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Abstract

In this work, we propose a federated dynamical low-rank training (FeDLRT)1

scheme to reduce client compute and communication costs - two significant per-2

formance bottlenecks in horizontal federated learning. Our method builds upon3

dynamical low-rank splitting schemes for manifold-constrained optimization to4

create a global low-rank basis of network weights, which enables client training on5

a small coefficient matrix. A consistent global low-rank basis allows us to incorpo-6

rate a variance correction scheme and prove global loss descent and convergence7

to a stationary point. Dynamic augmentation and truncation of the low-rank bases8

automatically optimizes computing and communication resource utilization. We9

demonstrate the efficiency of FeDLRT in an array of computer vision benchmarks10

and show a reduction of client compute and communication costs by up to an order11

of magnitude with minimal impacts on global accuracy.12

1 Introduction13

Federated learning (FL) [20, 33, 23] builds a global model on a central server from data distributed14

on multiple devices, i.e., clients, by iteratively aggregating local models trained with the computation15

resource on the clients. In horizontal FL, where all clients share identical model architecture and16

data features, computation is often limited by (i) the communication bandwidth between clients and17

the server and (ii) the restricted compute and memory resources at each client. The former could be18

addressed by deploying various compression techniques, such as sparse randomized sketching [9],19

subsampling [18], or by allowing for partial [23, 26] or asynchronous [35, 4] communications. The20

latter could be addressed by sparse training [29, 41] and transfer learning [5].21

Since FedAvg [23], low-rank methods have been proposed to increase communication and compute22

efficiency for FL in [28, 43, 21, 42, 40, 12, 18, 30]. These methods can be categorized into: 1) methods23

that purely reduce communication cost by communicating only the low-rank factors obtained by24

performing a full-size SVD (or similar factorization methods) on the weight matrix after client25

optimization [28, 37, 40] and 2) methods that reduce both communication and client compute costs26

by learning only low-rank factors on clients [21, 43, 42, 12, 18].27

Contribution: This work focuses on the horizontal FL setting and addresses the challenges of28

communication bandwidth and client compute resources simultaneously by leveraging low-rank29

approximations of weight matrices that follow the dynamics of the gradient flow. The proposed30

method features 1) Efficient communication — only transmitting low-rank factors; 2) Low client31

compute and memory footprint — clients optimizing only a small coefficient matrix; 3) Automatic32

server-side compression — minimizing memory and communication requirements during training33

via server-side dynamical rank adjustment; 4) Global loss convergence guarantees — converging34

to a stationary point by incorporating a variance correction scheme [24]. Each of these features is35
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demonstrated on benchmark problems. To the best of the authors’ knowledge, this is the first low-rank36

method possessing all these features.37

2 Background and problem statement38

Federated optimization typically considers distributed setups and with limited communication and39

limited client compute and memory resources [23]. In this work, we consider a general federated40

optimization problem, i.e.,41

minw L(w) := 1
C

∑C
c=1 Lc(w), (1)

where w is a trainable weight, L is the global loss function associated to a global dataset42

X , and Lc is the local loss function of client c with local dataset Xc in a federated43

setup with C clients. For notational simplicity, we consider that X = ∪Cc=1Xc and44

each Xc is of the same size. Therefore, L is an average of Lc with uniform weights.45
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Figure 1: Federated, heterogeneous least squares re-
gression problem, see Section 4.1, for C = 4 clients,
s∗ = 100 iterations, learning rate λ = 1e − 3 and C
rank-1 local target functions. FL methods without vari-
ance correction plateau quickly, whereas FedLin and
FeDLRT with variance correction converge to 1e − 5.
FeDLRT converges faster than FedLin and has lower
communication costs.

The extension to handle a (non-uniform)46

weighted average case is straightforward.47

As the first baseline for federated optimiza-48

tion, we consider FedAvg [23], see Algo-49

rithm 3. Here, each client optimizes its lo-50

cal loss function Lc for s∗ local iterations51

using gradient descent,52

ws+1
c = ws

c − λ∇wL(ws
c), (2)

with learning rate λ, for s = 0, . . . , s∗ − 1.53

The initial value for the local iteration is54

the last global weight, i.e., w0
c = wt. After55

local iterations, the weights are commu-56

nicated to and aggregated at the server to57

update the global weight following58

wt+1 = 1
C

∑C
c=1 w

s∗
c . (3)

Client-drift effect is a common challenge59

in FL, where the iterative client updates (2)60

of FedAvg converge to local minima and jeopardize global training performance since the average61

of the local minimizers may be far away from the global minimizer. These effects are particularly62

pronounced for a large number of local iterations s∗, or high discrepancies between local loss63

functions Lc, as illustrated by Figure 1. Multiple methods [33, 20, 27, 14, 39] have been proposed to64

mitigate this issue. However, these methods often exhibit a speed-accuracy conflict, where learning65

rates need to be heavily reduced; thus, convergence is slow.66

Variance correction1 introduced in the FedLin method [24] constructs a variance correction term67

Vc = ∇wLc(w
t)− 1

C

∑C
c=1∇wLc(w

t) and modifies the client update iteration to68

ws+1
c = ws

c − λ (∇wL(ws
c)− Vc) , s = 0, . . . , s∗ − 1. (4)

This technique leads to global convergence to the minimizer of (1) with constant learning rates [24]69

for convex L and else to convergence to a stationary point, at the cost of an additional communication70

round for computing the variance correction.71

Federated neural network training considers problem (1) with the trainable weight w being the set72

of weight matrices {Wi}Li of an L layer neural network. In each iteration, the weight updates in (2)73

and (4) are applied to all layers simultaneously. Therefore, w.l.o.g., we express the local loss function74

as Lc(W ), where W ∈ Rn×n denotes the weight matrix of an arbitrary layer.75

Low-rank neural network training: An array of recent work has provided theoretical and experi-76

mental evidence that layer weights of over-parameterized networks tend to be low rank [1, 2, 8, 22]77

and that removing small singular values may even lead to increased model performance while dramat-78

ically reducing model size [34, 32] in non-federated scenarios. This beneficial feature has spawned a79

1Variance correction is commonly referred to as “variance reduction” [17, 24].
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rich landscape of methods to compress neural networks to a low-rank factorization after training with80

subsequent fine-tuning [31, 6, 36, 19], train the factorized network with fixed rank [13, 38, 15], dy-81

namically adjust the rank during training [32, 44], or use low-rank adapters for fine-tuning foundation82

models [11, 7, 45].83

Dynamical Low-rank Approximation of the gradient flow of neural network training. The core84

contribution of this paper builds on the dynamical low-rank approximation (DLRA) method, which85

was initially proposed for solving matrix equations [16] and recently extended to neural network86

training [32, 44, 10]. Let Ẇ (t) = −∇WL(W (t)) denote the gradient flow for minimizing L.87

The DLRA method restricts the trajectory of W toMr, the manifold of n × n, rank-r matrices,88

by projecting Ẇ onto a local tangent plane ofMr via an orthogonal projection. This guarantees89

a low-rank solution when following the projected dynamics from a low-rank initial guess. Let the90

low-rank matrix take the form Wr = USV ⊤ ∈ Mr with U, V ∈ Rn×r the orthonormal bases of91

Mr and S ∈ Rr×r the coefficient matrix. The dynamics for each low-rank factor in DRLA are then92

derived in [16, Proposition 2.1] as93

Ṡ(t) = −U⊤(t)∇WL(U(t)S(t)V (t)⊤)V (t),

U̇(t) = −
(
I − PU(t)

)
∇WL(U(t)S(t)V (t)⊤)V (t)S(t)−1,

V̇ (t) = −
(
I − PV (t)

)
∇WL(U(t)S(t)V (t)⊤)U(t)S(t)−⊤,

(5)

where PU = UU⊤ and PV = V V ⊤ are the projections onto the column spaces of U and V ,94

respectively. By using the basis update & Galerkin (BUG) scheme [3], (5) can be split into a95

basis update step for U and V and a coefficient update step for S. This splitting scheme allows for96

dynamic adjustment of the rank via a basis augmentation before the coefficient update step and a97

basis truncation after the coefficient update, as shown in [32].98

3 FeDLRT: Federated dynamical low-rank training with variance correction99

In this section, we present the core contribution of this paper, federated dynamical low-rank training100

(FeDLRT), which features a low-rank client optimization step with optional variance correction and101

an efficient server aggregation process that dynamically determines the optimal weight matrix rank102

for automatic compression.103

In the context of FL, the BUG of DLRA splitting scheme is particularly interesting since it allows for104

learning the low-rank bases and coefficients in separate steps. This gives rise to a globally shared105

basis for the local client iterations, reducing communication and client compute cost of the proposed106

FeDLRT scheme, see Figure 2: First, the factorization is broadcast to the clients (panel 1), and the107

basis gradients2 U, V are aggregated on the server (panel 2). Next, the basis is augmented on the server108

(panel 3) and broadcast. On the clients, only the augmented coefficient matrix S is updated repeatedly109

(panel 4) before aggregation to the server. After aggregation of the local augmented coefficient110

matrices, redundant basis directions are eliminated to optimize the accuracy-to-compression ratio of111

the model on the server.112

The strategy yields the following benefits compared to “full-rank” FL schemes as FedLin [24] and113

low-rank schemes with local compression:114

Low client compute cost: Server-based basis augmentation and compression enables an automatic115

compression without a-priori knowledge of the layer rank r and at no cost for the resource-constrained116

clients. The clients only evaluate gradients of low-rank factors and optimize the small matrix117

S ∈ Rr×r.118

Efficient communication: Similar to FedLin, FeDLRT requires in practice two communication119

rounds – one for aggregating and distributing global gradients for basis augmentation and variance120

correction and one for aggregating locally updated coefficients. However, communication cost for121

each round is significantly reduced since only low-rank factors are communicated. We refer to122

Section 3.3 on communication and compute cost.123

Existing federated low-rank schemes effectively generate individual and incompatible representations124

of Wr ∈Mr for each client. While the factors can still be efficiently communicated, averaging on125

2and later on the coefficient gradients for variance correction
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the server requires a reconstruction of the full weigh matrix W ∗ = 1
C

∑C
c=1 UcScV

⊤
c , since the local126

manifolds possibly diverge. Thus, the local rank information is lost and needs to be costly recovered127

by a full n×n SVD on the server; see Algorithm 6 for details. Since the average of low-rank matrices128

is not necessarily of low rank, these schemes may lose crucial information on the manifold if client129

solutions drift too far apart from each other. FeDLRT, in contrast, provides the advantage of client-130

wide manifold consistency: Splitting the low-rank update and sharing bases amongst clients provides131

a globally consistent manifold basis. This furthermore allows for bounding the coefficient drift, see132

Theorem 1, and enables a variance correction for the federated low-rank similar to the FedLin scheme.133

1 2

3 4
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Figure 2: Communication of
FeDLRT without variance correc-
tion. 1) Broadcast global basis
U, V (blue). 2) Aggregate basis
gradients Gc,U , Gc,V (orange). 3)
Broadcast global augmented basis
Ū, V̄ (green). 4) Aggregate client
coefficient update S̃s∗

c (purple).

