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Abstract

While deep neural networks possess the capability to perform semantic segmenta-
tion, producing a single deterministic output limits reliability in safety-critical ap-
plications caused by uncertainty and annotation variability. To address this, stochas-
tic segmentation models using Conditional Variational Autoencoders (CVAE),
Bayesian networks, and diffusion have been explored. However, existing ap-
proaches suffer from limited latent expressiveness and interpretability. Furthermore,
our experiments showed that models like Probabilistic U-Net rely excessively on
high latent variance, leading to posterior collapse. This work propose a novel frame-
work by integrating Gaussian Mixture Model (GMM) with Normalizing Flow (NF)
in CVAE for stochastic segmentation. GMM structures the latent space into mean-
ingful semantic clusters, while NF captures feature deformations with quantified
uncertainty. Our method stabilizes latent distributions through constrained variance
and mean ranges. Experiments on LIDC, Crack500, and Cityscapes datasets show
that our approach outperformed state-of-the-art in curvilinear structure and medical
image segmentation.

1 Introduction

In recent years, deep neural networks have made remarkable progress in semantic segmentation
tasks. The main goal of most methods lies in generating a single segmentation result that is highly
consistent with the content of the image. However, this deterministic segmentation has limitations
in safety-critical areas such as medical diagnosis, industrial testing, or autonomous driving. This
is due to the images in such applications are often accompanied by inherent uncertainty, leading to
the presence of multiple reasonable yet contradictory manual annotations. [41} 28]]. In this context,
providing a single deterministic segmentation result may not be able to fully express the possible
true semantic distribution of the image, thus limiting the reliability and practicability of the model in
these critical tasks.

Currently, many studies have proposed probabilistic approches for sampling from output distributions,
including models based on Conditional Variational Autoencoders (CVAE) [25! 24], Normalizing
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Flows [35], Bayesian neural network [[16} 14, 8] and Diffusion [32,/41]. Most of the study recognized
the Gaussian distribution’s limitation in capturing true feature distributions. Therefore, in recent
years, researchers have been dedicated to enhancing the ability of variational autoencoders (VAE)
in complex data modeling by replacing the traditional simple Gaussian distribution with a more
complex distribution to improve the expressive power of the distribution and capture more complex
semantic information [36} 133} 137, [29]. An alternative is to use the diffusion model to capture the data
distribution more flexibly through a multi-step denoising process [32] 41]]. However, the drawback
of diffusion is the unexplainability of distribution, which is crucial for security-sensitive tasks.
Therefore, we advocate returning to the VAE framework and further enhancing the latent space
modeling mechanism to make up for the deficiencies of the original Gaussian hypothesis.

We performed deeper analysis to prove the ineffective of Gaussian distribution by experimenting the
existing Probabilistic segmentation model, Probabilistic UNet [25]]. The results show that the variance
of its latent variables was significantly higher than the mean after training, reaching a 500-fold
gap in the curvilinear structure segmentation task. This suggests that the latent spaces fail to learn
compact semantic representations and relying on high variance to cover a wide range of possibilities,
leading models to favor guesswork over deterministic predictions. To examine the effectiveness of
Gaussian latent variables, we modified the Probabilistic U-Net by replacing the latent samples with
purely random vectors. The results in Figure|l|show that the model’s performance does not degrade
significantly which indicates that the latent variables contribute limited semantic information.

To address the aforementioned limitations, we propose a

novel framework that integrates Gaussian Mixture Model

(GMM) and Normalizing Flow (NF) on a Conditional Varia- . . . . .
tional Autoencoder (CVAE). The GMM can define semantic

clusters in the latent space more effectively, where each

Gaussian component captures a distinct mode of variation . - . . .
corresponding to meaningful visual concepts or feature pat- . . "
terns. In detail, each Gaussian component learns distinct

features through a parameter competition mechanism, miti- Figure 1: Qualitative comparison of
gating the prediction ambiguity caused by a single Gaussian using random number and gaussian
prior distribution. Based on the latent space provided by distribution for latent variable in Prob.
GMM, NF learns the reasonable deformation of image fea- Unet [25]]. 1-2 is the result from gaus-
tures, and its Jacobian determinant directly quantifies the sian distribution, 3-4 is the result from
local uncertainty. Instead of only let the posterior distribu- random number

tion fitting the data, we apply this combined model to both

the prior and posterior distributions, and introduce constraints on the range of means and variances to
stabilize NF’s training gradients.

Input 1

Worth to mention that We bring this approach to curvilinear structures for the first time. Experimental
results demonstrate superior performance in wide range of applications such as medical image
segmentation, infrastructure crack detection, and city scene segmentation using LIDC-IDRI, Crack500
dataset, and cityscape dataset respectively. In infrastructure crack detection tasks (using Crack500
dataset), our method achieves a better balance between recall and precision, improving the F1-score
by 11.0% compared to the standard CVAE-based stochastic segmentation. Furthermore, evaluations
on the multi-label segmentation datasets, LIDC-IDRI and Cityscapes datasets show that our approach
consistently outperformed the existing baseline models.

In summary, the contributions of this paper are as follows:

1. We propose a combination of GMM through a Multiple-Input, Multiple-Output (MIMO)
mechanism to construct a structured latent space in CVAE. GMM provides multiple potential
semantic clusters to reduce the transformation complexity of NF and thereby improve
performance.

