
Ensembling and Knowledge Distilling of Large Sequence Taggers for
Grammatical Error Correction

Anonymous ACL submission

Abstract

In this paper, we investigate GEC sequence001
tagging architecture with focusing on ensem-002
bling of the recent cutting-edge Transformers’003
encoders in their Large configurations. We en-004
courage ensembling models by majority votes005
on span-level edits because it’s tolerant to the006
model architecture and vocabulary size. Our007
best ensemble achieves a new SOTA result,008
the F0.5 score of 76.05 on BEA-2019 (test),009
even without pre-training on synthetic datasets.010
Also, we perform model distillation of a trained011
ensemble to generate new training synthetic012
datasets, "Troy-Blogs" and "Troy-1BW". Our013
best single sequence tagging model that is pre-014
trained on generated Troy- datasets in combi-015
nation with publicly available synthetic PIE016
dataset achieves a near-SOTA1 result of the017
F0.5 score of 73.21 on BEA-2019 (test). The018
code, datasets, and trained models are publicly019
available2.020

1 Introduction021

Grammatical Error Correction (GEC) task has a022

purpose to correct grammatical errors in natural023

texts. It includes correcting errors in spelling, punc-024

tuation, grammar, morphology, word choice, and025

others. Intelligent GEC system receives text con-026

taining mistakes and produces its corrected ver-027

sion. GEC task is complicated and challenging:028

the accuracy of edits, inference speed, and memory029

limitations are the topics of intensive research.030

Currently, Machine Translation (MT) is the031

mainstream approach for GEC. In this setting,032

errorful sentences correspond to the source lan-033

guage, and error-free sentences correspond to the034

target language. Early GEC-MT methods lever-035

aged phrase-based statistical machine translation036

(PBSMT) (Yuan and Felice, 2013). Then they037

1To the best of our knowledge, our best single model gives
way only to much heavier T5 model (Rothe et al., 2021).

2http://github.com/
to-appear-after-publication

rapidly evolved to sequence-to-sequence Neural 038

Machine Translation (NMT) based on gated recur- 039

rent neural networks (Yuan and Briscoe, 2016) and 040

recent powerful Transformer-based Seq2Seq mod- 041

els. They autoregressively capture full dependency 042

among output tokens; however, it might be slow 043

due to sequential decoding. (Grundkiewicz et al., 044

2019) leveraged Transformer model (Vaswani et al., 045

2017) which was pre-trained on synthetic GEC data 046

and right-to-left re-ranking for ensemble. (Kaneko 047

et al., 2020) adopted several strategies of BERT 048

(Devlin et al., 2018) usage for GEC. Recently, 049

(Rothe et al., 2021) built their system on top of 050

T5 (Xue et al., 2021), a xxl version of T5 Trans- 051

former encoder-decoder model and reached new 052

state-of-the-art results (11B parameters). 053

The sequence tagging approach that generates a 054

sequence of text edit operations encoded by tags for 055

errorful input text is becoming more common now. 056

LaserTagger (Malmi et al., 2019) is a sequence tag- 057

ging model that casts text generation as a text edit- 058

ing task. Corrected texts are reconstructed from the 059

inputs using three main edit operations: keeping a 060

token, deleting it, and adding a phrase before the to- 061

ken. LaserTagger combines a BERT encoder with 062

an autoregressive Transformer decoder, which pre- 063

dicts edit operations. Parallel Iterative Edit (PIE) 064

model (Awasthi et al., 2019) does parallel decod- 065

ing, achieving quality that is competitive with the 066

Seq2Seq models3. It predicts edits instead of to- 067

kens and iteratively refines predictions to capture 068

dependencies. A similar approach is presented in 069

(Omelianchuk et al., 2020). GECToR system uses 070

various Transformers as an encoder, linear layers 071

with softmax for tag prediction and error detection 072

instead of a decoder. It also managed to achieve 073

competitive results being potentially several times 074

faster than Seq2Seq because of replacing autore- 075

gressive decoder with linear output layers. 076

3http://nlpprogress.com/english/
grammatical_error_correction

1

http://github.com/to-appear-after-publication
http://github.com/to-appear-after-publication
http://nlpprogress.com/english/grammatical_error_correction
http://nlpprogress.com/english/grammatical_error_correction


