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Figure 1. Visualization of 3D box labels and tracks in our TUMTraf V2X Cooperative Perception Dataset. The top part shows the
labels projected into the four camera images. The part below shows a point cloud from two LiDARs with 3D box labels of the same scene.

Abstract

Cooperative perception offers several benefits for en-
hancing the capabilities of autonomous vehicles and im-
proving road safety. Using roadside sensors in addition to
onboard sensors increases reliability and extends the sensor
range. External sensors offer higher situational awareness
for automated vehicles and prevent occlusions. We propose
CoopDet3D, a cooperative multi-modal fusion model, and
TUMTraf-V2X, a perception dataset, for the cooperative 3D
object detection and tracking task. Our dataset contains
2,000 labeled point clouds and 5,000 labeled images from
five roadside and four onboard sensors. It includes 30k 3D
boxes with track IDs and precise GPS and IMU data. We la-
beled nine categories and covered occlusion scenarios with
challenging driving maneuvers, like traffic violations, near-
miss events, overtaking, and U-turns. Through multiple ex-
periments, we show that our CoopDet3D camera-LiDAR fu-
sion model achieves an increase of +14.36 3D mAP com-
pared to a vehicle camera-LiDAR fusion model. Finally, we
make our dataset, model, labeling tool, and devkit publicly
available on our website.

1 . Introduction

Cooperative perception involves the fusion of onboard sen-
sor data and roadside sensor data, and it offers several ad-
vantages for enhancing the capabilities of autonomous ve-
hicles and improving road safety. Using data from multiple
sources makes the perception more robust to sensor failures
or adverse environmental conditions. Roadside sensors pro-
vide an elevated view that helps to detect obstacles early.
Moreover, they are also beneficial for precise vehicle local-
ization and reduce the computational load of automated ve-
hicles by offloading some perception tasks to the roadside
sensors. Roadside sensors provide a global perspective of
the traffic and offer a comprehensive situational awareness
when fused with onboard sensor data. There are also fewer
false positives or negatives because cooperative perception
cross-validates the information from different sensors.

Infrastructure sensors can share perception-related infor-
mation with vehicles through V2X. Due to minimal delay,
and real-time capabilities, the infrastructure-based percep-
tion systems can further enhance the situational awareness
and decision-making processes of vehicles.

Intelligent Transportation Systems (ITS) like the Testbed
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Table 1. Comparison of 3D cooperative V2X perception datasets with our proposed TUMTraf-V2X Cooperative Perception dataset
(I=Infrastructure, V=Vehicle).

Dataset OPV2V
[36]

V2XSet
[35]

V2X-Sim
[20]

V2V4Real
[37]

DAIR-V2X-
C [41]

V2X-Seq
(SPD) [43]

TUMTraf-
V2X (Ours)

Year 2022 2022 2022 2022 2022 2023 2024
V2X V2V V2V&I V2V&I V2V V2I V2I V2I
Real data - - -
Annotation range 120 m 120 m 70 m 200 m 280 m 280 m 200 m
Day & night scenes - - - -
# object classes 1 1 1 5 10 9 8
Track IDs - - -
HD Maps -
# of sensors (I | V) - | 6* - | 6* 5 | 7 - | 8‡ 2 | 3 2 | 3 5 | 4
Available worldwide - -
Traffic violations - - - - - -
Labeled attributes§ - - - - - -
OpenLABEL format - - - - - -
# Point Clouds 11k 11k 10k 20k 39k 15k 2.0k
# Images 44k 44k 60k 40k† 39k 15k 5.0k
# 3D Boxes 233k 233k 26k 240k 464k 10.45k 29.38k
Location CARLA CARLA CARLA USA China China Germany

† Image dataset has not been released yet.
* Value per vehicle. Multiple Conn. and Autom. Vehicles (CAVs) are used.

