
Proceedings of Machine Learning Research vol 284:1–12, 2025 19th Conference on Neurosymbolic Learning and Reasoning

Linearithmic Clean-up for Vector-Symbolic Key-Value
Memory with Kroneker Rotation Products

Ruipeng Liu rliu02@syr.edu

Syracuse University

Qinru Qiu qiqiu@syr.edu

Syracuse University

Simon Khan simon.khan@us.af.mil

Air Force Research Laboratory

Garrett E. Katz gkatz01@syr.edu

Syracuse University

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

A computational bottleneck in current Vector-Symbolic Architectures (VSAs) is the “clean-
up” step, which decodes the noisy vectors retrieved from the architecture. Clean-up typi-
cally compares noisy vectors against a “codebook” of prototype vectors, incurring compu-
tational complexity that is quadratic or similar. We present a new codebook representation
that supports efficient clean-up, based on Kroneker products of rotation-like matrices. The
resulting clean-up time complexity is linearithmic, i.e. O(N logN), where N is the vector
dimension and also the number of vectors in the codebook. Clean-up space complexity is
O(N). Furthermore, the codebook is not stored explicitly in computer memory: It can be
represented in O(logN) space, and individual vectors in the codebook can be materialized
in O(N) time and space. At the same time, asymptotic memory capacity remains compa-
rable to standard approaches. Computer experiments confirm these results, demonstrating
several orders of magnitude more scalability than baseline VSA techniques.

1. Introduction

A core issue in neurosymbolic systems is how to embed structured information. Vector-
Symbolic Architectures (VSAs) comprise one important embedding approach (Kleyko et al.,
2022b; Plate, 2003; Gayler, 1998; Kanerva, 1997). In VSAs, vectors of a fixed dimension
N are used to represent individual symbols as well as structured collections of symbols.
The latter are represented by composing carefully-crafted vector operators. These well-
understood operators can make VSAs more interpretable, and more data- and compute-
efficient, than learned embeddings (Roussel, 2023). The vector representation also facili-
tates integration with transformers and other deep architectures, sometimes reducing their
computational complexity as a result (Alam et al., 2023). In many cases, VSA operators
can be parallelized on specialized hardware and scaled to very large N . In this context, the
field of VSAs is also known as hyper-dimensional computing (Kleyko et al., 2022a).

One challenge in VSAs is that accessing structured data is a noisy process. In order
to reliably retrieve information stored by a VSA, the noisy vectors that are retrieved must
somehow be “cleaned-up.” Existing clean-up techniques compare noisy vectors against a
“codebook” of prototype vectors (most commonly the individual symbol embeddings) and

© 2025 R. Liu, Q. Qiu, S. Khan & G.E. Katz.

Liu Qiu Khan Katz

have quadratic or similar computational complexity (Kleyko et al., 2022b). Therefore, the
clean-up step is a critical bottleneck for current VSAs.

This paper contributes a new form for the codebook that supports efficient clean-up,
reducing computational complexity from quadratic to linearithmic, i.e., O(N logN). The
codebook is a generalized version of a Sylvester Hadamard matrix, whose recursive struc-
ture enables the efficient clean-up. We show empirically that this new representation has
comparable memory capacity to prior methods, despite the substantial time savings during
clean-up. We also show that efficient clean-up facilitates mutable VSA memory, since every
overwrite operation must reliably retrieve old data in order to erase it properly.

It is worth noting that Alam et al. (2024a) also recently explored an application of
Hadamard matrices to VSAs, but for a different purpose. They use Hadamard matrices
to derive a novel binding operation, whereas we use a generalized version of Hadamard
matrices to derive a novel vector embedding and clean-up method.

2. Background

2.1. Vector-Symbolic Architectures and Clean-up Methods

VSAs generally involve three types of vector operators:

• Binding associates two vectors, analogous to forming a key-value pair.

• Superposition forms a set of vectors, analogous to storing multiple key-value pairs
in an associative array.

• Unbinding retrieves the value associated with a given key.

In all cases, the operators return a new vector representing the result. There are many
VSA variants that implement these operators in different ways, using mechanisms such as
element-wise multiplication (Gayler, 1998) or element-wise XOR (Kanerva, 1997). VSAs
can also represent structures more complex than associative arrays, by including additional
vector embeddings of sequence positions or memory pointers.