Also, nowadays generation of synthetic data is077

becoming significant for most GEC models. Natu-078

ral languages are rich, and their Grammars con-079

tain many rules and exceptions; therefore, pro-080

fessional linguists usually need to annotate high-081

quality corpora for further training of ML-based082

systems mostly in a supervised manner (Dahlmeier083

et al., 2013), (Bryant et al., 2019). At the same time,084

human annotation is expensive, so researchers are085

working on methods for augmentation of training086

data, synthetic data generation, and strategies for087

its efficient usage (Lichtarge et al., 2019), (Kiyono088

et al., 2019), (Stahlberg and Kumar, 2021). Most089

of the latest works use synthetic data to pre-train090

Transformer-based components of their models.091

In this work, we are focusing on exploring se-092

quence tagging models and their ensembles. Al-093

though most of our developments might eventu-094

ally be applied to other languages, we work with095

English only in this study. Being a rich-resource096

language, English provides a highly competitive097

area for GEC task3. We leave dealing with other098

languages for future work.099

2 Base System Overview100

2.1 GECToR architecture101

Our tagging models are inherited from the GEC-102

ToR (Omelianchuk et al., 2020). To date, GEC-103

ToR shows near-SOTA results on CoNLL-2014104

and BEA-2019 benchmarks3. It is based on Al-105

lenNLP (Gardner et al., 2017) and HuggingFace’s106

Transformers (Wolf et al., 2019) libraries, and its107

source code is freely available4.108

GECToR is a sequence tagging model which109

contains a Transformer-based encoder stacked with110

two output linear layers that are responsible for er-111

ror detection and error correction. They are trained112

with a cross-entropy loss function to produce tags113

that encode token-level edits. Then iterative post-114

processing is performed. GECToR predicts the115

tag-encoded transformations for each token in the116

input sequence; it can then apply these transforma-117

tions to get the modified output sequence.118

Since some corrections in a sentence may de-119

pend on others, applying the GEC sequence-tagger120

only once may not be enough to correct the sen-121

tence entirely. Therefore, they use an iterative cor-122

rection approach: it modifies the sentence by run-123

ning the tagger on it again and repeat - up to four124

times (Fig. 1).125

4https://github.com/grammarly/gector

Figure 1: GECToR model: iterative pipeline.

2.2 Tag-encoded edit operations 126

The primary edit operations are encoded by the 127

following tags: "KEEP" - leave the current token 128

unchanged, "DELETE" - delete the current token, 129

"APPEND TOKEN" - append the token "TOKEN" 130

after the current token, "REPLACE TOKEN" - re- 131

place the current token with the token "TOKEN". 132

Also, GECToR has special edit operations, such as 133

transforming to uppercase or lowercase, transform- 134

ing irregular verbs to their third forms, adding "s" 135

word ending, etc. We refer to (Omelianchuk et al., 136

2020) for details of edit transforms. 137

2.3 Our contributions 138

We claim the following contributions: 139

1. We empirically investigate and improve the 140

GECToR sequence tagging system (Omelianchuk 141

et al., 2020) by upgrading Transformer encoders 142

to Large configurations, leveraging advanced tok- 143

enizer, additional filtering of edits-free sentences, 144

and increasing vocabulary size. 145

2. We show that ensembling of sequence tag- 146

gers by majority votes on output edit spans pro- 147

vides better performance compared to ensembling 148

by averaging of output tag probabilities while stay- 149

ing tolerant to models’ architecture and vocabulary 150

sizes. 151

3. We apply the knowledge distillation method 152

to produce annotated data by the ensemble of se- 153

quence taggers. Being trained on the distilled data, 154

single GEC tagging models show competitive per- 155

formance. 156

4. We make the code, datasets, and trained mod- 157

els publicly available. 158

3 Datasets 159

3.1 Annotated data 160

For training single models and ensembles, we 161

use parallel annotated data from Lang-8 Cor- 162

2

https://github.com/grammarly/gector


Dataset Type Part # sent. # tokens % edits
Lang-8⋆ Ann Train⋆ 1.04M 11.86M 42%
NUCLE⋆ Ann Train⋆ 57k 1.16M 62%
FCE⋆ Ann Train⋆ 28k 455k 62%

