTL problems typically involve non-
convex losses, it is crucial to examine the behavior of DiBS in the nonconvex regime, a setting not
yet analyzed in prior work. This serves as our motivation for the next section.
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3 WHAT CAN WE SAY ABOUT DIBS IN THE NONCONVEX REGIME?

In this section we establish a convergence guarantee for DiBS in the setting when agent losses
can be nonconvex, which is often the case in practical MTL problems. Currently, guarantees only
exist for the case when all agents have strongly convex losses, under which DiBS enjoys global
asymptotic convergence to a Pareto stationary point (Gupta et al., 2025). We begin by highlighting
our assumptions.

Assumption 1. For BS(ℓ), the set of Pareto stationary points lies in the interior of S, and all x∗,i

exist, are finite, and are also in the interior of S. The agent costs ℓi are differentiable, and bounded
below.

Assumption 2 (Relaxed in Section C). The sequence {xk}∞k=1 generated by the DiBS iterations
given in Equation (1) are bounded, i.e., there is a bounded set D ⊆ S such that xk ∈ D ∀ k ∈ N.

Assumption 1 is standard and ensures that the problem is well posed. Assumption 2 is a temporary
assumption that we make for a clear exposition of our arguments while studying convergence of
DiBS in nonconvex settings. Assumption 2 makes the DiBS iterates bounded, and we relax this
assumption in Section C, showing that standard techniques from dynamical systems theory can be
used to ensure DiBS iterates are bounded, forgoing the need for Assumption 2.

We now present our main theorem, the proof of which is in Appendix B.

Theorem 1. Let {xk}∞k=1 be the sequence generated by the DiBS algorithm given in Equation (1),
for an initial point x1 ∈ S and stepsizes that follow the Robbins-Monro conditions, i.e.,

∑
k αk =

∞,
∑

k α
2
k < ∞ (Robbins & Monro, 1951). Then, under Assumptions 1 and 2, the sequence

{xk}∞k=1 has a subsequence that asymptotically converges to a Pareto stationary point x†, i.e.,
h(x†) = 0.

Theorem 1 establishes that the sequence produced by the DiBS iterates has a subsequence which
converges to a Pareto stationary point, even when the agent losses are nonconvex. Note that this
result is similar to a guarantee presented for the Nash bargaining solution in prior work (Navon
et al., 2022). However, the existing result in prior work requires the assumption that agents’ loss
gradients are linearly independent at all non-Pareto stationary points. It is unclear to what extent
realistic MTL problems satisfy this assumption. In comparison, our result does not require such a
linear independence assumption.

4 ADAPTING DIBS TO MULTITASK LEARNING

We now extend DiBS to the multitask learning setting. We begin by introducing some notation, and
then describe the underlying bargaining game for MTL, which has been proposed in previous work
(Navon et al., 2022).

Notation. We use 0 to denote a zero vector of appropriate dimensions, and V(x, r) denotes a ball
of radius r, centered at x. The vector θ ∈ Rn represents shared task parameters; any additional task-
specific parameters are suppressed for notational convenience and do not influence the calculation
of θ iterates in this section.

Bargaining for MTL. The goal in MTL is to train a model to perform multiple tasks. Every
learning task has an associated task loss ℓi(θ) : Rn → R. During training, given parameters θ,
bargaining is iteratively conducted to find the next set of parameters θ +∆θ.

To this end, every task is represented as a distinct bargaining agent with the (minimization) objective
being an approximation of the difference ℓi(θ+∆θ)−ℓi(θ). We consider a first-order approximation,
in line with prior bargaining work for a fair comparison (Navon et al., 2022), with the ith agent’s
objective being

min
∥∆θ∥2≤ϵ

(
∇θℓ

i(θ)
)⊤

∆θ︸ ︷︷ ︸
:=ωi(∆θ)

,

4
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where we constrain the update vector ∆θ to lie in V(0, ϵ), to prevent overshooting caused by
large update steps. Thus, for an MTL problem with N tasks—the bargaining game becomes
BV(0,ϵ)([ω

1, . . . , ωN ]).

DiBS for MTL. We now proceed to apply DiBS to the bargaining game BV(0,ϵ)([ω
1, . . . , ωN ]).