The vector embeddings for individual symbols comprise a codebook V , which can be
viewed as a matrix whose ith row vector, denoted Vi, is the embedding of the ith symbol.
Unbinding operators generally return a noisy vector u, which does not exactly match any
Vi. “Clean-up” finds and returns the closest match to u in V . The most basic clean-up
approach is a direct computation of dot-product similarity, i.e.:

cleanup(u) = Vi∗ , where i∗ = argmax
i

(V u)i. (1)

Most VSA methods and analyses use dot-product similarity for clean-up, or closely related
metrics such as cosine similarity and Hamming distance for binary vectors (Kleyko et al.,
2022b; Yu et al., 2022; Thomas et al., 2021). More sophisticated clean-up methods use
various forms of auto-associative memory (Stewart et al., 2011; Steinberg and Sompolinsky,
2022) and handle more complex structure than associative arrays (Frady et al., 2020; Kent
et al., 2020). Another approach removes noise by averaging over multiple VSA instances,
inspired by Redundant Arrays of Inexpensive Disks (RAID), but the number of instances
must be scaled linearly with the number of items to be stored (Danihelka et al., 2016).

2

Linearithmic Clean-up for Vector-Symbolic Memory

To our knowledge, the most efficient clean-up methods to date are based on random
linear codes (Raviv, 2024). Their time complexity is either O(N · |V |) or O(N2−N log|V |),
depending on which algorithm is used, where |V | is the number of vectors in the codebook.
Moreover, they do not store V explicitly in computer memory, but only the generator and
parity-check matrices for V ’s linear code, which are much more compact. However, if |V |
approaches or exceeds N , the time complexity is still essentially quadratic.

2.2. Holographic Reduced Representations

Our clean-up method is designed for a specific VSA due to Plate (1995, 2003), known
as “holographic reduced representations” (HRRs). In standard HRRs, each vector in the
codebook has its entries sampled independently and identically from a distribution with
mean 0 and variance 1/N. Examples of such distributions include the normal distribution
N (0, 1/N), and the discrete uniform distribution over ±1/

√
N.

HRRs implement superposition with element-wise addition, while binding and unbinding
are circular convolution ⊛ and correlation #○, respectively:

(b⊛ v)ℓ =
N−1∑
k=0

bkvℓ−k (a#○t)i =
N−1∑
j=0

ajti+j , (2)

where subscripts denote vector indices and are taken modulo N . For example, the vector
t = (a ⊛ u) + (b ⊛ v) represents an associative array containing two key-value pairs: (a, u)
and (b, v). In this example, the unbinding operation (a#○t) will return a noisy version of u,
i.e., the value previously associated with a.

Plate (1995) showed that when codebook vectors are sampled as described above, the
HRR memory capacity scales linearly with N , and unbinding works correctly in expectation.
However, the variance of the unbinding process is also on the order of 1/N. Therefore, the
signal-to-noise ratio is very low and clean-up is essential for reliable retrieval. Plate’s original
clean-up implementation used direct O(N2) computation of dot-product similarity.

The binding and unbinding operations themselves have only O(N logN) complexity,
since convolution and correlation can be implemented by fast Fourier transform (Heideman
et al., 1985). It would therefore be ideal if clean-up is also O(N logN). We will show that
this is possible using a generalized version of Sylvester Hadamard matrices.

2.3. Sylvester’s Hadamard Matrix Construction

Hadamard matrices are square, symmetric, orthogonal matrices with binary ±1 entries.
A Hadamard matrix H(k) of shape 2k × 2k can be constructed by the following recursive
method, given by Sylvester (1867):

H(0) = [1] H(k+1) =

[
H(k) H(k)

H(k) −H(k)

]
. (3)

This construction can also be expressed as a repeated Kroneker product:

H(K) =

K⊗
k=1

[
1 1
1 −1

]
. (4)

3

Liu Qiu Khan Katz

Our core idea is to use matrices like these as codebooks, and leverage their recursive
structure to achieve O(N logN) clean-up. For standard Sylvester Hadamard matrices, it
is known that the fast Walsh-Hadamard transform (Fino and Algazi, 1976) computes the
matrix-vector product Hu required for clean-up in O(N logN) time. However, standard

Sylvester Hadamard matrices do not work well with the HRR operators, sinceH
(K)
i ⊛H

(K)
j =

0 for many row pairs i ̸= j, so one cannot use rows as both keys and values. This is partially
fixed by using random vectors to embed keys, and rows of H(K) to embed values only, since
value embeddings are the ones that must be cleaned up. However, even with this fix,
we found that memory capacity was much lower than standard HRRs (Section 4, Fig. 2).
Fortunately, a generalization of H(K), introduced next, has comparable memory capacity.