Train⋆ 34.3k 628.7k 67%
W&I⋆† Ann Dev 3.4k 63.9k 69%

Test† 3.5k 62.5k N/A
LOCNESS† Ann Dev 1k 23.1k 52%

Test† 1k 23.1k N/A
1BW‡ Mon N/A 115M 0.8B N/A
Blogs‡ Mon N/A 13.5M 171M N/A
Troy-1BW Dis Train 1.2M 30.88M 100%
Troy-Blogs Dis Train 1.2M 21.49M 100%
PIE‡ Syn Train 1.2M 30.1M 100%

Table 1: Description and statistics of datasets used in
this work. Dataset types: (Ann)otated, (Syn)thetic,
(Mon)olingual, and (Dis)tilled. ⋆Being combined these
datasets form Joint Train Dataset. †BEA-2019 dev/test
parts are concatenations of W&I and LOCNESS dev/test
parts. ‡Only parts of original corpora from the cited
sources are used in our work.

pus of Learner English (Lang-8)5 (Tajiri et al.,163

2012), National University of Singapore Corpus164

of Learner English (NUCLE)6 (Dahlmeier et al.,165

2013), First Certificate in English dataset (FCE)7166

(Yannakoudakis et al., 2011), and Write & Improve167

(W&I) Corpus (Bryant et al., 2019)8. Please, see168

Table 1 for details.169

3.2 Monolingual data, distilled data170

For knowledge distillation from the ensemble, we171

use parts of two monolingual datasets: One Billion172

Word Benchmark (1BW)9 (Chelba et al., 2013)173

and The Blog Authorship Corpus (Blogs)10 (Schler174

et al., 2005). Corresponding distilled datasets have175

prefixes "Troy-"; see more details about their gen-176

eration in Section V.177

3.3 Synthetic data178

After knowledge distillation for the final training179

of the student model we also use parallel sentences180

with synthetically generated grammatical errors181

from the PIE dataset11 (Awasthi et al., 2019).182

5https://sites.google.com/site/
naistlang8corpora

6https://www.comp.nus.edu.sg/~nlp/
corpora.html

7https://ilexir.co.uk/datasets/index.
html

8https://www.cl.cam.ac.uk/research/nl/
bea2019st/data/wi+locness_v2.1.bea19.tar.
gz