134

3.1 Description of Algorithm 1 - FeDLRT135

In this section, we elaborate on the details in Algorithm 1. The136

orthonormal factors U t, V t and the coefficient matrix St are137

initialized with rank r and then broadcast to the clients. Note that138

FeDLRT ensures that, for all t > 1, U t and V t are orthonormal,139

and St is diagonal and full rank.140

Basis augmentation of the bases U t and V t is performed141

using concatenation with the corresponding global basis142

gradients GU = 1
C

∑C
c=1∇ULc(U

tStV t,⊤) and GV =143

1
C

∑C
c=1∇V Lc(U

tStV t,⊤), obtained by aggregating the local144

basis gradients. GU and GV encapsulate the gradient flow dy-145

namics (5) projected onto the original bases, thus yielding an146

intuitive choice for basis augmentation. Further, this choice is147

consistent with the basis update step of the augmented BUG148

splitting scheme, see Appendix E, which ensures the robustness149

of the client optimizer. Subsequent orthonormalization, e.g., by150

a QR decomposition, yields the augmented basis, i.e.,151

[U t | Ū ]R = qr([U t | GU ]) ∈ Rn×2r,

and [V t | V̄ ]R = qr([V t | GV ]) ∈ Rn×2r.
(6)

We denote the augmented bases by Ũ = [U t | Ū ] and Ṽ = [V t |152

V̄ ]. The orthonormalization is performed on the server, providing compute cost reduction for the153

client.154

Basis broadcasting of Ũ and Ṽ only requires to broadcast the new bases Ū and V̄ , since U t and V t155

are readily available on the clients. Formally, the coefficients St are projected onto the augmented156

basis, i.e., S̃ = Ũ⊤U tStV t,⊤Ṽ ∈ R2r×2r, before broadcasting them to the clients. Exploiting the157

orthonormality of the basis results in further reduction of the communication and compute cost:158

Lemma 1. S̃ = Ũ⊤U tStV t,⊤Ṽ takes the form S̃ =

[
St 0
0 0

]
.159

See Appendix F for the proof. With Lemma 1, only Ū and V̄ have to be broadcast, and the augmented160

bases and coefficients Ũ , Ṽ , and S̃ can be assembled on each client as needed. Furthermore, only161

S ∈ Rr×r, instead of S̃ ∈ R2r×2r, needs to be communicated.162

Below, we discuss three options for the client coefficient update step.163

Client coefficient update without variance correction is implemented similarly to FedAvg (3). On164

each client c, the augmented coefficient matrix S̃c is trained for s∗ iterations3 with learning rate λ,165

S̃s+1
c = S̃s

c − λ∇S̃Lc(Ũ S̃s
c Ṽ

⊤), s = 0, . . . , s∗ − 1, with S̃s=0
c = S̃. (7)

Client coefficient update with variance correction is required in certain federated scenarios, e.g.,166

the case considered in Figure 1. Based on FedLin [24], we introduce a correction step for the local167

coefficient update of FeDLRT. It extends the above local iteration by another communication round,168

3Our analysis focuses on the case where all clients share the same number of local iterations s∗. The analysis
can be extended to the case where s∗ is client dependent, following a similar strategy as in [24].
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where the gradient of the augmented coefficients GS̃,c = ∇S̃Lc(Ũ S̃Ṽ ⊤) is computed, aggregated to169

GS̃ = 1
C

∑C
c=1 GS̃,c and subsequently broadcast. This yields a correction term Vc = GS̃ −GS̃,c for170

each client c and thus the client iterations read171

S̃s+1
c = S̃s

c − λ
(
∇S̃Lc(Ũ S̃s

c Ṽ
⊤) + Vc

)
, s = 0, . . . , s∗ − 1, with S̃s=0

c = S̃. (8)

The correction term results in a bound on the coefficient drift and leads to convergence guarantees for172

FeDLRT, as detailed in Section 3.2.173

Client coefficient update with simplified variance correction: Empirically, we observe that a174

simplified variance correction, which only considers the correction term of the non-augmented175

coefficients St, is sufficient, see Figure 6. The simplified variance correction term takes the form176

Vc = GS̃ −GS̃,c ≈ V̌c := ǦS̃ − ǦS̃,c =

[
∇SL(U tStV t,⊤)−∇SLc(U

tStV t,⊤) 0
0 0

]
, (9)

which makes lines 10 and 12 in Algorithm 1 redundant, since ǦS̃ can be aggregated in one step with177

the basis gradients GU ,GV in line 4 and broadcast with Ū, V̄ in line 6, reducing the communication178

rounds to two - the same as FedLin. See Algorithm 5 for details.179

Coefficient averaging is performed after (any of the above variants of) the client iterations. The server180

computes the updated global coefficients by averaging the local updates, i.e., S̃∗ = 1
C

∑C
c=1 S̃

s∗
c .181

With the shared augmented bases Ũ and Ṽ , this is equivalent to the FedAvg aggregation182

W̃ ∗
r = 1

C

∑C
c=1 W̃

s∗
r = 1

C

∑C
c=1

(
Ũ S̃s∗

c Ṽ ⊤
)
= Ũ( 1

C

∑C
c=1 S̃

s∗
c )Ṽ ⊤ = Ũ S̃∗Ṽ ⊤. (10)

Since the basis is fixed, the rank 2r is preserved in the aggregation, which is in contrast to other183

federated low-rank schemes where the aggregated weights could be full rank and, in turn, require a184

full matrix SVD to determine the new rank [28, 40].185

Automatic compression via rank truncation is necessary 1) to identify the optimal rank of the186

weight matrix and 2) to ensure that S is full rank4. To this end, a truncated SVD of S̃∗ ∈ R2r×2r is187

performed, i.e. Pr1 ,Σr1 , Q
⊤
r1 = svd(S̃∗), where Pr1 , Qr1 ∈ R2r×r1 and Σr1 = diag(σ1, . . . , σr1)188

contains the r1 largest singular values of S̃∗. The new rank r1 can be chosen by a variety of criteria,189

e.g., a singular value threshold ∥[σr1 , . . . , σ2r]∥2 < ϑ. Once a suitable rank is determined, the190

factorization is updated by the projection of the bases U t+1 = ŨPr1 ∈ Rn×r1 , V t+1 = Ṽ Qr1 ∈191

Rn×r1 and update of the coefficient St+1 = Σr1 . Remarkably, Algorithm 1 is a federated low-rank192

learning scheme whose solution is close to a full-rank solution, see Theorem 5.193

FeDLRT can readily be extended to tensor-valued, e.g., convolutional, layers by applying Algorithm 1194

to each basis and the core tensor in a Tucker Tensor factorization. We refer to Appendix B for details.195

3.2 Analysis of FeDLRT with variance correction196

In this section, we analyze the FeDLRT algorithm under the general assumption that Lc and L are197

L-smooth with constant L. Theorems 2 and 3 give the convergence results for FeDLRT with full198

variance correction (8) in Algorithm 1. Theorem 4 and Corollary 1 provide the convergence for199

FeDLRT with simplified variance correction in (9), as detailed in Algorithm 5, under additional200

assumptions given therein. We note that the analysis does not require convexity of Lc or L.201

FeDLRT convergence with full variance correction. The variance-corrected client iteration (8)202

leads to the following bound the client coefficient drift.203

Theorem 1. Given augmented basis and coefficient matrices Ũ , Ṽ , and S̃. If the local learning rate204

0 < λ ≤ 1
Ls∗

with s∗ ≥ 1 the number of local steps, for all clients c,205

∥S̃s
c − S̃c∥ ≤ exp(1)s∗λ∥∇S̃L(Ũ S̃Ṽ ⊤)∥, for s = 1, . . . , s∗ − 1, (11)

where S̃s
c is the variance corrected coefficient as given in (8).206

4Full rank S is required to show consistency of the basis update step (6) with the robust operator splitting of
[3, 32], see Appendix E.
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Algorithm 1: FeDLRT (See Algorithm 2 for auxiliary function definitions)

Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
var_cor: Boolean flag to activate variance correction;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 GU,c ← ∇ULc(U

tStV t,⊤); GV,c ← ∇V Lc(U
tStV t,⊤) /* On client */

4 GU , GV ← aggregate({GU,c, GV,c})
5 Ū ←basis_augmentation(U t, GU ); V̄ ←basis_augmentation(V t, GV )
6 broadcast({Ū, V̄ })
7 Ũ ← [U t | Ū ]; Ṽ ← [V t | V̄ ] /* Basis assembly on client */

8 S̃s=0 ←
[
St 0
0 0

]
/* Coefficient matrix assembly on client */

9 if var_cor then
10 GS̃,c ← ∇S̃Lc(Ũ S̃Ṽ ⊤) /* Augmented gradient on client */
11 GS̃ ← aggregate({GS̃,c})
12 broadcast({GS̃})
13 coefficient_update_var_cor(c, GS̃ −GS̃,c) /* On client */
14 else
15 coefficient_update(c) /* On client */
16 S̃∗ ← aggregate({S̃s∗

c })
17 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */
18 U t+1 ← ŨPr1 ; V t+1 ← Ṽ Qr1 ; St+1 ← Σr1 /* Basis and coefficient update */

Table 1: Comparison of the computational footprint of FeDLRT with FedAvg, FedLin and several
low-rank FL methods. The FeDLRT variants are the only low-rank schemes with linearly scaling (in
n) memory, compute, and communication costs with automatic compression and variance correction.

Method Client compute Client memory Server compute Server memory Com. Cost Com. Rounds var/cor. rank adaptive

FedAVG [23] O(s∗bn2) O(2n2) O(n2) O(2n2) O(2n2) 1 ✗ ✗
FedLin [24] O(s∗bn2) O(2n2) O(n2) O(2n2) O(4n2) 2 ✓ ✗
FeDLRT w/o var/cor O(s∗b(4nr + 4r2)) O(4(nr + 2r2)) O(2nr + (8 + 4n)r2 + 8r3) O(2nr + 4r2) O(6nr + 6r2)) 2 ✗ ✓
FeDLRT simpl. var/cor O(s∗b(4nr + 4r2) + r2) O(4(nr + 2r2)) O(2nr + (8 + 4n)r2 + 8r3) O(2nr + 4r2) O(6nr + 8r2) 2 ✓ ✓
FeDLRT full var/cor O(s∗b(4nr + 4r2) + 4r2) O(4(nr + 2r2)) O(2nr + (8 + 4n)r2 + 8r3) O(2nr + 4r2) O(6nr + 10r2) 3 ✓ ✓
FeDLR [28] O(s∗bn2 + n3) O(2n2) O(n2 + n3) O(4nr) O(4nr) 1 ✗ ✓
Riemannian FL [40] O(2n2r + 4nr2 + 2nr) O(2n2) O(2nr + n2r) O(4nr) O(4nr) 1 ✗ ✓

The critical ingredient for the proof, provided in Appendix G.1, is the globally shared augmented207

bases. Theorem 1 bounds the drift of the low-rank representations of the local weight, which gives208

rise to the following global loss descent guarantee.209

Theorem 2. Let U tStV t,⊤ and U t+1St+1V t+1,⊤ be the factorization before and after iteration t210

of Algorithm 1 with variance correction and singular value truncation threshold ϑ. Let the local211

learning rate be 0 < λ ≤ 1
12Ls∗

, then the global loss descent is bounded by212

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −s∗λ(1− 12s∗λL)∥∇S̃L(Ũ S̃Ṽ ⊤)∥2 + Lϑ. (12)

The proof is provided in Appendix G.2. Theorem 2 paves the way for the following result on213

convergence to a global stationary point.214

Theorem 3. Algorithm 1 guarantees that, for learning rate λ ≤ 1
12Ls∗

and final iteration T ,215

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L

T

(
L(U1S1V 1,⊤)− L(UT+1ST+1V T+1,⊤)

)
+ 48L2ϑ. (13)

The proof is given in Appendix G.3. In particular, this theorem implies convergence of Algorithm 1216

for T → ∞ up to a ϑ-distance to a global stationary point. This is consistent with the numerical217
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Figure 3: Comparison between FeDLRT with simplified variance correction and FedLin in the
homogeneous linear least squares regression test. Each line represents the median result of 20 random
initialization with C clients. The plots from left to right show the rank evolution, the distance to
the global optimizer, the global loss values by FeDLRT, and the global loss values by FedLin. The
results show that FeDLRT converges faster in this low-rank test case by identifying (and never
underestimating) the target rank r = 4 early in the training.

results in Figure 1, where FedLin converges to the global minimizer (the only stationary point) while218

FeDLRT with variance correction stops at a point with slightly higher loss value due to a nonzero ϑ.219

In the case that the FL problem has a low-rank solution, the truncation error bounded by ϑ vanishes,220

and convergence to a stationary point is guaranteed, see, e.g., Figure 3.221

FeDLRT convergence with simplified variance correction. FeDLRT with simplified variance222

correction is detailed in Algorithm 5 with the variance correction term given in (9), which makes223

variance correction more communication and computation efficient but comes at a cost of the224

following additional assumption for convergence analysis.225

Assumption 1. There exists δ ≪ 1 such that, at each client coefficient update,226

∥∇S̃G(Ũ S̃s
c Ṽ

⊤)∥ − ∥∇SG(Ũ S̃s
c Ṽ

⊤)∥ < δ∥∇S̃L(Ũ S̃Ṽ ⊤)∥, (14)
for functions G = L and G = Lc, c = 1, . . . , C.227

This assumption can be interpreted as that most of dynamics in the gradient flow are captured in228

the coefficient update for the original rank-r matrix S, and the basis augmentation provides little229

information. This scenario occurs when FeDLRT identifies the optimal rank, which could happen230

early for simpler problems as shown in Figure 3, or when FeDLRT approaches a stationary point.231

Theorem 4. Under Assumption 1, let C := s∗λ(1− δ2 − 12s∗λL+ δ2 s∗λ). If the local learning232

rate 0 < λ ≤ 1
12Ls∗

, Algorithm 5 leads to the global loss descent233

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −C∥∇S̃L(W̃r)∥2 + Lϑ.