‡ Total sensors from 2 CAVs.
§

Weather, time of day, orientation, #3D points, occlusion, color, sub type

for Autonomous Driving [17] aim to improve safety by
providing real-time traffic information. According to [9],
testbeds extensively start using LiDAR sensors in their se-
tups to create an accurate live digital twin of the traffic.
Connected vehicles get a far-reaching view which enables
them to react to breakdowns or accidents early. ITS sys-
tems also provide lane and speed recommendations to im-
prove the traffic flow.
The key challenge with ego-centric vehicle datasets is that
there are many occlusions from a vehicle perspective, e.g.,
if a large truck in front of the ego vehicle obscures the view.
Roadside sensors located at a smart intersection provide a
broad overview of the intersection and a full-surround view.
Given the immense potential of ITS, there is a specific need
for V2X datasets. Despite the high costs associated with
collecting and labeling such datasets, this work addresses
this challenge as a crucial step toward realizing large-scale
ITS implementations.
Our contributions are as follows:
• We provide a high-quality V2X dataset for the coopera-

tive 3D object detection and tracking task with 2,000 la-
beled point clouds and 5,000 labeled images. In total, 30k
3D bounding boxes with track IDs were labeled in chal-
lenging traffic scenarios like near-miss events, overtaking
scenarios, U-turn maneuvers, and traffic violation events.

• We open-source our 3D bounding box annotation tool
(3D BAT v24.3.2) to label multi-modal V2X datasets.

• We propose CoopDet3D, a cooperative 3D object detec-
tion model, and show in extensive experiments and abla-

tion studies that it outperforms single view models on our
V2X dataset by +14.3 3D mAP.

• Finally, we provide a development kit to load the annota-
tions in the widely recognized and standard format Open-
LABEL [13], to facilitate a seamless integration and uti-
lization of the dataset. Furthermore, it can preprocess,
visualize, and convert labels to and from different dataset
formats, and evaluate perception and tracking methods.

2 . Related work
3D autonomous driving datasets are mainly categorized
based on the viewpoint. Table 1 highlights the main differ-
ences between our proposed dataset and other V2X datasets.

2.1. Single viewpoint datasets

Single viewpoint datasets are obtained from a single point
of reference, either an ego-vehicle or roadside infrastruc-
ture. Onboard sensor-based datasets like KITTI [12],
nuScenes [6], and Waymo [30] contain a diverse set of
sensor data collected from a moving vehicle equipped
with multiple sensors, including high-resolution cameras,
LiDARs, radars, and GPS/INS systems. These datasets
are abundant and provide many annotated data, including
bounding boxes, track IDs, segmentation masks, and depth
maps under different urban driving scenarios.

On the other hand, roadside sensor-based datasets are
in the infancy stage. High-quality multi-modal (camera
and LiDAR) datasets are presented in [5, 10, 48], which
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Figure 2. Our CoopDet3D framework is a multi-modal cooperative fusion system, comprising three distinct fusion pipelines. 1) The
roadside camera-LiDAR fusion pipeline fuses three camera images and one LiDAR point cloud by extracting features and transforming
them into a BEV representation. 2) The vehicle camera-LiDAR fusion pipeline fuses the vehicle camera feature map with the vehicle point
cloud feature map using a convolutional fuser. 3) The vehicle and infrastructure feature maps are then fused by applying an element-wise
max-pooling operation (Max Fuser). In the end, we use the TransFusion [1] 3D detection head to obtain 3D bounding box predictions.

are obtained from Infrastructure Perception Systems (IPS).
Similarly, in [40], the authors provide a dataset consisting
of only images taken from different viewpoints and under
varying traffic conditions. These datasets provide a top-
down view of a crowded intersection under different condi-
tions and, as such, can overcome issues such as occlusions
created by other vehicles and thereby have a higher number
of object labels than onboard sensor-based datasets.

2.2. V2X datasets

V2X datasets exploit the information from multiple view-
points to gain additional knowledge regarding the environ-
ments. In this way, they overcome the limitations of single
viewpoint datasets such as occlusion, limited field of view
(FOV), and low point cloud density.

DAIR-V2X dataset family [41] is one of the foremost
cooperative multi-modal datasets introduced. It contains
three subsets: an intersection, a vehicle, and a cooperative
dataset. The cooperative dataset contains 464k 3D box la-
bels belonging to 10 classes, making it one of the largest
cooperative datasets. The V2X-Seq dataset [43] extends se-
lected sequences of the DAIR-V2X dataset with track IDs
and is partitioned into a sequential perception dataset (SPD)
and a trajectory forecasting dataset. Despite these, the lack
of specific information, such as the labeling methodology
used, the exact models of the sensors deployed, the distri-
bution of the classes, and the scenarios within the dataset,
leads to uncertainty in the extendability and application of
this dataset in varying conditions.