9http://statmt.org/wmt11/
training-monolingual.tgz

10https://www.kaggle.com/rtatman/
blog-authorship-corpus

11https://github.com/awasthiabhijeet/
PIE/tree/master/errorify

3.4 Evaluation 183

We report F0.5, Precision, and Recall metrics 184

computed by ERRANT scorer (Bryant et al., 2017) 185

on dev, and test datasets from W&I + LOCNESS 186

Corpus from BEA-2019 GEC Shared Task (Bryant 187

et al., 2019). 188

4 Our System’s Design 189

4.1 Tokenization 190

In the original GECToR code, the custom imple- 191

mentation12 of the Byte-Pair Encoding (BPE) tok- 192

enizer (Sennrich et al., 2016) is used. It was chosen 193

because out-from-the-box AllenNLP’s tokenizer 194

was too slow, and HuggingFace’s Transformers’ 195

tokenizers did not provide BPE to words mapping. 196

Our work is fully implemented with Transformers 197

from the HuggingFace Transformers library. In 198

particular, we moved to the recently released fast 199

tokenizers from it. Now encoders have the same 200

tokenizers for fine-tuning as they had for initial 201

pre-training that leads to better quality after fine- 202

tuning. 203

4.2 Initialization and training setup 204

Encoder is loaded with its default pretrained 205

weights; the linear layers’ weights are initialized 206

with random numbers. Our models are trained 207

by Adam optimizer (Kingma and Ba, 2015) with 208

default hyperparameters. The loss function is a 209

multi-class categorical entropy. The early stopping 210

technique is used: stopping criteria is 3 epochs 211

without improving the loss function on the dev set, 212

which is random 2% from the same source as train- 213

ing data and is different for each stage. 214

4.3 Training stages 215

Model’s training is performed during several stages. 216

On Stage I, model is pretrained on synthetic 217

datasets; this stage is optional. Then, on Stage II, 218

we carry out warming training on the Joint Train 219

Dataset, which contains Lang-8, NUCLE, FCE, 220

W&I Train datasets (Table 1). Thus we perform 221

coarse fine-tuning on a large amount of diverse 222

GEC data. Datasets are used sequentially; no shuf- 223

fling is made. Also, in order not to ruin out-of-the- 224

box pretrained weights of the encoder, during the 225

first two epochs, we train only linear layers (so- 226

called "cold epochs"); later, we make all model’s 227

weights trainable. 228

12https://github.com/google/
sentencepiece

3

https://sites.google.com/site/naistlang8corpora
https://sites.google.com/site/naistlang8corpora
https://www.comp.nus.edu.sg/~nlp/corpora.html
https://www.comp.nus.edu.sg/~nlp/corpora.html
https://ilexir.co.uk/datasets/index.html
https://ilexir.co.uk/datasets/index.html
https://www.cl.cam.ac.uk/research/nl/bea2019st/data/wi+locness_v2.1.bea19.tar.gz
https://www.cl.cam.ac.uk/research/nl/bea2019st/data/wi+locness_v2.1.bea19.tar.gz
https://www.cl.cam.ac.uk/research/nl/bea2019st/data/wi+locness_v2.1.bea19.tar.gz
http://statmt.org/wmt11/training-monolingual.tgz
http://statmt.org/wmt11/training-monolingual.tgz
https://www.kaggle.com/rtatman/blog-authorship-corpus
https://www.kaggle.com/rtatman/blog-authorship-corpus
https://github.com/awasthiabhijeet/PIE/tree/master/errorify
https://github.com/awasthiabhijeet/PIE/tree/master/errorify
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece


On Stage III, we continue fine-tuning on the229

W&I Train dataset, which contains only the highest230

quality data. Another difference between Stages231

II and III is the share of edit-free sentences in the232

training data. We observed that too many sentences233

in training data without edits lead to reducing the234

appearance rate of the tagger and deteriorating the235

overall quality. Therefore, we filter out edit-free236

sentences from the Joint Train Dataset, which is237

used in Stage II. On Stage III, we fine-tune the238

model on the unfiltered version of the W&I Train239

dataset.240

Training
stage #

Base Large
P R F0.5 P R F0.5

Stage I. N/A N/A N/A N/A N/A N/A
Stage II. 50.12 34.04 45.79 52.11 37.34 48.29
Stage III. 53.77 39.23 50.06 54.85 42.54 51.85
Inf. tweaks 62.49 32.26 52.63 65.76 33.86 55.33

Table 2: Performance of our system with RoBERTa en-
coder after each training stage and inference tweaks on
BEA-2019 (dev). Pre-training on synthetic data (Stage
I) as was done in (Omelianchuk et al., 2020) is not per-
formed.

