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ABSTRACT

Patient data is widely used to estimate heterogeneous treatment effects and un-
derstand the effectiveness and safety of drugs. Yet, patient data includes highly
sensitive information that must be kept private. In this work, we aim to estimate
the conditional average treatment effect (CATE) from observational data under
differential privacy. Specifically, we present DP-CATE, a novel framework for
CATE estimation that is doubly robust and further ensures differential privacy of
the estimates. Our framework is highly general: it applies to any two-stage CATE
meta-learner with a Neyman-orthogonal loss function, and any machine learning
model can be used for nuisance estimation. We further provide an extension of
our DP-CATE where we employ RKHS regression to release the complete dou-
bly robust CATE function while ensuring differential privacy. We demonstrate
our DP-CATE across various experiments using synthetic and real-world datasets.
To the best of our knowledge, we are the first to provide a framework for CATE
estimation that is doubly robust and differentially private.

1 INTRODUCTION

Machine learning (ML) is increasingly used for estimating treatment effects from observational data
(e.g., Baiardi & Naghi, 2024; Braun & Schwartz, 2024; Ellickson et al., 2023). Yet, this involves
sensitive information about individuals, and, hence, methods are often needed to ensure privacy.

Motivating example: Electronic health records (EHRs) are commonly used to estimate treatment
effects and thus to personalize care. Yet, EHRs involve highly sensitive data about patients (Brothers
& Rothstein, 2015). Hence, many regulations, such as the US Health Insurance Portability and
Accountability Act (HIPAA), mandate strong privacy guarantees for machine learning in medicine.

Data

PublicTrusted data curator

Private meta learner

Stage 1 Stage 2

No inference 
possible

Figure 1: Setting: CATE estimation under DP.
Only the trusted data curator can access the data,
while published CATE estimates do not allow pri-
vate information about individuals to be inferred.

To ensure the privacy of information contained
in the training data of machine learning mod-
els, multiple privacy mechanisms have been in-
troduced. Arguably, the most common mecha-
nism is differential privacy (DP) (Dwork, 2006;
Dwork & Lei, 2009). DP builds upon the idea
of injecting noise into algorithms so that suf-
ficient information about the complete popu-
lation in a dataset is kept while safeguarding
sensitive information about individuals. Impor-
tantly, DP enjoys stringent theoretical guaran-
tees and is nowadays widely used across differ-
ent fields in machine learning (e.g., Abadi et al., 2016; Bassily et al., 2014; Wang et al., 2019).

However, methods for treatment effect estimation under DP are scarce. Existing work has primarily
focused on the average treatment effect (ATE) (e.g., Lee et al., 2019; Ohnishi & Awan, 2023).
However, the ATE fails to capture important variations in how different subgroups or individuals
respond to treatments. Therefore, many applications such as personalized medicine are interested in
the conditional average treatment effect (CATE) (e.g., Ballmann, 2015; Feuerriegel et al., 2024).

In this paper, we aim at CATE estimation from observational data under DP (see Fig. 1). Specifically,
we propose DP-CATE, an output perturbation mechanism for doubly robust CATE estimation that
satisfies differential privacy. Doubly robust estimators are generally preferred over standard CATE
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estimators, as they remain consistent even when either the outcome or the treatment selection model
(i.e., the propensity model) is not correctly specified (e.g., Morzywolek et al., 2023).1 Our DP
framework is highly flexible and can be combined with all weighted doubly robust two-stage CATE
learners, such as the R-learner (Nie & Wager, 2020). Further, our framework is model-agnostic and
can be used with any ML model as a baselearner. To the best of our knowledge, we are the first to
provide a framework for doubly robust CATE estimation under DP. DP-CATE is designed for two
use cases relevant in practice:

1 Finitely-many queries: Reporting research findings about medical studies that involve sensitive
data requires that finitely many CATE values are estimated, such as treatment effects of a drug
for various patient characteristics. In this setting, we treat the different CATE estimates as a
potentially high-dimensional vector, for which we derive DP guarantees. Interestingly, we later
employ a largely unexplored connection between model robustness and privacy, which allows us
to base our DP-CATE for the doubly robust meta-learners on efficient influence functions (→ our
Theorem 1).

2 Functional query: Medical researchers may want to have access to the complete CATE function.
This is relevant when deploying a CATE function in clinical decision support systems where
predictions about treatment effects are made for every incoming patient. Hence, this requires
querying the CATE function a large number of times but where the exact number is a priori un-
known. In this case, the respective CATE vector would have an infinite dimension, and, as a re-
sult, privately releasing the complete CATE function cannot be performed in the same manner as
in the first use case. As a remedy, we derive a tailored privacy framework for functional queries,
where we make use of tools from functional analysis to calibrate a Gaussian process, which we
then add to the CATE function estimated through RKHS regression (→ our Theorem 2).

Why is it non-trivial to derive privacy mechanisms for CATE estimation? Common DP strategies
include perturbations of either the data, model, or output (e.g., Abadi et al., 2016; Chaudhuri et al.,
2011). Yet, a naı̈ve application of such perturbations would naturally violate causal assumptions or
lead to CATE estimates that are biased. Furthermore, the CATE is an unobservable, functional quan-
tity. However, common privatization mechanisms are only developed for vector-valued quantities.
Thus, it is not possible follow the standard procedure of adding calibrated noise to the algorithm.
Rather, we have to derive a novel, non-trivial framework that is tailored to our setting.

Our contributions:2 (1) We propose a novel framework for CATE estimation that is differentially
private and doubly robust. (2) We extend our framework to privately release both CATE estimates
and even the complete CATE function. (3) We demonstrate our proposed framework for differen-
tially private CATE estimation in experiments across various datasets.

2 RELATED WORK

We provide a brief overview of the different literature streams relevant to our work, namely, (i) CATE
estimation, (ii) differential privacy, and (iii) works that adapt DP to treatment effect estimation.

CATE estimation: Popular methods for estimating CATE from observational data are the doubly ro-
bust meta-learners, such as the DR-learner (Kennedy, 2023a; van der Laan, 2006) and the R-learner
(Nie & Wager, 2020). A strength of meta-learners is that these are model-agnostic approaches and
can thus be instantiated with arbitrary machine learning models (e.g., neural networks). The learn-
ers have several additional benefits: (i) They are robust to model-misspecification of the first-stage
nuisance estimators due to the Neyman-orthogonal loss function, which ensures first-order insensi-
tivity to small perturbations. Hence, the meta-learners are also said to be debiased. (ii) The learners
achieve quasi-oracle efficiency, even if the nuisance functions are estimated at slower rates.3 As
a result, the doubly robust estimators are asymptotically equivalent to the oracle estimator (= the
one that has access to the oracle nuisance functions), thereby mitigating the finite-sample bias aris-
ing from the miss-specification of the nuisance functions (Mackey et al., 2018; Morzywolek et al.,
2023). (iii) Additionally, the R-Learner is insensitive to slight overlap violations due to its inherent
weighting of the pseudo-outcomes.

1For an introduction to the double-robustness property, see Section 3.1.
2All codes are available via our GitHub repository
3Informally, quasi-oracle efficiency means that the target model is learned almost equally well with either

the estimated nuisance functions or the ground truth.
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In this paper, we thus focus on differential privacy for doubly robust meta-learners. Throughout
the paper, we derive our DP-CATE framework for the R-learner due to the above benefits. We later
provide an extension to the DR-learner in Supplement B.

Differential privacy: DP ensures that the release of aggregated results does not reveal information
about individual data samples, typically with strict theoretical results (Dwork, 2006; Dwork & Lei,
2009). As a result, DP has been employed in various fields of machine learning (e.g., Abadi et al.,
2016; Bassily et al., 2014; Wang et al., 2019), but typically outside of CATE estimation. We discuss
different strategies on how DP can be achieved in Supplement A.

In our setting, we later adopt output perturbation to CATE estimation. Output perturbation has two
clear advantages in our task: (i) it can be applied to any machine learning model after training,
which naturally fits the idea of meta-learners from above as model-agnostic approaches; and (ii) it
leaves the original objective and the data unchanged. The latter is crucial because changes to the
input or the objective (i.e., the estimand) arguably could violate causal assumptions and lead to
biased results, respectively. However, an off-the-shelf application of output perturbation to CATE
estimation is not possible due to various challenges (see Sec. 3.4); rather, a tailored approach must
be derived for output perturbation of CATE estimation in order for privacy guarantees to hold.

DP in treatment effect estimation: The existing literature on differentially private methods for
treatment effect estimation is sparse. We provide an overview in Fig. 2, where we group prior works
by the underlying estimand: •Average treatment effect (ATE). Many works focus on privately esti-
mating the ATE (e.g., Javanmard et al., 2024; Lee et al., 2019; Yao et al., 2024). Yet, the ATE is a
much simpler causal quantity than the CATE. The ATE makes population-wide estimates and, there-
fore, unlike the CATE, does not allow to make individualized predictions about treatment effects.

•Conditional average treatment effect (CATE). The few works aimed at DP for CATE estimation
have clear limitations (Fig. 2): (i) they are either restricted to interventional data from a randomized
control trial and thus not applicable to observational data (Betlei et al., 2021); (ii) are only applicable
to binary outcomes (Guha & Reiter, 2024); or (iii) require special private base learners for running
the overall CATE estimation algorithm and are thus not model-agnostic (Niu et al., 2022). In partic-
ular, the latter work (Niu et al., 2022) is restricted to explainable boosting machines. Therefore, it is
not applicable to other explainable models (e.g., linear regression or regression trees). Furthermore,
it is not applicable to neural networks. In sum, none of the above methods provides a method for
CATE estimation under DP where both observational data and different ML models can be used.