3. Methods

3.1. Kroneker Rotation Products

We propose a construction similar to Sylvester’s but using 2D rotation-like matrices:

H̃(0) = [1] H̃(k+1) =

[
H̃(k)cos(θk) H̃(k)sin(θk)

H̃(k)sin(θk) −H̃(k)cos(θk)

]
, (5)

where the θk’s with k ∈ {0, . . . ,K − 1} are spaced uniformly within (0, 2π). These matrices
are no longer binary-valued, but they are still orthogonal, symmetric, and possess sufficient
structure for linearithmic clean-up. We hypothesize that mixing continuous values into
Sylvester’s construction better approximates the noise properties of standard HRR embed-
dings, which is borne out by our experiments. Like Sylvester’s original construction, ours
can also be expressed as a Kroneker product for K > 0:

H̃(K) =
K⊗
k=1

[
cos(θK−k) sin(θK−k)
sin(θK−k) −cos(θK−k)

]
. (6)

We will refer to this representation as “Kroneker Rotation Product” or “krop” for short.
Technically, each 2 × 2 factor is the composition of a rotation and reflection, since the
cosine is negated in the second column. After normalizing rows to unit length, Sylvester’s
construction is in fact a special case of krop where θk = π/4 for every k.

3.2. Materializing Rows of H̃(K)

It is possible to reconstruct or sample individual rows of H̃(K) without storing the entire
matrix in memory. Only the K angles θ0, ..., θK−1 must be stored, and K = log2N . The

kth most significant digit in the binary expansion of i indicates whether H̃
(K)
i came from

the first or second row of the kth factor in Equation (6). For example,

H̃
(K)
0 = [cK−1, sK−1]⊗ [cK−2, sK−2]⊗ ...⊗ [c1, s1]⊗ [c0, s0], (7)

where ck and sk abbreviate cos(θk) and sin(θk). We can compute products like Equation (7)
from right to left, with K − 1 individual Kroneker products of row vectors (not matrices).
The kth product requires 2k+1 scalar multiplications. Therefore, the entire row is con-
structed with

∑K−1
k=1 2k+1 = 2K+1−4 = 2N −4 operations, i.e., O(N) time. This process is

codified in Alg. 1, where [·, ·] is vector concatenation and >> and ∧ are bitwise operators.

4

Linearithmic Clean-up for Vector-Symbolic Memory

Algorithm 1: Codebook vector reconstruction procedure

Input: codebook parameters θ = [θ0 . . . θK−1], reconstruct index i
v ← [1]
for k ∈ {0, ...,K − 1} do

b← (i >> k) ∧ 1
if b == 0 then

v ← [cos(θk)v, sin(θk)v]
else

v ← [sin(θk)v, − cos(θk)v]
end

end
return v

3.3. krop Clean-up

As per Equation (1), the goal of clean-up is to compute argmaxi(V u)i, where u is a noisy
vector that results from unbinding. We will use H̃(K) as the codebook V , and derive here
an efficient algorithm to compute H̃(K)u. This algorithm (Alg. 2 below) is similar to the
fast Walsh-Hadamard transform, but modified to incorporate the sines and cosines in H̃(K).

The algorithm works as follows. Note that here we reason about H̃(K) mathematically,
but do not actually store it in computer memory. Based on Equation (5), we can write

H̃(K)u =

[
H̃(K−1)cK−1 H̃(K−1)sK−1

H̃(K−1)sK−1 −H̃(K−1)cK−1

] [
û
ǔ

]
=

[
H̃(K−1)(cK−1û+ sK−1ǔ)

H̃(K−1)(sK−1û− cK−1ǔ)

]
, (8)

where x̂ and x̌ denote the first and second halves of any vector x. Equation (8) decomposes
the original problem into two sub-problems where the vector dimensions have been halved.
To iterate this decomposition further, we recursively define

U
(K)
0 = u

U
(k−1)
2i = ck−1Û

(k)
i + sk−1Ǔ

(k)
i

U
(k−1)
2i+1 = sk−1Û

(k)
i − ck−1Ǔ

(k)
i

. (9)

Each U (k) can be viewed as a list containing N/2k items, where the ith item U
(k)
i is the

2k-dimensional vector associated with the ith sub-problem at step k.