The final stage is "inference tweaks"241

(Omelianchuk et al., 2020) for balancing be-242

tween the model’s precision and recall. It is243

performed by introducing additional hyperpa-244

rameters: additional confidence (AC) to the245

probability for the KEEP tag and minimum error246

probability (MEP) for corrections tags. These247

hyperparameters are found through a random248

search on the BEA-2019 dev set.249

4.4 Upgrading to Large encoders250

In the GECToR paper (Omelianchuk et al., 2020),251

authors investigated encoders from ALBERT (Lan252

et al., 2020), BERT (Devlin et al., 2018), GPT-253

2 (Radford et al., 2018), RoBERTa (Liu et al.,254

2019), and XLNet (Yang et al., 2019) Transform-255

ers in their Base configurations. Most likely, Base256

configurations were chosen due to the better infer-257

ence speed/quality ratio. They found that XLNet,258

RoBERTa, and BERT show the best quality.259

We reproduce experiments for these encoders,260

but now we explore Large configurations as well.261

We additionally explore encoder from DeBERTa262

(He et al., 2020) (Table 3).263

We observe that all models which are equipped264

with Large encoders have higher Precision, Re-265

call, and F0.5 values than those equipped with their266

Base versions. The price for it is 2.3 - 2.5 times267

slower inference for Large configurations (Table 4).268

Encoder Base Large
P R F0.5 P R F0.5

BERT 57.21 29.93 48.39 61.18 31.26 51.35
DeBERTa 64.22 31.87 53.38 66.35 32.77 55.07
RoBERTa 62.49 32.26 52.63 65.76 33.86 55.33
XLNet 63.16 30.59 52.07 64.27 35.17 55.14

Table 3: Performance of our system on BEA-2019 (dev)
for different encoders from pretrained Transformers in
Base and Large configurations.

Encoder Time, sec # params
Base Large Base Large

BERT 19.28 49.17 120M 350M
DeBERTa 23.75 58.32 150M 410M
RoBERTa 19.05 45.66 129M 360M
XLNet 30.46 71.19 120M 345M

Table 4: Inference times and models’ sizes of our single
tagging models. Inference time for NVIDIA Tesla P100
on BEA-2019 dev part, single models, batch size=128.
Each value is an averaged time of 5 model inferences.

The single model with RoBERTa encoder shows 269

the best performance among Large configurations, 270

whereas DeBERTa slightly outperforms RoBERTa 271

and is the best one among Base configurations. At 272

the same time, RoBERTa remains the fastest one in 273

both configurations. 274

4.5 Exploring tag vocabulary sizes 275

Most of the tag-encoded edits are token-specific, 276

e.g., "APPEND Amelia", "REPLACE Brandon", 277

and so on. Thus, the tag vocabulary size matters, 278

and it should be a compromise between the cov- 279

ering of the natural language dictionary and the 280

model’s generalization abilities. 281

We create the tag vocabulary by taking the most 282

frequent edit tags which were generated from the 283

Joint Train dataset (Table 1). To find the optimal 284

tag vocabulary sizes, we experiment with {5k, 10k} 285

vocabulary sizes (Table 5). 286

Encoder P R F0.5

DeBERTa(L)
5k 66.35 32.77 55.07

RoBERTa(L)
5k 65.76 33.86 55.33

XLNet(L)
5k 64.27 35.17 55.14

DeBERTa(L)
10k 65.46 34.59 55.55

RoBERTa(L)
10k 64.72 36.04 55.83

XLNet(L)
10k 64.12 34.02 54.48

Table 5: Performance on BEA-2019 (dev) for varied tag
vocabulary sizes and encoders in their (L)arge configu-
rations. Subscripts encode the models’ tag vocabulary
sizes from the set {5k, 10k}.

We observe that increasing the vocabulary size 287

to 10k for Large encoders may improve the quality, 288

4



as it happened for models with RoBERTa and De-289

BERTa. Nevertheless, also we see an example of290

quality deterioration for the model with XLNet.291

5 Ensembling the GEC taggers292

Ensembling is a proven quality boosting method293

for the models’ sets that have diverse outputs. Most294

of the recent GEC solutions got their best results by295

ensembling single models (Stahlberg and Kumar,296

2021), (Omelianchuk et al., 2020), (Awasthi et al.,297

2019). In this section we consider two ensembling298

methods for our GEC tagging models: averaging299

of output tag probabilities and majority votes on300

output edit spans (Fig. 2).301

Figure 2: Ensembling by averaging of output tag proba-
bilities (top) and ensembling by majority votes on output
edit spans (bottom).