ATE

CATE
Betlei et al. (2017)

Niu et al. (2019)

Ours

Observational 
data

Model / data
agnostic*References

e.g., Javanmard et. al (2024), Lee et al. (2019) 

* Model agnostic methods can be applied to any ML model. Data agnostic implies
  no restrictions on the data structure (e.g., binary outcomes). 

Guha & Reiter (2024)

Figure 2: Comparison of relevant literature.

Research gap: So far, a DP framework for
CATE estimation from observational data with
general meta-learners is missing. We are thus
the first to propose a framework for CATE esti-
mation that is adheres to DP and doubly robust.

3 PROBLEM FORMULATION

Notation: Throughout our work, we write ran-
dom variables in capital letters X with realiza-
tions x. We denote the probability distribution over X by PX , where we omit the subscript whenever
it is apparent from the context. We denote the probability mass function by P (x) = P (X = x) for
discrete X and the probability density function w.r.t. the Lebesgue measure by p(x). We base our
analysis on the potential outcomes framework (Rubin, 2005) and denote the potential outcome of
intervention a by Y (a).

Setting: We consider a dataset D := {(Xi, Ai, Yi)}i=1,...,n, consisting of observed confounders X
in a bounded domain X , a binary treatment A ∈ {0, 1}, and a bounded outcome Y ∈ Y , where
Zi := (Xi, Ai, Yi) ∼ P i.i.d., Zi ∈ Z , and X ,Y have bounded domains. Note that Y can be
discrete or continuous. Let π(x) := P (A = 1 | X = x) define the propensity score and µ(x, a) :=
E[Y | X = x,A = a] the outcome function.

Estimand: Our objective is to estimate the conditional average treatment effect (CATE) τ(x) for
specific groups of samples with covariates X = x: We make the standard assumptions for causal
treatment effect estimation: positivity, consistency, and unconfoundedness (e.g., Curth & van der
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Schaar, 2021; Feuerriegel et al., 2024; Rubin, 2005).4 Then, CATE is identifiable as
τ(x) := E[Y (1)− Y (0) | X = x] = µ(x, 1)− µ(x, 0). (1)

In our work, we aim to estimate τ(x) by (i) using doubly robust meta-learners (Sec. 3.1) and (ii) by
ensuring differential privacy (Sec. 3.2), which we briefly review in the following.

3.1 DOUBLY ROBUST META-LEARNERS FOR CATE ESTIMATION

To estimate the CATE from Equation 1, the common approach is to regress the difference in the
potential outcomes Y (1)− Y (0) on the confounders X . Thus, one considers the population risk for
a working model g ∈ G : X 7→ R

LP (g, λ(π)) = E[λ(π(X)) ((µ(X, 1)− µ(X, 0))− g(X))2] (2)
with respect to a weight function λ(·) of the propensity score to obtain the minimizer g∗ over the
L2 Hilbert space (Hirano et al., 2003; Morzywolek et al., 2023). However, LP cannot be directly
estimated and, subsequently, minimized given the data D, as it depends on the unknown nuisance
functions, π and µ. We can employ the estimated nuisance functions, π̂ and µ̂, but then, their
estimation errors propagate into the errors of estimation and, thus, minimization of LP .

A popular approach to circumvent the above problem is to use doubly robust meta-learners. For-
mally, such meta-learners operate in two stages (e.g., Kennedy, 2023b; Nie & Wager, 2020). In the
first stage, the meta-learners estimate nuisance functions η̂ = (π̂, µ̂), and, in the second stage, we
minimize the adapted Neyman-orthogonal population risk function

LP (g, η, λ(π)) =
1

E[λ(π(X))]
E
[
ρ(A, π(X)) (ϕ(Z, η, λ(π(X)))− g(X))2

]
(3)

with ρ(a, π) := (a− π(x))λ
′
(π(x)) + λ(π(x)) and (4)

ϕ(z, η, λ(π)) :=
λ(π(x))

ρ(a, π(x))

a− π(x)

π(x) (1− π(x))
(y − µ(x, a)) + µ(x, 1)− µ(x, 0), (5)

where η̂ is used in place of η (Morzywolek et al., 2023). In the following, we denote the estimated
population risk, LP , as a loss dependent on the data D, LD.

Later, we use the R-learner Nie & Wager (2020), which is given by λR(π) = π(x) (1−π(x)), due to
its theoretical advantages (e.g., Neyman-orthogonality and oracle-efficiency). Importantly, doubly
robust meta-learners such as the R-learner achieve state-of-the-art performance (Curth & van der
Schaar, 2021), and the property of doubly robust makes the models insensitive to misspecification
(e.g., Curth & van der Schaar, 2021; Kennedy, 2023b).

3.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) ensures that the inclusion or exclusion of data from any individual data
does not significantly affect the estimated outcome Dwork (2006); Dwork & Lei (2009). For a
given privacy budget ε, the notion probability density of any outcome y on dataset D ∈ Zn is ε-
indistinguishable from the probability density of the same outcome y stemming from a neighboring
dataset D

′ ∈ Zn with a probability of at least 1 − δ. The datasets D and D
′

are called neighbors
if their Hamming distance equals one, i.e., dH(D,D

′
) = 1. We will refer neighboring D,D

′
as

D ∼ D
′
.

Definition 1 (Differential privacy (Dwork & Lei, 2009)). A function fD : X d 7→ Rd trained on
dataset D is (ε, δ)-differentially private if, for all neighboring datasets D, D

′ ∈ Zn and all mea-
surable S ⊆ Rd , it holds that

P (fD(x) ∈ S) ≤ exp(ε) · P (fD′ (x) ∈ S) + δ for all x ∈ X d. (6)

One common strategy to ensure DP is output perturbation (Chaudhuri et al., 2011; Zhang et al.,
2022), which we later tailor to CATE estimation as part of our framework. Intuitively, one perturbs
the prediction in a way that the predictions resulting from two neighboring databases cannot be dif-
ferentiated. It has been shown in the literature (e.g., Dwork & Roth, 2014) that adding appropriately
calibrated zero-centered noise (e.g., Gaussian noise) to the prediction is sufficient to ensure differ-
ential privacy for traditional, supervised machine learning tasks (but not for CATE estimation, as
we discuss later). This is stated in the following Gaussian noise privacy mechanism.

4We give more details on the standard causal assumptions and CATE estimation in Supplement A.3.
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Definition 2 (Gaussian noise privacy mechanism (Dwork & Roth, 2014)). Let f : X d 7→ Rd be
a function with l2-sensitivity ∆2(f) = supD∼D′,x∈Xd ||fD(x) − fD′ (x)|| and U ∼ N (0, σId) for
σ ≥ 1

ε

√
2 ln (1.25/δ) ∆2(f). Then, the output perturbation mechanism M(D, f , ε) = fD(x) +U

preserves (ε, δ)-differential privacy.

Definition 2 describes how to ensure DP for a given prediction. However, this requires estimating
the training sensitivity ∆2(f) of the employed model f , which, for general function classes such as
neural networks, is infeasible. Hence, this motivates our custom framework later.

3.3 PROBLEM STATEMENT

In our work, we aim at doubly robust CATE estimation under differential privacy. Specifically, we
aim to derive a (ε, δ)-differentially-private version of g∗D = argmin

g∈G
LD(g, η̂, λ(π̂)) of the form

g∗
DP(x) = g∗

D(x) + r(ε, δ,∆2(g
∗
D)) ·U, (7)

where g∗
D(x) = (g∗D(x1), . . . , g

∗
D(xd)), U ∼ N (0, Id) and where r(·) is a calibration function.

Importantly, we consider arbitrary working model classes G, such as all parameterizations of a
given neural network architecture.

Our problem statement – and thus our framework – is intentionally flexible. (1) We assume that the
propensity score is not known and, instead, is estimated from observational data. (2) We focus on
doubly robust meta-learners because these are model-agnostic and can thus be seamlessly instanti-
ated with any machine learning model, including neural networks. (3) Our derivations are general
and, therefore, apply to any orthogonal loss of the form in Equation 3. Below, we present our DP-
CATE framework for the R-learner due to its state-of-the-art performance. We additionally provide
an extension of our framework for the DR-learner in Supplement B.

3.4 CHALLENGES IN DIFFERENTIALLY PRIVATE CATE ESTIMATION

The above task is highly non-trivial due to three main challenges:
1 Causal assumptions: To point-identify the CATE, one must make the standard causal assump-

tions of positivity, consistency, and unconfoundedness (Rubin, 2005). Yet, privacy mechanisms
perturb different parts of the data (or the model), which will arguably violate the causal assump-
tions and thus lead to biased estimates if not properly accounted for.

2 Fundamental problem of causal inference: Unlike supervised prediction tasks for observed
outcomes, CATE estimation requires counterfactual quantities Y (a). However, one observes
only one outcome per individual, while the estimation target CATE τ(x) is never observed
(Pearl, 2010). Thus, estimation errors can neither be observed. Blindly introducing noise to the
estimation setup to guarantee DP might thus bias the CATE estimate in an uncontrollable way.