Note that the bargaining game has linear objectives, and thus the normalized gradient

∇∆θω
i

∥∇∆θωi∥2
=

∇θℓ
i(θ)

∥∇θℓi(θ)∥2

only needs to be computed once at the starting of a bargaining game. Further, the quantity x∗,i in
Equation (1) has a closed form solution x∗,i = −

(
∇θℓ

i(θ)/∥∇θℓ
i(θ)∥2

)
· ϵ for the linear objectives,

i.e., the furthest point in the negative gradient direction, given that ∆θ is constrained to lie in V(0, ϵ).
Thus, for an initial choice ∆θ1 and stepsize sequence {αk}, the DiBS iterates for MTL become

∆θk+1 = ∆θk − αk ·
∑
i∈[N ]

(∥∥∥∥∆θk + ϵ · ∇θℓ
i(θ)

∥∇θℓi(θ)∥2

∥∥∥∥
2

· ∇θℓ
i(θ)

∥∇θℓi(θ)∥2

)
, k ∈ N

(Multi-step DiBS-MTL)

In practice, naively applying Multi-step DiBS-MTL can be slow. We propose the following
approximation to DiBS, which is more computationally efficient and still preserves the desirable
invariance to monotonic, nonaffine task loss transformations:

∆θ = −ϵ ·
∑
i∈[N ]

∇θℓ
i(θ)

∥∇θℓi(θ)∥2
(DiBS-MTL)

DiBS-MTL can be viewed as an approximation of Multi-step DiBS-MTL, obtained by setting
the initial ∆θ1 = 0, running the system for a single step, i.e., only for k = 1, and outputting ∆θ2
as ∆θ. Such single step approximations are common for ensuring practical computational speedups
in MTL methods where an iterative processes are involved, c.f. FAMO (Liu et al., 2023). As we will
show in Section 5, DiBS-MTL offers competitive performance on MTL tasks, even with a single
step approximation. We remark that unlike equation 1, the single step update rule DiBS-MTL that
does not have explicit dependencies on x∗,i due to the first-order approximation combined with the
ball constraint. In Section F we provide results on a demonstrative two dimensional nonconvex
example showing that the single-step version performs similarly to the multi-step version despite
being relatively simpler.

5 EXPERIMENTS

We now evaluate DiBS-MTL in standard MTL benchmarks extensively used in literature (Yu et al.,
2020a; Liu et al., 2021a; Navon et al., 2022; Liu et al., 2023), a demonstrative two objective exam-
ple, a computer vision benchmark (NYU-v2) (Silberman et al., 2012), and a multitask reinforce-
ment learning dataset (Meta-World MT10) (Yu et al., 2020b). Our main aims are: (i) to verify that
DiBS-MTL reliably converges to Pareto solutions from varying initializations, (ii) to compare the
overall performance of solutions identified by DiBS-MTL to those produced by state of the art
approaches across a variety of large-scale MTL benchmarks, and (iii) to verify the robustness of
DiBS-MTL to nonaffine task loss transformations that skew the results of other methods.

5.1 DOES DIBS-MTL RELIABLY CONVERGE TO PARETO SOLUTIONS?

Setting. We first test DiBS-MTL on a demonstrative two-dimensional, nonconvex multi-objective
optimization example with two objectives (L1,L2), which is a standard benchmark for illustrat-
ing the ability of MTL methods to achieve balanced Pareto solutions (Yu et al., 2020a; Liu et al.,
2021a; Navon et al., 2022; Liu et al., 2023). The explicit forms of the objectives are provided in Ap-
pendix E.1. As shown in Figure 1, each objective in this example has deep valleys, with the bottoms
having a large magnitude difference between the objective gradients, and a high (positive) curvature.
Such phenomenon has been documented to exist when optimizing neural networks as well, and can
lead to one objective (task) dominating others (Goodfellow et al., 2014; Yu et al., 2020a).
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Figure 1: The loss functions used in the demonstrative two-dimensional example. The transforma-
tion we use is h(L) = sign(L) · L4.

Original loss pair (L1,L2)

Transformed loss pair (h(L1),L2)

Figure 2: Results for the demonstrative two objective nonconvex problem. Each initialization is rep-
resented by •, and denotes the Pareto front. We retain the original L1 axis in the transformed
case to better visualize the different results reached by baselines. DiBS-MTL provides balanced
Pareto solutions invariant to monotonic nonaffine task-loss transformations, while competing meth-
ods display degraded fairness, favoring task 1.

Baselines. We test DiBS-MTL along with 5 baselines—(1) linear scalarization (LS), which opti-
mizes the unweighted loss average, (2) CAGrad (Liu et al., 2021a), (3) PCGrad (Yu et al., 2020a),
(4) Nash-MTL (Navon et al., 2022), and (5) FAMO1 (Liu et al., 2023).

DiBS-MTL yields Pareto solutions from diverse initializations, which are unaffected by mono-
tonic nonaffine transformations. Figure 2 plots the solutions generated by DiBS-MTL for dif-
ferent initializations, for the costs (L1,L2) above, as well as for (h (L1) ,L2) where we apply the
monotonic nonaffine transformation h(x) = sign(x) ·x4 to L1. We observe that DiBS-MTL consis-
tently leads to balanced Pareto solutions for all initializations, and these solutions remain invariant
to the transformation. It is also observed that unlike DiBS-MTL, all other MTL methods produce
significantly biased solutions once L1 is transformed (i.e., comparing the top and bottom rows of
Figure 2), signaling that they are susceptible to task domination when tasks are differently scaled.