2. We introduce NF into both the prior and posterior distributions to addresses the semantic
ambiguity inherent in traditional VAEs caused by overly simplistic priors.

3. We are the first to apply a stochastic segmentation model to curvilinear structure segmenta-
tion and achieve state-of-the-art performance compared to the best existing baselines.



2 Related work

The goal of probabilistic semantic segmentation is to capture both aleatoric uncertainty and the
inherent ambiguity present in segmentation labels. A variety of methods have been proposed to
address this. Early approaches employed Bayesian neural networks, in which model parameters
were treated as probability distributions and sampled during inference [8} 42, |30} (1} 16] . While this
enabled uncertainty modeling, it significantly increased inference overhead and model complexity
due to repeated sampling and the need to maintain distributions for each parameter.

To address these limitations, researchers later adopted Conditional Variational Autoencoder (CVAE)
frameworks for semantic segmentation. Initial CVAE models were typically built on U-Net architec-
tures, where a latent variable was concatenated with the last feature layer to introduce randomness
into the segmentation process [25]. Subsequent work extended this by incorporating hierarchical
latent structures, injecting randomness at multiple levels of the encoder-decoder pipeline of U-Net to
enhance expressiveness [24} 3]

However, a major limitation persisted: the use of simple Gaussian distributions in both the prior and
posterior, which restricted the model’s ability to capture complex, multi-modal semantic representa-
tions. To overcome this, researchers engaged more expressive probabilistic structures [36, [7, 123} 33].
For example, cFlow applies normalizing flow (NF) to the posterior to enhance flexibility and mit-
igate posterior collapse. Despite these improvements, some studies argue that such models still
underperform in accuracy-sensitive applications due to their limited prior modeling capabilities [35].

To address this, Zhang et al. proposed the Joint Probabilistic U-Net (JProb. Unet), which employs a
Reversible multi-layer perceptron (MLP) to simultaneously transform both the prior and posterior
distributions into more complex forms [45]. However, the transformation capacity of Reversible
MLPs is limited compared to conventional flow-based methods, often requiring deep stacking to
approximate complex distributions. Additionally, its grouped variable structure lacks the ability to
model global dependencies effectively.

In this work, we propose a stochastic segmentation framework that combines a Gaussian Mixture
Model (GMM) with a Normalizing Flow (NF) to construct a flexible and structured latent space. The
GMM enables explicit modeling of multi-modal semantic priors, while the NF applies nonlinear
transformations to each Gaussian component, significantly enhancing the capacity of both the prior
and posterior distributions. Compared with traditional CVAE approaches that assume a single
Gaussian, our method can effectively mitigates issues such as posterior collapse and semantic
ambiguity. It also demonstrates superior modeling capability for fine-grained structures such as
cracks. Experimental results show that our approach achieves notable improvements on tasks
involving curvilinear structure segmentation, medical image uncertainty modeling, and multi-label
scene understanding—highlighting its strong potential for high-precision and interpretable stochastic
segmentation applications.

3 Methodology

3.1 Gaussian mixture distribution

In most existing VAE based image segmentation models, the latent variable is usually modeled as a
unimodal Gaussian distribution N (i, o). However, our experiments in Table |1|show that this simple
distribution hypothesis is difficult to effectively capture complex and structured semantic information
in images. To address these limitations, we introduce the Gaussian Mixture Model (GMM) as the
base distribution for modeling latent variables to improve the initialization (Figure[2).

GMM is a multimodal probabilistic model defined as a weighted sum of multiple Gaussian compo-
nents, enabling the representation of diverse semantic clusters. Compared to a single Gaussian, GMM
offers greater representational capacity, allowing the latent space to explicitly encode distinct semantic
regions in the image. Through a parameter competition mechanism, each Gaussian component is
encouraged to specialize in specific semantic attributes, thereby enhancing both the interpretability of
the latent space and the clarity of the resulting segmentations.

In this work, we adopt MIMO mechanism to generate the parameters of a Gaussian Mixture Model.
Each input header receives the same image input but is designed to extract different semantic
perspectives or preferences from that input. A shared backbone network encodes the global contextual
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Figure 2: Overview of the GMM-based VAE with Normalizing Flow. During training, the input
image x and label y are concatenated and duplicated as inputs to the posterior network, which
outputs the mean and covariance for each GMM component to construct the latent space qo (20|, y).
A multi-layer NF transforms this space into a more expressive latent distribution ¢(z|z,y). KL
divergence is computed using the inverse NF in the prior and the forward NF in the posterior to
align their distributions. During inference, the prior network generates the latent space p(z|x) via
GMM and NF, from which a latent variable z is sampled and fused into the feature maps of Decoder
po(y|x, 2) to introduce stochastic segmentation output .

information of the image, serving as a common feature foundation for all branches. Each output head
then generates the parameters of the Gaussian components, producing means and covariances as a
set:

{(:ul,zl)?(N%ZQ)""?(MO’EO)} (1)

Where o represent the number of output in MIMO framework and the number of GMM component.
Additionally, a separate head predicts the component weights 7, forming the complete mixture model.
The resulting Gaussian Mixture distribution is defined as:

O
po(2) =Y 7o N(z | o, o) @)
o=1

Among them, a single Gaussian distribution term is defined as:

1 1
N(z| pro, X0) = L DARE exp (—2(2 — o) 'S (2 - Mo)) 3)

3.2 Normalizing flow

NF enhances probabilistic modeling by transforming a simple base distribution into a more expressive
and flexible one through a sequence of learnable, invertible transformations.