3 CATE is a function: Many privacy mechanisms (e.g., Dwork, 2006; Nissim et al., 2007) apply
only to point estimates f(x) or vectors of point estimates f(x), but not to functions f . Thus,
standard privacy mechanisms are generally not applicable to the CATE, which is a function. It
is unclear how to provide a model-agnostic CATE learner that returns a private function.

4 OUR FRAMEWORK: DP-CATE

Overview: We now present our DP-CATE framework which is aimed at CATE estimation for doubly
robust meta-learners under (ε, δ)-differential privacy. To address the challenges from above, we
employ output perturbation, which is highly suitable to our purpose for two reasons. First, it allows
us to ensure that causal assumptions are fulfilled even after perturbation (→ challenge 1 ). Second,
it allows us to retain the abilities of existing CATE methods designed to address challenge 2 .

Use cases: Our framework comes in two variants, relevant for different use cases in medical practice:

1 DP-CATE for finite queries (→ Sec. 4.1): Here, we aim to report a number d of CATE es-
timations (e.g., treatment effects across different age groups). ⇒ How do we solve this? We
draw upon the often overlooked shared property of robustness and privacy of machine learn-
ing models in terms of insensitivity to outliers and small measurement errors (Dwork & Lei,

5
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2009). For this, we propose to calibrate the noise added during the perturbation with a func-
tion r(·) of the influence function of the meta-learner. Importantly, our approach preserves the
double-robustness guarantees of the original non-private model and is fully model-agnostic.

2 DP-CATE for functional queries (→ Sec. 4.2): Here, we release an estimate g∗DP of the com-
plete CATE function τ (→ challenge 3 ), which can then be queried arbitrarily often (e.g, as in
clinical decision support systems). Yet, this is non-trivial: Existing output perturbation mecha-
nisms only apply to scalar or finite-dimensional vector-valued outputs. Therefore, the above is
only valid if the overall number of queries made to the algorithm is both finite and known before
the perturbation. ⇒ How do we solve this? We derive a non-trivial output perturbation method
based on Gaussian processes that is valid for all functional CATE estimates solving Equation 3,
as long as the estimation in the second stage is performed through a Gaussian kernel regression.

4.1 DP-CATE FOR A FIXED NUMBER OF QUERIES

In this variant of DP-CATE, a total number of d CATE estimates should be released. Here, the
number of queries, d, to the CATE function is known a priori. For notational simplicity, we thus can
simply rewrite the d separate CATE estimates as a d-dimensional vector. We employ bold letters
in the following section to emphasize that we are interested in a vectorized version of the CATE
meta-learner g∗D, i.e., g∗

D(x) ∈ Rd.

We now derive a calibration function r(·) that is applicable to any doubly robust CATE meta-learner.
Then, we employ r(·) to calibrate a noise vector U with respect to the privacy budget (ε, δ) to the
model sensitivity. Finally, we perturb g∗

D(x) to fulfill DP through g∗
DP(x) = g∗

D(x) + rR(ε, δ) ·U.

For this, we borrow ideas from the literature that observed similarities between robust statistics and
differential privacy (e.g., Avella-Medina, 2021; Dwork & Lei, 2009) but which we carefully tailor
to our setting in the following. Our idea is to employ the so-called influence function (IF) of the
CATE estimation model to calibrate the noise. The IF allows us to quantify how sensitive the CATE
is when we add noise as part of our output perturbation. Intuitively, the IF describes the effect of an
infinitesimally small perturbation of the input z on the model output.
Definition 3. Let T be a functional of a distribution that defines the parameter of interest, θ = T (F ).
The influence function (IF) of T at z under distribution F is defined as

IF(z, T ;F ) := lim
t7→0

T ((1− t)F + tδz)− T (F )

t
, (8)

where δz denotes the Dirac-delta functional at z. The gross-error sensitivity of T at z under F is
given by the supremum of the Euclidean norm of the influence functions

γ(T, F ) := sup
z∈Z

∥IF(z, T ;F )∥. (9)

Next, we derive the IF of doubly robust meta-learners for the CATE. Observe that T (F ) depends on
the data distribution directly through F and indirectly through the first stage functional S(F ).
Lemma 1. The IF of the CATE meta-learners described by the loss in Equation 3 is equivalent to
the IF of their second-stage estimation, i.e.,

IF((z1, z2), (g, η), F ) = IF(z2, g, F ). (10)

Proof. We prove Lemma 1 in Supplement G.

The above lemma has an important implication: the influence of the samples used for training the
nuisance estimators can be neglected when ensuring the differential privacy of the overall CATE
meta-learner. Put simply, the lemma reduces the complexity of the subsequent derivation: we only
need to focus on output perturbation for the second stage of the meta-learners (but not the first stage).

We now state our main theorem for differentially private CATE estimation with a known number d
of queries. The intuition behind how we construct the calibration function r(·) builds upon a result
in Nissim et al. (2007) in which (ε, δ)-differential privacy is achieved through calibrating noise with
respect to the smooth sensitivity of the prediction model in comparison to the commonly employed
global sensitivity from Definition 2. However, calculating the smooth sensitivity is still difficult or

6
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even infeasible for general function classes. Nevertheless, we show that the smooth sensitivity of
the doubly robust meta-learners can be upper bounded by the gross-error sensitivity γ(g, F ) of the
second stage regression (see Lemma 4 in Supplement F).

Theorem 1 (DP-CATE for finite queries). Let z := (a, x, y) define a data sample following the joint
distribution Z and η̂ = (µ̂, π̂) the estimated nuisance functions. Furthermore, let D be the training
dataset with |D| = n. For z = (a, x, y) ∈ Z we define

g∗
DP(x) := g∗

D(x) + sup
z∈Z

∥∥∥∥ρ(a, π̂(x))(ϕ(z, η̂, λ(π̂(x)))− g∗D(x))

∥∥∥∥ ·
5
√
2 ln(n) ln (2/δ)

ε n
·U,

(11)

where U ∼ N (0, Id). Then, g∗
DP(x) is (ε, δ)-differentially private.

Proof. We prove Theorem 1 in Supplement G. To do so, we first state the IF of general weighted
doubly robust meta-learners. Then, we calculate the gross-error sensitivity to show that the sample-
size-weighted sensitivity upper-bounds the smooth sensitivity of the respective learner.

We now derive an output perturbation mechanism rR(ε, δ) for the R-learner. For this, we simply
leverage the above theorem, so that we can ensure that the outputs of the R-learner fulfill DP.

Lemma 2. For the R-Learner, the d-dimensional (ε, δ)-differentially private CATE estimate is

g∗
DP(x) = g∗

D(x) + rR(ε, δ) ·U, (12)

where U ∼ N (0, Id). Specifically, the calibration function rR(ε, δ) is given by

rR(ε, δ) = sup
z∈Z

∥∥∥∥ a− π(x)
E[π(X) (1− π(X))]

(
y − µa(x) + (a− π(x)) (µ1(x)− µ0(x)− g∗R(x))

)∥∥∥∥ · c(ε, δ, n),
where c(ε, δ, n) :=

5
√

2 ln(n) ln (2/δ)

εn .

Proof. The result directly follows from Theorem 1 with the respective weighting function λ(π(x))
stated in Section 3. The influence function is derived in Lemma 5 in Supplement F.

In sum, our DP-CATE is implemented in a straightforward manner: one simply trains a meta-learner
g∗D on the dataset D, computes the CATE estimates g∗

D(x), and then transforms them into private
estimates g∗

DP(x) by using the calibration function r together with random noise U. In particular,
DP-CATE is then a consistent estimator of the treatment effect. We present more details on the
theoretical properties of DP-CATE in Supplement D.

Scalability: The computational complexity of calculating the gross error sensitivity is independent
of the size of the dataset or the number of queries. Overall, our post-hoc framework does not alter
the runtime of the ML model.

4.2 DP-CATE FOR COMPLETE CATE FUNCTIONS

In this variant of DP-CATE, we seek to privately release an estimate g of the complete CATE function
τ . Note that we cannot leverage Theorem 1 due to challenge 3 , because it is only applicable to
CATE estimates but not to complete functions. Instead, we must now derive a tailored approach.

Intuitively, we need to find (I) a type of noise and (II) a respective calibration function that does not
depend on d. More precisely, the added noise should be a function itself to guarantee privacy of
the CATE function. For (I), we follow (Hall et al., 2013) add a calibrated Gaussian process to the
predicted CATE. To start with, we first state the definition of a Gaussian process.5

Definition 4 (Gaussian process). A family of random variables {Xt}t∈T is a Gaussian process if
for any subset S ∈ T , {Xt}t∈S has a Gaussian distribution. The process is entirely determined by
its mean function m(t) := E[Xt] and covariance function K(s, t) := Cov(Xs, Xt).

5We refer to Rasmussen & Williams (2006) for an excellent, in-depth introduction to Gaussian processes.
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Now, we are left with answering question (II) from above: how to calibrate the Gaussian process
noise to fulfill the differential privacy guarantees? For this, we make the following two important
observations: (i) The Neyman-orthogonality of the loss function guarantees privacy with regard to
the data used for the nuisance estimation in terms of the sensitivity of two neighboring datasets.
Hence, we again need to simply focus on the second stage of the meta-learner. (ii) If g lies in a
reproducing kernel Hilbert space (RKHS), we can calibrate the Gaussian process noise with respect
to the RKHS norm using results from functional analysis (Hall et al., 2013). To ensure that g indeed
lies in an RKHS, we can later follow prior research (e.g., Kennedy, 2023a; Singh et al., 2024) and
model the second-stage estimation in our DP-CATE framework as a Gaussian kernel regression.