5.2 HOW DOES DIBS-MTL COMPARE TO EXISTING MTL METHODS?

To compare DiBS-MTL with existing methods in large-scale learning examples, we perform ex-
periments in supervised learning (computer vision) and multitask reinforcement learning (MTRL)

1We were unable to reproduce the baseline plots reported in the original FAMO paper (Liu et al., 2023). The
results shown here were obtained by strictly following the default parameters and instructions in the publicly
available FAMO repository https://github.com/Cranial-XIX/FAMO.
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Table 1: Results for supervised learning NYU-v2 benchmark. DiBS-MTL is competitive across
all tasks, and displays healthy overall performance, with the best average relative performance drop
(∆m%), and second-best mean rank (MR). Bold, underlined values indicate best, second-best per-
formances per column respectively.

Segmentation Depth Estimation Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Median ↓ Mean ↓ < 30 ↑ < 22.5 ↑ < 11.25 ↑ ∆m% ↓ MR ↓
STL 38.30 63.76 0.6754 0.2780 19.21 25.01 69.15 57.20 30.14
MGDA 32.03 60.77 0.6103 0.2453 19.00 24.64 69.83 57.78 30.55 -0.6944 3.22
UW 39.08 64.73 0.5464 0.2285 23.04 27.34 62.85 49.23 23.49 3.7667 4.89
NashMTL 40.16 65.65 0.5332 0.2204 19.96 25.25 68.29 55.72 28.62 -3.9833 2.33
FAMO 37.58 64.08 0.5595 0.2297 19.15 25.04 69.36 57.44 30.23 -3.8200 3.33
LS 40.16 65.63 0.5446 0.2223 23.03 27.50 62.66 49.32 23.61 3.0569 4.22
DiBS-MTL 40.92 66.60 0.5337 0.2217 20.06 25.35 68.15 55.54 28.54 -4.1140 2.89

domains that are standard benchmarks in MTL literature (Yu et al., 2020a; Liu et al., 2021a; Navon
et al., 2022; Liu et al., 2023). We begin by describing the set-up, baselines and metrics for both. We
keep the default training procedures established in prior work for a fair comparison. All implemen-
tation details are given in Appendix E.

Supervised learning set-up. The setting is a supervised learning computer vision problem with
3 tasks. Specifically, we use the NYU-v2 indoor scene dataset (Silberman et al., 2012) with
1449 RGBD images and dense per-pixel labeling for 3 learning tasks—semantic segmentation (13
classes), depth estimation, and surface normal prediction. Similar to prior work, we train a multitask
attention network (MTAN) (Liu et al., 2019).

Supervised learning baselines. We use 5 baselines—(1) LS, (2) uncertainty weighting (UW)
(Kendall et al., 2018), and 3 methods which have consistently outperformed other MTL approaches
for this particular dataset in prior work—(3) MGDA (Sener & Koltun, 2018), (4) Nash-MTL (Navon
et al., 2022), and (5) FAMO (Liu et al., 2023).

Supervised learning metrics. We report several task-specific metrics covering each prediction
type. For semantic segmentation, we use the mean Intersection-over-Union (mIoU), which aver-
ages the per-class overlap between predicted and ground-truth regions, and the overall pixel accu-
racy across the image. For depth estimation, we report the mean absolute error and mean rela-
tive error. For surface normal prediction, we include the mean and median angular error between
estimated and true normals, along with the percentage of pixels whose angular error falls below
30◦, 22.5◦, and 11.25◦ (Silberman et al., 2012). In addition, we report two MTL-specific metrics
used in previous work—average relative per-task performance drop ∆m%, and mean rank (MR)
across tasks (Navon et al., 2022; Liu et al., 2023). ∆m% is calculated relative to STL—single-
task learning, corresponding to learning a separate model for each task—given for a method m as
∆m% =

(
1/N ·

∑
k∈[N ]

(Mm,k−MSTL,k)/MSTL,k

)
× 100, where Mi,k is method i’s value on metric

Mk. All reported results have been averaged over 3 seeds, as done in prior work.

MTRL set-up. The setting is a multitask reinforcement learning (MTRL) problem with 10 tasks.
Following prior work, we evaluate DiBS-MTL on the Meta-World MT10 benchmark (Yu et al.,
2020b), where a robot arm manipulator has 10 tasks, each with distinct reward functions. The
complete list of tasks is given in Appendix E.