In V2V4Real [37], the authors propose a multi-modal

cooperative dataset focusing only on V2V perception. Two
vehicles equipped with cameras, LiDAR, and GPS/IMU in-
tegration systems are used to collect multi-modal sensor
data for diverse scenarios. As opposed to all other V2X
datasets, this focuses on V2V perception, and though it is of
similar size to other cooperative datasets, it contains fewer
classes and 3D bounding box information.

Simulated multi-agent perception datasets have been
proposed in [20, 35, 36]. These datasets contain multi-
modal sensor data (camera and LiDAR) obtained from road-
side units (RSUs) and multiple ego vehicles, which enable
collaborative perception. They use a combination of sim-
ulators such as SUMO [24], CARLA [11], and OpenCDA
[36] for flow simulation, data retrieval, and V2X communi-
cation. However, the utility of the dataset is still limited due
to the simulated nature of the data, and its extendability to
real-life applications has not been studied in detail.

2.3. V2X perception models for object detection

The datasets presented above have been used to develop
various models for a wide variety of tasks, with the major-
ity focusing on 3D object detection. Different approaches
have been taken depending on the availability and chal-
lenges, and these methods are grouped based on the number
of nodes employed and the modalities used for detection.

Most 3D object detection models use multi-modal sensor
data obtained from a single point of view, which is often an
ego-vehicle. Due to the popularity and abundant availabil-
ity of onboard datasets [6, 12, 30], most models use images,
point clouds, or both modalities. Image-based models were
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the pioneers in 3D object detection due to their low cost
and simplicity, and both vehicular camera-based models
[18, 34] and infrastructure camera-based models [39] have
been proposed. LiDAR-based 3D object detection models
[19, 46, 49] became popular since LiDAR point clouds pro-
vide 3D depth information and are robust, especially in ad-
verse weather conditions and nighttime scenarios. Fusion
models combine the information obtained from both im-
ages and point clouds and have been shown to outperform
the prior methods [47]. Single viewpoint fusion models use
either vehicular camera and LiDAR [23, 32, 38] or infras-
tructure camera and LiDAR [47] for 3D object detection.

Cooperative perception models, which use data from
multiple viewpoints, have been shown to overcome issues
related to occlusion, which were often present in vehicu-
lar sensor-based models. V2I cooperative perception mod-
els [2, 3, 14, 26, 33, 35, 42] use the sensor data from both
vehicles and infrastructure and V2V models [15, 29] com-
municate the sensor data between multiple vehicles. In this
work, our cooperative multi-modal dataset is one contribu-
tion among others. Thus, while most of the prior works
focus on unimodal cooperative perception using either Li-
DAR point clouds [2, 7] or camera images [15], we bench-
mark our dataset with CoopDet3D, a deep fusion based co-
operative multi-modal 3D object detection model based on
BEVFusion [15] and PillarGrid [2].

3 . TUMTraf-V2X Dataset
Our TUMTraf V2X Cooperative Perception Dataset fo-
cuses on challenging traffic scenarios and various day and
nighttime scenes. The data is further annotated, emphasiz-
ing high-quality labels through careful labeling and high-
quality review processes. It also contains dense traffic and
fast-moving vehicles, which reveals the specific challenges
in cooperative perception, such as pose estimation errors,
latency, and synchronization. Furthermore, we provide sen-
sor data from nine different sensors covering the same traf-
fic scenes under diverse weather conditions and lighting
variations. The infrastructure sensors are oriented in all four
directions of the intersection to get a 360◦ view, which leads
to better perception results. Finally, it contains rare events
like traffic violations where pedestrians cross the road at a
busy four-way intersection while the crossing light is lit red.

3.1. Sensor setup

Our TUMTraf V2X Cooperative Perception Dataset was
recorded on an ITS system with nine sensors.
The infrastructure sensor setup is the following:
• 1x Ouster LiDAR OS1-64 (gen. 2), 64 vert. layers, 360°

FOV, below horizon config., 10 cm acc. @120 m range
• 4x Basler ace acA1920-50gc, 1920×1200, Sony IMX174

with 8 mm lenses
On the vehicle, the following sensors were used:

Roadside camera (north)Roadside camera (south1)

Vehicle camera

Roadside LiDAR Vehicle LiDAR

Recording vehicle

Figure 3. Demonstration of a possible V2X occlusion scenario. A
pedestrian (blue) is crossing the road in front of the ego vehicle.
An occluded bicycle is marked in red. The recording vehicle with
the sensor setup is shown in the bottom left corner.