We now want to bound the difference of CATE functions trained on neighboring datasets with re-
spect to the norm of the Hilbert space. Recall that differential privacy of function f under the Gaus-
sian mechanism in Def. 2 requires knowledge about supD∼D′,x∈Xd ||fD(x)− fD′ (x)||2 to calibrate
the Gaussain noise variable. Similarly, we now require knowledge about supD∼D′ ||fD − fD′ ||H
where f specifies an RKHS regression to calibrate the Gaussian process (Hall et al., 2013). How-
ever, to the best of our knowledge, no closed-form solution for this quantity exists. We thus derive
the following lemma as an extension of Hall et al. (2013) to our setting.
Lemma 3. Let H denote the RKHS induced by the Gaussian kernel K(x, y) =

1
(
√
2πh)q

exp(−∥x−y∥2

2h2 ) for x, y ∈ Rq , and let fD be the optimal solution to the RKHS regression

min
f∈H

1

n

n∑
i=1

ℓ(f(xi), yi) + λ∥f∥H, (13)

on dataset D with |D| = n for ℓ(ŷ, y) being a convex and Lipschitz loss function in ŷ with Lipschitz
constant L. Then, we have

||fD − fD′ ||H ≤ L

λn

(√
(2π)h

)−q

. (14)

Proof. We prove Lemma 3 in Supplement G.

We now can use the above results and present our output perturbation mechanism for CATE func-
tions. To ensure DP, the meta-learners proceed as follows: (i) Stage 1: We estimate the nuisance
functions µ and π through any parametric or non-parametric method of choice. (ii) Stage 2: We
perform a Gaussian kernel regression to minimize Eq. 3. (iii) We calibrate a suitably chosen Gaus-
sian process based on Lemma 3 and add the resulting function to the CATE function. The double
robustness of our framework directly follows from (Kennedy, 2023a). We present the pseudo-code
for DP-CATE in Alg. 1. The following theorem states our desired privacy guarantee.
Theorem 2 (DP-CATE for functional queries). Let µ̂(a, x) and π̂(x) denote the nuisance estimators
trained in stage 1. Let z = (a, x, y) be a data sample from dataset D with |D| = n and x ∈ Rq . Let
H denote the RKHS induced by the kernel K(x, y) = 1√

2πh
exp(−∥x−y∥2

2h2 ), and let ℓ(·) be a convex
and Lipschitz loss function with Lipschitz constant L. Furthermore, we define g∗ as the second stage
regression solving Equation 3 via

g∗D ∈ argmin
g∈H

1

n

n∑
i=1

ℓ
[
ρ(ai, π(xi))

(
ϕ(zi, η̂, λ(π(xi)))− g(xi)

)]
+ λ∥g∥2H (15)

for ρ(a, π(x)) := (a− π(x))λ
′
(π(x)) + λ(π(x)) (16)

and ϕ(z, η, λ(π(x))) :=
λ(π(x))

ρ(a, π(x))

a− π(x)

π(x)(1− π(x))
(y − µ(x, a)) + µ(x, 1)− µ(x, 0). (17)

Furthermore, let G be the sample path of a zero-centered Gaussian process with covariance function
K(·). Then, (ε, δ)-differential privacy is guaranteed by

g∗DP := g∗D +
4L

√
2 ln (2/δ)(√

2πh
)q
λnε

·G (18)
Proof. We prove Theorem 2 in Supplement G.
We make a practical comment. The above theorem requires a convex Lipschitz loss ℓ(·). There are
many suitable loss functions (e.g., the squared loss on bounded domains, a trimmed squared loss, or
the Huber loss). For many losses, the Lipschitz constant is data-independent and directly computable
from the loss function.6 We require the second stage in the meta-learner to be a Gaussian kernel

6For example, for the L1 loss, the Lipschitz constant L equals 1; for the Huber loss, L equals the loss
parameter δ; and, for the truncated L2 loss, the constant equals the gradient at the truncation value.
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regression, which is widely used in causal inference (e.g., Kennedy, 2023a; Singh et al., 2024).
Nevertheless, our DP-CATE is still fairly flexible in that any Neyman-orthogonal meta-learner can
be used (e.g., R-learner, DR-learner) and that any ML model can be used for nuisance estimation.

Scalability: Our post-hoc privatization framework does not increase the runtime of the ML model.
Of note, the complexity of Alg. 1 is free of iterative calculations and therefore does not scale with
the number of queries d. We present an iterative version of Alg. 1 in Supplement C.

5 EXPERIMENTS

Implementation: Our DP-CATE is model-agnostic and highly flexible. Therefore, we instantiate
our DP-CATE with multiple versions of the R-leaner (Nie et al., 2021) where we vary the under-
lying base learners. Hence, we implement the pseudo-outcome regression in the second stage as a
random forest (RF) and a neural network (NN), respectively. We estimate the nuisance functions
through neural networks. This is recommended as one typically allows for flexibility in the nui-
sance functions (Curth & van der Schaar, 2021). Details on implementation and training are in
Supplement H. We emphasize again that there do not exist suitable baselines for DP-CATE. In Sup-
plement E, we compare DP-CATE against DP-EBM Niu et al. (2022) and a naı̈ve method based on
k-anonymization, yet these are designed for different settings or different objectives.

Performance metrics: As explained in Sec. 2, there are no flexible CATE meta-learners that ensure
DP. Hence, there is no suitable baseline for our task. Hence, we perform experiments to primar-
ily show the applicability of our DP-CATE across different privacy budgets. We expect that the
prediction performance will increase with the increasing privacy budget and then approach the pre-
diction performance of a non-private CATE learner. We measure the performance via the precision
in estimation of heterogeneous effect (PEHE) with regard to the true CATE (e.g., Hill, 2011).
5.1 EVALUATION ON SYNTHETIC DATASETS

Synthetic datasets: Due to the fundamental problem of causal inference, counterfactual outcomes
are never observable in real-world datasets. Therefore, we follow common practice in evaluating
our framework on synthetic datasets, which allows us to have access to ground-truth CATE and thus
to the PEHE (e.g., Kennedy, 2023a; Nie & Wager, 2020).We evaluate DP-CATE for 300 queries.
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Figure 3: Dataset 1 (finite queries). Predictions
under different base learners and privacy budgets.

We consider two settings with different treat-
ment effect complexity following the data gen-
eration mechanism in Oprescu et al. (2019).
•Dataset 1 contains two confounders from
which only one influences CATE. This set-
ting allows us to visualize the CATE function
and the effect of privatization on the prediction
for varying covariate values. •Dataset 2 con-
tains 30 confounders and higher-dimensional
influences on the CATE. Details on the data-
generating mechanism are in Supplement H.
Results for finite queries: •Dataset 1: Fig. 3
shows the predictions for different base learner specifications and different privacy budgets. We
make the following observations: (1) Our DP-CATE performs as expected: with increasing privacy
budget, the predictions become less ‘noisy’ and converge to those of the non-private CATE. (2) Our
DP-CATE shows consistent patterns for different base learners. For example, the predictions under
both RF and NN are almost identical, showing the flexibility of our framework. •Dataset 2: Fig. 5
shows now the PEHE. Note that, here, we directly compare DP-CATE for finite queries (combined
with RF and NN) and DP-CATE for functional queries (kernel regression). Again, we find that our
DP-CATE performs as expected: the PEHE decreases with increasing privacy budget and converges
against that of the non-private learner, showing that our DP-CATE makes correct predictions.
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Figure 4: Dataset 1 (functional queries). Predic-
tions under different privacy budgets.

Results for functional queries: •Dataset 1:
Fig. 4 shows the predictions of DP-CATE for
functional queries across different privacy bud-
gets. We observe similar behavior as in the
case of finite queries: With increasing privacy
budget, the predictions converge to those of the
non-private learner. •Dataset 2: Fig. 5 shows
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the results for more complex dataset. As before, we observe that DP-CATE for functions behaves in
the same way as DP-CATE for finite queries. Overall, our findings are consistent across datasets and
different base learner specifications.

5.2 EVALUATION ON MEDICAL DATASETS

Medical datasets: We demonstrate the applicability of DP-CATE to medical datasets by using the
MIMIC-III dataset (Johnson et al., 2016) and the TCGA dataset (Weinstein et al., 2013). MIMIC-
III contains real-world health records from patients admitted to intensive care units at large hospitals.
We aim to predict a patient’s red blood cell count after being treated with mechanical ventilation.
The Cancer Genome Atlas (TCGA) dataset contains a large collection of gene expression data from
patients with different cancer types. We assign a treatment indicator based on the gene expression
level and aim to predict a constant effect across all expression levels. Details are in Supplement H.
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Figure 5: Dataset 2. Prediction errors under dif-
ferent privacy budgets of DP-CATE (finite) on RF
and NN and DP-CATE (functional) combined with
kernel regression. Plots centered at the PEHE of
the non-private learner.