MTRL metric and baselines. We compare DiBS-MTL with (1) LS, (2) UW, and (3) FAMO. We
note that results for Nash-MTL could not be collected due to its excessive run-time for this MTRL
example (c.f., Section F.1 for a runtime comparison, where Nash-MTL is slow even for the simpler
demonstrative example). Following prior work, for every method, we use Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) as the underlying reinforcement learning algorithm. Following prior work,
we report the fraction of tasks successfully completed (Navon et al., 2022; Liu et al., 2023), where
the definition of task success is as described in the Meta-World benchmark (Yu et al., 2020b). All
reported results have been averaged over 10 random seeds. The implementation details are included
in Appendix E.

7
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DiBS-MTL (ours) FAMO UW LS

a Nominal (original rewards) b Transformed (reach)

c Transformed (peg insert side) d Transformed (window open)

Figure 3: Training Curves for MTRL Meta-World MT10 benchmark. Reward transformations sig-
nificantly degrade performance of baseline MTL methods, while DiBS-MTL displays robustness.

DiBS-MTL performs competitively to state-of-the-art MTL methods. Table 1 shows the results
for the 3 task supervised learning NYU-v2 dataset. We find that DiBS-MTL performs consistently
well for all tasks and is competitive with the baselines. Notably, DiBS-MTL achieves state-of-the-
art performance in ∆m% (overall average relative per-task performance drop), and second-best MR
(mean rank) overall—both these metrics correspond to how well rounded an MTL method is with
respect to all tasks. DiBS-MTL also achieves the state-of-the-art, and second-best performance in
the segmentation and depth estimation tasks, respectively. In the 10 task robotic MTRL experiment
as well, Table 2 and Figure 3a show that DiBS-MTL performs competitively, and achieves the
second-best performance for the nominal case, where the reward functions for all tasks are the ones
provided in Meta-World.

5.3 HOW ROBUST ARE DIBS-MTL & EXISTING MTL METHODS AGAINST NONAFFINE
TRANSFORMATIONS?

We now conduct experiments in the MTRL Meta-World MT10 benchmark Yu et al. (2020b) to in-
vestigate how DiBS-MTL and baseline MTL methods perform when some tasks undergo nonaffine
transformations. We begin by describing the setup for the transformations. All training procedures
are taken to be the same as in Section 5.2. We limit our study in this section to MTRL, because
task-specific losses in computer vision are relatively standardized in the literature and thus trans-
formations there will be unwarranted (Wang et al., 2022; Azad et al., 2023). In comparison, as we
mention in Section 1, in the MTRL setting, rewards for different tasks might be designed on very
different scales.

Transformed MTRL setup. We consider transformation of 3 different tasks—for each, we apply
monotonic, nonaffine transformations to the underlying reward function. For actor-critic algorithms
like SAC, this transformation corresponds to potentially nonmonotonic, nonaffine critic loss trans-

8
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Table 2: Best-checkpoint success (evaluated every 200 episodes) results for MTRL Meta-World
MT10 benchmark. Results are mean ± standard error over 10 seeds. Bold values indicate best
performances per column.

Method Nominal Reach Window Open Peg Insert

DiBS-MTL 0.890± 0.023 0.850± 0.022 0.920± 0.025 0.700± 0.037

FAMO 0.920± 0.020 0.700± 0.075 0.830± 0.033 0.570± 0.070

LS 0.850± 0.040 0.480± 0.044 0.200± 0.026 0.230± 0.030

UW 0.830± 0.033 0.650± 0.081 —2 0.420± 0.074

formations. This is because the losses fit the collected rewards to value functions rather than fitting
the state dependent rewards. Thus, these task reward transformations can lead to potentially non-
monotonic task loss transformations. However, we remark that in the policy landscape, a good policy
for the nominal reward is also likely to perform well for the transformed reward.

Reward transformations. We consider the following task-transformation pairs: (i) h(r) =
sign(r) · r4 for reach, (ii) h(r) = (5 + r)4 for peg insert side, (h is monotonic over
the reward range), and (iii) h(r) = exp(r) for window open. These transformations were arbi-
trarily selected to illustrate a broad range of functional forms and tasks. We use the same baselines,
metric, seed values, and training procedure as the nominal MTRL experiment in Section 5.2.

DiBS-MTL retains performance under nonaffine reward transformations. Figures 3a to 3d
and Table 2 show that DiBS-MTL achieves remarkable robustness to the different reward transfor-
mations compared to existing MTL methods. DiBS-MTL achieves state-of-the-art overall perfor-
mance for all transformed cases, while other methods face significant performance degradation in
one or more cases compared to their performance in the nominal setting.