The proof is provided in Appendix H.1. When δ is small, this bound is slightly weaker than the one234

in Theorem 2, which leads to the following corollary.235

Corollary 1. Assume that Assumption 1 holds. Algorithm 5 guarantees that, for the local learning236

rate 0 < λ ≤ 1
s∗(12L+δ2) ,237

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 96L

T
(L(U1S1V 1,⊤)− L(UT+1ST+1V T+1,⊤)) + 96L2ϑ.

The proof is analogous to the one for Theorem 3, see Appendix H.2.238

3.3 Compute and communication cost239

The proposed FeDLRT methods significantly reduce server and client memory footprint, the required240

communication bandwidth, as well as the client compute cost compared to various baselines, see241

Table 1. We remark that the complete federated learning process is performed on the low-rank factors,242

and the full matrix Wr is never required, as, e.g., in [28, 40] and FeDLRT is the only low-rank243

method with adaptive compression incorporating variance correction, whose server compute cost244

scales linearly with the layer dimension since the SVD for rank truncation only needs to be computed245

on the augmented coefficient matrix of size 2r × 2r.246

4 Numerical evaluation247

4.1 Distributed linear least squares regression248
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Figure 4: Scaling of
communication cost (top)
compute cost at a sin-
gle client (middle), and
client memory footprint
(bottom) for s∗ = 1
client iteration and a sin-
gle data-point for W ∈
Rn×n with n = 512. In
practice we have r ≪ n,
see Section 4.

Homogeneous test. We first consider a (convex) FL problem249

(1) for linear least squares regression with local loss Lc(W ) =250

1
2|Xc|

∑
(x,y)∈Xc

∥∥p(x)⊤Wp(y)− f(x, y)
∥∥2
2
, where W ∈ Rn×n and251

p : [−1, 1] → Rn is the Legendre polynomial basis of degree n − 1.252

The target function f is manufactured as f(x, y) = p(x)⊤Wrp(y), where253

rank(Wr) = r. We consider problems with n = 20, r = 4, and randomly254

generated Wr, with 10, 000 data points uniformly sampled on [−1, 1]2255

and uniformly distributed among clients. We compare FeDLRT with vari-256

ance correction and FedLin with s∗ = 20 local iterations and λ = 1e− 3257

learning rate on C = 1, 2, 4, 8, 16, 32 clients. This setting satisfies the258

step-size restriction given in Theorem 2. In FeDLRT, the singular value259

truncation threshold ϑ = τ ||S̃∗|| with τ = 0.1 was used.260

Figure 3 reports the dynamically updated ranks, errors, and loss values261

with respect to the aggregation rounds. The reported data are the medians262

over 20 randomly generated initial weights5 The results indicate that263

FeDLRT is able to identify the correct rank within a few aggregation264

rounds and, furthermore, never underestimates it – which would have265

increased the loss value significantly. FeDLRT converges to the minimizer266

W ∗ = Wr up to a 1e−5 error and converges faster with more clients. On267

this problem, FeDLRT shows up to 10x faster convergence than FedLin.268

We attribute this behavior to the fact that, by identifying a suitable low-269

rank manifold early in the training, FeDLRT significantly reduces the270

degrees of freedom in the FL problem.271

Heterogeneous test. Inspired by [24], we consider a varia-272

tion of the linear least squares regression with Lc(W ) =273

1
2|X|

∑
(x,y)∈X

∥∥p(x)⊤Wp(y)− fc(x, y)
∥∥2, where the target function274

fc is different for each client, and the 10, 000 training data points are275

available to all clients. The local target functions fc cause each client276

to optimize a different local problem. We choose problem size n = 10277

with C = 4 clients and use learning rate λ = 1e − 3 with s∗ = 100278

local epochs. As seen in Figure 1, FeDLRT with variance correction279

converges (to single precision accuracy) to the minimizer W ∗ of (1) much280

faster than FedLin, whereas FeDLRT without correction quickly plateaus,281

similar to FedAvg.282

4.2 ResNet18 on CIFAR10283

We demonstrate the performance of FeDLRT for training the exemplary ResNet18 model on CIFAR10,284

where we apply FeDLRT to train its fully connected head. The truncation tolerance is set to285

ϑ = τ ||S̃∗|| with τ = 0.01. The test case setup is summarized in Table 2. The training data is equally286

partitioned across clients; see Appendix C.2 for the data-preprocessing details. A local iteration287

of Algorithm 1 at client c describes one mini-batch update on the client training data set Xc for288

a given batch size, s∗ is the maximum number of local iterations, and T denotes the number of289

aggregation rounds. We display the statistics for 10 random initializations; each warm-started with290

5 iterations with one client. We set s∗ = 240/C so that in each training run, the global network291

iterates through the same amount of data. This setup favors low client counts, and, as expected, the292

validation accuracy drops as C grows for FedAvg and FeDLRT without variance correction, see293

Figure 6 (upper row). We note that FeDLRT ties or outperforms FedAvg in terms of final validation294

accuracy. Using full variance correction (second row) increases the validation accuracy of FeDLRT295

by up to 12% in this test case, matching the accuracy of FedLin and enabling FL with 93% accuracy296

for 32 clients. For C = 8 clients, the communication cost saving of the compressed layers is up to297

90%. The computationally more efficient simplified variance correction, using Algorithm 5, (third298

row), yields similar validation accuracy, notably at higher compression ratio and communication cost299

reduction. Similar results are obtained for AlexNet, VGG16 on CIFAR10, and ViT on CIFAR100,300

5We chose to display the median trajectory to point out its convergence and monotonicity. The test case also
converges in the mean.
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Figure 5: ResNet18 CIFAR10. We compare the convergence behavior of the median result of 10
initializations displaying the best validation accuracy until the current epoch for FedAvg (top left),
FedLin (top right), FeDLRT w/o var/cor (bottom left) and FeDLRT w/ simplified var/cor (bottom
right). We observe 1) the low-rank methods (bottom) closely follows the convergence dynamics of
their full rank counterpart (top), and 2) variance correction starts to improve the convergence behavior
during later stages of the training, where the non-corrected methods level off.
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Figure 6: Comparisons for training ResNet18 on CIFAR10 benchmark. Top row compares FeDLRT
without variance correction to FedAvg, middle and bottom rows compare FeDLRT with full and
simplified variance correction to FedLin, respectively. In each row, the left two panels show the
model compression ratio and the communication cost reduction from FeDLRT, and the right two
panels show the validation accuracy for FeDLRT and the full-rank counterparts. In each plot, the
results are reported for C = 1, . . . , 16 or 32 clients with 240/C local iterations. FeDLRT matches
the accuracy of FedAvg and FedLin well, while substantially reducing the server and client memory
and communication costs. Variance correction leads to an up to 12% increase in validation accuracy
for large C, mitigating the client drift problem. The simplified variance correction (bottom row) gives
comparable results to full version (middle row) at a lower communication and computation cost.

see Appendix C, where we observe that FeDLRT closely matches the full-rank accuracy of FedLin.301

Lastly, we remark that variance correction ins beneficial for convergence behavior in neural network302

training, as shown in Figure 5.303

In conclusion, we have presented FeDLRT, an efficient low-rank FL scheme with convergence304

guarantees and automatic compression, and demonstrated its capabilities in several test cases.305

Limitations and future work: We remark that the underlying assumption for this work is that306

the target model can be expressed sufficiently well via a low-rank representation. Although the307

communication cost in terms of transferred parameters is significantly reduced compared to existing308

method, FeDLRT still requires two communication handshakes for one aggregation round, just like309

its full-rank counterpart FedLin. Therefore, the method needs to be refined for scenarios where the310

clients have different communication latencies or for completely asynchronous scenarios. Potential311

future research directions include performing large-scale tests with thousands of clients, extending the312

algorithm to accommodate partial client participation or asynchronous communication, and analyzing313

the convergence properties in these scenarios.314
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A Additional algorithms429

In the following, we list a set of algorithms that are used in the paper as a contribution or as a430

baseline method. In particular, Algorithm 2 contains auxiliary function definitions for Algorithm 1431

and Algorithm 5. Algorithm 3 is the standard FedAvg method as presented in [23]. Algorithm 4 is432

the FedLin Algorithm [24], i.e. the extension of Algorithm 4 with variance correction. Algorithm 5433

represents the FeDLRT method with simplified variance correction, as analyzed in Theorem 4 and434

Corollary 1 with the additional Assumption 1.435

Algorithm 2: Auxiliary functions

1 def broadcast({Mi}i: list of matrices):
2 Send Mi from server to all clients ∀i
3 def aggregate({Mc,i}i: list of matrices):
4 Send Mc,i from client to server ∀c, i
5 Mi ← 1

C

∑C
c=1 Mc ∀i

6 return {Mi}i;
7 def coefficient_update_var_cor(c: client, Vc: correction term):
8 for s = 0, . . . , s∗ − 1 do /* On client */
9 S̃s+1

c ← S̃s
c − λ

(
∇S̃Lc(ŨcS̃

s
c Ṽ

⊤
c ) + Vc

)
10 def coefficient_update(c: client):
11 for s = 0, . . . , s∗ − 1 do /* On client */
12 S̃s+1

c ← S̃s
c − λ∇S̃Lc(ŨcS̃

s
c Ṽ

⊤
c )

13 def basis_augmentation(B: old basis, GB: basis dynamics):
14 [B | B̄]← qr([B | GB ]) /* On server */
15 return B̄

Algorithm 3: FedAvg [23]. (See Algorithm 2 for auxiliary function definitions)
Input :Initial values for weight matrix W
Client-server setup with clients c = 1, . . . , C.

1 for t = 1, . . . , T do
2 broadcast({W t})
3 W s=0

c ←W t

4 for s = 0, . . . , s∗ − 1 do
5 W s+1

c ←W s
c − λ∇WLc(W

s
c ) /* Gradient descent on client */

6 W t+1 ← aggregate({W s∗
c }) /* Aggregation on server */

Algorithm 4: FedLin [24]. (See Algorithm 2 for auxiliary function definitions)
Input :Initial values for weight matrix W
Client-server setup with clients c = 1, . . . , C.

1 for t = 1, . . . , T do
2 broadcast({W t})
3 GW,c ← ∇WLc(W

t) /* Gradient computation on client */
4 GW ← aggregate({GW,c}) /* Aggregation on server */
5 broadcast({GW })
6 W s=0

c ←W t

7 Vc ← GW −GW,c /* Correction term computation on client */
8 for s = 0, . . . , s∗ − 1 do
9 W s+1

c ←W s
c − λ∇WLc(W

s
c ) + Vc /* Corrected iteration on client */

10 W t+1 ← aggregate({W s∗
c }) /* Aggregation on server */
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Algorithm 5: FeDLRT with simplified variance correction. (See Algorithm 2 for auxiliary
function definitions)
Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 GU,c ← ∇ULc(U

tStV t,⊤) /* On client */
4 GV,c ← ∇V Lc(U

tStV t,⊤) /* On client */
5 GS,c ← ∇SLc(U

tStV t,⊤) /* On client */
6 GU , GV , GS ← aggregate({GU,c, GV,c, GS,c})
7 Ū ←basis_augmentation(U t, GU ), V̄ ←basis_augmentation(V t, GV )
8 broadcast

({
Ū, V̄, GS

})
9 Ũ ← [U t | Ū ], Ṽ ← [V t | V̄ ] /* Basis assembly on client */

10 S̃s=0 ←
[
St 0
0 0

]
/* Coefficient matrix assembly on client */

11 ǦS̃,c ←
[
GS,c 0
0 0

]
/* Client coeff. gradient approximation on client */

12 ǦS̃ ←
[
GS 0
0 0

]
/* Global coeff. gradient approximation on client */

13 coefficient_update_var_cor
(
c, ǦS̃ − ǦS̃,c

)
/* On client */

14 S̃∗ ← aggregate
({

S̃s∗
c

})
15 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */
16 U t+1 ← ŨPr1 , and V t+1 ← Ṽ Qr1 /* Basis projection */
17 St+1 ← Σr1