Results: • MIMIC-III: Fig. 6 reports the pre-
dictions of the CATE against different levels of
hematocrit and different privacy budgets. Here,
we have d = 1312 queries (i.e., the size of the
test set). We observe a positive relationship as
stipulated by domain knowledge in medicine.
Our DP-CATE framework works as desired: for
smaller privacy budgets, more noise should be
added, which is also reflected in a larger varia-
tion of the predictions. • TCGA: Fig. 7 shows
again that our DP-CATE is effective on a large
number of queries (i.e., d = 2659, which cor-
responds to the size of the test set): we observe that, with increasing privacy budgets, the CATE
predictions become more precise and approach those of the non-private learner as expected. Overall,
the loss in precision due to the privacy guarantees (i.e., when comparing DP-CATE to the non-private
learner) is fairly small. We provide further experimental results in Supplements B and I.
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Figure 6: MIMIC-III (finite queries). Our DP-
CATE generates private estimates of the effect
of ventilation for different levels of hematocrit.
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Figure 7: TCGA (finite queries). DP-CATE
consistently estimates the constant treatment
effect across the sum of all covariate values.

Takeaways: The prediction error of DP-CATE decreases with larger privacy budgets as desired and
converges to the non-private error, confirming that our framework makes precise CATE predictions.

6 DISCUSSION

Applicability: We provide a general framework for differentially private and doubly robust CATE
estimation from observational data. First, our DP-CATE is carefully designed for observational data,
which are common in medical applications (Feuerriegel et al., 2024). Second, DP-CATE is appli-
cable to various doubly robust meta-learners (e.g., R-learner, DR-learner), which are widely used
in practice. Third, DP-CATE allows different use cases: one can release either a certain number of
CATE estimates or even the complete CATE function (e.g., as in clinical decision support systems).

Extension to the DR-Learner: Our derivations in Sec. 4 focus on the popular R-learner due to
its favorable theoretical properties. Nevertheless, our DP-CATE can be applied to any other doubly
robust meta-learner. In Supplement B, we thus provide an extension to the DR-learner. Therein, we
also provide additional numerical experiments to show the applicability of our framework.

Conclusion: Ensuring the privacy of sensitive information in treatment effect estimation is man-
dated for ethical and legal reasons. Here, we provide the first framework for differentially private
CATE estimation from observational using meta-learners.
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A ADDITIONAL BACKGROUND MATERIAL

A.1 DIFFERENTIAL PRIVACY

Objective
perturbation

Input
perturbation

Gradient
perturbation

Output
perturbation

PredictionModelObjectiveData

Figure 8: Privacy mechanisms in the machine learning
workflow.

DP mechanisms: There are four
main strategies of DP mechanisms
(see Fig. 8): (i) Input perturbation
independently randomizes each data
sample before model training (e.g.,
Fukuchi et al., 2017). (ii) Objective
perturbation adds a random term to
the objective and releases the respec-
tive minimizer (e.g., Iyengar et al.,
2019; Kifer et al., 2012; Redberg
et al., 2023). The mechanisms in this
field commonly make strong assumptions on the smoothness or convexity of the objective. (iii) Gra-
dient perturbation clips, aggregates, and adds noise to the gradient updates in each step of gradient
descent methods during model training (e.g., Abadi et al., 2016; Wang et al., 2017; 2019). (iv) Out-
put perturbation adds noise to the non-private model prediction before its release (e.g., Chaudhuri
et al., 2011; Zhang et al., 2022). All stated mechanisms are general strategies that must be carefully
adapted to our CATE estimation setting. In our work, we employ output perturbation as it is most
compatible with learning causal effects.

Choice of DP mechanism: Our DP-CATE framework employs output perturbation to achieve DP.
Output perturbation is highly suitable for our setting since (i) it ensures that causal assumptions
are fulfilled even after perturbation (challenge 1 ), and (ii) it retains the power of existing CATE
estimation methods for addressing the fundamental problem of causal inference (challenge 2 ). The
other DP strategies discussed above fail to fulfill the requirements.

Specifically, input perturbation might introduce confounding bias or violate the consistency assump-
tion. For gradient and objective perturbation, the convergence of the model might be unclear. Fur-
thermore, objective perturbation might fail to achieve the targeted privacy guarantee if the model
does not converge to the exact global minimum in finite time (Iyengar et al., 2019). Gradient per-
turbation results in a non-trivial privacy overhead and does not align with our goal of providing a
model-agnostic meta-learning framework (Redberg et al., 2023).

A.2 EXTENDED RELATED WORK

The only existing method targeting our setting was proposed by Niu et al. (2022). The authors pro-
vide an algorithm for differentially private CATE estimation through existing CATE meta-learners.
However, the method necessitates special private base learners for the separate sub-algorithms in
each stage of the meta-learner. It is thus not agnostic to any choice of ML method for the first- and
second-stage regressions. Furthermore, it has been shown that privatizing separate parts of causal
estimators can result in biased causal estimates (Ohnishi & Awan, 2023).

A different line of work proposes locally differentially private (LDP) algorithms (Agarwal & Singh,
2024; Huang & Ascara, 2023; Ohnishi & Awan, 2023). This notion of privacy becomes necessary if
the central data curator cannot be trusted. During data collection, calibrated noise is added to each
sample before adding it to the database. However, the perturbed data might violate the assumptions
to identify causal treatment effects. Furthermore, this notion of privacy significantly reduces the
predictive accuracy of the estimators (Huang & Ascara, 2023). Thus, whenever the data curator is
a trusted party (as assumed in our work), global differential privacy is sufficient and should be the
notion of choice as it is less accuracy-compromising than its local counterpart.
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A.3 THEORY ON CATE ESTIMATION

The estimation of causal quantities, such as the conditional average treatment effect τ(x) =
E[Y (1) − Y (0) | X = x], involves counterfactual quantities Y (a), as only one outcome per indi-
vidual can be observed. Here, Y (a) is the potential outcome that would hypothetically be observed
if a decision a is taken.

Due to the above, identification of causal effects from observational data necessitates the following
three assumptions common in the literature (e.g., Curth & van der Schaar, 2021; Feuerriegel et al.,
2024):

1. Consistency: The potential outcome Yi(a = k) equals the observed factual outcome Yi

when individual i was assigned treatment k.
2. Positivity/overlap: The treatment assignment is not deterministic. Specifically, there exists

a positive probability for each possible combination of features to be assigned to both
the treated and the untreated group, i.e., ∃ κ > 0 such that κ < π(x) < 1 − κ for all
X = x ∈ X .

3. Unconfoundedness: Conditioned on the observed covariates, the treatment assignment is
independent of the potential outcomes, i.e., Y (0), Y (1) ⊥⊥ A|X . Specifically, there are
no unobserved variables (confounders) influencing both the treatment assignment and the
outcome.

Importantly, the above assumptions are standard in the literature. Further, the assumptions are nec-
essary for consistent causal effect estimation for any machine learning model. Then, CATE is iden-
tifiable as

τ(x) := E[Y (1)− Y (0) | X = x] = µ(x, 1)− µ(x, 0), (19)
where µ(x, a) = E[Y | X = x,A = a]. To estimate τ , one could thus train a machine learning
model that estimates the aforementioned conditional expectation and then calculates the difference
in conditional expectations for a given X = x. This is commonly referred to as plug-in method, yet
which has several drawbacks, as we outline below. Rather, the preferred way to estimate the CATE
is through meta-learners.

Meta-learners define model-agnostic algorithms which can be implemented with arbitrary machine
learning algorithms. Therefore, those learners are flexible and commonly employed in practice. The
plug-in estimation approach that descried above thus resembles a meta-leaner. CATE meta-learners
can be classified into four different categories, depending on the ways they leverage the data: one-
step learners, regression-adjusted two-stage learners, propensity-weighted two-stage learners, and
doubly-robust tow-stage learners (Curth & van der Schaar, 2021). Causal meta-learners for special-
ized tasks, such as partial identification or treatment effects over time, have also seen increasing
interest recently (e.g., Frauen et al., 2024; Oprescu et al., 2023; Schweisthal et al., 2024)

We now discuss each type of meta-learner and their potential drawbacks in more detail:

1. One-step plug-in learner: Here, ML models are trained to predict µ(x, a), either one single
model for both treatment values or two different models, µ(x, 1), µ(x, 0). Then, the CATE
is estimated directly as τ(x) = µ(x, 1)− µ(x, 0).

2. Two-stage regression-adjusted learner: In the observed data, the difference between fac-
tual and counterfactual outcomes is never present. Therefore, two-stage learners construct
pseudo-outcomes as surrogates, which equal the CATE in expectation. The regression-
adjusted learner designs the pseudo-outcome through a reweighting based on the function
µ, which is estimated in the first stage. A misspecification of µ results in a biased CATE
estimator.

3. Two-stage propensity-weighted learner: Here, the pseudo-outcome is constructed based
on the Horvitz-Thompson transformation. Only the propensity function π needs to be
estimated in the first step. A misspecification of π results in a biased CATE estimator.

4. Two-stage doubly robust learner: Different from the above two-stage learners, this learner
is unbiased if either the propensity function π or the outcome regressions µ are correctly
specified. Specifically, the final estimation is insensitive to small perturbations in the nui-
sance functions. This property is achieved through a Neyman-orthogonal loss function such
as Eq. 3.
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Hence, we focus on the two-stage doubly robust learner throughout our work due to the clear advan-
tages.
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B EXTENSION TO THE DR-LEARNER

In our main paper, we focused on the R-Learner for the derivations and the experiments. However,
DP-CATE is applicable to any weighted two-stage doubly robust CATE meta-learner. Therefore, we
now provide an extension to the DR-Learner.