• 1x Robosense RS-LiDAR-32, 32 vert. layers, 360° FOV,
3 cm accuracy @200 m range

• 1x Basler ace acA1920-50gc, 1920×1200, Sony IMX174
with 16 mm lens

• 1x Emlid Reach RS2+ multi-band RTK GNSS receiver
• 1x XSENS MTi-30-2A8G4 IMU

3.2. Sensor calibration and registration

We synchronize the cameras and LiDARs in the spatial and
temporal domain. First, we determine the intrinsic camera
parameters and the radial and tangential image distortions
by using a checkerboard target. We then calibrate the road-
side LiDAR with the roadside cameras by picking 100-point
pairs in the point cloud and camera image. Extrinsic param-
eters (rotation and translation) are calculated by minimizing
the reprojection error of 2D-3D point correspondences [25].
We follow the same procedure for onboard camera-LiDAR
calibration. Finally, we calibrate the onboard LiDAR to the
roadside LiDAR. This spatial registration is done by first
estimating a coarse transformation. We pick ten 3D point
pairs in each point cloud and minimize their distance using
the least squares method. Then, we apply the point-to-point
Iterative Closest Point (ICP) algorithm [4] to get the fine
transformation between the point clouds.

We label the vehicle and infrastructure point clouds af-
ter registering them. The coarse registration was done by
measuring the GPS position of the onboard LiDAR and the
roadside LiDAR. Then, we transform every 10th onboard
point cloud to the coordinate system of the infrastructure
point cloud. The fine registration was done by applying
the point-to-point ICP to get an accurate V2I transformation
matrix. All rotations of the point cloud frames in between
are interpolated based on the spherical linear interpolation
(SLERP) [28] method:

SLERP (q0, q1, t) = q0(q
−1
0 q1)

t, (1)

where q0 and q1 are the quaternions representing the ro-
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Table 2. Evaluation results (mAPBEV and mAP3D) of
CoopDet3D on our TUMTraf-V2X test set in south2 FOV.

Config. mAPBEV ↑ mAP3D ↑
Domain Modality Easy↑ Mod.↑ Hard↑ Avg.↑
Vehicle Camera 46.83 31.47 37.82 30.77 30.36
Vehicle LiDAR 85.33 85.22 76.86 69.04 80.11
Vehicle Cam+LiDAR 84.90 77.60 72.08 73.12 76.40
Infra. Camera 61.98 31.19 46.73 40.42 35.04
Infra. LiDAR 92.86 86.17 88.07 75.73 84.88
Infra. Cam+LiDAR 92.92 87.99 89.09 81.69 87.01
Coop. Camera 68.94 45.41 42.76 57.83 45.74
Coop. LiDAR 93.93 92.63 78.06 73.95 85.86

Coop. Cam+LiDAR 94.22 93.42 88.17 79.94 90.76

tations of the start and end frames and t ∈ [0, 1]. Translation
vectors T0 and T1 were obtained using linear interpolation:

T(t) = T0 + t(T1 −T0). (2)

This dual interpolation strategy ensures that the estimated
transformations between the frames are smooth and ge-
ometrically accurate, thus adhering closely to the actual
movements of the vehicle over time.

3.3. Data selection and labeling

We selected the data based on challenging traffic scenar-
ios, like U-turns, tailgate events, and traffic violation ma-
neuvers. Besides the high traffic density of 31 objects per
frame, we selected frames with high-class coverage. We
selected 700 frames during sunny daytime and 100 frames
during cloudy nighttime for labeling. The camera and Li-
DAR data were recorded into rosbag files at 15 Hz and 10
Hz, respectively. We extracted and synchronized the data
based on ROS [27] timestamps and labeled it with our 3D
BAT (v24.3.2) annotation tool1. We improved the 3D BAT
[45] baseline labeling tool to label 3D objects faster and
more precisely with a one-click annotation feature. The an-
notators were instructed to label traffic participants while
examining the images. Objects are still labeled, even if they
have no 3D points inside, but are visible in the images. Ex-
tremities (e.g., pedestrian limbs) are included in the bound-
ing box, but side mirrors of vehicles aren’t. If a pedestrian
carries an object, that object is included in the bounding
box. If two or more pedestrians are carrying an object, only
the box of one will include the object. After labeling, each
annotator checked the work of other annotators manually
frame-by-frame. When errors were found, the original an-
notator was notified, and they fixed it. This helps ensure
that the labels in our dataset are high quality.