5.1 Exploring averaging of output tag302

probabilities (” + ” operation)303

First, we reproduce the ensembling approach from304

(Omelianchuk et al., 2020). We add DeBERTa and305

carry out experiments with varying Base and Large306

configurations of encoders (Table 6).307

We observe that ensembling by averaging of out-308

put tag probabilities improves the quality of cor-309

rections; the more models we combine, the better310

results we obtain. More surprisingly, combining311

the same encoders’ architectures in Base and Large312

configurations may provide slightly better results313

than we get for the Base and Large models sepa-314

rately, see RoBERTa(B) + RoBERTa(L) in Table315

6.316

Although the ensemble RoBERTa(L) + BERT(L)317

+ DeBERTa(L) + XLNet(L) shows the best per-318

formance, we select ensemble the RoBERTa(L) +319

DeBERTa(L) + XLNet(L) for further experiments.320

It has higher Recall that makes it possible to trade321

Recall for Precision later during inference tweaks.322

Ensemble P R F0.5

RoBERTa(B) + DeBERTa(B) 53.44 34.91 48.31
RoBERTa(B) + XLNet(B) 53.45 34.3 48.08
RoBERTa(B) + DeBERTa(B) + XLNet(B) 54.78 34.87 49.17
RoBERTa(B) + BERT(B) + DeBERTa(B) +
+ XLNet(B) 56.34 33.76 49.69

RoBERTa(B) 50.12 34.04 45.79
RoBERTa(L) 52.11 37.34 48.29
RoBERTa(B) + RoBERTa(L) 54.83 35.93 49.61

RoBERTa(L) + DeBERTa(L) 54.12 39.77 50.48
RoBERTa(L) + XLNet(L) 53.83 38.65 49.91
RoBERTa(L) + BERT(L) + DeBERTa(L) 57.31 37.41 51.8
RoBERTa(L) + DeBERTa(L) + XLNet(L) 54.30 39.95 50.66
RoBERTa(L) + BERT(L) + DeBERTa(L) +
+ XLNet(L) 56.97 38.52 51.99

Table 6: Comparison of ensembles by averaging of
output tag probabilities after Stage II for (B)ase and
(L)arge encoders, tag vocabulary size is 5k. Benchmark
is BEA-2019 (dev).

5.2 Exploring majority votes on output edit 323

spans (⊕ operation) 324

This aggregation method combines single models’ 325

outputs on the post-processing step (Fig. 2). We 326

take span-level edits and leave only those which 327

have most of the votes from the ensemble. A 328

similar approach is used in (Liang et al., 2020), 329

where the authors combined sequence tagging and 330

sequence-to-sequence models for the Chinese lan- 331

guage. The advantage of this ensembling method 332

is that we can combine the results of models with 333

different output dimensions and even different ar- 334

chitectures. In our work, it allows us to combine 335

models with different tag vocabulary sizes. We 336

leave ensembling with Seq2Seq GEC systems as a 337

part of our future work. 338

First, we compare ensembling by averaging of 339

output tag probabilities ”+” and by majority votes 340

on output edit spans ⊕ for the selected ensemble 341

after training on Joint Train Dataset ("Stage II"), 342

finetuning on W&I dataset ("Stage III") and opti- 343

mization of hyperparameters ("inference tweaks") 344

(Table 7). We observe that ensembles based on ma- 345

jority votes on output edit spans show better results 346

because of better Precision. However, F0.5 scores 347

of both ensembling types are close to each other 348

after inference tweaks. 349

To additionally improve the precision of ensem- 350

bling by majority votes we introduce hyperparam- 351

eter Nmin, "majority quorum". Majority quorum 352

Nmin denotes minumum number of votes for trig- 353

gering the edit, here 1 ≤ Nmin ≤ Nsingle_models. 354

Increasing Nmin boosts the Precision by the cost of 355

Recall because it filters out more edits where single 356

5



Stage Ensemble P R F0.5

St. I RoBERTa(L) + DeBERTa(L) + XLNet(L) N/A N/A N/A
St. I RoBERTa(L) ⊕ DeBERTa(L) ⊕ XLNet(L) N/A N/A N/A

St. II RoBERTa(L) + DeBERTa(L) + XLNet(L) 54.3 39.95 50.66
St. II RoBERTa(L) ⊕ DeBERTa(L) ⊕ XLNet(L) 56.74 38.53 51.84