6 CONCLUSION

We consider the problem of constructing multitask learning (MTL) methods that are robust to mono-
tonic, nonaffine task loss transformations. In practice, different task losses can be arbitrarily scaled
with respect to one another, and those scalings can be understood as monotonic, possibly nonaffine
transformations of some ideal, unknown losses which are meaningfully comparable. To address this
problem, we present DiBS-MTL, an MTL method which is invariant to such transformations be-
cause it uses only normalized task loss gradients. Building upon recent work which formalizes the
MTL training update step as a bargaining game played between tasks (Navon et al., 2022), we adapt
the recently introduced DiBS bargaining approach (Gupta et al., 2025) in order to find a Pareto sta-
tionary (and monotonic transformation-invariant) update direction. While DiBS enjoys convergence
guarantees when losses are strongly convex, practical MTL problems almost always have noncon-
vex task losses. To bridge this gap, we prove that a subsequence of the DiBS iterates asymptotically
converges to a Pareto stationary point even in the nonconvex regime. Empirically, we demonstrate
that DiBS-MTL achieves performance competitive with state-of-the-art methods on standard large-
scale MTL benchmarks. Moreover, when task losses are nonaffinely transformed other leading MTL
methods suffer degraded performance, with some tasks dominating others, whereas DiBS-MTL still
maintains high performance, demonstrating robustness to such transformations.

2UW results could not be collected for the window open case, because the training iterations became too
unstable and the underlying MuJoCo simulator (Todorov et al., 2012) consistently gave out-of-bounds errors.
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ETHICS STATEMENT

This paper presents work in the field of multitask learning. Our work has many potential applica-
tions, but we do not feel any ethical concerns need to be highlighted at this time.

REPRODUCIBILITY STATEMENT

Implementation details for all experiments are given in Section E. Additionally, we provide all of
our code in the supplementary materials. We provide setup instructions in our README, including
python and package versions. The theoretical proof is given in Appendix B.
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A LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

The authors used LLMs in the following ways.

• We used GPT-5 for spelling checks, grammar checks, and paraphrasing after the initial text
is written by the authors.

• We used GPT-5 for help with understanding axis labeling options for plotting figures in the
matplotlib package (Hunter, 2007).

• We used GPT-5 to resolve package dependency and python version issues that arose while
installing the MuJoCo simulator (Todorov et al., 2012).

B PROOF OF THEOREM 1

Proof sketch. As the iterates are bounded, there exists a subsequence which converges to some
cluster point x†. To show that x† is a Pareto stationary point, we will show by contradiction that
h(x†) = 0.

Proof. Because the DiBS iterates {xk}∞k=1 is a bounded sequence from Assumption 2 (relaxed in
Section C), by Bolzano-Weierstrass theorem, ∃ x† ∈ S such that a subsequence of the sequence
{xk}∞k=1 converges to x†, and that for every neighborhood U of x†, there exist infinite n ∈ N such
that xn ∈ U . We will show by contradiction that h(x†) = 0. Let there exist an a > 0 such that
∥h(x†)∥2 = a. We define

M := sup
x∈D

∥h(x)∥2, u :=
h(x†)

∥h(x†)∥2

Then, by continuity of u⊤h(x), we have

∀ δ > 0, ∃ ϵ > 0 such that ∥x− x†∥2 ≤ δ =⇒ u⊤h(x) ≥ aϵ, (2)

and ∃ N ∈ N such that k ≥ N =⇒ αk ≤ a

C
for some C > 0. (3)

Let V(x, r) denote a ball in Rn centered at x ∈ Rn, with radius r. Let us pick a δ̃ > 0, and analyse
the DiBS iterations when they are in V(x†, δ̃). Because there an infinite number of n such that
xn ∈ V(x†, δ̃), there are two possibilities:
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1. Case 1. ∃ δ > δ̃ such that the DiBS iterates enter V(x†, δ̃), exit V(x†, δ), and then re-enter
V(x†, δ̃)—an infinite number of times.

2. Case 2. The DiBS iterates enter V(x†, δ̃) and then exit it at most a finite number of times
before eventually remaining in V(x†, δ̃) forever.

Case 1. Consider the counts when the DiBS iterates are inside V(x†, δ̃), n < t1 < t2 < . . . such
that xtk ∈ V(x†, δ̃) ∀ k ∈ N, and let the earliest corresponding counts when the DiBS iterates are
outside V(x†, δ) be ek := min{t ≥ tk|xt /∈ V(x†, δ)}. Then, from Equation (2), we have

u⊤h(xt) ≥ aϵ ∀ t = tk, tk+1, . . . , ek − 1.