Taking the prior distribution in a CVAE as an example, assume the initial latent variable is sampled
from a base distribution: zyp ~ po(z). A normalizing flow function is typically constructed as a
composition of multiple transformations fj, where the subscript k& denotes the number of flow layers.
The final transformed latent variable is given by:
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In stochastic segmentation task, aligning the learned latent distribution with the true data distribution
enhances the expressiveness of the posterior and alleviates posterior collapse, a phenomenon where
the approximate posterior ¢(z|z,y) degenerates the prior p(z|z), causing the K Ldivergence = 0.
This lead samples generated by VAE lack diversity, and the semantic features extracted by the latent
variable z are not obvious. Secondly, incorporating Normalizing Flow (NF) into the prior distribution
enables the sampling of latent variables that encode richer semantic information. By learning a
more flexible and data-adaptive prior, NF encourages the latent variables to align with meaningful
structures in the input space instead of providing more noise for randomness, thus improving both the
interpretability and effectiveness of the generative process.

In conventional NF frameworks, the distribution to be transformed is referred to as the base distribu-
tion, which is typically fixed—for example, a standard normal distribution. However, the parameters
of base distribution evolve during training in CVAE framework. This feature introduces challenges
for NF application in CVAE. Specifically, in the early stages of training, before the flow is fully
trained, the base distribution tends to exhibit high variance to cover the uncertain region due to its
limited expressive capacity. As a result, the sampled latent variables are highly dispersed, making it
difficult for the NF to learn effective and stable transformations. We applied segmented S—annealing
algorithm to mitigate this issue, but it still happen by chance. Therefore, we impose constraints
on the mean and Variance of each Gaussian component in the GMM base distribution, enforcing
the following range 55 < p < o * 20. This constraint ensures the latent variables remain within a
reasonable range, promoting smoother and more stable NF transformations throughout training. In
our implementation, we utilize a three-layer Neural Spline Flows (NSF) [13] to transform the GMM-
based base distribution, leveraging the NSF’s capability to model complex, non-linear mappings in
the latent space. Different with the simple transformation, NSF use the monotonic rational-quadratic
splines as the elementwise transformation, which offers much greater flexibility than affine transforms.
Specific explanation of NSF can be found at appendix[A.1]

To recap, we choose GMM + NF over Gaussian + NF due to the limitations of a single Gaussian,
which is unimodal and overly simplistic. While NFs are theoretically capable of mapping such a base
distribution into a complex, multimodal target, doing so requires deep and intricate transformations
that can hinder convergence, especially during early training. In contrast, a GMM naturally introduces
a multimodal prior, allowing the NF to focus on localized refinements such as fine-tuning, stretching,
or twisting individual modes rather than learning global semantic structure from scratch.

3.3 Evidence lower bound

The Evidence Lower Bound (ELBO) is the objective function used to train Variational Autoencoder
(VAE). It provides a lower bound on the true data log-likelihood and balances Reconstruction loss and
Regularization. In this task, Reconstruction loss is referred to Dice, and Regularization is referred as
KL divergence.

Log probabilities: In this method, we used normalizing flow. The probability density function of the

posterior is:
afy \|
det
¢ <8hk_1>

For the flow log probability, we usually need to add a Jacobian determinant on the basis of the log

probability:
Afr
det (52 ’ ©

Where q is the posterior probability density function and qq represents the base distribution before
the flow operation, which in this study is the probability density function of GMM. det(-) stands for
Jacobian determinant.

K
q(2lz,y) = qo(z0lz, y) H )

log q(2|, y) = log go(z0z, y) — Zlog




The significance of the Jacobian determinant in NF lies in ensuring density consistency between
the base distribution and the transformed distribution. The term log go (20|, y) corresponds to the
log-probability of the sample under the base distribution, while the second term accounts for the
log-volume change introduced by the flow transformation. This correction ensures that probability
mass is preserved and that the final distribution accurately reflects the transformation applied to the
base.

In the posterior, since the flow is constructed as a sequence of transformations, we define it as a chain
of K invertible functions. Let:

21 = filz), 2= fo(z1), ..., zx=[k(2xk-1)=2% @)

This forward transformation is used in the posterior flow. In the prior, fgl represents the inverse
function and 2’ represent the inversed latent variable, the process is defined in the same way. The
total log-volume change of the transformation is calculated by summing the log-determinants of the
Jacobians at each layer. Since each transformation fj, is invertible, we can compute the probability
density of the transformed latent variable z using the change-of-variables formula:

K 8f_1
plele) = mlaghe) - T [oer (52 ) ®

k=1

Taking the logarithm yields the log-probability:
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K
log p(z|x) = log po(2g|x) + Z log
k=1

KL divergence: Where p is the prior probability density function and py represents the base
distribution. The Jacobian determinant is positive because we have performed the inverse operation
and need to add the logarithmic volume change caused by the transformation to the base log
probability.