Expanding the recursion down to k = 0, we find

H̃(K)u =

[
H̃(K−1)U

(K−1)
0

H̃(K−1)U
(K−1)
1

]
= ... =


H̃(0)U

(0)
0

...

H̃(0)U
(0)
N−1

 , (10)

where each U
(0)
i is a 1-dimensional vector multiplied by the 1× 1 matrix H̃(0) = [1]. Rein-

terpreting U
(0)
i as a scalar, this means that (H̃(K)u)i = U

(0)
i . Therefore, we do not need to

work explicitly with H̃(K) at all: Instead, we can construct U (0) according to Equation (9),

compute i∗ = argmaxiU
(0)
i , and reconstruct the single row H̃

(K)
i∗ as per Section 3.2.

5

Liu Qiu Khan Katz

Algorithm 2: krop clean-up procedure

Input: codebook parameters θ = [θ0 . . . θK−1], vector u

U
(K)
0 ← u

for k ∈ {K, . . . , 1} do
for i ∈ {0, . . . , N/2k − 1} do

U
(k−1)
2i ← ck−1Û

(k)
i + sk−1Ǔ

(k)
i

U
(k−1)
2i+1 ← sk−1Û

(k)
i − ck−1Ǔ

(k)
i

end

end

return argmax
i

U
(0)
i

Complexity Analysis: Each U
(k)
i is a 2k-dimensional vector. Computing U

(k−1)
2i and

U
(k−1)
2i+1 from U

(k)
i in Equation (9) therefore requires 3·2k arithmetic operations: two element-

wise multiplications by sk or ck and one element-wise addition or subtraction. Furthermore,
N/2k such vector transformations are performed for each k. Consequently, the total number
of operations at step k is 3 · 2k · N/2k = 3N . Since there are O(N) operations for each
iteration of Equation (9), and K = log2N iterations, the overall complexity is O(N logN).
The subsequent argmax is O(N), so the O(N logN) recursion dominates.

3.4. Sign-Based Clean-up

As a baseline for comparison, we also consider a simpler clean-up procedure based on the
binary ±1/

√
N embeddings proposed by Plate (1995). This baseline clean-up simply rounds

a noisy vector u to the nearest binary value vector, i.e.:

u 7→ sign(u)/
√
N. (11)

The computational complexity of sign-based clean-up is O(N), so more efficient than krop

clean-up. However, sign-based clean-up does not have the same guarantees. By con-
struction, krop clean-up is guaranteed to correctly reconstruct argmaxi(V u)i, where the
codebook V contains the N rows of H̃(K). If we instead sample N embeddings from
{−1/

√
N,+1/

√
N}N , of which there are 2N possibilities, sign-based clean-up is not guar-

anteed to produce one of the original N embeddings. The 2N possibilities introduce many
more opportunities for error, and our empirical results confirm that sign-based clean-up is
prone to such errors (Section 4).

3.5. Computational Resources

All computer experiments were done on a workstation with 8-core Intel i7 CPU and 32GB of
RAM, Fedora 39 Linux, Python 3.11.7, and NumPy 1.26.3. The full set of experiments can
be completed in about one day; computation time is dominated by the O(N2) direct matrix-
vector multiplications used for comparison with krop, not by krop itself. All experiment
code is open-source (MIT license) and freely available online.1

1. https://github.com/garrettkatz/krop

6

https://github.com/garrettkatz/krop

Linearithmic Clean-up for Vector-Symbolic Memory

4. Empirical Results

4.1. Clean-up Efficiency

We first confirmed that krop clean-up is substantially more efficient in practice than direct
matrix-vector multiplication. For this experiment we constructed krop matrices H̃(K) with
K ranging from 1 to 15. For each H̃(K) we sampled a noise vector u with i.i.d entries from
N (0, 1) and cleaned it up twice, once with direct matrix-vector multiplication, and once
with krop cleanup. For each K, this test was repeated 30 times with different i.i.d samples
for u. We timed each clean-up method, and also confirmed that they always produced the
same result. The running times are shown in Figure 1, which highlights the asymptotically
lower complexity of krop clean-up. Past K = 10, krop achieves a considerable speed-up.