Now, from the definition of tk and ek, we have

∥xek − xtk∥2 ≥ δ − δ̃ > 0

=⇒

∥∥∥∥∥
ek−1∑
t=tk

(xt+1 − xt)

∥∥∥∥∥
2

≥ δ − δ̃

=⇒
ek−1∑
t=tk

∥xt+1 − xt∥2 ≥ δ − δ̃ (triangle inequality)

=⇒
ek−1∑
t=tk

αt =

ek−1∑
t=tk

∥xt+1 − xt∥2
∥h(xt)∥2

≥
ek−1∑
t=tk

∥xt+1 − xt∥2
M

≥

(
δ − δ̃

)
M

=⇒ u⊤ (xek − xtk) =

ek−1∑
t=tk

u⊤ (xt+1 − xt) = −
ek−1∑
t=tk

αtu
⊤h(xt)

≤ −aϵ

ek−1∑
t=tk

αt (from Equation (2))

=⇒ u⊤ (xek − xtk) ≤ −
aϵ

(
δ − δ̃

)
M

. (4)

Here, the first equality could be legitimately written as the definition of case 1 implies that h(xt) ̸=
0, t = tk, . . . , ek − 1, otherwise the iterates would have remained within V(x†, δ) forever. Now,
from the definition of case 1, tk+1 and ek, we have that the DiBS iterates cannot remain outside
V(x†, δ̃) for an infinite amount of time, and thus ∃ C ′ > 0 such that C ′ >

∑tk+1−1
t=ek

1 ∀ k. Thus

u⊤ (
xtk+1

− xek

)
=

tk+1−1∑
t=ek

u⊤(xt+1 − xt)

≤
tk+1−1∑
t=ek

αtM (Cauchy-Schwarz)

= M

tk+1−1∑
t=ek

αt

≤ aMC ′

C
(from Equation (3))

=⇒ u⊤ (
xtk+1

− xek

)
≤ aMC ′

C
:= aγ. (5)
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Combining Equations (4) and (5), we get

u⊤ (
xtk+1

− xtk

)
≤ a

γ −
ϵ
(
δ̃ − δ

)
M


=⇒ u⊤xtk+1

≤ u⊤xt1 + k · a

γ −
ϵ
(
δ̃ − δ

)
M

 (6)

From Cauchy-Schwarz inequality, ∥u⊤xtk+1
∥2 ≤ ∥xtk+1

∥2 is bounded for all k ∈ N as the
DiBS sequence is bounded. However, from Equation (6), as k increases ∥u⊤xtk+1

∥2 becomes
unbounded, which is a contradiction.

Case 2. By definition of case 2, ∃ t∗ < ∞ such that xt ∈ V(x†, δ) ∀ t ≥ t∗. Thus for T > t∗, we
have

u⊤ (xT − xt∗) =

T−1∑
t=t∗

u⊤ (xt+1 − xt)

= −
T−1∑
t=t∗

αtu
⊤h(xt)

≤ −aϵ

T−1∑
t=t∗

αt (from Equation (2))

=⇒ u⊤xT ≤ u⊤xt∗ − aϵ

T−1∑
t=t∗

αt (7)

Similar to the argument of contradiction in case 1, ∥u⊤xt∗∥2, ∥u⊤xT ∥2, T ≥ t∗ are bounded.
However, Equation (7) suggests that ∥u⊤xT ∥ becomes unbounded as T increases, because of the
Robbins-Monro stepsize condition

∑
k αk = ∞, and

∑t∗−1
k=1 αk is finite. Hence, we arrive at a

contradiction.

Thus, from both cases, we get that h(x†) = 0, and from Definition 1, x† is a Pareto stationary point
with convex coefficients

βi =
∥x†−x∗,i∥2/∥∇xℓ

i(x†)∥2∑
i
∥x†−x∗,i∥2/∥∇xℓ

i(x†)∥2

.

C RELAXING ASSUMPTION 2

In the case when all agent (task) losses ℓi are convex, it has been established that the DiBS it-
erates are bounded (Gupta et al., 2025). In the non-convex setting, while the boundedness of the
DiBS iterates intuitively holds for a problem with gradient conflict, i.e., task loss gradients point in
opposite directions, we show that boundedness can be formally guaranteed with standard concepts
from dynamical systems theory.