St. III RoBERTa(L) + DeBERTa(L) + XLNet(L) 58.08 43.17 54.33
St. III RoBERTa(L) ⊕ DeBERTa(L) ⊕ XLNet(L) 60.58 41.92 55.63

In.tw. RoBERTa(L) + DeBERTa(L) + XLNet(L) 68.45 35.56 57.76
In.tw. RoBERTa(L) ⊕ DeBERTa(L) ⊕ XLNet(L) 69.67 34.51 57.88

Table 7: Performance of selected ensemble for averag-
ing of output tag probabilities ("+") and majority votes
on output edit spans ("⊕") ensembling types. Ensembles
are not pre-trained on synthetic data (Stage I). Bench-
mark is BEA-2019 (dev).

models disagree (Table 8). Setting Nmin = 1 is a357

poor strategy because we can’t rely on the majority358

when resolving conflicting edits, so the resulting359

text might contain controversial and incoherent ed-360

its.361

Increasing number of systems leads to higher362

quality, but requires adapting the Nmin parameter363

(Table 8). Based on this limited analysis we ob-364

serve that Nmin = Nsingle_models − 1 works the365

best. For our pool of models there is no gain over366

using more than 4 models, but we want to explore367

adding more diverse models based on Seq2Seq ap-368

proach to such an ensemble in future works.369

Next, since the majority votes on output edit370

spans is capable of combining any models, we test371

the ensemble of the best models that we already372

have trained (Table 9).373

Finally, we evaluate our best ensemble374

DeBERTa(L)10k ⊕ RoBERTa(L)10k ⊕ XLNet(L)5k on the375

BEA-2019 (test) dataset and achieve 76.05 of376

F0.5 score. This is a significant improvement377

over F0.5 = 73.70 for the best ensemble from378

(Omelianchuk et al., 2020) and to the best of our379

knowledge is a new state-of-the-art (SOTA) re-380

sult for ensembles on BEA-2019 (test) bench-381

mark. It is worth noting that the solution is ob-382

tained without pre-training on synthetic data.383

6 Knowledge distillation384

Knowledge distillation is the method for transfer-385

ring knowledge from a large model ("teacher") to a386

smaller one ("student") (Hinton et al., 2015), (Kim387

and Rush, 2016). It has strong practical applica-388

tions because large models usually have expensive389

inference costs and are inconvenient for deploy-390

ment.391

In our case, the teacher model is an ensemble392

of trained sequence taggers, whereas the student 393

model is a single sequence tagger. The ensem- 394

ble receives errorful texts and generates their cor- 395

rected versions. Later these input-output pairs 396

of sentences are used for training single models. 397

Of course, like any synthetic annotation method, 398

knowledge distilled data contains a certain share 399

of systematic errors that deteriorates the student 400

model’s quality. 401

6.1 Distilling the data. 402

In this work, we use two monolingual corpora to 403

generate our distilled datasets: One Billion Words 404

Benchmark ("1BW"), which mostly contains news, 405

and The Blog Authorship Corpus ("Blogs"), which 406

contains blog texts on various topics (Table 1). Be- 407

ing real-world natural texts, these datasets contain 408

a certain share of grammatical errors, which are 409

corrected by our system. For text pre-processing, 410

we use the tokenizer from Spacy13. 411

As a teacher, we use the ensemble of the se- 412

quence taggers containing Large encoders with 413

5k vocabulary: DeBERTa(L)5k + RoBERTa(L)5k + 414

XLNet(L)5k (Table 7). It corrects 5% of processed 415

sentences in 1BW and 28% of sentences in Blogs 416

datasets. Distilled versions of the datasets have 417

the prefix "Troy-" in their names (Table 1). Con- 418

sidering our past experience, we fill our distilled 419

datasets only with edited sentence pairs, and we 420

limit their number to 1.2M. We also limit the syn- 421

thetic PIE dataset from (Awasthi et al., 2019) to 422