For the DR-Learner, the weight function simplifies to λDR(π(x)) = 1. Therefore, the private DR-
Learner for a fixed number of queries is given below.

Lemma 2b. The d-dimensional (ε, δ)-differentially-private CATE estimated through the DR-
Learner is given by

g∗
DP(x) = g∗

D(x) + rDR(ε, δ) ·U, (20)

where U ∼ N (0, Id). Specifically, the calibration function rDR(ε, δ) is given by

rDR(ε, δ) = sup
z∈Z

∥∥∥∥ a− π(x)
π(x)(1− π(x)) (y − µa(x)) + µ1(x)− µ0(x)− g∗DR(x)

∥∥∥∥ · c(ε, δ, n), (21)

where c(ε, δ, n) :=
5
√

2 ln(n) ln (2/δ)

εn .

Proof. We prove Lemma 2b in Supplement G.

Observation: The noise calibration necessary for the privatization requires maximizing the influ-
ence function. For the DR-Learner, the IF includes the inverse of π(x)(1 − π(x)). Although we
assume π(x) to be bounded away from zero and one (the causal overlap assumption), maximizing
over this term can lead to a very large calibration factor. This might limit the applicability of the
DR-Learner for differentially-private CATE estimation.

Below, we evaluate the private DR-Learner in the same manner as the R-Learner in the main paper.
We observe the expected behavior in Fig. 9. The noise added for privatizing the output is extremely
enlarged compared to the R-Learner in Fig. 3. Note the varying scale of the y-axis.
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Figure 9: Evaluation of DP-CATE for finite queries the on DR-Learner for different base-learner
specifications on dataset 1.

In Fig. 10, we show the performance of our DP-CATE for functional queries in combination with
the DR-Learner. We see the same behavior as for DP-CATE for a finite number of queries. It is
noteworthy that the predictions of DP-CATE for functional queries coverage even more rapidly to
the non-private predictions for increasing privacy budget than the predictions of DP-CATE for finite
queries.
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Figure 10: Evaluation of DP-CATE for functional queries on the DR-Learner on dataset 1.
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C SIMILARITIES AND DIFFERENCES OF THE FINITE AN FUNCTIONAL
DP-CATE FRAMEWORK

C.1 DISCUSSION

If one only wants to release private CATE estimates once, both approaches 1 and 2 are appli-
cable. Nevertheless, the second approach called “functional approach” can also be employed for
iteratively querying the function, which is especially of interest to medical practitioners aiming to
assess the treatment effect of a drug for various patients with different characteristics. Put simply,
when companies want to release a decision support system to guide treatment decisions of individual
patients. Such treatment decisions are made based on the entire CATE model, then the “functional”
approach is preferred. In contrast, the first approach (called “finite-query approach”) is preferred
whenever only a few CATE values should be released. This is relevant for researchers (or practition-
ers) who may want to share the treatment effectiveness for a certain number of subgroups (but not
for individual patients).

The functional approach requires sampling from a Gaussian process. Depending on whether one
aims to report finitely many queries once through this approach or iteratively query the function, the
sampling procedure from the Gaussian process G differs. We highlight the differences in the type
of queries in the following:

• Simultaneous finitely many queries: For querying the function only once with a finite
amount of queries, sampling from a Gaussian process implies sampling from the prior
distribution of the process. In empirical applications, this means that one samples from a
multivariate normal distribution. Therefore, the noise added in the functional approach is
similar to the finite-query approach. However, the approaches 1 and 2 are not the same,
as the noise added in the functional approach is correlated, whereas the noise variables in
finite-query approach are independent. Therefore, the functional approach might result in
what appears to be a consistent under- or overestimation of the target. Still, both approaches
guarantee privacy.

• Iteratively querying the function: In this setting, sampling from a Gaussian process im-
plies sampling from the posterior distribution of the process. Specifically, if no query has
been made to the private function yet, the finite-query approach proceeds by providing the
first private CATE estimate of query x1. Observe that the privatization of every further
iterative query xi needs to account for the information leakage through answering for-
mer queries. Thus, sampling from a Gaussian process now relates to sampling from the
posterior distribution. To do so, it is necessary to keep track of and store former queries
x1, . . . , xi−1 and the privatized outputs. This setting is entirely different from our finite
setting approach, in which we propose adding Gaussian noise scaled by gross-error sensi-
tivity.

C.2 ALGORITHMS FOR DP-CATE FUNCTIONS

Private outputs of the function gDP in Theorem 2 can be released in two ways: (i) the standard batch
setting presented in Algorithm 1, in which the private function outputs a private vector of CATE
estimates once and (ii) the iterative or online setting, in which the function is queried iteratively,
outputting one private CATE estimate at a time. Below, we provide an alternative algorithm to apply
Theorem 2 in an iterative way.
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Algorithm 1: Pseudo-code of out DP-CATE for functions

Input: CATE meta-learner g∗D trained on dataset D with |D| = n, Gaussian kernel matrix
(K(xi, xj))

d
i,j=1, query xquery ∈ Rd, privacy budget ε, δ, Lipschitz const. L, ridge regularization

λ
Output: Privatized CATE function g∗

DP

1 q ← length(xi);
/* Calculate calibration term r */

2 r ← (4L
√

2 log(2/δ))/((
√
2πh)q · λnε);

/* Sample from Gaussian process */
3 U ∼ N (0d, (K(xi, xj))i,j=1,...,d);
/* Return private estimates */

4 g∗
DP(xquery)← g∗

D(xquery) + r ·U;

Iterative approach: If no query has been made to the private function yet, we can employ Algorithm 2 to pro-
vide a private CATE estimate gDP(x1), where x1 denotes the first query. Specifically, Algorithm 2 samples
from a Gaussian Process prior by sampling a suitable multivariate Gaussian noise variable. Observe that the
privatization of every further iterative query xi needs to account for the information leakage through answering
former queries. Thus, sampling from a Gaussian Process now relates to sampling from the posterior distribu-
tion. To do so, it is necessary to keep track and store former queries x1, . . . , xi−1 and the privatized outputs
Gi = (gDP(x1), . . . , g

DP(xi−1))
T .

Algorithm 2: Pseudo-code of DP-CATE for functions (iterative setting)
Input: CATE meta-learner g∗D trained on dataset D with |D| = n, Gaussian kernel matrix conditioned on

the former queries x1, . . . , xi−1 Ci := (K(xk, xl))
i−1
k,l=1, former private outputs

Gi = (gDP(x1), . . . , g
DP(xi−1))

T , new query xi, privacy budget ε, δ, Lipschitz const. L, ridge
regularization λ

Output: Privatized new prediction g∗DP(xi)
1 if i=1 then

/* Apply Algorithm 1 */
2 end
3 else

/* Calculate pairwise kernel vector */

4 Vi ← (K(x1, xi), . . . ,K(xi−1, xi))
T ;

/* Sample from Gaussian process posterior */

5 s ∼ N (V Ti C
−1
i Gi, ,K(xi, xi)− V Ti C−1

i Vi);
/* Return private estimate */

6 gDP(xi)← s;
7 end

A note on complexity: Algorithm 2 requires storage and iterative updating of the outcome vector Gi and the
inverse matrix C−1

i . For an increasing amount of queries, the computational complexity of Alg. 2 will thus
grow. This poses a limitation of our approach for settings with many iterative queries.
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D THEORETICAL EVALUATION OF PROPOSED ALGORITHMS

To show that our DP-CATE provides a valid but private estimator, we need to analyze the consistency of our
framework. First, observe that we focus on consistent CATE learners as the underlying non-private estimators.
Let g denote the non-private base meta-learner and τ the true CATE. Then, by consistency of the estimator, we
have

∥g − τ∥ → 0, n→∞. (22)

Further, note that our framework does not alter the estimation procedure itself. Further, observe that the amount
of noise added decreases in the sample size n. Let gP denote the private estimator. Then, we have

∥gP − g∥ → 0, n→∞. (23)

Overall, we thus receive

∥gP − τ∥ ≤ ∥gP − g∥+ ∥g − τ∥ → 0, n→∞. (24)

Therefore, gP is a consistent estimator of τ .
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E COMPARISON TO BASELINES

We highlight again that other DP methods are either not model-agnostic (Niu et al., 2022), or restricted to RCT
data or to data with binary outcomes (Betlei et al., 2021; Guha & Reiter, 2024). Therefore, the baselines are not
applicable to general settings as in our paper. In other words, powerful baselines with theoretical DP guarantees
are missing.

E.1 COMPARISON TO DP-EBM (NIU ET AL., 2022)

Nevertheless, in the following, we compare DP-CATE to DP-EBM (Niu et al., 2022), as the method is – in
principle – applicable to the datasets we employ. We report the results on dataset 1 in Fig. 11. Please note the
different ranges of the y-axis representing the CATE.

0 1
Covariate value

0

200

C
AT

E

budget = 0.01

0 1
Covariate value

0

10
budget = 0.05

0 1
Covariate value

2.5

5.0

budget = 0.1

0 1
Covariate value

2

4

budget = 0.2

Oracle DP-EBM

Figure 11: Evaluation of the baseline DP-EBM for finite queries (300) for various privacy budgets.