In particular, the following simple modification to DiBS allows us to guarantee boundedness, with-
out changing the fact that the only fixed points of the dynamics are Pareto stationary points.

xk+1 =


f1(xk) := xk − h(xk), if ∥xk∥2 ≤ R (standard DiBS)
f2(xk) := xk − α xk

∥xk∥2
, if ∥xk∥2 ≥ R+ r (radially attractive)

f(xk, tk), if R < ∥xk∥2 < R+ r (convex combination)
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where f(xk) = (1− g(xk)) f1(xk) + g(xk)f2(xk) + z(xk, tk),

z(xk, tk) =

(
∥xk∥2 −R

r

)
·
(
1− ∥xk∥2 −R

r

)
· sin(t)a

g(x) =
e
− r

∥x∥2−R

e
− r

∥x∥2−R + e
− 1

1−∥x∥2−R
r

, and tk =

k∑
i=1

1{R < ∥xi∥2 < R+ r}

Here, a ∈ Rn is any constant vector of the same dimension as the iterates xk. The radius R can be
taken to be some large positive number, larger that maxi ∥x∗,i∥2, and r can be any positive constant.
This modification ensures that (i) near the Pareto front, the DiBS iterates act as usual, (ii) in case the
optimization landscape is such that due to a lack of conflicting gradient nature, the iterates somehow
move away from the Pareto region and outside the ∥x∥2 ≤ R + r ball, the iterates switch to the
radially attractive dynamics and return to the ball and remain bounded, (iii) the dynamics switch is
smoothly carried out in between the ∥x∥2 ≤ R and ∥x∥2 ≤ R+ r balls, and (iv) the fixed points of
the dynamics do not change— the time varying term z(xk, tk) ensures that only Pareto stationary
points (all inside the ∥x∥R ball) are the fixed points of the modified dynamics, and the dynamics do
not converge to non-Pareto stationary points.

D DISCUSSION ON IMTL-G

We elaborate on our claim made in Section 2 that though IMTL-G (Liu et al., 2021b) can be invariant
to monotonic nonaffine transformations, it can produce Pareto solutions that are heavily favor one
task over the other, possibly leading to task domination issues.

IMTL-G is a gradient-based method, which tries to find an update direction which has an equal
projection on all task gradient vectors. Though this equal projection property brings invariance to
monotonic nonaffine transformations, it also renders IMTL-G susceptible to task domination, as
illustrated by the following simple two dimensional example.

Let S = [−1, 1]× [−1, 1], with two tasks ℓ1(x, y) = x2 + (y − 1)2 and ℓ2(x, y) = x2 + (y + 1)2.
Then any point of the form (0, y), y ∈ [−1, 1] is a valid solution that IMTL-G can give. Even
though all such points are Pareto stationary solutions, only (0, 0) is balanced in the sense that it is
equidistant to these symmetric functions (one function is a reflection of the other with respect to the
X-axis). Thus IMTL-G can output a point like (0, 0.9) which is heavily biased towards task 1. In
contrast, even if the iteratations are started at (0, 0.9), DiBS will return the balanced point (0, 0) as
a solution.

E EXPERIMENTAL DETAILS AND CODE BASE

E.1 DEMONSTRATIVE EXAMPLE

Loss Functions. The non-convex objectives used in (L1,L2) are given by
L1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ), L2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ)

c1(θ) = max
(
tanh(0.5 θ2), 0

)
, c2(θ) = max

(
tanh(−0.5 θ2), 0

)
,

f1(θ) = log
(
max

(
|0.5(−θ1 − 7)− tanh(−θ2)|, 10−6

))
+ 6,

f2(θ) = log
(
max

(
|0.5(−θ1 + 3)− tanh(−θ2) + 2|, 10−6

))
+ 6,

g1(θ) =
(−θ1 + 7)2 + 0.1(−θ2 − 8)2

10
− 20, g2(θ) =

(−θ1 − 7)2 + 0.1(−θ2 − 8)2

10
− 20.

As mentioned in Section 5, the transformation used on L1 for the transformed case is the monotonic,
nonaffine transformation h(ℓ) = sign(ℓ) · ℓ4.

E.2 NYUV2

Benchmark and Setup. The NYU-v2 indoor scene dataset Silberman et al. (2012) provides 1,449
RGB-D images with dense per-pixel annotations for three tasks: semantic segmentation (13 classes),

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters used for MT10 (v1) SAC.

Component Value
Encoder feature dim 50
Discount γ 0.99
Initial temperature α0 1.0
Actor update freq. 1 step / env step
Critic target τ 0.005
Target update freq. 1 step / env step
Encoder EMA τenc 0.05
Learning Rate 0.025
Update-weights cadence every step (= 1)

depth estimation, and surface normal prediction. Training uses standard task losses: per-pixel cross-
entropy for segmentation, masked L1 for depth estimation over valid pixels, and a masked cosine
loss over valid pixels for surface normal prediction. These choices match the NYU-v2 multitask
protocol followed by prior multitask learning work (Liu et al., 2023; Navon et al., 2022). Our imple-
mentation builds on the official Nash-MTL code base3 and incorporates the FAMO implementation4.