The conventional KL formula is:

Dxr(q(z|z,y)|lp(2]2)) = Eq(z|2,y) [log q(2]z,y) — log p(z|x)] (10)

We insert the log probability of our calculated prior and posterior into the KL formula.

KL(Q(Z|xay) || p(Z|17)) = IEZNq(z|x,y) log QO(ZO|x7y) - Zlog

—logpo(zle) — 3 log

Finally, the ELBO of proposed method is as follows:

Lerpo(r) = Eong(zfay) logpylz, 2)] = 5+ KL (q(z|2,y) || p(z|2)) (12)

Where the E, 2|z, [log p(y|z, 2)] is refereed as reconstruction term which we applied the MSE.
The weight 3 is used to control the influence of the KL term.

KL vanishing: In order to further mitigate the influence of posterior collapse, inspired by various
VAE annealing algorithms [[18],[15 4, [20], we set 3 to zero at the initial stage of training, allowing
the model to only optimize the reconstruction terms at the initial stage and learn to encode valid
information at first. We call this step the Warm-up operation of the model. In the subsequent training,
the weight of /3 is gradually increased linearly until the set maximum value of 3 is reached to achieve
stability. The annealing algorithm formula of VAE is as follows:



0, if ¢ < T} (Warm up),

B

< Bmax, If Ty <t <Ty+ T, (Increase), (13)

Brnax if t > T} + T, (Stable).

Where ¢ represents the current training epoch, 7} is the number of warm ups, 75 is the number of
epochs from warm up to the stable stage, and Syaxis the set maximum value of 3.

4 Experiment

We evaluated our method on three tasks with varying structural and annotation characteristics: (1)
cancer detection with multiple expert annotations capturing boundary uncertainty; (2) crack detection
with single annotations focused on fine curvilinear structures; and (3) urban scene segmentation as a
multi-label task with single annotations. For fair comparison on the last two deterministic datasets,
we evaluated the probabilistic model using single-sample inference to match deterministic baselines.

Setting: We evaluate our proposed method by applying it to three representative VAE-based stochastic
segmentation models: Probabilistic U-Net, Hierarchical Probabilistic U-Net, and PHISeg. All models
are trained using the Adam optimizer for 500 epochs with a batch size of 32 and all experiments are
programmed by Pytorch 2.4.1 and conducted using NVIDIA A100 Tensor Core GPU.

Metrics: We evaluate performance using a combination of conventional and stochastic segmentation
metrics. For general segmentation quality, we report the mean Intersection over Union (mloU),
precision, recall, and F1-score, which provide insight into overall accuracy and class-wise balance.
To assess the consistency and diversity of probabilistic predictions, we include the Generalised
Energy Distance (GED), a proper scoring rule that evaluates sample quality relative to ground truth
distributions, and Hungarian-Matched Intersection over Union (HM-IoU), which measures alignment
between sampled predictions and ground truth annotations through optimal bipartite matching.

4.1 LIDC-IDRI

( .
m . . . -

input

Figure 3: Qualitative results on four LIDC images with proposed method. (a)-(d) represent ground
truth label from four different experts. (e) represent the standard deviation of prediction. (f)-(i)
represent the prediction from proposed method.

The Lung Image Database Consortium image collection (LIDC-IDRI) consists of thoracic computed
tomography (CT) scans for diagnostic and lung cancer screening, with annotated lesions provided
by multiple radiologists [2]. Following the experimental setting of CCDM, we extracted a total of
15,096 slices of size 128 x 128, and divided the dataset into training, validation, and testing sets with
a ratio of 60:20:20.



Table 1: Quantitative results on LIDC, with methods listed in chronological order. Except for Prob.
U-Net + random, all baseline results are taken from [41]. Our proposed method is integrated into
three baseline models, each showing substantial performance improvements. Note that lower values
of GED indicate better performance, while higher values of HM-IoU are preferred.

Method GEDlG GED32 GED50 GEDI(]O HM-IoU4 HM-IoUs,
Prob. Unet [25] 0.31040.01 0.30310.01 - 0.25240.004 0.55240.00 0.548_9.00
Prob. Unet + random 0.314:&0‘005 0.31 lio‘gog - - O~545i0,004 0548;&0‘005
HProb. Unet [24] 0.27010.01 - - - 0.53010.01 -

PhiSeg [3J 0.262:‘:0‘00 0.247:{:0.00 - 0.224:‘:0‘004 0.58610,00 0.595:‘:0‘00
SSN [28] 0.25940.00 0.24310.01 - 0.22510.002  0.55810.00 0.555+0.01
cFlow [35J - 0~225i0.01 - - - 0.584i0_00
CAR [21] - - - 0.2280.000 - -

JProb. Unet [45J - 0.206i0'01 - - - 0.647i0‘()1
PixelSeg [44] 0.24310.01 - - - 0.61410.01 -

MoSE [17] 0.21840.03 0.19510.002 0.19510.002 0.18910.002 0.62410.004 -

AB [6] 02134001 0.19640.02  0.19310.002 - 06144001 0.61940.001
CIMD [32] 0.23410.005 0.21840.005 0.21010.005 - 0.587+0.01  0.59210.002
CCDM [41] 021240.002 0.19440.001  0.18710.002  0.18310.002 0.62310002 0.63110.002