2 4 6 8 10 12 14
K = log2N

10−4

10−2

100

R
un

tim
e

(s
ec

on
ds

) krop
direct

Figure 1: Running times of direct matrix-vector multiply and krop cleanup, for individual
repetitions (gray) and averages over repetitions (black).

4.2. Memory Capacity

We next confirmed that krop embeddings exhibit comparable memory capacity to more
standard HRR codebooks. Our estimates of memory capacity are based on retrieval rate,
defined as the fraction of key-value associations that are correctly recalled. Formally,
suppose that M key-value pairs (a(m), v(m)) have been stored in a memory trace vector
M =

∑M
m=1 a

(m) ⊛ v(m). Then retrieval rate is given by

1

M

M∑
m=1

1

[
clean-up(a(m)#○M) = v(m)

]
, (12)

where 1[·] denotes the indicator function (1 if its operand is True, 0 otherwise). For a given
N and M , we conduct multiple random trials and calculate retrieval rate in each trial. We
say the VSA’s “success rate” is the fraction of trials in which retrieval rate is 1. For a given
N , a VSA’s “memory capacity” is the largest M for which its success rate is 1.

We estimated success rate and memory capacity empirically using 30 independent ran-
dom trials for each N and M . In each trial, the key-value pairs were sampled randomly.
Key vectors were always sampled using i.i.d. N (0, 1/N) entries. Value vectors were sampled
uniformly, with replacement, from the codebook. We compared four kinds of codebooks:

7

Liu Qiu Khan Katz

• Normal: Codebook vector entries sampled i.i.d. from N (0, 1/N)

• Binary: Codebook vector entries sampled i.i.d. from ±1/
√
N with equal probability

• Sylvester: Codebook vectors are the rows of H(K), normalized to unit length

• krop: Codebook vectors are the rows of H̃(K), with θk uniformly spaced in (0, 2π)

Normal and binary were cleaned up with direct matrix-vector multiply, while Sylvester and
krop were cleaned up as per Section 3.3.

We experimentally varied N = 2K over 2 ≤ K ≤ 15, and M = 2J over 2 ≤ J ≤ K − 2.
For normal and binary we capped K at 12 since direct matrix-vector multiplication was
less scalable than krop. Figure 2 shows success rates for two representative M , as well as
overall memory capacity (largest M with perfect success rate) for all N . Sylvester struggles
to retrieve all key-value associations, but krop has the same asymptotic capacity as normal
and binary, up to a constant factor of 2, while scaling to significantly larger N and M .
These results corroborate the approximately linear relationship between N and memory
capacity derived by Plate (1995), although the asymptotic constants are quite large (∼ 27).

26 210 214

0.00

0.25

0.50

0.75

1.00

S
u
cc
es
s
R
at
e

M = 2

normal

binary

sylvester

krop

210 213

M = 64

25 29 213

21

23

25

27

C
ap

ac
it
y

N

Figure 2: Success rates (left) and memory capacity (right) for each kind of codebook.

4.3. Mutable Key-Value Memory

Many real-world tasks require modification of structured data during task execution, mean-
ing that the associations in VSA key-value memory should be easily modified. Efficient
clean-up is important for mutable VSA memory, since old data must be reliably retrieved
in order to erase it properly. Our last experiment probed this functionality with a series of
random trials. Each trial consisted of 30 time-steps, and one association was overwritten
in each time-step. As a “ground truth,” we maintained a purely symbolic (not VSA) ref-
erence memory that saved the most recent value associated with each key. This reference
memory was used to compute retrieval rate after every time-step. The idea was that a VSA
memory should be capable of reliably retrieving any association at any time-step as the task

8

Linearithmic Clean-up for Vector-Symbolic Memory

demands. We compared the following three forms of VSA memory, whereMt denotes the
memory trace at time t and (a(t), v(t)) denotes the new association being written:

• krop: This version uses krop embeddings and clean-up. It overwrites an associa-
tion by unbinding the key’s old value, cleaning it up, and then subtracting the old
association before adding the new one:

vold ← krop cleanup(a(t)#○Mkrop
t) (13)

Mkrop
t+1 ←M

krop
t − (a(t) ⊛ vold) + (a(t) ⊛ v(t)) (14)

• sign: This version uses ±1/
√
N embeddings and sign-based clean-up:

vold ← sign(a(t)#○Msign
t)/

√
N (15)

Msign
t+1 ←M

sign
t − (a(t) ⊛ vold) + (a(t) ⊛ v(t)) (16)

• none: This version uses N (0, 1/N) embeddings with no clean-up:

vold ← a(m)#○Mnone
t (17)

Mnone
t+1 ←Mnone

t − (a(t) ⊛ vold) + (a(t) ⊛ v(t)) (18)

The only candidate for clean-up in this version would be direct matrix-vector multi-
plication, which would not scale well if required during every overwrite.