Model. The model architecture used in our experiments is a Multitask Attention Network
(MTAN) (Liu et al., 2019) built on top of SegNet (Badrinarayanan et al., 2017). The network takes
an RGB image as input and produces three task-specific outputs via separate heads: (i) a per-pixel
class-score map for semantic segmentation, (ii) a scalar depth map for depth estimation, and (iii) a
3-channel surface-normal map for surface-normal prediction. Following the experimental setup of
Nash-MTL (Navon et al., 2022), all multitask learning methods train this shared architecture using
their respective update rules.

Training Protocol. For training, we follow the procedure outlined in (Navon et al., 2022). We
train for 200 epochs with Adam (Kingma & Ba, 2014), using an initial learning rate of 1 × 10−4

reduced to 5 × 10−5 after 100 epochs. All reported results are averaged over three random seeds,
namely 1, 7, and 42.

E.3 META-WORLD MT10

Benchmark and Setup. The MetaWorld MT10 (v1) benchmark comprises ten robotic
manipulation tasks: Reach, Push, Pick-and-Place, Door Open, Drawer Open,
Drawer Close, Button Press (Top-Down), Peg Insert (Side), Window Open,
and Window Close (Yu et al., 2020b). Each task has distinct reward functions and success crite-
ria. We build on the MTRL code base (Sodhani & Zhang, 2021)5 with MetaWorld6.

Policy and Training Protocol. We train a single Soft Actor–Critic (SAC) policy shared across
all ten tasks. Multitask learning (MTL) methods are applied to balance the actor and critic updates
within the shared SAC. For each MTL method, we train for 2,000,000 environment steps in total.
Episodes have length 150; this corresponds to ≈ 13,333 episodes overall. Evaluation is performed
every 200 episodes (30,000 steps) on all tasks, and reported metrics are averaged over 10 random
seeds: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Hyperparameters. Key hyperparameter values are provided in Table 3. We follow the same hy-
perparemeters defined in prior works (Navon et al., 2022; Liu et al., 2023).

Reproducibility Note. During preliminary experiments, we observed that using the same random
seed did not always produce identical training curves. This discrepancy arose because the original

3https://github.com/AvivNavon/nash-mtl
4https://github.com/Cranial-XIX/FAMO
5https://github.com/facebookresearch/mtrl
6https://github.com/Farama-Foundation/Metaworld
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Figure 4: Average iterations per second in the non-transformed setting

MTRL code (Sodhani & Zhang, 2021) did not seed the initial action sampling during the exploration
phase. As a result, small differences in early exploratory actions (first 10 steps) propagated through
training and produced slight variation in learning behavior even with fixed seeds.

F ADDITIONAL RESULTS

F.1 ANALYSIS OF DIBS-MTL RUNTIME

In addition to examining the solutions obtained in the demonstrative example, we also evaluated the
computational speed of the different MTL methods. Specifically, we compared DiBS-MTL with
Nash-MTL and FAMO. We measured the number of iterations processed per second, with higher
values indicating faster performance.

In Figure 4, we compare the runtimes of DiBS-MTL , FAMO, and Nash-MTL. DiBS-MTL runs
substantially faster than Nash-MTL, achieving roughly half the speed of FAMO. This behavior is
expected: unlike Nash-MTL, DiBS-MTL does not solve a separate optimization problem at each
iteration, but it does recompute gradients and preferred states, which increases runtime relative to
FAMO, which is a loss-based method and is expected to be faster.

F.2 ADDITIONAL RESULTS IN THE DEMONSTRATIVE EXAMPLE

In addition to the results reported in section Section 5.1, we also ran additional methods in the
demonstrative two-objective example. Specifically, we ran the Multiple Gradient Descent Algorithm
(MGDA) (Désidéri, 2012), Uncertainty Weighting (UW) (Kendall et al., 2018), Impartial Multitask
Learning (IMTL-G) (Liu et al., 2021b), and Multi-step DiBS-MTL. We run Multi-step
DiBS-MTL for 10 steps per update. The loss functions and number of steps are identical to the
experiment described in Section 5.1.

In Figure 5, we observe that the additional baseline methods of MGDA, UW, IMTL-G are not
invariant to the transform, with UW failing to reach the Pareto-front in both cases. We note
that Multi-step DiBS-MTL performs similarly to single step DiBS-MTL . Multi-step
DiBS-MTL reaches the same points on the Pareto-front in both cases, showing it is also invariant to
monotone non-affine transforms.
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Nominal

Transformed

Figure 5: Additional experiments performed in the demonstrative two-objective example. We ob-
serve that, Multi-step DiBS-MTL exhibits the same invariance to monotone non-affine trans-
forms as single-step DiBS-MTL, and also demonstrates similar behaviour.
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