B Extension to convolutions and tensor-valued weights436

FeDLRT can readily be extended to tensor-valued neural network layers, e.g. convolutional layers,437

following [44], where, e.g., a 2D convolution kernel is interpreted as an order-4 tensor and factorized438

by using the Tucker decomposition. To this end, the Tucker bases Ui ∈ Rni×ri for i = 1, 2, 3, 4439

replace the U and V bases in the matrix case, and the Tucker core tensor C ∈ Rr1×r2×r3×r4 replaces440

the coefficient matrix S, to which the variance correction is applied. The analysis holds for the Tucker441

Tensor case, since Tucker Tensors have a manifold structure. In the analysis, one needs to consider442

the gradient projected upon all bases Ui instead of U and V . The compression step is performed with443

an truncated Tucker decomposition of the core tensor C, instead of an SVD of S. For intuition, one444

can also refer to the matrix case as the order-2 Tucker Tensor case. Remark that the bases Ui are all445

updated simultaneously, thus the adaption to the tensor case does not require more communication446

rounds.447

C Additional numerical evaluation448

C.1 Compute resources449

The convex test cases are computed on a single Nvidia RTX 4090 GPU. The computer vision bench-450

marks use a set of Nvidia Tesla V100-SXM2-16GB and Tesla P100-PCIE-16GB. For prototyping, a451

Nvidia GTX1080ti is used.452

C.2 Data augmentation453

We use standard data augmentation techniques for the proposed test cases. That is, for CIFAR10,454

we augment the training data set by a random horizontal flip of the image, followed by a normal-455
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Algorithm 6: Naive implementation of FeDLRT. (See Algorithm 2 for auxiliary function defini-
tions)
Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 Us=0

c , V s=0
c , Ss=0

c ← U t, V t, St

4 for s = 0, . . . , s∗ − 1 do /* On client */
5 GU,c ← ∇ULc(U

s
cS

s
cV

s,⊤
c )

6 GV,c ← ∇V Lc(U
s
cS

s
cV

s,⊤
c )

7 Ũc, _← qr([Us
c | GU,c])

8 Ṽc, _← qr([V s
c | GV,c])

9 S̃c = Ũ⊤
c Us

cS
s
cV

s,⊤
c Ṽc

10 S̃∗
c ← S̃c − λ∇S̃Lc(ŨcS̃cṼ

⊤
c )

11 S̃∗ ← aggregate
({

S̃∗
c

})
12 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */
13 U t+1 ← ŨPr1 , and V t+1 ← Ṽ Qr1 /* Basis projection */
14 St+1 ← Σr1

ization using mean [0.4914, 0.4822, 0.4465] and std. dev. [0.2470, 0.2435, 0.2616]. The test data456

set is only normalized. The same augmentation is performed for CIFAR100, where with mean457

[0.5071, 0.4867, 0.4408] and std. dev. [0.2673, 0.2564, 0.2762].458

C.3 Additional computer vision results459

AlexNet on CIFAR10: We train AlexNet on CIFAR10, where the fully connected head of the460

network is replaced by a low-rank counterpart. A federated neural network setup with C clients461

trains on CTs∗ random batches of the dataset, that is the number of seen training data batches scales462

with the client count. Figure 7 displays the validation accuracy of FeDLRT with variance correction463

compared to FedLin, where one can see that the performance of FeDLRT mirrors the performance of464

FedLin with more degrees of freedom. The measured validation accuracy peaks at C = 4 clients in465

both cases, where the higher number of seen training data-points offsets the negative effects of more466

clients on the validation performance. All reported runs are within close distance of the non-federated,467

full-rank baseline accuracy of 85.6%. Communication cost savings of the fully connected layers468

amount between 96% and 97% 6 We observe, similarly to the results in Section 4.1, that the maximum469

achieved communication cost savings, which depend on the layer ranks scales with the number of470

clients C = 4, indicating that the decay rate of the singular values of the averaged coefficient matrix471

S̃∗ depends on C.472

VGG16 on CIFAR10: We train AlexNet on CIFAR10, where the fully connected head of the network473

is replaced by a low-rank counterpart. A federated neural network setup with 240/C local iterations474

for C clients. Figure 8 displays the validation accuracy of FeDLRT with variance correction compared475

to FedLin, where one can see that the performance of FeDLRT mirrors the performance of FedLin476

with more degrees of freedom. All reported runs are within close distance of the non-federated,477

full-rank baseline accuracy of 85.6%. Communication cost savings of the fully connected layers478

amount between 96% and 97% 7 We observe, similarly results as in the ResNet18 test case.479

VGG16 on CIFAR10 with low-rank convolutions: Mirroring the compute setup of the VGG16480

test-case above, we now rewrite all convolutional layers of VGG16 as order 4 tensors in low-rank481

6For clarity of exposition we consider only the fully connected layers. Taking into account the non low-rank
convolution layers, the communication cost savings reduces to 87.5% to 87.3%.

7For clarity of exposition we consider only the fully connected layers. Taking into account the non low-rank
convolution layers, the communication cost savings reduces to 87.5% to 87.3%.
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Figure 7: AlexNet CIFAR10 benchmark with fixed number of local iterations. (Left Panel) shows the
savings in communication cost of simplified variance corrected FeDLRT vs FedLin. (Mid and right
panel) compares the validation accuracy of FeDLRT and FedLin, where we see that FeDLRT behaves
similarly to FedLin and achieves accuracy levels near the non-federated baseline value of 85.6%.
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Figure 8: VGG16 CIFAR10 benchmark with 240/C local iterations for C clients with simplified
(lower row) and without (upper row) variance correction. (Left panel) show the savings in commu-
nication cost corresponding to FedLin at final time. (Mid and right panel top row) compares the
validation accuracy of FeDLRT and FedAvg, where we see that FeDLRT behaves similarly to FedAvg,
where higher C correlates with a drop in accuracy. FeDLRT with variance correction mitigates this
issue and achieves similar performance as FedLin, close to the non-federated baseline accuracy is
93.15%.

Tucker format, as described in appendix B. The full-connected head of the network is treated with the482

matrix low-rank method. The corresponding training results can be seen in Figure 9, and correspond483

well with the previous results for VGG16. The reduction of communication cost is slightly higher,484

due to the compression of the convolutions.485
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Figure 9: VGG16 CIFAR10, low-rank convolutional layers and low-rank fully connected layers. We
report the communication cost savings and the validation accuracy of VGG16 with FeDLRT applied
to training convolution and classifier layers. 2D convolutions are interpreted as an order-4 tensor and
factorized in the Tucker format. The statistics over five random network initializations are reported
using the training hyperparemeters of Table 2 of the main manuscript. The results are similar to Fig.
7 in the main manuscript, where only the classifier is compressed. Remark that here the classifier
contains most of the network parameters.
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Figure 10: ViT CIFAR100 benchmark. (Left Panel) shows the savings in communication cost of
variance corrected FeDLRT vs FedLin. (Mid and right panel) compares the validation accuracy of
FeDLRT and FedLin, where we see that FeDLRT behaves similarly to FedLin and achieves accuracy
levels near the non-federated baseline value of 50%, which is similar to literature results [46].

Table 2: Experimental setup object detection benchmarks. All test cases use a cosine annealing
learning rate scheduler.

Alexnet/Cifar10 ResNet18/Cifar10 VGG16/Cifar10 ViT/Cifar100

Batch size 128 128 128 256
Start Learningrate 1e−2 1e−3 1e−2 3e−4
End Learningrate 1e−5 5e−4 5e−4 1e−5
Aggregation Rounds 200 200 200 200
Local Iterations 100 240/C 240/C 240/C
Truncation tolerance τ 0.01 0.01 0.01 0.01
Momentum 0.0 0.9 0.1 n.a.
Weight Decay 1e−4 1e−3 1e−4 1e−2
Optimizer SGD SGD SGD Adam w/ std pytorch parameters

Vision Transformer on CIFAR100: We consider a small vision transformer for CIFAR100, with486

6 attention layers with 2 heads each followed by a ResNet block and a drop-out layer, all with487

weight matrices of dimension 512 × 512. The tokenizer takes patches of size 8 with embedding488

dimension 512. Training hyperparameters are given in Table 2. Remark that we do not aim for SOTA489

performance, since transformer architectures are notoriously difficult to compress with low-rank490

approaches, but rather compare the performance of FedLin to FeDLRT for a given compute budget.491

We use s∗ = 240/C local iterations for C clients. Observe in Figure 10 that FeDLRT achieves492

similar performance as ViT with over 55% communication cost savings on average.493
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D Notation overview for the numerical analysis494

We establish a set of notations to simplify the notation in the proofs495

• Lc(W ) denotes the local loss function based on dataset Xc at client c.496

• L(W ) = 1
C

∑C
c=1 Lc(W ) is the global loss function.497

• Fc(W ) = −∇WLc(W ) is the negate of local loss gradient.498

• F (W ) = 1
C

∑C
c=1 Fc(W ) is the negate of global loss gradient.499

• Mr = {W ∈ Rn×n : rank(W ) = r} is a manifold of rank r matrices.500

• Wr = USV ⊤ ∈Mr is a rank-r approximation of a matrix W .501

• TWr
Mr is the tangent space ofMr at Wr.502

• P (Wr) is the orthogonal projection onto TWr
Mr.503

• PU = UU⊤ is the orthogonal projection onto the range of orthonormal U ∈ Rn×r.504

• PV = V V ⊤ is the orthogonal projection onto the range of orthonormal V ∈ Rn×r.505

• When applied to vectors, ∥·∥ denotes the Euclidean norm (ℓ2-norm). When applied to matrices, ∥·∥506

denotes the Frobenius norm.507

E Efficient basis gradient dynamics for basis augmentation508

We first consider the basis update & Galerkin splitting scheme of (5). The splitting performs a509

reparametrization of the form K(t) = U(t)S(t) and L(t) = V (t)S(t)⊤. The basis update then reads510

K̇ = −∇KL(K(t)V ⊤
0 ) ∈ Rn×r, K(0) = U0S0,

L̇ = −∇LL(U0L(t)
⊤) ∈ Rn×r, L(0) = V0S

⊤
0 .

(15)

Given the solution K(t1) and L(t1) at time t1, the bases U0 and V0 are augmented by the orthonor-511

malization of the new directions K(t1) and L(t1), i.e.512

ŨR = qr([U0 | K(t1)]) ∈ Rn×2r,

and Ṽ R = qr([V0 | L(t1)]) ∈ Rn×2r,
(16)

where R is the right factor of the respective QR decomposition and can be discarded. The initial513

condition of the coefficient update is S(t0) projected onto the new bases, i.e.,514

˙̃
S = −∇SL(Ũ S̃(t)Ṽ ⊤), S̃(0) = Ũ⊤U0S̃(0)V

⊤
0 Ṽ . (17)

After the integration of the coefficient dynamics above, the redundant basis functions are typically515

truncated via an SVD of S ensuring that S is always full rank. In its continuous form above, the516

splitting yields a robust integrator for the projected gradient flow, without manifold dependent517

step-size restrictions:518

Theorem 5. ([32]) Assume L is L-smooth with constant L, and locally bounded by B. Let Wr(t)519

be the low-rank continuous time solution of (15) and (17) and let W (t) be the full rank solution at520

t = 0. Assume the K,L, and S equations are integrated exactly from time t = 0 to ∆t. Assume that521

for any Y ∈Mr sufficiently close to Wr(t) the gradient F (Y ) is ϵ close toMr. Then522

∥W (∆t)−Wr(∆t)∥ ≤ d1ϵ+ d2∆t+ d3
ϑ

∆t
,

where d1, d2, d3 depend only on L and B.523

The theorem guarantees, that the low-rank representation does not imply any step-size restrictions on524

the optimization scheme. This is in stark contrast to a naive alternating descent optimization of the525

low-rank factors U, S, V .526

To build an discretized numerical optimizer in a resource constrained federated scenario from the527

above continuous splitting equations, we avoid the reparametrization, which implies a 200% memory528

cost increase on the client side, since three versions of the low-rank layer need to be tracked.529

Lemma 2. Let USV ∈Mr be a low rank factorization that follows the projected gradient (5) flow530

using the splitting scheme (15) with K = US and V = V S⊤. Further, assume that equations for the531
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K and L factors are solved by an explicit Euler time integration with learning rate λ, i.e.532

K(t1) = K(0)− λ∇KL(K(0)V ⊤
0 ), K(0) = U0S0,

L(t1) = L(0)− λ∇LL(U0L(0)
⊤), L(0) = V0S

⊤
0 .

(18)

Then, the basis augmentation (16) can be expressed as533

ŨR = qr([U0 | −∇UL
(
U0S0V

⊤
0 )]) ∈ Rn×2r,

and Ṽ R = qr([V0 | −∇V L
(
U0S0V

⊤
0 )]) ∈ Rn×2r.