3.4. Data structure and format

We record eight different scenes, each 10 sec. long, from
vehicle and infrastructure perspectives using nine sensors

1https://github.com/walzimmer/3d-bat

Table 3. Evaluation results of infrastructure-only CoopDet3D vs.
InfraDet3D [47] on TUMTraf Intersection test set [48]. South 1
and South 2 refer to sensors covering different FOVs.

mAP3D ↑
Model FOV Modality Easy↑ Mod.↑ Hard↑ Avg.↑
InfraDet3D south 1 LiDAR 75.81 47.66 42.16 55.21
CoopDet3D south 1 LiDAR 76.24 48.23 35.19 69.47
InfraDet3D south 2 LiDAR 38.92 46.60 43.86 43.13
CoopDet3D south 2 LiDAR 74.97 55.55 39.96 69.94
InfraDet3D south 1 Cam+LiDAR 67.08 31.38 35.17 44.55
CoopDet3D south 1 Cam+LiDAR 75.68 45.63 45.63 66.75
InfraDet3D south 2 Cam+LiDAR 58.38 19.73 33.08 37.06
CoopDet3D south 2 Cam+LiDAR 74.73 53.46 41.96 66.89

and split the data into a train (80%), val. (10%), and test
(10%) set. We use stratified sampling to distribute all sets’
object classes equally (see Fig. 6a). Labels are provided in
the ASAM OpenLABEL [13] standard.

3.5. Dataset development kit

We provide a devkit to work with our dataset. In addition to
generating the data statistics, it provides modules for multi-
class stratified splitting (train/val/test), point cloud registra-
tion, loading annotations in OpenLABEL format, evalua-
tion of detection and tracking results, pre-processing steps
such as point cloud filtering, and post-processing such as
bounding box filtering. The statistics (Fig. 4, 5, and 6) were
created using our devkit. It also contains modules to con-
vert the labels from OpenLABEL to KITTI or our custom
nuScenes format with timestamps instead of tokens and vice
versa. This devkit enables users to migrate their models and
make them compatible with our dataset format. We release
our devkit2 under the MIT license and the dataset under the
Creative Commons (CC) BY-NC-ND 4.0 license.

4 . Benchmark
We propose CoopDet3D, an extension of BEVFusion [23]
and PillarGrid [2] for deep cooperative multi-modal 3D ob-
ject detection and benchmark it on TUMTraf-V2X mini.

4.1. Evaluation metrics

The accuracy is measured in terms of the mean average pre-
cision (mAP). Two types of mAP measures are used: BEV
mAP considers the BEV center distance, and the results are
obtained using the same evaluation methodology used in
BEVFusion, which in turn uses the evaluation protocol of
nuScenes [6]. Similarly, the 3D mAP measure considers
the intersection in 3D, and the results are obtained using the
evaluation script of our TUM Traffic dataset devkit. The
runtime is evaluated using frames per second (FPS) as the
metric and the results were obtained by measuring the time

2https://github.com/tum-traffic-dataset/tum-traffic-
dataset-dev-kit
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Figure 4. Our TUMTraf-V2X dataset contains 30k 3D box labels in total and is balanced among nine different object classes. (a) Cars
(14,633) and pedestrians (5,276) are highly represented in the dataset. (b) 3D box labels contain, on average 625 points inside which shows
the density of the labeled objects. The BUS class has the highest point density. (c) All traffic participants are tracked for 39 m on average.
Emergency vehicles have the highest average track length of 128 m, whereas the CAR class contains a max. track length of 174 m.
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Figure 5. Our dataset was recorded at a crowded intersection with many left and right turns. (a) Most of the vehicles (7,559) are driving in
the east direction (0 degrees). (b) 3D boxes were labeled up to 200 m range and are very dense between 10 and 60 m. (c) The visualization
of BEV tracks shows where pedestrians and bicycles are crossing the road.
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Figure 6. (a) Most 3D box labels contain between 1 and 200 3D points inside, with an average of 434 3D points, excluding empty
boxes. Objects that were close to both LiDAR sensors even contained up to 18k 3D points. (b) Frames contain between 15 and 45 traffic
participants, with an average of 29. (c) Objects were tracked up to 170 m, and the average track length is 39.35 m.
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Figure 7. Qualitative results on the TUMTraf-V2X Cooperative Perception test set. The first row shows the inference results of the onboard
(vehicle-only) camera-LiDAR fusion with 23 detected objects. In the second row, the results of the cooperative vehicle-infrastructure
camera-LiDAR fusion are visualized. Here, all 25 traffic participants could be detected with the support of roadside sensors.