Prob. Unet + Our 0.19610,001 0.18910‘001 0.185i0,002 0.1 84104000 0.641:&0.002 0.64410,001
HProb. Unet + Our 0-224i0.002 021910.001 0.216:“)_001 04215i0_001 0.562i0_001 0.569i0_001
PhlSCg + Our 0.250:&0‘000 O~243i04000 0.24li()‘001 0.2371()‘001 0.623i0‘001 0.621i()‘001

The model performance of baselines is derived from [41]]. We used the same experimental data
enhancement method as in the paper to rotate the training image by 0 degrees, 90 degrees, 180
degrees and 270 degrees. The models involved in the experiment can be divided into three categories,
VAE-based, diffusion-based, and some other different methods such as mixture of expert. Based on
the results in the table El, our best model achieved the best results in 4 of the 6 metrics. Among them,
compared with the most popular diffusion-based models, the performance of the proposed method is
improved on all metircs. Compared with cFlow using only posterior NF, GMM+NF also achieved
better performance on both metrics in probabilistic U-net architectures. JProb.Unet outperforms all
other models on HM — IoUsg, but all three of our models outperformed it. The qualitative analysis
results based on probabilistic U-net can be seen in Fig[3| (b)-(e) annotations created for the four
experts, (g)-(1) show the sample distribution of the model, and f is the average value after multiple
samples.

In addition to the analysis of the proposed method, we also designed an interesting experiment by
replacing the latent variable with a random number. The table[|shows the performance differences
between Prob.Unet and Prob.Unet + random. This proves our hypothesis where the conventional mul-
tivariate Gaussian distribution is too simple in distribution structure to represent useful information,
and its latent variable can only provides some randomness to the model.

4.2 Deterministic segmentation

4.2.1 Crack500

The Crack500 dataset is designed for pixel-wise pavement crack segmentation and consists of 500
high-resolution images, resulting in 3,368 cropped images of size 360x640 [43]. The dataset is
split into 1,897 training, 347 validation, and 1,124 testing images. Building on the setting [9]], we
employ horizontal flipping, random cropping, and random rotations of 90°, 180°, and 270° as our
data augmentation strategies. Additionally, all training samples are cropped to 256 x 256 during
training.

For this task, the results of five traditional deep learning baselines are taken from [9]. As shown
in the table 3] the performance of the Probabilistic U-Net is significantly lower than that of naive
U-net with a notably high recall. This supports our hypothesis: due to the large variance in the latent
distribution, the sampled latent variables are overly random, causing the model to produce over-
inclusive segmentations. This issue is particularly pronounced in tasks with highly skewed semantics,
such as cracks. Our experimental results demonstrate that our method effectively improves prior
expressiveness. On the Probabilistic U-Net architecture, our approach is greatly increase in 3 metrics
compared with naive Probabilistic U-Net, and achieves state-of-the-art performance. Additionally,



(a) Cornparison from Crack500 dataset. All methods e

are trained and tested by 256 x 256 resolution. It can (b) Comparison from Cityscape dataset. All methods
be known from the image that our segmentation is are trained and tested by 256 x 512 resolution. The
more compact and close to the boundary boxes highlights our advantage

Figure 4: Qualitative comparison of deterministic segmentation. All stochastic models (including
the proposed method and Prob. U-Net) are evaluated using a single sample. Despite this, our model
produces more fine-grained segmentation results compared to mainstream deterministic methods
across both tasks.

qualitative results are presented in the Fig[da] comparing the outputs of baseline models with the
improved predictions generated using our proposed method.

Table 2: Quantitative results on Cityscapes. All ~ Table 3: Quantitative results on Crack500. All
the results of baselines are from [41]. Param  the results of baselines are from [9].

represent the parameter number of model; m Method Precision Recall
represent million Y 22 585 6L83
UNet [34] . . .

Method Backbone Param ToU v GG yNet [37) 5818 6026 51.79
DeepLabv3 [5] ResNet50 39m 58.6  TopoNet [19] 66.81 62.68 60.06
DeepLabv3 [5]  ResNetl01  58m 59.2 DRU [39] 61.94 7143  62.82
UPerNet [40] ResNet101  83m 60.7  Crackformer [26]] 69.13 66.24 64.75
HRNet [38] w48v2 70m 63.3 JTFN [10] 68.81 69.06 65.76
UPerNet [27]] Swin-Tiny  58m 65.5 JTFN + CIRL [9] 70.32 69.93 67.62
CCDM [41]] - 30m 60.3  Prob. Unet [23] 56.80 69.39  60.80
CCDM [41]] Dino ViT-S  50m 65.8
Prob. Unet [25] - 33m 632 Prob. Unet+Our [9] 72.97 71.72 71.80
Prob. Unet+Our - 38m 73.0

4.2.2 Cityscape

Cityscapes is a standard benchmark dataset for multi-class semantic segmentation [[11]]. It contains
2,975 training images and 500 validation images, each with a resolution of 512 x 1024, annotated
across 19 semantic classes.