(19)

and maintains the structure of the basis update and Galerkin operator split.534

Proof. We consider the proof for the K equation and the U basis; the proof for L and V follows535

analogously.536

Considering (16), we obtain with the explicit Euler discretization (18),537

span ([U0 | K(t1)]) = span
(
[U0 | U0 − λ∇KL(K(0)V ⊤

0 )]
)

= span
(
[U0 | −λ∇KL(K(0)V ⊤

0 )]
)

= span
(
[U0 | −∇KL(K(0)V ⊤

0 )]
)
.

(20)

Next, consider the continuous time dynamics of K̇, where we omit explicit time dependence on538

U, S, V and K for the sake of brevity, i.e.,539

K̇ = ˙(US)

= U̇S + UṠ

(5)
= −(I − UU⊤)∇WL(USV ⊤)V S−1S − UU⊤∇WL(USV ⊤)V

= −(I − PU )∇WL(USV ⊤)V − PU∇WL(USV ⊤)V

= (PU − I)∇WL(USV ⊤)V − PU∇WL(USV ⊤)V

= −∇WL(USV ⊤)V

(21)

Further, using the chain rule, we observe540

∇UL(USV ⊤) = ∇WL(USV ⊤)∇U (USV ⊤) = ∇WL(USV ⊤)V S⊤

Thus, −∇UL(USV ⊤)S−⊤ = −∇WL(USV ⊤)V = K̇. Full rankness of S and (21) yield that541

span(−∇UL(USV ⊤)) = span(K̇). Together with (20) this yields the proof.542

Lemma 2 adopts a more general result for Tucker tensors in an unpublished manuscript and simplifies543

the analysis for the matrix case considered here.544

F Efficient basis and coefficient communication545

Note that we have by orthogonality of the bases Ũ = [U, Ū ] with Ū ∈ Rn×r and Ū⊤U = 0 and546

Ṽ = [V, V̄ ] with V̄ ∈ Rn×r and V̄ ⊤V = 0.547

Proof. (Lemma 1) The basis augmented basis [U,GU ] before orthonormalization already contains548

the orthonormal vectors given by the columns of U . A QR decomposition therefor only rearranges549

the columns of GU such that Ũ = [U, Ū ] with Ū ∈ Rn×r and Ū⊤U = 0. The analogous result holds550

for Ṽ = [V, V̄ ]. The projection onto the augmented basis therefore reads551

Ũ⊤U =

[
U⊤U

U
⊤
U

]
=

[
I
0

]
and Ṽ ⊤V =

[
V ⊤V

V
⊤
V

]
=

[
I
0

]
. (22)

Consequently, the augmented coefficient matrix takes the form552

S̃ = Ũ⊤USV ⊤Ṽ =

[
S 0
0 0

]
. (23)

553

19



G Analysis for FeDLRT with full variance correction554

In this section we establish bounds on the coefficient drift of the FeDLRT method with full variance555

correction. We use the established coefficient drift bound to derive a loss-descend guarantee. The556

strategy of our analysis follows the one of FedLin [24]. We first state an auxiliary lemma.557

Lemma 3. Let U ∈ Rn×r and V ∈ Rn×r be orthonormal matrices. Let F be an L-continuous558

function. Then, for S1, S2 ∈ Rr×r,559 ∥∥PU

(
F (US1V

⊤)− F (US2V
⊤)
)
PV

∥∥ ≤ L ∥S1 − S2∥ (24)

and560 ∥∥U (F (US1V
⊤)− F (US2V

⊤)
)
V ⊤∥∥ ≤ L ∥S1 − S2∥ , (25)

where PU and PV are orthogonal projections defined in Appendix D.561

Proof. For the first statement, consider562 ∥∥PU

(
F (US1V

⊤)− F (US2V
⊤)
)
PV

∥∥
=
∥∥UU⊤ (F (US1V

⊤)− F (US2V
⊤)
)
V V ⊤∥∥

(I)
≤∥U∥

∥∥U⊤∥∥∥∥F (US1V
⊤)− F (US2V

⊤)
∥∥ ∥V ∥ ∥∥V ⊤∥∥

(II)
=
∥∥F (US1V

⊤)− F (US2V
⊤)
∥∥

(III)
≤L

∥∥US1V
⊤ − US2V

⊤∥∥ = L
∥∥U(S1 − S2)V

⊤∥∥
(I)
≤L ∥U∥ ∥S1 − S2∥

∥∥V ⊤∥∥
(II)
=L ∥S1 − S2∥ ,

where we have used in (I) the operator norm inequality of the Frobenius norm, in (II) orthonormality563

of U , V , and in (III) L-continuity of F . The second statement is proven analogously.564

G.1 Coefficient drift bound for FeDLRT with full variance correction565

We consider the FeDLRT method with variance correction, see Algorithm 1. Key difference to the566

FeDLRT method without variance correction is the modified coefficient update, incorporating global567

gradient information of the augmented coefficient matrix S̃ and local, stale gradient information568

of the augmented coefficient matrix S̃c. The variance corrected local coefficient update (8) can be569

expressed in terms of the projected Riemannian gradient as570

S̃s+1
c = S̃s

c + λŨ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ , (26)

where Ũ⊤Fc(W̃
s
r,c)Ṽ = ∇S̃c

Lc(Ũ S̃s
c Ṽ ), Ũ⊤Fc(W̃r,c)Ṽ = ∇S̃c

Lc(Ũ S̃s=0
c Ṽ ) and571

Ũ⊤Fc(W̃
s
r,c)Ṽ = ∇S̃c

L(Ũ S̃s
c Ṽ ). Recall that S̃ = S̃c for s = 0.572

We provide proof for Theorem 1 to bound the drift term
∥∥∥S̃s

c − S̃c

∥∥∥. We restate this theorem to the573

Riemannian notation and restate it below.574

Theorem 6. (Restatement of Theorem 1) Given augmented basis and coefficient matrices Ũ , Ṽ , and575

S̃, and W̃r = Ũ S̃Ṽ ⊤. If the local learning rate 0 < λ ≤ 1
Ls∗

with s∗ ≥ 1 the number of local steps,576

for all clients c,577

∥S̃s
c − S̃c∥ ≤ exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥ , for s = 1, . . . , s∗ − 1, (27)

where S̃s
c is the variance corrected coefficient as given in (8).578
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Proof. From the adjusted coefficient update in (26), we get579 ∥∥∥S̃s+1
c − S̃c

∥∥∥ =
∥∥∥S̃s

c − S̃c + λŨ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ
∥∥∥

≤
∥∥∥S̃s

c − S̃c

∥∥∥+ λ
∥∥∥Ũ⊤

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

(I)
≤
∥∥∥S̃s

c − S̃c

∥∥∥+ λL
∥∥∥S̃s

c − S̃
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

≤ (1 + λL)
∥∥∥S̃s

c − S̃
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

≤
(
1 +

1

s∗

)∥∥∥S̃s
c − S̃

∥∥∥+ λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥ .
We use in (I) Lemma 3 Recursively plugging in the above inequality yields for a = (1 + 1

s∗
)580

∥∥∥S̃s+1
c − S̃c

∥∥∥ ≤ as+1
∥∥∥S̃s=0

c − S̃
∥∥∥+

 s∑
j=0

aj

λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
=

 s∑
j=0

aj

λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
=

as+1 − 1

a− 1
λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤
(
1 +

1

s∗

)s+1

s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤
(
1 +

1

s∗

)s∗

s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤ exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥ .

581

G.2 Global loss descend for FeDLRT with full variance correction582

We first state a few auxiliary lemmas, which provide common inequalities that will be used in the583

following analysis.584

Lemma 4. ([10, Lemma 5.2]) For any two matrices Y1, Y2 ∈ Rn×n and an L-smooth L with constant585

L it holds586

L(Y1)− L(Y2) ≤ −⟨Y1 − Y2, F (Y2)⟩+
L

2
∥Y1 − Y2∥2 , (28)

where F (Y ) = −∇Y L(Y ).587

Lemma 5. ([25, Lemma 5]) For two vectors x1, x2 ∈ Rd it holds for γ > 0588

∥x1 + x2∥2 ≤ (1 + γ) ∥x1∥2 +
(
1 +

1

γ

)
∥x2∥2 . (29)

Lemma 6. ([25, Lemma 6]) For C vectors x1, . . . , xC ∈ Rd the application of Jensen’s inequality589

yields590 ∥∥∥∥∥
C∑

c=1

xc

∥∥∥∥∥
2

≤ C

C∑
c=1

∥xc∥2 . (30)

First, we consider the loss function value at the augmentation step.591

Lemma 7. We have L(W̃r) = L(W t
r ) for the loss before and after basis augmentation.592

21



Proof. Due to Lemma 1, S̃ =

[
St 0
0 0

]
, thus W̃r = Ũ S̃Ṽ ⊤ = USV ⊤ = W t.593

We next bound the loss descent between the augmentation step and the truncation step - having594

performed the aggregation of the client updates.595

Theorem 7. Let W̃r = Ũ S̃Ṽ ⊤ be the augmented factorization at global iteration t and let W̃ ∗
r =596

Ũ S̃∗Ṽ ⊤ be the aggregated solution after client iterations, i.e., S̃∗ = 1
C

∑C
c=1 S̃

s∗
c . Then the variance597

corrected coefficient update (26) yields the guarantee598

L(W̃ ∗
r )− L(W̃r) ≤ −(s∗λ)(1− (s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥)∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 .
(31)

Proof. From (8), PŨ = Ũ Ũ⊤, PṼ = Ṽ Ṽ ⊤, and the fact that W̃ s=0
r,c = W̃r for all c = 1, . . . , C,599

W̃ s∗
r,c = Ũ S̃s∗

c Ṽ ⊤ = Ũ S̃s=0
c Ṽ ⊤ + Ũ Ũ⊤

s∗−1∑
s=0

λ
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ Ṽ ⊤

= W̃r − λ

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ − λPŨ

(
F (W̃r)− Fc(W̃r)

)
PṼ .

Averaging across clients leads to600

W̃ ∗
r =

1

C

C∑
c=1

W̃ s∗
r,c = W̃r −

λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ −

λ

C

C∑
c=1

PŨ

(
F (W̃r)− Fc(W̃r)

)
PṼ

=W̃r −
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , (32)

where we have used the definition of the global and local gradient at W̃r, i.e., 1
C

∑C
c=1 Fc(W̃r) =601

F (W̃r). Based on L-continuity of F and Fc, (32), and Lemma 4, we obtain further602

L(W̃ ∗
r )− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2 (33)

= −

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉
+

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

.
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Next, we bound each of the two right-hand-side terms separately. We first express the first term as603

−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉

=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + PŨ

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃r)

)
PṼ , F (W̃r)

〉

=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + PŨ

s∗λ

C

C∑
c=1

Fc(W̃r)PṼ , F (W̃r)

〉

=−

〈
PŨ

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃
s
r,c)− Fc(W̃r)

)
PṼ + PŨs∗λF (W̃r)PṼ , F (W̃r)

〉

=−

〈
Ũ⊤

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃
s
r,c)− Fc(W̃r)

)
Ṽ , Ũ⊤F (W̃r)Ṽ

⊤

〉
− s∗λ

〈
Ũ⊤F (W̃r)Ṽ , Ũ⊤F (W̃r)Ṽ

〉
=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

Ũ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ , Ũ⊤F (W̃r)Ṽ

〉
− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where the definitions of PŨ and PṼ are used. Following this, the first term then can be bounded by604

−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉

≤ λ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥Ũ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ
∥∥∥∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥− s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
≤Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where Lemma 3 is invoked in the last inequality. Following a similar approach, we express the second605

term as606

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

=
L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + s∗λPŨF (W̃r)PṼ

∥∥∥∥∥
2

,

which can be bounded by607

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

(I)
≤L

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ

∥∥∥∥∥
2

+ (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(II)
≤ L

C

C∑
c=1

λ2s∗

s∗−1∑
s=0

∥∥∥PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ

∥∥∥2 + (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(III)
≤ L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(IV)
≤ L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where Lemma 5 with γ = 1 is used in in (I), Jensen’s inequality is used in (II), Lemma 3 is used in608

in (III), and (IV) follows from the Operator norm inequality of the Frobenius norm in combination609

with orthonormality of U and V ⊤.610
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Plugging these two bounds into (33) gives611

L(W̃ ∗
r )− L(W̃r) ≤−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉
+

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

≤Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥ ∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
=− (s∗λ)(1− (s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥)∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 ,
which concludes the proof.612