Figure 12: Evaluation of DP-CATE for finite queries (300) for various privacy budgets.

We find that the error induced by privatization from DP-EBM is – by far – worse than the error induced by our
DP-CATE in Fig. 12 (we already reported Fig. 12 in our main paper). Especially for small privacy budgets, DP-
EBM is not reliable. We explain this is due to the need for privatizing both stages in the DP-EBM framework.
In sum, this confirms that our method is superior to existing methods for differentially private CATE estimation.

E.2 COMPARISON TO k-ANONYMIZATION
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Figure 13: Comparison of our DP-CATE with a
naı̈ve data anonymization method based on k-
anonymization in terms of PEHE.

Furthermore, we compare our method against a very
naı̈ve baseline based on k-anonymization. As we
show in the following, such naı̈ve baselines have
clear limitations in both theory and in our experi-
ments. First, such k-anonymization essentially per-
forms a data aggregation as part of the privatiza-
tion technique, yet this can break the consistency as-
sumption necessary for causal identifiability. Hence,
this can lead to biased results. We observe that
our method provides superior CATE estimates (while
further offering theoretical guarantees to ensure DP)
for almost all privacy budgets. Hence, our new ex-
periments confirm again the effectiveness of our pro-
posed method.
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F SUPPORTING LEMMAS

Lemma 4. Let g be the optimizer of Equation 3 on dataset D with |D| = n and covariate dimension d.
Furthermore, let γ(g, F ) denote the gross error sensitivity of g. For the ξ-smooth sensitivity of the doubly
robust meta-learner g with ξ = ε

4(d+2 log(2/δ))
, it holds

SS ξ(g,D) := sup
D

′
{exp(−ξdH(D,D

′
))LS(g,D

′
) | D

′
∈ Zn} ≤

√
log(n)

n
γ(g, F ), (25)

where Zn denotes the data domain and LS(·) the local sensitivity given by

LS(g,D) := sup
D

′

{
∥g(D)− g(D

′
)∥

∣∣∣ dH(D,D′
) = 1

}
. (26)

Proof. For ease on notation, we denote the score function of Equation 3 by ψ(z, g) :=
ρ(a,π0(x))
E[λ(π0(x))]

(ϕ(z, η, λ(π(x)))−g(x)) for ϕ(z, η, λ(π(x))) := λ(π(x))
ρ(a,π(x))

a−π(x)
π(x)(1−π(x)) (y−µ(x, a))+µ(x, 1)−

µ(x, 0). First, note that ψ(z, g) is differentiable w.r.t. g for all z ∈ Z with ψ
′
(z, g) = ∂ψ(z,g)

∂g
= − ρ(a,π0(x))

E[λ(π0(x))]
.

Since we assume that our data stems from a bounded domain, there exist constants K and L such that

sup
z∈Z
∥ψ(z, g)∥ ≤ K and sup

z∈Z
∥ψ

′
(z, g)∥ ≤ L. (27)

Therefore, ψ(z, g) and ψ
′
(z, g) are uniformly bounded in Z . Furthermore, it holds MF = M(g, F ) =

−EF [ψ
′
(Z, g(F ))] > 0 for all empirical distributions Gn ∈ {G | D(G) ∈ Zn} and the generative distribu-

tion F = F0, since

MF =
E[ρ(A, π0(X))]

E[λ(π0(x))]
= 1, (28)

with E[ρ(A, π0(X))] = 0 + E[λ(π0(x))]. As a result, we can employ Lemmas 1 and 2 in Avella-Medina
(2021) to show the desired upper bound of the smooth sensitivity.

Lemma 5. The influence functions of the DR-Learner and the R-Learner are given by

IFDR(z, g;F ) =
a− π(x)

π(x)(1− π(x)) (y − µ(x, a)) + µ(x, 1)− µ(x, 0)− g(x), (29)

IFR(z, g;F ) =
a− π(x)

E[π(x)(1− π(x))] (y − µ(x, a) + (a− π(x))(µ(x, 1)− µ(x, 0)− g(x))) (30)

Proof. By Lemma 1, the influence functions of the two-stage learner equal the influence function of the second-
stage regression. Hirano et al. (2003) state a general IF for the weighted average treatment effect (WATE) as

ρ(a, π0(x))

E[λ(π0(x))]

(
λ(π(x))

ρ(a, π(x))

a− π(x)
π(x)(1− π(x)) (y − µ(x, a)) + µ(x, 1)− µ(x, 0)− g(x)

)
(31)

for ρ(a, π(x)) ̸= 0 with

ρ(a, π(x)) := (a− π(x))λ
′
(π(x)) + λ(π(x)) (32)

For the R-Learner it holds that λ(π(x)) = π(x)(1 − π(x)) and for the DR-Learner λ(π(x)) = 1. Since for
the R-Learner ρ(a, π(x)) = (a− π(x))2 and for the DR-Learner ρ(a, π(x)) = 1, the statement follows.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G PROOFS OF THE MAIN THEOREMS

G.1 PROOFS OF LEMMAS 1 AND 3

Proof of Lemma 1

Lemma 1. The IF of the two-stage CATE estimators described by the loss in Equation 3 is equivalent to the IF
of its second-stage estimation:

IF((z1, z2), (g, η), F ) = IF(z2, g, F ). (33)

Proof. For ease of reading the proof, we rewrite z1 = z(1) and z2 = z(2). We employ a theorem for influence
functions of general two-stage estimators by Zhelonkin et al. (2012): For a two-stage estimator with first- and
second-stage score functions ψ1 and ψ2 and a function h, which is continuously piecewise differentiable in the
second variable, fulfilling

EF [ψ1(z
(1), S(F ))] = 0 (34)

and
EF [ψ2(z

(2), h(z(1), S(F )), T (F ))] = 0, (35)
the influence function is given by

IF(z, T, F ) =M−1

(
ψ2(z

(2), h(z(1), S(F )), T (F )) (36)

+

∫
∂

∂θ
ψ2(z̃

(2), θ, T (F ))
∂

∂ν
h(z̃(1), ν) dF (z̃) · IF(z, S, F )

)
(37)

where M = −
∫

∂
∂ξ
ψ2(z̃

(2), h(z̃(1), S(F )), ξ) dF (z̃). Here F denotes the distribution function of zi =

(z
(1)
i , z

(2)
i ) where z(j)i = (xij , yij), j = 1, 2, i = 1, . . . n. S denotes the functional of the first stage, and T is

the functional of the second stage. The influence function of the first-stage estimation is given by IF(z, S, F ).

For the doubly robust two-stage CATE estimators, we have S(F ) = (Sµ(F ), Sπ(F )) = (µ, π) (more pre-
cisely, the parameters describing the functions) and

h(z, (µ, π)) =
λ(π(x))(a− π(x))
π(x)(1− π(x)) (y − µ(x, a)) + µ(x, 1)− µ(x, 0). (38)

The score function of the second-stage regression is given by

ψ2(z
(2), h(z(1), S(F )), T (F )) = ψ2(z

(2), h(z(1), (µ, π)), g) (39)

= ((a− π(x))λ
′
(π(x)) + λ(π(x)))(h(z(1), (µ, π))− g) (40)

Observe that, with a slight abuse of nation, due to the Neyman-orthogonal loss function, it holds∫
∂

∂θ
ψ2(z̃

(2), θ, T (F ))
∂

∂η
h(z̃(1), η) dF (z̃) =

∫
∂ψ2(·, ·)
∂h

( ∂h(·,·)
∂µ

∂h(·,·)
∂π

)
dF (z̃) (41)

= E[∇η(ψ2)|η=η0 ] (42)
= 0. (43)

Furthermore, we have

M = −
∫

∂

∂g
ψ2(z

(2), h(z(1), (µ, π)), g) dF (z) = −
∫

1 dF (z) = −1. (44)

Therefore, we receive

IF((z(1), z(2)), (g, η), F ) = −1 · [ψ2(z
(2), h(z(1), η), g) + 0] = IF(z(2), g, F ). (45)

Proof of Lemma 3

Lemma 3. Let H denote the RKHS induced by the Gaussian kernel K(x, y) = 1

(
√
2πh)q

exp(− ∥x−y∥2
2h2 ) for

x, y ∈ Rq , and let fD be the optimal solution to the RKHS regression

min
f∈H

1

n

n∑
i=1

ℓ(f(xi), yi) + λ∥f∥H, (46)

on dataset D with |D| = n for ℓ(·) is a convex and Lipschitz loss function with Lipschitz constant L. Then

||f(D)− f(D
′
)||H ≤

L

λn
(
√

(2π)h)−q. (47)
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Proof. Observe that, for all x ∈ Rq , the Gaussian kernel norm is given by K(x, x) = 1

(
√
2πh)q

. Since l is
convex and Lipschitz with constant L, it is L-admissable (see (Hall et al., 2013)). Therefore, we can employ a
result from Hall et al. (2013) stating that the RKHS norm of minimizers of neighboring datasets can be bounded
as

||f(D)− f(D
′
)||H ≤

L

λn

√
sup
x
K(x, x). (48)

With our observation above, the result follows.