In this task, the baseline model is taken from CCDM [41]].Following proposed setting, we employ
resolution 256 x 512 in training and testing set. Our proposed method achieves the best performance
within the Probabilistic U-Net architecture. As shown in the table 2] even using a single sample,
our model outperforms the latest diffusion-based probabilistic models. Additionally, we provide
qualitative results in the Fig[b] including comparisons with CAVE, diffusion-based models, and a
quantitative visualization of our method’s segmentation distribution.

4.3 Ablation study

In the ablation study, we conducted three different experiments, comparing the performance of
conventional Gauss and GMM in the case of NF; Performance comparison with or without NF; The
performance of different NF methods is compared. Among the three different tasks, the baseline
model has the largest performance variance on the curvilinear task, so we use Crack500 to test the
contribution of different modules. F1 score is used to compare the performance of different models
in ablation experiments.



Table 4: Ablation study on Crack500 dataset (F1 score). Comparison among different NF types and
GMM component numbers.

Experiment No. a b c d e f
NF Type NSF NSF NSF - RealNVP  Glow
No. of GMM 1 3 6 6 3 3
F1 Score 66.04 7123 7124 61.39 69.15 69.09
Param 379 38.0 38.1 340 38.0 379

Gaussian vs GMM: We set the number of distributions of the Gaussian mixture model to 1, 3, and 6
respectively, where Gaussian mixture is equivalent to multivariate Gaussian distribution when the
number is 1. According to the table ] we can see that increasing the number of distributions from 1
to 3 in the Gaussian mixture model can bring great performance improvement, while increasing the
number from 3 to 6 is relatively less important. This proves that because the Gaussian distribution
is too simple, more complex transformations are needed to build a multimodal structure. However,
the Gaussian mixture distribution can simulate the data form relatively better, reducing the variation
required for NF.

GMM vs NF: Next, we test the gain that NF brings to the model. According to the table |4} the
performance of the model is significantly improved after NF is used. This proves that the distribution
structure close to the data can significantly solve the problems of posterior collapse and insufficient
prior expression, and greatly improve the model performance.

Different NF: Finally, we experiment the effect of different NF methods on the model performance.
These two methods are RealNVP [[12]] and Glow [22]. Specific explanation of these two NF methods
can be found at appendix [A.2]and[A.3] The results show that the method can better fit the model
performance and improve the expression ability of the model.

5 Conclusion

In this paper, we propose a novel GMM-based framework to enhance the expressive power of latent
space in CVAE-based stochastic segmentation. To validate our hypothesis, we replaced the latent
variables with random noise and observed similar results to those using a standard Gaussian prior,
indicating that the Gaussian mainly injects randomness rather than meaningful structure. In the
processing pipeline, our model incorporates NF in both the prior and posterior networks, yielding
a more informative prior compared to existing methods. To stabilize the training, we constrain the
ranges of mean and covariance to prevent extreme variance and apply KL annealing to mitigate KL
vanishing. The model demonstrates strong performance across three distinct tasks. Notably, we
are the first to apply stochastic segmentation to curvilinear structures, addressing the limitations of
conventional stochastic models in such scenarios.

However, This study has two main limitations: First, compared to conventional CVAE models, our
model introduces a significant increase in computational cost. Although inference speed is not a
major concern in target application scenarios of stochastic segmentation, this is still an aspect to
improve in our future work. Second, the training process is less stable. Specifically, the normalizing
flow requires computing the log-determinant for gradient updates, which makes it more prone to KL
vanishing compared to CVAE. As a result, careful tuning of hyperparameters is necessary, along
with additional strategies such as annealing schedules and constraining the variance range of GMM
components to ensure stable training.
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A Appendix / supplemental material

A.1 Neural Spline Flows (NSF)

Neural Spline Flows [13]] propose to replace the simple element-wise affine transformation in coupling
(or autoregressive) layers with more expressive monotonic functions defined by splines. Specifically,
they use monotonic rational-quadratic splines.

A.1.1 Monotonic Rational-Quadratic Spline Transformation (for a single element z;)

This transformation maps an input x; to an output y; = g(x;). The function g is defined piecewise by
K rational-quadratic segments over K bins.

1. Domain and Knots: The transformation is typically defined over a bounded interval
[~ B, B]. This interval is partitioned by K + 1 knot points {(z*), y*))} K.
+ Boundary knots: (z(9),y(®)) = (=B, —B) and (%), 4¥)) = (B, B).
e Internal knots: K — 1 internal knot coordinates (x(k)7y(k)) fork=1,... K -1
are outputs of a neural network (conditioned on the other part of the input, z,, in a
coupling layer). These are constrained such that () < 2(1) < ... < z(5) and y(©) <
yM < ... < yK) to ensure monotonicity. This is often achieved by parameterizing
bin widths and heights via a softmax, then taking cumulative sums.

2. Derivatives at Knots: For the spline to be C1 continuous (continuous with continuous first
derivative), derivatives §(*) = (dg/dz)|,_, are needed at each knot.

« Boundary derivatives §(°) and (%) are often fixed (e.g., to 1, implying linear "tails"
outside [— B, BJ if g(x) = x there).

« K — 1 internal derivatives §*) > 0 fork =1,..., K — 1 are also outputs of the neural
network (passed through a softplus function to ensure positivity).