With this result, we next bound the loss descent between the augmentation and coefficient aggregation613

step in the following theorem.614

Theorem 8. Under the same assumptions as in Theorem 7. Let the local learning rate be 0 < λ ≤615
1

12Ls∗
with number of local iterations s∗ ≥ 1. Then,616

L(W̃ ∗
r )− L(W̃r) ≤ −s∗λ(1− 12s∗λL)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 . (34)

Proof. Applying the drift bound given in Theorem 1 to the loss descent bound given by Theorem 7617

in (31) leads to618

− (s∗λ)(1− (s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

(
exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥))∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
+

L3λ2s∗
C

C∑
c=1

s∗−1∑
s=0

(
exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥)2

=− (s∗λ)(1− (s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lλ2s2∗ exp(1)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
+ L3λ4s4∗ exp(2)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

=− (s∗λ)(1− (s∗λ)L− (s∗λ)L exp(1)− (s∗λ)
3L2 exp(2))

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

≤− (s∗λ)(1− (s∗λ)L(1 + exp(1) + exp(2)))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where we have used that (s∗λ)L ≤ 1 and that 1 + exp(1) + exp(2) ≈ 11.107 ≤ 12.619

We are now prepared to prove Theorem 2, which we restate in terms of Riemannian gradients as620

below.621

Theorem 9. (Restatement of Theorem 2) Let U tStV t,⊤ and U t+1St+1V t+1,⊤ be the factorization622

before and after iteration t of Algorithm 1 with variance correction and singular value truncation623

24



threshold ϑ. Let Lc and L be L-smooth with constant L, and let the local learning rate be 0 ≤ λ ≤624
1

12Ls∗
. Then the global loss descent is bounded by625

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −(s∗λ)(1− 12(s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ. (35)

Proof. Consider L(W t+1
r ) and L(W̃ ∗

r ), i.e., the loss values before and after the truncation step. By626

the mean value theorem, we obtain for some h ∈ [0, 1]627

L(W t+1
r ) = L(W̃ ∗

r ) +
〈
−F (hW t+1

r + (1− h)W̃ ∗
r ),W

t+1
r − W̃ ∗

r

〉
≤L(W̃ ∗

r ) +
∥∥∥F (hW t+1

r + (1− h)W̃ ∗
r )
∥∥∥∥∥∥W t+1

r − W̃ ∗
r

∥∥∥
≤L(W̃ ∗

r ) + Lϑ

(36)

where L-smoothness and the fact that ϑ ≥
∥∥∥W t+1

r − W̃ ∗
r

∥∥∥ are used in (II), where the latter follows628

from the singular value truncation threshold. Combining the above arguments with Lemma 7 and629

Theorem 8 yields630

L(W t+1
r )− L(W t

r ) = (L(W t+1
r )− L(W̃ ∗

r )) + (L(W̃ ∗
r )− L(W̃r)) + (L(W̃r)− L(W t

r ))

≤ Lϑ− (s∗λ)(1− 12(s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
which concludes the proof.631

G.3 Global convergence of FeDLRT with full variance correction632

Theorem 10. (Restatement of Theorem 3) Assume that L is L-smooth with constant L for all633

c = 1, . . . , C. Let Ũ tS̃tṼ t,⊤ be the augmented representation at iteration t. Then Algorithm 1634

guarantees for the learning rate λ ≤ 1
12Ls∗

and final iteration T635

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 48L2ϑ. (37)

Proof. Consider Theorem 2,636

L(W t+1
r )− L(W t

r ) ≤ Lϑ− (s∗λ)(1− 12(s∗λ)L)
∥∥∇S̃L(U

tStV t,⊤)
∥∥2 , (38)

and assume that λs∗ = 1
24L , i.e. λ = 1

24Ls∗
≤ 1

Ls∗
, which obeys the learning rate requirement of637

Theorem 2. Plugging this learning rate into (38) gives638 ∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L
(
L(Wr

t)− L(Wr
t+1) + Lϑ

)
.

Averaging from t = 1 to t = T yields639

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 1

T

T∑
t=1

∥∥∇S̃L(U
tStV t,⊤)

∥∥2
≤ 48L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 48L2ϑ,

which concludes the proof.640

We remark that for a general loss function, it is possible that a point with small gradient magnitude641

can be far from the stationary points. However, assuming that the loss function is locally strongly642

convex in a neighborhood of a stationary point, then the gradient magnitude can be used to bound643

the distance to this stationary point in the neighborhood. For further reference, we point to [? , Eq.644

(4.12)] for the estimate.645
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H Analysis for FeDLRT with simplified variance correction646

We consider the FeDLRT method with simplified variance correction, see Algorithm 5. Key difference647

to the standard FeDLRT with full variance correction, see Algorithm 1 is the modified coefficient648

update, incorporating global gradient information of the non-augmented coefficient matrix S for the649

variance correction term, that is650

V̌c = ǦS̃ − ǦS̃,c =

[
∇SL(U tStV t,⊤)−∇SLc(U

tStV t,⊤) 0
0 0

]
. (39)

Using the Riemmanian gradient, we can equivalently write651

V̌c =
[
U⊤| 0

]
(F (W̃r)− Fc(W̃r))

[
V
0

]
= Ũ⊤

[
I 0
0 0

]
(Fc(W̃r)− F (W̃r))

[
I 0
0 0

]
Ṽ .

Remember the simplified variance corrected local coefficient update, given by652

S̃s+1
c = S̃s

c + λŨ⊤
(
Fc(W̃

s
r,c) +

[
I 0
0 0

]
(FC(W̃r)− F (W̃r))

[
I 0
0 0

])
Ṽ

= S̃s
c + λŨ⊤

(
Fc(W̃

s
r,c)
)
Ṽ + V̌c.

(40)

H.1 Global loss descent for FeDLRT with simplified variance correction653

In the following we provide proof for a global loss descent for Algorithm 5, i.e. using the local654

coefficient update with variance correction (40).655

Theorem 11. (Restatement of Theorem 4) Under Assumption 1, if the local learning rate 0 < λ ≤656
1

12Ls∗
, then Algorithm 5 leads to the global loss descent657

L(Wr
t+1)− L(Wr

t) ≤ −s∗λ(1− δ2 − 12s∗λL+ δ2s∗λ)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ, (41)

with Wr
t = U tStV t,⊤ and Wr

t+1 = U t+1St+1V t+1,⊤.658

Proof. We split the adjusted coefficient update in (40) into the non-augmented r × r matrix S and659

the tree off-diagonal blocks given by the augmentation Ŝ:660

Ŝ = S̃ −
[
S 0
0 0

]
. (42)

Analogously to the proof of Theorem 2, we consider661

L(W̃ ∗
r )− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2
=
〈
Ũ S̃∗Ṽ ⊤ − Ũ S̃Ṽ ⊤, F (W̃r)

〉
+

L

2

∥∥∥Ũ S̃∗Ṽ ⊤ − Ũ S̃Ṽ ⊤
∥∥∥2

=
〈
S̃∗ − S̃, Ũ⊤F (W̃r)Ṽ

〉
+

L

2

∥∥∥S̃∗ − S̃
∥∥∥2

=
〈
S̃∗ − S̃,−∇S̃L(W̃r)

〉
+

L

2

∥∥∥S̃∗ − S̃
∥∥∥2 ,

where the transformation uses orthonormality of Ũ and Ṽ and definition of the projected gradient.662

We split the right hand side in terms corresponding to augmented terms Ŝ and non-augmented terms663

S according to (42), i.e.,664 〈
S∗ − S,−∇SL(W̃r)

〉
+

L

2
∥S∗ − S∥2 , (43)

which is treated exactly as in the proof of Theorem 2, and the augmented terms665 〈
Ŝ∗ − Ŝ,−∇ŜL(W̃r)

〉
+

L

2

∥∥∥Ŝ∗ − Ŝ
∥∥∥2 . (44)
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First we bound the term (43). Remember that Ŝ = 0 at the start of the local iterations due to666

orthonormality of Ũ , Ṽ . The coefficient update (40) for S reads667

Ss+1
c = Ss

c + λU⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
V. (45)

Then we can readily apply Theorem 2 to obtain the bound668 〈
S∗ − S,−∇SL(W̃r)

〉
+

L

2
∥S∗ − S∥2 ≤ −(s∗λ)(1− 12(s∗λ)L)

∥∥∥U⊤F (W̃r)V
∥∥∥2 . (46)

Next, we bound (44), starting with the first term:669 〈
Ŝ∗ − Ŝ,−∇ŜL(W̃r)

〉
(I)
=
〈
Ŝ∗ − 0,−∇ŜL(W̃r)

〉
=

〈
− λ

C

C∑
c=1

s∗−1∑
s=0

∇ŜLc(W̃
s
r,c),−∇ŜL(W̃r)

〉

=
λ

C

C∑
c=1

s∗−1∑
s=0

〈
∇ŜLc(W̃

s
r,c),∇ŜL(W̃r)

〉
≤ λ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇ŜLc(W̃
s
r,c)
∥∥∥∥∥∥∇ŜL(W̃r)

∥∥∥
(II)
≤ λ

C

C∑
c=1

s∗−1∑
s=0

δ2
∥∥∥∇S̃L(W̃r)

∥∥∥∥∥∥∇S̃L(W̃r)
∥∥∥

= δ2s∗λ
∥∥∥∇S̃L(W̃r)

∥∥∥2 = δ2s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where we use Ŝ = 0 in (I), and Assumption 1 in (II). Next, we bound the second term670

L

2

∥∥∥Ŝ∗ − Ŝ
∥∥∥2 =

L

2

∥∥∥∥∥− λ

C

C∑
c=1

s∗−1∑
s=0

∇ŜL(W̃
S
r,c)

∥∥∥∥∥
2

(I)
≤L

2
λ2 1

C

C∑
c=1

∥∥∥∥∥
s∗−1∑
s=0

∇ŜL(W̃
S
r,c)

∥∥∥∥∥
2

(I)
≤L

2
s∗λ

2 1

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇ŜL(W̃
S
r,c)
∥∥∥2

≤s∗
L

2
δ2λ2 1

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇S̃L(W̃r)
∥∥∥2

≤L

2
δ2(s∗λ)

2
∥∥∥∇S̃L(W̃r)

∥∥∥2 =
L

2
δ2(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where we used Jensen’s inequality in (I) again Assumption 1. We combine the bound on the671

non-augmented terms (46) and the two bounds above for the augmented terms to672

L(W̃ ∗
r )− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥U⊤F (W̃r)V
∥∥∥2 + δs∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δ(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
(I)
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δs∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δ(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
=− (s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,
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where we use in (I)
∥∥∥U⊤F (W̃r)V

∥∥∥ ≤ ∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥. Using Equation (36), we can conclude the673

proof:674

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤)

≤− (s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ.