Key and value codebooks A and V were sampled/constructed once at the start of the trial,
with |A| = M and |V | = N . Value codebooks used the embeddings specified above, and
key codebooks always used N (0, 1/N) embeddings. At the start of the trial, each a ∈ A was
associated with its own v ∈ V sampled uniformly at random. During the trial, (a(t), v(t))
was sampled uniformly at random from A× V .

0 5 10 15 20 25 30

0.00

0.25

0.50

0.75

1.00

R
et
ri
ev
al

R
at
e

M = 8, N = 256

0 5 10 15 20 25 30

M = 32, N = 2048

krop

sign

none

Time-step

Figure 3: Examples of mutable VSA memory retrieval rates by time-step.

Figure 3 shows per-time-step retrieval rates for two representative (M,N) pairs near the
capacity limits observed in Section 4.2. Retrieval rates are averaged over 10 independent
trials. krop overwriting is relatively stable over time even when retrieval is imperfect,

9

Liu Qiu Khan Katz

whereas sign-based overwriting degrades quickly and overwriting without any clean-up is
largely ineffective. More comprehensive results are shown in Figure 4, where retrieval rates
are averaged over time-steps and trials. These results confirm that krop overwriting is the
most scalable and reliable when N is large enough that its memory capacity exceeds M .

28 213

0.00

0.25

0.50

0.75

1.00

T
im

e-
A
ve
ra
ge
d
R
et
ri
ev
al

R
at
e M = 4

krop

sign

none

29 213

M = 16

210 213

M = 64

212 215

M = 256

N

Figure 4: Mutable VSA memory retrieval rates averaged over trials and time-steps.

5. Limitations and Future Work

Our present approach uses HRR operators and continuous embeddings. One direction for
future work is to extend our methods to discrete embeddings and associated operators,
such as MAP (Gayler, 1998), which are better suited to hardware implementation. Future
work should also evaluate krop on real-world VSA benchmarks, such as extreme multi-
label classification (Ganesan et al., 2021) and malware classification (Alam et al., 2024b).
One challenge is that real-world data have different distributions than the vectors in the
krop codebook. This might be addressed by learning linear maps from data vectors to
krop vectors, or autoencoder maps with bottlenecks if the data dimensionality is too large.
Another potential issue is that our current clean-up procedure is not differentiable, hindering
its integration with gradient-based optimization. This might be addressed by replacing the
argmax with soft attention over all rows of the codebook, again using a Walsh-Hadamard-
like transform to efficiently calculate gradients. Lastly, our simple sampling distribution
for each θk (uniform over (0, 2π)) worked for key-value associations chosen uniformly at
random, but it remains to be seen whether krop is effective for real-world tasks where this
distribution could be highly non-uniform. It may be possible to further optimize the choice
of θk to achieve codebooks with better noise properties and integration with real-world data.

Acknowledgments

This research is partially supported by the Air Force Office of Scientific Research (AFOSR),
under contract FA9550-24-1-0078. The paper was received and approved for public release
by Air Force Research Laboratory (AFRL) on March 7, 2025, case number AFRL-2025-1282.
Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of AFRL or its contractors.

10

Linearithmic Clean-up for Vector-Symbolic Memory

References

Mohammad Mahmudul Alam, Edward Raff, Stella R Biderman, Tim Oates, and James
Holt. Recasting self-attention with holographic reduced representations. In International
Conference on Machine Learning, pages 490–507. PMLR, 2023.

MohammadMahmudul Alam, Alexander Oberle, Edward Raff, Stella Biderman, Tim Oates,
and James Holt. A walsh hadamard derived linear vector symbolic architecture. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a. URL
https://openreview.net/forum?id=p3hNrpeWMe.