3. Rational-Quadratic Function in Bin k: Consider the k-th bin, from (z(®) y(*®) to

(4D y(+1) et £(x) = W% S0, 0 < ¢ < 1as x goes from (¥ to z(F+1),

(k1) _y (1) . . .
Let sF) = =¥ be the slope of the line segment connecting the knots of bin k. The

transformation g, (€) within this bin is given by (Gregory and Delbourgo, 1982):

ge(€) = y™ + (" -y ). %

where:

N(€) = se +5Me1 - )
Dy(€) = s 4 [§¢FD 4 50— 250)e(1 - ¢)

This specific form ensures that gi(0) = y*), gp(1) = y*+V, (dg/d¢)|e=o =
SR (x4 — 2 (k) "and (dg/d€)|e=1 = 6+ (x++1D) — (k). The constraints on knot
positions and positive derivatives ensure g(z) is monotonically increasing.

A.1.2 Invertibility
To find the inverse x = g~ !(y) (or £ = g,;l(y) within a bin):

1. First, identify the correct bin k such that y*) <y < y+1)_ This can be done with a binary
search since the y(*) values are sorted.

2. Then, solve y = g (&) for £&. This equation is a quadratic in . Let Ay = y — y*) and
Aypin = y*TD — y(*) The equation becomes:

Ay (s(k) [ 4 gk _ 95e(1 — g)) — Aypin (s<k>52 oWeg - g))

14



Rearranging terms yields a quadratic equation of the form a&? + b + ¢ = 0:
a= Aybins(k) _ Ay((g(kﬂ) 460 _ 25("'))
b= Aypind™ + Ay(F T 4+ 5F) — 250y — Ays®)

c=—Aysh (Note: Error in previous formula, this term arises from ¢ coefficient if not careful)
Corrected ¢ : The quadratic derived from y = g (§) is typically written directly as:

(Agpins® — Ay(8*TD 4 50 — 25(4)))¢
+ (Aypind® + Ay(3* 4 58 — 250)) — Ays®))e
— Ays(k) =0 (This form seems more consistent with solving for £ directly)

Since the function is monotonic within the bin, there will be exactly one root £ € [0, 1]. The

solution is typically given as & = \/Qﬁ for numerical stability when 4ac is small.

3. Once ¢ is found, z = z(%) 4 £(z(*F+1) — 2(R)),

The coefficients for the quadratic in £ to solve are (from Durkan et al., 2019, Appendix A, re-arranged
for a&? + b& + ¢ = 0):

a = (y*F Y — B (R — 5By 4 (g — ) (s 5k _ 95k
V= (y*t — y(k))(g(k) (y — y™)(OFFD 4 §F) — 95k
¢ =—s"M(y—y™)

Then & = —7b/7\/<2;)27m'

A.1.3 Jacobian Determinant (Element-wise Derivative)

The derivative ¢'(z) = dg/dx for x in bin k is:

dg _ dgr  dg
dx d¢  dx

We have % = m The derivative djf’“ is the derivative of the rational-quadratic expression.
The paper gives the final form of ¢’ (x) as

(s [5““)52 +25Mg(1 =€) +6M (1 - ¢)?]

Dy (£)?
where Dy, (¢) = s + [§¢+D 4 () — 25M]¢(1 — ¢). Since ¢g/(x) > 0 (due to monotonicity
constraints), log |¢'(z)| = log(¢’(x)). When used in a coupling layer that transforms z; based on z,

the total log-determinant is ), log(g;(s,;)), where g; is the spline derivative for the i-th dimension
of xp, parameterized by x,.

A.1.4 Tails

Outside the interval [— B, B, the transformation is often set to be the identity function (g(x) = ) or
a linear transformation matching the slope and value of the outermost spline segments at x = +B, to
allow for unbounded inputs.

NSF significantly increases the flexibility of the element-wise transformations compared to simple
affine ones, allowing for more expressive models with fewer layers or simpler conditioning networks,
while maintaining analytical invertibility and Jacobian computation.

A.2 RealNVP (Real Non-Volume Preserving)

RealNVP [12] introduces affine coupling layers designed to have a Jacobian matrix that is triangular,
making its determinant easy to compute.
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A.2.1 Affine Coupling Layer Mechanism
Consider an input vector » € RP.
1. Partitioning: The input x is split into two disjoint parts:
e 1, = x1.4 (the first d dimensions)
* Tp = Tq+1.p (the remaining D — d dimensions)

2. Transformation: The output y € R” (with parts y, and 1) is defined as:

Yo = o (Identity transformation for the first part)
yp = xp © exp(s(zq)) + t(z,) (Affine transformation for the second part)

Here, ® denotes element-wise multiplication. The functions s : R — RP~? (scale) and
t : R — RP~4 (translation) are typically implemented as neural networks. They take z,
as input and produce the parameters for transforming .