G.2 PROOF OF THEOREM 1

Theorem 1 [DP-CATE for finite queries]. Let z := (a, x, y) define a data sample following the joint distribu-
tion Z and η̂ = (µ̂, π̂) the estimated nuisance functions. Furthermore, let the dataset D for the second-stage
estimation s.t. |D| = n. Define

gDP(x) := g∗(x) + sup
z∈Z

∥∥∥∥ ρ(a, π̂(x))

E[λ(π̂(X))]
(ϕ(z, η̂, λ(π̂(x)))− g∗(x))

∥∥∥∥ · 5
√

2 ln(n) ln (2/δ)

εn
· U, (49)

where U ∼ N (0, Id). Thenk gp(x) is (ε, δ)-differentially private.

Proof. First, observe that, if we had access to the ξ-smooth sensitivity SS ξ(g,D) of the doubly robust meta-
learner g with ξ = ε

4(d+2 log(2/δ))
, the estimator gDP with

gDP(x) = g∗(x) +
5
√

2 log(2/δ)

ε
SS ξ(g,D) · U, (50)

where U ∼ N (0, Id), x ∈ Rd, would fulfill (ε, δ) differential privacy (see (Avella-Medina, 2021; Nissim
et al., 2007)). However, the ξ-smooth sensitivity is highly difficult, or even impossible, to compute for general
function classes such as neural networks. Therefore, we seek an upper bound on SS ξ(g,D) to ensure that the
privacy guarantees stay valid while making it feasible to compute the calibration function r(·).

By Lemma 4, we find such an upper bound through

SS ξ(g,D) ≤
√

log(n)

n
γ(g, F ), (51)

where γ(g, F ) denotes the gross-error sensitivity of g on data distribution F

γ(g, F ) = sup
z∈Z
∥IF(z, (g, η), F )∥. (52)

By Lemma 1 and Hirano et al. (2003), we know that

IF(z, (g, η), F ) = IF(z, g, F ) (53)

=
ρ(a, π0(x))

E[λ(π0(x))]

(
λ(π(x))

ρ(a, π(x))

a− π(x)
π(x)(1− π(x)) (y − µ(x, a)) + µ(x, 1)− µ(x, 0)− g(x)

)
(54)

for

ρ(a, π(x)) := (a− π(x))λ
′
(π(x)) + λ(π(x)). (55)

With the definition of ϕ(z, η, λ(π(x))) := λ(π(x))
ρ(a,π(x))

a−π(x)
π(x)(1−π(x)) (y−µ(x, a))+µ(x, 1)−µ(x, 0), we receive

IF(z, (g, η), F ) =
ρ(a, π0(x))

E[λ(π0(x))]
(ϕ(z, η, λ(π(x)))− g(x)). (56)

Taking the supremum over all samples from the dataspace Z and evaluating the IF at the trained function g∗.
π̂ and µ̂ states the desired result.

G.3 PROOF OF THEOREM 2

Theorem 2 [DP-CATE for functional queries]. Let µ̂(a, x), π̂(x) denote the nuisance estimators trained in
stage 1 and z = (a, x, y) a data sample from dataset D with |D| = n and x ∈ Rq . Let H denote the RKHS
induced by kernel K(x, y) = 1√

2πh
exp(− ∥x−y∥2

2h2 ), and let ℓ(·) be a convex and Lipschitz loss function with
Lipschitz constant L. Furthermore, define g∗ as the second stage regression solving Equation 3 through

g∗ ∈ argmin
g∈H

1

n

n∑
i=1

ℓ
(
ρ(ai, π(xi))ϕ(zi, η̂, λ(π(xi)))− g(xi)

)
+ λ∥g∥2H (57)
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for

ρ(a, π(x)) := (a− π(x))λ
′
(π(x)) + λ(π(x)) (58)

and

ϕ(z, η, λ(π(x))) :=
λ(π(x))

ρ(a, π(x))

a− π(x)
π(x)(1− π(x)) (y − µ(x, a)) + µ(x, 1)− µ(x, 0). (59)

Furthermore, let G be the sample path of a zero-centered Gaussian process with covariance function K(·).
Then the function

gDP := g∗ +
4L

√
2 ln (2/δ)

(
√
2πh)qλnε

·G (60)

is (ε, δ)-differentially-private.

Proof. Let G be the sample path of a zero-centered Gaussian process with covariance function K(·). For our
proof, we make use of Corollary 9 by Hall et al. (2013):

For f ∈ H, whereH is the RKHS corresponding to the kernel K, the release of

fpD = fD +
∆c(δ)

ε
G (61)

is (ε, δ)-differentially private for

c(δ) ≥
√

2 log(
2

δ
) (62)

and

∆ ≥ sup
D∼D′

∥fD − fD′ ∥H. (63)

Therefore, for ∆∗ = supD∼D′ ∥gD − gD′ ∥H,

gDP = g∗ +
∆∗√2 log(2/δ)

ε
G (64)

is (ε, δ)-differentially private. From Lemma 3, we know that

sup
D∼D′

∥gD − gD′ ∥H ≤
L

λn
(
√

(2π)h)−q. (65)

Thus, the desired result follows.
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H EXPERIMENTS

H.1 SYNTHETIC DATASET GENERATION

We consider two different data-generation settings with different complexity. Both settings follow the mecha-
nism described in (Oprescu et al., 2019):

Xi ∼ U [0, 1]p, (66)

Ai = 1{(XTβ)i ≥ ηi}, (67)

Yi = θ(Xi)Ai + (XT γ)i + ϵi, (68)

where ηi, ϵi ∼ U [−1, 1] and β, γ have support with values drawn from U [0, 0.3] and U [0, 1]. The dimension
of the covariates is set to p = 2 for Dataset 1 and p = 30 for Dataset 2. In Dataset 1, the conditional treatment
effect θ(x) is defined as

θ(x) = exp(2x0) + 3 sin(4x0). (69)

In Dataset 2, θ(x) is defined as

θ(x) = exp(2x0) + 3 sin(4x1). (70)

For each setting, we draw 3000 samples which we split into train (90%) and test (10%) sets.

H.2 MEDICAL DATASETS

MIMIC-III: We showcase DP-CATE on the MIMIC-III dataset (Johnson et al., 2016), which includes elec-
tronic health records (EHRs) from patients admitted to intensive care units. We extract 8 confounders (heart
rate, sodium, red blood cell count, glucose, hematocrit, respiratory rate, age, gender) and a binary treatment
(mechanical ventilation) using an open-source preprocessing pipeline (Wang et al., 2020). We define the out-
come variable as the red blood cell count after treatment which we adapt to be more responsive to the treatment
ventilation. To extract features from the patient trajectories in the EHRs, we sample random time points and
average the value of each variable over the ten hours prior to the sampled time point. All samples with missing
values and outliers are removed from the dataset. We define samples with values smaller than the 0.1st per-
centile or larger than the 99.9th percentile of the corresponding variable as outliers. Our final dataset contains
14719 samples, which we split into train (90%) and test (10%) sets.

TCGA: The Cancer Genome Atlas (TCGA) dataset (Weinstein et al., 2013) contains a comprehensive and
diverse collection of gene expression data collected from patients with different types of cancer. We consider
the gene expression measurements of the 4,000 genes with the highest variability which we employ as our
featuresX . The study cohort of consisted of 9659 patients. We model the binary treatment based on the sum of
the 10 covariates with the highest variance and assign a constant treatment effect in the sum of the covariates.

H.3 IMPLEMENTATION DETAILS

Our experiments are implemented in Python. We provide our code in our GitHub repository: https://
anonymous.4open.science/r/PrivateCATE_anonymous-4B34/README.md.

Our DP-CATE is model-agnostic and highly flexible. Therefore, we implement multiple versions of the R- and
the DR-Leaner with varying base learners. For the outcome and the propensity estimation, we always employ
a multilayer perceptron regression and classification model, respectively. The models consist of one layer of
width 32 with ReLu activation function and were optimized via Adam at a learning rate of 0.01 and batch size
128.

For our experiments on the finite DP-CATE, we implement the pseudo-outcome regression in the second stage
as a Random forest (RF) and a linear regression (LR) model with default parameter specifications and a neural
network (NN) with two hidden layers of width 32 with ReLu activation function trained in the same manner as
the nuisance models. In the experiments on our functional DP-CATE, we employ a Gaussian kernel ridge re-
gression with m = 50 basis functions and default regularization parameter λ = 1. Furthermore, our functional
DP-CATE requires the specification of the Lipschitz constant L. This constant is either known based on the
employed loss, e.g., L = 1 for the L1 loss, or can be upper-bounded. In our settings, we employ the L2 loss
on a bounded domain. Therefore, although the L2 loss itself is not Lipschitz, we can calculate L numerically
as the upper bound of the domain. We did not perform hyperparameter optimization, as our model-agnostic
framework is applicable to any prediction model.

Our framework requires calculating the supremum of the influence functions. We implemented the
maximization problem through mathematical optimization using the L-BFGS-B, a limited-memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm for solving nonlinear optimization problems with bounded variables.
The solver was run with default parameters.
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I FURTHER RESULTS

Below, we present further experimental results underlining our findings in Section 5.

In Fig. 14 and Fig. 15, we show the estimation performance in terms of PEHE of DP-CATE for finite queries
compared to the underlying non-private model (in absolute values and relative to the PEHE of the non-private
learner). Our results align with our findings in the main paper.
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Figure 14: PEHE of DP-CATE for finite queries
with respect to privacy budget ε on dataset 1
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Figure 15: DP-CATE PEHE in % of the non-
private PEHE for ε ∈ [0.1, 0.2] on dataset 1.
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