Mohammad Mahmudul Alam, Edward Raff, Stella R Biderman, Tim Oates, and James
Holt. Holographic global convolutional networks for long-range prediction tasks in mal-
ware detection. In International Conference on Artificial Intelligence and Statistics, pages
4042–4050. PMLR, 2024b.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative
long short-term memory. In International Conference on Machine Learning, pages 1986–
1994. PMLR, 2016.

B. J. Fino and V. R. Algazi. Unified matrix treatment of the fast walsh-hadamard transform.
IEEE Transactions on Computers, C-25(11):1142–1146, 1976. doi: 10.1109/TC.1976.
1674569.

E Paxon Frady, Spencer J Kent, Bruno A Olshausen, and Friedrich T Sommer. Resonator
networks, 1: An efficient solution for factoring high-dimensional, distributed representa-
tions of data structures. Neural Computation, 32(12):2311–2331, 2020.

Ashwinkumar Ganesan, Hang Gao, Sunil Gandhi, Edward Raff, Tim Oates, James Holt,
and Mark McLean. Learning with holographic reduced representations. Advances in
Neural Information Processing Systems, 34:25606–25620, 2021.

Ross W Gayler. Multiplicative binding, representation operators & analogy. In Advances in
Analogy Research: Integration of Theory and Data from the Cognitive, Computational,
and Neural Sciences, pages 1–4, 1998.

Michael T Heideman, Don H Johnson, and C Sidney Burrus. Gauss and the history of the
fast fourier transform. Archive for History of Exact Sciences, pages 265–277, 1985.

P Kanerva. Fully distributed representation. In Real World Computing Symposium, pages
358–365, 1997.

Spencer J Kent, E Paxon Frady, Friedrich T Sommer, and Bruno A Olshausen. Resonator
networks, 2: Factorization performance and capacity compared to optimization-based
methods. Neural Computation, 32(12):2332–2388, 2020.

Denis Kleyko, Mike Davies, Edward Paxon Frady, Pentti Kanerva, Spencer J Kent, Bruno A
Olshausen, Evgeny Osipov, Jan M Rabaey, Dmitri A Rachkovskij, Abbas Rahimi, et al.
Vector symbolic architectures as a computing framework for emerging hardware. Pro-
ceedings of the IEEE, 110(10):1538–1571, 2022a.

11

https://openreview.net/forum?id=p3hNrpeWMe

Liu Qiu Khan Katz

Denis Kleyko, Dmitri A Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A survey on
hyperdimensional computing aka vector symbolic architectures, part I: Models and data
transformations. ACM Computing Surveys, 55(6):1–40, 2022b.

Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural Net-
works, 6(3):623–641, 1995.

Tony A Plate. Holographic Reduced Representation: Distributed representation for cognitive
structures, volume 150. CSLI Publications Stanford, 2003.

Netanel Raviv. Linear codes for hyperdimensional computing. Neural Computation, 36(6):
1084–1120, 2024.

Adam Roussel. Lexical semantics with vector symbolic architectures. In Proceedings of the
Second Workshop on Resources and Representations for Under-Resourced Languages and
Domains (RESOURCEFUL-2023), pages 53–61, 2023.

Julia Steinberg and Haim Sompolinsky. Associative memory of structured knowledge. Sci-
entific Reports, 12(1):21808, 2022.

Terrence C Stewart, Yichuan Tang, and Chris Eliasmith. A biologically realistic cleanup
memory: Autoassociation in spiking neurons. Cognitive Systems Research, 12(2):84–92,
2011.

James Joseph Sylvester. Thoughts on inverse orthogonal matrices, simultaneous sign suc-
cessions, and tessellated pavements in two or more colours, with applications to newton’s
rule, ornamental tile-work, and the theory of numbers. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 34(232):461–475, 1867.

Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. A theoretical perspective on
hyperdimensional computing. Journal of Artificial Intelligence Research, 72:215–249,
2021.

Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher M De Sa. Understanding hyperdi-
mensional computing for parallel single-pass learning. Advances in Neural Information
Processing Systems, 35:1157–1169, 2022.

12

	Introduction
	Background
	Vector-Symbolic Architectures and Clean-up Methods
	Holographic Reduced Representations
	Sylvester's Hadamard Matrix Construction

	Methods
	Kroneker Rotation Products
	Materializing Rows of (K)
	krop Clean-up
	Sign-Based Clean-up
	Computational Resources

	Empirical Results
	Clean-up Efficiency
	Memory Capacity
	Mutable Key-Value Memory

	Limitations and Future Work