675

H.2 Global convergence of FeDLRT with simplified variance correction676

Corollary 2. (Restatement of Corollary 1) Under Assumption 1, Algorithm 5 guarantees for the677

learning rate λ ≤ 1
s∗(12L+δ2)678

min
t=1,...,T

∥∥∇S̃L(Wr
t)
∥∥2 ≤ 96L

T

(
L(Wr

1)− L(Wr
T+1)

)
+ 96L2ϑ, (47)

with Wr
t = U tStV t,⊤, Wr

1 = U1S1V 1,⊤. and Wr
T+1 = UT+1ST+1V T+1,⊤.679

Proof. Consider Theorem 4,680

L(Wr
t+1)− L(Wr

t) ≤ −(s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ

and assume that λs∗ = 1
(12L+δ2) , i.e. λ = 1

s∗(12L+δ2) ≤
1

Ls∗
, which obeys the learning rate681

requirement of Theorem 2. Plugging this learning rate into (38) gives682 ∥∥∇S̃L(Wr
t)
∥∥2 ≤ 96L

(
L(Wr

t)− L(Wr
t+1) + Lϑ

)
,

where we use ( 14 − δ2) ≤ 1
4 and 1

(12L+δ2) ≤
1

12L Averaging from t = 1 to t = T yields683

min
t=1,...,T

∥∥∇S̃L(Wr
t)
∥∥2 ≤ 1

T

T∑
t=1

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

≤96L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 96L2ϑ,

which concludes the proof.684
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I NeurIPS review685

I.1 Paper Decision686

While the reviewers agreed that the work has interesting contributions and found merits in them, they687

raised several issues that are worth addressing in a careful and thorough manner. These include the688

exposition of the manuscript, scope of the numerical experiments and presentation of the numerical689

results, and possible extensions of the proposed approach to other settings. As the revision will be690

extensive and thus requires another round of review, and in view of the fact that NeurIPS can only691

accommodate one round of review, I regrettably have to reject the manuscript at this point.692

I.2 Official Comment by the Authors693

Wrap up statement of the discussion period694

As the discussion period approaches its final day, we would like to thank the reviewers again for their695

feedback and hope we have clarified their remarks.696

Overall, the reviewers pointed out that the submission proposes a sound algorithm solving the increas-697

ingly relevant and important problem of automatic compression for distributed and edge computing,698

while providing a robust theoretical foundation with global convergence proofs. The algorithm is699

evaluated on multiple datasets and network architectures (convolutional layers, transformers, and700

fully connected layers) and test problems. The reviewers found the paper to be well written.701

We received valuable, constructive feedback by the reviewers and summarize the rebuttal and702

discussions in the following:703

• We are happy to have resolved some unclear statements in the test-case descriptions, and704

contribution statements.705

• Prompted by reviewer VUf8, we have extended the algorithm description for Tensor valued706

layers, prominently featured in convolutional neural networks, where we apply the proposed707

method to Tucker-Factorized tensors, and demonstrate their viability in the general answer708

PDF.709

• We have provided more convergence plots to illustrate the effect of variance correction in710

neural network training, in addition to the plots for least squares regression in the paper.711

• We have explained the mechanics of the basis augmentation, prompted by reviewer rsLZ,712

and how the basis augmentation, which does not induce any approximation errors, provides713

a key ingredient for the analysis. We further clarified that indeed, the coefficient update step714

resembles an optimization step on the low-rank manifold.715

• We have clarified the consequences of the convergence guarantee on the distance of the716

trained solution to the stationary point in the fruitful discussion with reviewer hYpR.717

• In the fruitful discussion with reviewer VUf8, we have clarified some limitations of the718

proposed method in context of heterogeneous data, and partial participation. In summary,719

we have seen that the proposed method works well in the setting720

– homogeneous data, deterministic gradient (Main paper, Section 4.1 Homogeneous test;721

supplemented by Figure 4)722

– homogeneous data, stochastic (mini-batch) gradient (Main paper, Section 4.2 and723

appendix; supplemented by Figure 5-8)724

– heterogeneous data, deterministic gradient (Main paper, Section 4.1 Heterogeneous725

test; supplemented by Figure 1)726

Preliminary tests during the discussion period showed that more research is required to727

provide good results for heterogeneous data, stochastic (mini-batch) gradient.728

• Finally, we point out how the method can be extended to a partial participation scenario,729

where not all clients are active at the same time.730

We hope that our answers have satisfied the reviewers, and we thank them again for their feedback.731

Kind regards,732

Authors733
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I.3 Review 1 - hYpR734

Summary: This paper proposes a low-rank scheme to reduce communication and computation cost in735

FL, while also reducing client drift.736

Soundness: 3: good Presentation: 3: good Contribution: 3: good Strengths: The paper is well-written737

and seems to be solving a relevant and important problem.738

Weaknesses: see below739

Questions:740

Section 2: In Fig 1, how is the initial trajectory of FedAvg and FedLin identical till FedAvg settles?741

Section 3: lines 126-7: just my curiosity, but why are SVD and QR decomposition not GPU friendly?742

In Fig 3 caption, the sentence about cost drop after is unclear. The description following Theorem 3743

connects the non-zero bias in (12-13) with Fig 1. However, Fig 1 shows distance to solution, while744

in theorem 2, 3, these are gradient norms. Can we really say anything much about the convergence745

based on bias in gradient norm, since in the worst case, we can be arbitrarily far from any stationary746

point?747

Section 4: heterogeneous test case - why do all clients have access to all the training points? Shouldn’t748

the data be distributed across clients as in the homogeneous case?749

Limitations: n/a750

Flag For Ethics Review: No ethics review needed.751

Rating: 6: Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns752

with respect to evaluation, resources, reproducibility, ethical considerations.753

Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand754

some parts of the submission or that you are unfamiliar with some pieces of related work. Math/other755

details were not carefully checked.756

Code Of Conduct: Yes757

I.3.1 Rebuttal by authors758

Rebuttal: We thank the reviewer for their review. Each of the questions is addressed below.759

Regarding the trajectories in Fig.1: We would like to clarify that, in the early stage, the trajectories760

of FedAvg and FedLin reported in Fig. 1 are very close but not identical. The similarity of these761

two trajectories is due to the fact that the variance correction term, which is the distinguishing factor762

between FedAvg and FedLin, see Eq. (4), being insignificant in the early stage of training for this763

problem. The variance correction term corrects the local gradient directions of the clients to prevent764

stalling of the convergence process. In this problem, the distances between model parameters at early765

stage and the the local optima are much longer than the distance between local (client) optima and766

the global optimum of the federated problem. In this case, the local gradients are good estimates of767

the global federated gradients and thus the variance correction effect is insignificant, which leads to768

similar behavior of FedAvg and FedLin. As the model parameters approach the local/global optimum,769

the local gradients are no longer good estimates of the global gradient due to data heterogeneity, and770

the variance correction term eventually results in better convergence behavior of FedLin. The same771

argument holds for the proposed low-rank methods with and without variance correction.772

Regarding GPU friendliness: We consider SVD and QR not as GPU friendly as other parts of the773

proposed algorithm. They are less GPU friendly because the underlying SVD and QR algorithms are774

inherently sequential. For example, in a QR decomposition, the orthogonal space is build by rotating775

each column vector of a matrix onto the orthogonal complement of the subspace spanned by existing776

vectors. This sequential iterative procedure makes massively parallel implementation nontrivial, as777

opposed to, e.g., batchwise network evaluations.778

Regarding the caption of Fig. 3: As for the sentence in question in the caption of Fig. 3, we meant to779

state that, when the rank is below 200, the communication, computation, and memory costs of the780

FeDLRT are lower than the costs of the full rank FedLin method. Thank you for pointing our the781

potential confusion. We will clarify this in a revised version.782
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Regarding the description following Theorem 3: Thank you for this remark. The result in Theorem783

3 describes convergence to a stationary point by providing upper bounds on the norm of the loss784

function gradient. For a general loss function, it is indeed possible that a point with small gradient785

magnitude can be far from the stationary points. However, if we assume that the loss function is786

locally strongly convex in a neighborhood of a stationary point, then the gradient magnitude can be787

used to bound the distance to this stationary point in the neighborhood. Please see, for example, Eq.788

(4.12) in Bottou, Léon, Frank E. Curtis, and Jorge Nocedal, "Optimization methods for large-scale789

machine learning." SIAM review 60, no. 2 (2018): 223-311, for the estimate and Appendix B therein790

for the proof.791

Regarding the heterogeneous data test case: Thank you for pointing out the ambiguity in the problem792

description. In the heterogeneous linear regression test case, each client performs regression to a793

different target function. Therefore, even though they share the same 10,000 locations sampled on ,794

the local objective functions are defined with different target functions . We will clarify the problem795

configuration in a revised version.796

I.3.2 Comment by reviewer797

Thanks to the authors for their response. I maintain my score. All the best!798

I.4 Review 2 - VUf8799

Summary: The paper introduces FeDLRT, a federated algorithm to train and truncate low-rank800

weights automatically. The algorithm is based on a distributed version of the dynamic low-rank801

training. This requires multiple communication rounds (3 at worst) between the server and all clients,802

where first the U and V basis are augmented on the server after the basis gradients are sent from803

the clients and aggregated by the server. Then the clients learn the coefficients S and eventually804

correct the variance. The server then aggregates S, compress, and update the basis. The algorithm805

has theoretical guarantees of global convergence.806

Soundness: 3: good Presentation: 2: fair Contribution: 3: good Strengths: The algorithm is sound807

and has theoretical guarantees of global convergence. Automatic compression is an increasingly808

important research topic, especially for edge and distributed training.809

Weaknesses: I personally found the paper hard to follow and to distinguish between the actual810

contributions and what is instead based on the existing literature. The appendix is helpful, but811

I suggest the authors restructure section 3 and divide it into the background for dynamical low-812

rank training and their actual contributions. The algorithm seems a federated porting of the DLRT813

algorithm, which in order to have guarantees requires at least double communication per round to814

have shared augmented bases. Also, a clear contributions section would be helpful.815

The way the CIFAR10 dataset has been split across clients is quite naive (only a few clients) and816

homogeneous - this is not a standard practice in FL where the algorithms are generally tested817

in heterogeneous non-iid settings, for instance splitting data among clients, based on a Dirichlet818

distribution (see for instance https://arxiv.org/abs/1909.06335 and https://arxiv.org/abs/2003.00295).819

The algorithm seems to be working only in full participation mode (at each round it needs to commu-820

nicate with all the clients), so it is mainly made for cross-silo settings with a few always available821

clients rather than cross-device. Indeed it requires 2 (or even 3 in the worst case) communication822

rounds (broadcast and aggregate operations)823

Questions: Experiments on computer vision datasets: in the main paper the authors present exper-824

iments by training only the classifier using their proposed method. It is unclear if the method can825

be extended to all layers to train them and automatically compress them to their optimal rank. It is826

unclear if the method can be extended to convolutional layers.827

It would be interesting to see plots of the loss and accuracy on the CIFAR dataset (with heterogeneity)828

to check the actual speed of convergence of the method against baselines. Something similar to829

Figure 4, but at least for the CIFAR10 dataset and against baselines such as FedAVG, FedLin, and830

potentially also something more recent to tackle heterogeneity. Indeed, while the method proposed831

has a variance reduction correction, apparently for mitigating client-drift, it is unclear if it can handle832

and mitigate the effect of heterogeneity.833
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Could the algorithm be extended to avoid communicating twice, hence to work in, cross-device,834

realistic, and partial participation settings?835

Limitations: The authors should dedicate more space to the limitations of their approach as they are836

not clearly expressed and, while sound, the work seems not ready to be a practical algorithm yet.837

Flag For Ethics Review: No ethics review needed.838

Rating: 6: Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns839

with respect to evaluation, resources, reproducibility, ethical considerations.840

Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand841

some parts of the submission or that you are unfamiliar with some pieces of related work. Math/other842

details were not carefully checked.843

Code Of Conduct: Yes844

I.4.1 Rebuttal by authors845

Rebuttal: We thank the reviewer for their review. To improve the presentation, we propose to846

restructure Section 2 and 3 by moving the description of the (non-federated) dynamical low-rank847

training from Section 3 to Section 2 as part of the background. The new Section 2 will include848

subsections on background for federated learning and variance correction, background for low-rank849

and dynamical low-rank training, as well as a standalone subsection on the contribution, which will850

be derived from the last paragraph of Section 2 in the current version. After this, the entire Section 3851

is dedicated to the proposed method and analysis.852

We address each of the questions below.853

Regarding compressing convolutions: We focused on the classifier since these layers are matrix-854

valued, and thus the proposed algorithm is directly applicable. We have extended the implementation855

of FeDLRT to train convolutional layers in a low-rank fashion as well. The results of FeDLRT applied856

to all layers (convolutions and classifiers) of VGG16 on CIFAR10 are reported in Fig. 2 in the general857

response PDF file. These results resemble the the ones in Fig. 7 with slightly different compression858

ratios, since more layers are now low rank. In the following paragraph, we give technical details in859

the extension of FeDLRT to compress convolutional layers.860

To extend FeDLRT to convolutional layers, we follow the approach considered in, e.g.,861

(https://arxiv.org/abs/2305.19059) for (non-federated) DLRT, where a 2D convolution is interpreted862

as an order-4 tensor and factorized by using the Tucker decomposition. To this end, the Tucker bases863

Ui ∈ Rni×ri for i = 1, . . . , 4. replace the U and V bases in the matrix case, and the Tucker core864

tensor C ∈ R ∈ Rr1,×···×r4 replaces the coefficient matrix S , to which the variance correction865

is applied. The analysis holds for the Tucker Tensor case, since Tucker Tensors have a manifold866

structure. In the proofs, we need to project onto all bases Ui . The compression step is performed867

with an truncated Tucker decomposition of the core tensor , instead of an SVD of the coefficient868

matrix . For intuition, one can also refer to the matrix case as the order-2 Tucker Tensor case. Remark869

that the bases are all updated simultaneously, thus the adaption to the tensor case does not require870

more communication rounds.871

Regarding accuracy plots: We thank the reviewer for the constructive question. First, we provide872

in the general response PDF file, Fig. 1, a convergence plot for Resnet18 on CIFAR10 for the873