A.2.2 Invertibility

The inverse transformation = = f~*(y) is analytically computable:

1. From y, = x,, we directly get x, = y,.

2. Substitute z,, into the second equation to solve for x:

yp = 2y © exp(s(ya)) +t(Ya)
zp = (Yo — t(Ya)) © exp(—5(ya))

A.2.3 Jacobian Determinant

The Jacobian matrix of the transformation f (i.e., dy/0x) has the following structure:

J= a(yaa yb) _ 5ya/3fﬂa 8ya/awb
INa, xp) Oyp/0xq  Oyy/Ozy
Analyzing the blocks:

* 0yq/0x, = Iz (Identity matrix of size d X d)
* 0yo/0xzp = 0 (Matrix of zeros of size d x (D — d))

* Jyp/0x,: This block involves derivatives of s(z,) and ¢(x,) with respect to z,. Its exact
form is complex but not needed for the determinant.

* Oyp/0x, = diag(exp(s(z,))) (A diagonal matrix of size (D —d) x (D — d) whose diagonal
elements are exp(s;(xz,)) for component 5)

So, the Jacobian matrix J is:

J = <§§a diag(exx?(s(ara))))

This is a lower triangular block matrix. The determinant of a triangular matrix is the product of its
diagonal elements.

D—d D—d
det(J) = det(1y) - det(diag(exp(s(z,)))) =1 - H exp(s;j(zq)) = exp Z sj(xaq)
=1 =1

The log-determinant term required for Eq. Al is log|det(df~1(x)/0x)|. Using the property
det(A™1) = 1/det(A), we have log | det(0f~*(y)/dy)| = — log | det(df(z)/dz)|. Therefore, for
density evaluation with f~!, the log-determinant is Zf:_ld sj(xq), assuming s(x,) directly outputs
the log-scale factors. (If s(z,) outputs scale factors, then it’s )~ log |s;(x)|). The crucial part is that
s(zq) is conditioned on z,, the part of z that is not transformed by this specific affine operation.

16



A.2.4 Composition and Alternation

Multiple coupling layers are stacked. To ensure all variables can influence each other, the roles of
which part is passed through (identity) and which part is transformed are alternated in successive
layers, or a permutation of dimensions is applied between layers.

A3 Glow

Glow [22] enhances the RealNVP framework by introducing two new operations within each "step"
of the flow, in addition to the affine coupling layer. A single step in Glow comprises:

1. Actnorm

2. Invertible 1x 1 Convolution

3. Affine Coupling Layer

A.3.1 Actnorm (Activation Normalization)
This layer performs an element-wise affine transformation per channel:

Yehw = Q¢ * Tehw + Bc

where x.p,, is the activation at channel ¢, height h, width w. «a. (scale) and (3. (bias) are learnable
parameters, one per channel c.

« Initialization: o and [3. are initialized such that, for the first minibatch of data, the output
activations y.p,, for each channel ¢ have zero mean and unit variance across spatial and
batch dimensions. After this initialization, o, and 3. become regular trainable parameters
independent of minibatch statistics.

* Inverse: zchw = (Yehw — Be)/ e

* Log-Determinant: The Jacobian is a diagonal matrix. For an input tensor of H x W spatial
dimensions and C' channels, the total log-determinant is:

C
log ‘ det(Jactnorm)| =H -W. Z log \ac\

c=1
A.3.2 Invertible 1x1 Convolution

This operation generalizes fixed permutations. A 1x1 convolution with C' input channels and
C output channels applies a linear transformation to the channel vector at each spatial location
independently. If 2}, € R is the vector of channels at spatial location (h,w), and W € RE*¢ is
the convolution kernel weight matrix, then:

r /
Yhw = W‘Th,w

« Invertibility: The matrix W must be invertible. The inverse operation is z},, = W1y, .

* Log-Determinant: For an input tensor of H x W spatial dimensions, the total log-
determinant is:
10g | det(b’lxlconv)‘ =H -W- log | det(W)|

» Efficient Computation of det(1/) and W~!: To avoid the O(C?) cost of directly comput-
ing det(W) and W=, W is parameterized via its LU decomposition:

W = PLU
where:

— P is a permutation matrix (fixed, not learned).
— L is alower triangular matrix with ones on its diagonal.

— U is an upper triangular matrix whose diagonal elements U;; are learned (and must be
Nnon-zero).
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The determinant is then det(W) = det(P) - det(L) - det(U) = (£1) - 1 - Hil Usi. So,
log | det(W)| = Zle log |U;;|. The parameters L;; for ¢ > j and U;; for ¢ < j are learned.
Inversion W—! = U~'L=1 P~ is also efficient due to the triangular nature of L and U.

A.3.3 Affine Coupling Layer
This is the same as in ReaINVP.

A.3.4 Multi-Scale Architecture

Glow also employs a multi-scale architecture. After a few steps of flow at a given resolution:

1. Squeeze: Spatial dimensions are reduced and channel dimensions are increased. For s x s x ¢
input, it reshapes into (s/2) x (s/2) x 4c.

2. Factor Out: Half of the channels are split off and assumed to follow a Gaussian distribution.
These factored-out variables contribute directly to the latent u. The other half continue
through subsequent flow steps at the new, coarser resolution.

The total log-determinant for a Glow model is the sum of the log-determinants from all actnorm
layers, all 1x1 convolution layers, and all affine coupling layers, plus the log-probability of the
factored-out variables under their assumed Gaussian prior.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [TODO]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [TODO]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [TODO]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Because of the confidential consideration, repository will be access after
published.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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