Table 4. Ablation study on cooperative 3D object detection with
11 combinations of camera and LiDAR backbones. The best trade-
off between speed and accuracy is highlighted in gray. ND = non-
deterministic, TS = TorchSparse, ⟳ = retrained. VRAM is in GiB.

Backbone Configuration mAPBEV ↑ FPS↑ VRAM↓
VoxelNet ND + SwinT 93.47 6.30 6.69
VoxelNet ND + YOLOv8 s 92.94 7.24 6.39
VoxelNet TS + SwinT 93.51 8.84 4.61
VoxelNet TS + YOLOv8 s 92.94 10.66 4.28
VoxelNet TS + YOLOv8 s ⟳ 94.31 10.66 4.28
PointPillars 512 + Swin T 94.43 9.00 4.94
PointPillars 512 + YOLOv8 s 94.27 11.14 4.63
PointPillars 512 + YOLOv8 s ⟳ 94.25 11.14 4.63
PointPillars 512 2x + Swin T 92.79 9.06 4.94
PointPillars 512 2x + YOLOv8 s 94.16 11.20 4.63

PointPillars 512 2x + YOLOv8 s ⟳ 94.22 11.20 4.63

needed by the model to run one full inference, including
data preprocessing and voxelization. The first five iterations
are skipped as a warmup since they are usually consider-
ably slower than the average. Finally, the complexity of the
model is measured in terms of the maximal VRAM usage
across all GPUs during training and testing.

4.2. CoopDet3D model

Our CoopDet3D uses a BEVFusion-based backbone for
camera-LiDAR fusion on the vehicle and the infrastructure
sides separately to obtain the vehicle and infrastructure fea-
tures. The best backbone for image and point cloud fea-
ture extraction was chosen through multiple ablation stud-
ies. Then, inspired by the method proposed by PillarGrid
[2], an element-wise max-pooling operation is proposed to
fuse the resulting fused camera-LiDAR features of vehicle
and infrastructure together. Finally, the detection head from
BEVFusion is used for 3D detection from the fused feature.

The architecture of CoopDet3D is shown in Fig. 2.
First, we disable the camera feature extraction nodes and

train the LiDAR-only model for 20 epochs. Then, we use
pre-trained weights for the cooperative model and fine-tune
the entire model for eight further epochs. Hyperparameter
tuning revealed that the default hyperparameters of BEV-
Fusion [23] gave the best results, and such were not modi-
fied. The preprocessing steps are also the same as for BEV-
Fusion, but we change the point cloud range to [−75, 75]
in the x- and y-scale and [−8, 0] in the z-scale since the
dataset used in this case is different. Furthermore, we use
3x NVIDIA RTX 3090 GPUs with 24 GB VRAM for train-
ing and a single GPU for evaluation. We open-source our
model and provide pre-trained weights3.

4.3. Experiments and ablation studies

The objective of these experiments is to highlight the im-
portance of our V2X multi-viewpoint dataset as opposed to
single-viewpoint datasets. As such, we conduct multiple ex-
periments and ablation studies with data obtained from each
viewpoint and compare the results on the proposed model.

Ablation on viewpoint and modality. We conduct multi-
ple experiments with all possible combinations of a) view-
points: vehicle-only, infrastructure-only, cooperative, and
b) modalities: camera-only, LiDAR-only, and camera-
LiDAR fusion. Table 2 shows the mAP achieved by
CoopDet3D for each of these combinations.

We observe that the results follow a general pattern of
cooperative performance being better than infrastructure-
only, which is, in turn, better than vehicle-only. Further-
more, fusion models perform better than LiDAR-only mod-
els, which in turn are better than camera-only models. Fig-
ure 7 shows qualitative results between our vehicle-only

3https://github.com/tum-traffic-dataset/coopdet3d
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camera-LiDAR fusion model and our cooperative vehicle-
infrastructure camera-LiDAR fusion model. Again, we ob-
serve from these samples that the cooperative perception
model is able to detect 25 traffic participants, whereas the
vehicle-only model is only able to detect 23 objects due to
occlusions and a limited field of view.