(homogeneous) test case reported in Fig. 5 of the main manuscript. One can see that the benefit of the874

variance correction term (in FeDLRT w/ var/cor and FedLin) mitigates the stalling of the convergence875

seen in the non-variance-corrected methods (FeDLRT w/o var/cor and FedAvg).876

Regarding heterogeneous test cases: Prompted by this question, we conducted a preliminary study for877

a federated scenario with heterogeneous data on the client devices, drawn from a Dirichlet distribution.878

We found that the variance correction does not provide significant performance increase in scenarios879

with stochastic multi-batch gradient descent on clients and strong heterogeneity. Given the positive880

results for homogeneous data, we consider this challenge a relevant future research direction and881

will investigate the potential incorporation of more recent techniques into FeDLRT to tackle strongly882

heterogeneous data.883

Regarding a modification to reduce the communication rounds: The FeDLRT algorithm and the884

convergence analysis require communication of the basis and optionally the variance correction885
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term prior to the client coefficient updates, therefore, both communication rounds are necessary.886

The variance corrected baseline, FedLin, considered in this work also requires two communication887

rounds. Moreover, we would like to emphasize that the total communication cost (including all888

communication rounds) per aggregation round of FeDLRT in practice is nearly an order of magnitude889

smaller than the full-rank baselines, e.g. FedLin or FedAvg, because FeDLRT only communicates890

part of the factors each round. See Fig. 3 of the manuscript and results in e.g. Fig. 5. We also remark891

that the variance correction benefits the convergence behavior, see, e.g. Fig. 1, and the two right892

panels of Fig. 4 in the main manuscript, as well as Fig. 1 in the general response PDF file. The893

superior convergence behavior implies that the proposed method reaches the target accuracy in fewer894

aggregation rounds, thus requiring fewer overall communication rounds.895

A potential limitation of having two communication rounds, instead of one, is that latency differences896

of clients are more pronounced during hand-shakes. However, even for basic methods with single897

communication round, e.g. FedAvg, latency differences still pose a problem. To fully address this898

issue, one may need to extend the method non-trivially to accommodate asynchronous communication899

scenarios, which we find relevant as a future research direction.900

On the other hand, allowing for partial participation is certainly possible in FeDLRT, as long as901

the active clients are consistent in all communication rounds within the same aggregation round.902

However, we have not been able to experiment in the partial participation configuration with many903

(> 100 ) clients training relevant network architectures such as Resnet18 or VGG16, due to the904

constraint on the computation resources and the current implementation of FeDLRT. We agree that905

this is an important research direction and will make attempts to scale up the FeDLRT method.906

I.4.2 Comment by reviewer907

Thank you for answering my questions and concerns.908

Could you clarify (please be specific) how the algorithm could work in the partial participation case909

and if errors could arise (if the algorithm’s guarantees are broken), especially in the heterogeneous910

case?911

I.4.3 Comment by authors912

We start our answer with a description of FeDLRT without variance correction for the partial913

participation case and then discuss a potential direction for extending FeDLRT to handle data914

heterogeneity in the partial participation scenario.915

When variance correction is turned off, FeDLRT can be applied to partial active clients by considering916

only a (potentially random) subset Ct ⊂ 1, . . . , C of clients within a global aggregation round in917

Algorithm 1 in the original manuscript. Specifically, at aggregation round t, only the clients Ct are918

taken into account in the broadcasting in lines 2 and 6, client operations in lines 3, 7, 8, 15, and the919

aggregations in lines 4 and 16.920

Due to the partial participation, the gradients computed in line 4 are no longer the global loss gradients921

with respect to U and V , respectively. However, this does not break the mechanism and analysis of922

FeDLRT since the augmented basis is not required to come from augmenting the global gradients.923

The set of active clients can vary for different aggregation rounds, but, for FeDLRT, Ct needs to924

remain constant within an aggregation round. This restriction is consistent to the scenario considered925

in most existing work on federated learning with partial participation.926

As for the performance, we expect that the FeDLRT w/o variance correction described above to927

perform similarly as FedAvg in terms of final accuracy, but at a much lower communication and928

memory cost due to the low rank technique.929

Based on the preliminary results on heterogeneous data discussed in the rebuttal, we do not expect930

the current variance correction scheme to provide significant advantages in the partial participation931

case with heterogeneous data. A potential approach to address this issue is to incorporate in the932

FeDLRT algorithm an advanced variance correction scheme, such as the FedVARP scheme proposed933

in https://openreview.net/forum?id=HlWLLdUocx5 , which is tailored to the partial participation934

case with heterogeneous data.935

We are happy to provide more details if there are further questions.936
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I.4.4 Comment by reviewer937

Thank you for your responses. In its current state, I still believe the paper is borderline, as it does not938

seem intended for general heterogeneous federated learning. That said, this could be a bias on my939

part, as this is one of my main areas of expertise. The rest of the paper and the authors’ responses940

are convincing, but I believe the authors should incorporate their explanations and additional details941

about my concerns into the main paper. I have the impression that the algorithm is more suited942

for distributed learning, where heterogeneity and partial participation are less of an issue, though943

compression could still be beneficial due to communication constraints.944

I am raising my score, and I hope the authors will consider my concerns and suggestions in the final945

version of the paper as well as in future work.946

I.5 Review 3 - rsLZ947

Summary: This paper introduces FeDLRT (Federated Dynamical Low-Rank Training), an innovative948

method designed to enhance federated learning by incorporating a low-rank client optimization949

step and an optional variance correction mechanism. FeDLRT builds upon the dynamic low-rank950

approximation (DLRA) method, extending it to neural network training in a federated learning951

context. The key contributions of this work include the development of a basis update and Galerkin952

(BUG) splitting scheme that allows for the efficient and dynamic adjustment of the rank, ensuring953

client-wide manifold consistency, and minimizing communication costs.954

Soundness: 2: fair Presentation: 3: good Contribution: 3: good Strengths: The paper presents a955

robust theoretical framework by building upon the dynamic low-rank approximation (DLRA) method956

and extending it to the federated learning context.957

The dynamic adjustment of the rank through the BUG splitting scheme is an innovation. This approach958

not only ensures client-wide manifold consistency but also enables efficient basis augmentation and959

coefficient updates, leading to better utilization of communication resources. The optional variance960

correction mechanism adds another layer of robustness, addressing potential discrepancies in local961

updates and ensuring convergence.962

The extensive evaluation on real datasets demonstrates the effectiveness of the proposed approach for963

federated dynamical low-rank training.964

Weaknesses: The method requires two communication rounds—one for aggregating global basis965

gradients and another for locally updated coefficients, which might still be considered high in some966

federated learning scenarios. When the number of clients is large, each gradient and basis update can967

result in additional communication overhead. Can everything be done in one communication round?968

The experiments are limited to ResNet18 on CIFAR-10. This method involves gradient calculation969

and local optimization on the client side, as well as incremental basis update and QR decomposition970

on the server side. Whether the model is valid when applied to higher-dimensional data or larger971

models such as RoBERTa or LLaMA, and large datasets like SST-2.972

When updating the basis U and V, the effect of the upper triangular matrix R is ignored in the new973

incremental basis obtained by using QR decomposition. Will this affect the performance of the974

model? What is the error range caused by updating the coefficient matrix S with the new incremental975

basis?976

When updating the incremental coefficient matrix S in this paper, using an update method similar to977

SGD will lead to the original parameter not being on the manifold after updating.978

It is better to conduct the experiments with baselines. Otherwise it is difficult to justify the effective-979

ness of the proposed method.980

Questions: Weaknesses981

Limitations: No.982

Flag For Ethics Review: No ethics review needed.983

Rating: 3: Reject: For instance, a paper with technical flaws, weak evaluation, inadequate repro-984

ducibility and/or incompletely addressed ethical considerations.985
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Confidence: 4: You are confident in your assessment, but not absolutely certain. It is unlikely, but not986

impossible, that you did not understand some parts of the submission or that you are unfamiliar with987

some pieces of related work.988

Code Of Conduct: Yes989

I.5.1 Rebuttal by Authors990

We thank the reviewer for this review. Please find the answer to the questions below.991

1. Regarding communication cost: The method requires two communication rounds, since the992

basis update and variance correction term need to be available to each (active) client before993

the client update starts. This being said, the proposed method communicates only parts of994

the weight matrix factors during each communication round, i.e. its total communication995

cost is significantly reduced compared to baseline methods, such as FedAvg and FedLin.996

Further, FedLin, the baseline with variance correction, also requires two communication997

rounds. We remark that the variance correction also benefits the convergence behavior, see,998

e.g. Fig. 1, and the two right panels of Fig. 4 in the main manuscript, as well as Fig. 1 in the999

general response PDF file. The superior convergence behavior implies that the proposed1000

method reaches the target accuracy in fewer aggregation rounds, thus requiring fewer overall1001

communication rounds. In conclusion, we argue that the total number of communicated1002

floating point numbers is significantly reduced in FeDRLT, compared to the mentioned1003

baselines.1004

2. Regarding experiments: In addition to ResNet18 on CIFAR10, we provide numerical results1005

for two convex test problems in the main manuscript, as well as AlexNet on CIFAR10,1006

VGG16 on CIFAR10, and a Vision Transformer on CIFAR100 in the appendix, thus dis-1007

cussing performance on convolutional networks and transformers, two of the most widely1008

used network architectures.1009

The QR decomposition required in the basis augmentation step acts on a tall, but skinny1010

n×2r matrix, thus requiring (2r)2 computational cost (typically n≫ r), which still smaller1011

than the n2 cost of multiplying a full-rank weight matrix with an input vector required in1012

the full-rank baseline methods, such as FedLin and FedAvg. Further, the QR decomposition1013

is performed once per aggregation round on the server, which has typically more compute1014

resources than the clients. We stress that the method aims to minimize total communication1015

and client compute costs, combined with preferred convergence behavior. Considering1016

Table 1, we remark that FeDLRT is (to the best of our knowledge) the only one with linear1017

dependence of the client compute cost on the layer dimensions.1018

3. Regarding the basis update: The basis update extends the old basis by the span of the gradient1019

dynamics. Thus, the spans of the augmented bases obtained in the basis augmentation1020

step also contain the spans of original bases. Consequently, no error is introduced by1021

augmenting the basis, and the training loss does not increase. Intuitively the basis1022

augmentation can be seen as a conservative extension of the search space of the neural1023

network training: we allow to search for new coefficients in a manifold of twice the rank.1024

In further detail, we refer to line 5 of Algorithm 1 (using Eq. (6)), where the basis update of1025

U and V is performed. Due to the QR decomposition, we have span(Ũ) = span([U t, GU ]).1026

The R matrix is not relevant to the construction of the new basis and thus can be1027

discarded in the algorithm. However, since U t is already orthonormal by construction,1028

we further have Ũ = [U t, Ū ] with U t ⊥ Ū , which implies that the upper half of R is a1029

unit matrix. This is indeed important since it yields the explicit expression of S̃ in Lemma1030

1. As a consequence, the augmented low-rank representation Ũ S̃Ṽ ⊤ is consistent with1031

the non-augmented representation USV ⊤, i.e. ||Ũ S̃Ṽ ⊤ − USV ⊤||F = 0, which is a1032

requirement in the proof of Theorems 2 and 4.1033

4. Regarding coefficient updates: The method is carefully constructed to so that the coef-1034

ficient matrix update is an update within the manifold of rank 2r matrices, because the1035

bases Ũ and Ṽ remain constant in the client update steps. This not only implies that1036

the updates stay on the manifold, but that the proposed method is robust with respect to1037

the curvature of the low-rank manifold. We refer to Appendix D and specifically The-1038

orem 5 in the manuscript for a technical discussion of the robust optimization method1039
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that forms the foundation of this federated scheme. For further reading on why the1040

BUG scheme is a robust optimization method on manifolds, we would like to refer to1041

[https://arxiv.org/pdf/2205.13571, Section 4]. For a well-written geometric interpretation of1042

the method, we refer to (https://arxiv.org/abs/1705.08521).1043

5. Baselines of experiments: We compare FeDLRT to the full-rank baselines, FedAvg and1044

FedLin, in all numerical experiments. We show that across all test cases, the FeDLRT1045

method confidently mirrors the convergence behavior of its full-rank counterpart, just as1046

estimated in Theorem 5. Meanwhile, FeDLRT dynamically compresses the model to reduce1047

communication bandwidth and the computational cost.1048
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