Ablation on fusion level. We compare our CoopDet3D
model to the current SOTA camera-LiDAR fusion method
InfraDet3D [47] on the TUMTraf Intersection test set [48].
The proposed method uses deep fusion, whereas the In-
fraDet3D method is a late fusion method. Table 3 shows the
performance of our model against InfraDet3D. The results
show that the proposed deep fusion method outperforms the
SOTA late fusion model in all metrics, except in the hard
difficulty in LiDAR-only mode. Furthermore, Fig. 8 shows
two sample images taken during day and nighttime, wherein
deep fusion again outperforms late fusion.

We note that these experiments were conducted in an
offline setting, disregarding other considerations for sim-
plicity. However, when deploying it in real life, factors
such as the transmission bandwidth should also be consid-
ered. Since we observed that deep feature fusion generally
leads to higher efficacy, the V2I transmissions should con-
tain these features instead of infrastructure bounding boxes.

Ablation on backbones. As an ablation study, we present
the results of the experiments to find the best backbone and
model configuration for the cooperative camera-LiDAR fu-
sion model. For the camera backbone, SwinT [22] and
MMYOLO’s [8] implementation of YOLOv8 [16] were
considered. For the LiDAR backbone, VoxelNet [44] and
PointPillars [19] were considered. In addition, VoxelNet
was implemented with two different backends, namely SP-
Conv v2 and Torchsparse [31]. For PointPillars, two grid
sizes are considered 512× 512 for both train and test grids
(PointPillars 512) and 512×512 train grid with 1024×1024
test grid (PointPillars 512 2x). The results of these experi-
ments are shown in Table 4.

The results show that only models that use any combi-
nation of VoxelNet Torchsparse, both PointPillars variants,
and YOLOv8 are able to run above 10 FPS. From these con-
figurations, we choose PointPillars 512 2x with YOLOv8
as the best configuration for all the above experiments as it
achieves the best results across all the ablation studies. This
is a promising result since we also know that this backbone
configuration is able to run in real-time (11.2 FPS) on an
RTX 3090 without using TensorRT acceleration.

An interesting observation is that utilizing pre-trained
weights for transfer learning of YOLOv8 is not always ben-
eficial, as the results from PointPillars 512 + YOLOv8 s
show. This is likely because the pre-trained weights were
from MS COCO [21], and they have a very different data
domain compared to our dataset. Since MS COCO is also

Figure 8. Qualitative results of our CoopDet3D (left) and the In-
fraDet3D (right) model on the TUMTraf Intersection test set dur-
ing day and nighttime. Detected objects marked with a red circle
were classified correctly by CoopDet3D.

much larger than our dataset in terms of camera images, re-
training harms the performance of the model slightly.

In terms of efficiency, the goal of these experiments was
to verify that the proposed CoopDet3D model with the best
configuration provides the highest accuracy while also be-
ing able to run in real-time (minimum of 10 Hz). Further-
more, it should also be feasible to train the model on a high-
performance GPU and perform inference on a mid-range
consumer GPU deployable on an edge device. The results
concerning the VRAM usage during inference show that the
complexity of the model makes this feasible.

5 . Conclusion and future work

This work proposes the TUMTraf-V2X dataset, a multi-
modal multi-view V2X dataset for cooperative 3D object
detection and tracking. Our dataset focuses on challeng-
ing traffic scenarios at an intersection and provides views
from the infrastructure and the ego vehicle. To benchmark
the dataset, we propose CoopDet3D – a baseline model for
cooperative perception. Experiments show that cooperative
fusion leads to higher efficacy than its unimodal and single-
view camera-LiDAR fusion counterparts. Furthermore, co-
operative fusion leads to an improvement of +14.3 3D mAP
compared to vehicle-only perception, highlighting the need
for V2X datasets. Finally, we provide our 3D BAT v24.3.2
labeling tool and devkit to load, parse, and visualize the
dataset. It also includes modules for pre- and postprocess-
ing and evaluation. Future efforts will integrate this plat-
form into online environments, enabling a broader range of
infrastructure-based, real-time perception applications.
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