1.2M sentence pairs for better comparability in the 423

experiments. We leave exploring other ensembles 424

in the role of a teacher model for future research. 425

6.2 Pre-training on synthetic and distilled 426

datasets ("multi-stage training") 427

First, we reproduce the training scheme from 428

(Omelianchuk et al., 2020) for a single model, 429

RoBERTa(L)5k where PIE synthetic data is used for 430

pre-training (Stage I), then the model is trained on 431

Joint Train Dataset (Stage II), after that it is trained 432

on the high-quality W&I dataset (Stage III), and 433

finally, a hyperparameter search of additional con- 434

fidence probability and the minimum error prob- 435

ability is performed (Inf. tweaks). We observe 436

that sequence tagger with RoBERTa-Large encoder 437

shows slightly better performance than RoBERTa- 438

Base from (Omelianchuk et al., 2020) where the 439

13https://spacy.io/

6

https://spacy.io/


Ensemble Nsingle_models Nmin P R F0.5

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k 3 1 44.49 41.96 43.96

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k 3 2 57.96 41.79 53.79

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k 3 3 67.54 30.99 54.65

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k 4 1 40.21 41.68 40.50
RoBERTa(B)

5k ⊕ RoBERTa(L)
5k ⊕ RoBERTa(L)

10k ⊕ DeBERTa(L)
10k 4 2 55.02 43.14 52.15

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k 4 3 64.48 37.49 56.36
RoBERTa(B)

5k ⊕ RoBERTa(L)
5k ⊕ RoBERTa(L)

10k ⊕ DeBERTa(L)
10k 4 4 71.71 27.89 54.57

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k ⊕ XLNet(L)
10k 5 1 37.20 40.88 37.88

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k ⊕ XLNet(L)
10k 5 2 51.77 43.65 49.92

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k ⊕ XLNet(L)
10k 5 3 61.89 41.43 56.33

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k ⊕ XLNet(L)
10k 5 4 56.43 34.43 56.43

RoBERTa(B)
5k ⊕ RoBERTa(L)

5k ⊕ RoBERTa(L)
10k ⊕ DeBERTa(L)

10k ⊕ XLNet(L)
10k 5 5 73.12 26.00 53.67

Table 8: Exploring an impact of Nmin ("majority quorum"), a minumum number of votes to trigger the edit in
majority votes ensembling. Benchmark is BEA-2019 (dev).

Ensemble P R F0.5

DeBERTa(L)
5k ⊕RoBERTa(L)

5k ⊕XLNet(L)
5k 69.67 34.51 57.88

DeBERTa(L)
10k⊕RoBERTa(L)

10k⊕XLNet(L)
10k 70.13 34.23 57.97

DeBERTa(L)
5k ⊕RoBERTa(L)

10k⊕XLNet(L)
5k 70.71 33.78 58.02

DeBERTa(L)
10k⊕RoBERTa(L)

10k⊕XLNet(L)
5k 70.32 34.62 58.30

Table 9: Performance of best single models ensembled
by majority votes on output edit spans. Subscripts en-
code the models’ tag vocabulary sizes from the set {5k,
10k}. Benchmark is BEA-2019 (dev).

last one had an 8x larger training dataset on Stage440

I (Fig. 3).441

Next, we replace the synthetic PIE dataset with442

our distilled datasets, Troy-1BW and Troy-Blogs.443

We observe that on Stage I, there is a difference444

with training on purely synthetic data that leads445

to the dramatic rise of Recall. However, when we446

start training on Stage II, a sharp deterioration in447

both Precision and Recall appears. It seems that the448

student model does not receive new information449

compared to Stage I. This is more noticeable for450

models trained on the Troy-Blogs dataset, which451

significantly drops Recall after training. At the452

same time, on Stage II, the F0.5 is better for models453

pretrained on distilled Troy- datasets.454

Finally, after training on Stage III and perform-455

ing inference tweaks, single models pretrained on456

both datasets show very similar performance, but457

the model with RoBERTa(L)5k trained on Troy-1BW458

was slightly better. This single model reaches459

F0.5 = 73.21 on BEA-2019 (test), that signifi-460

cantly improves the results from (Omelianchuk461

et al., 2020) for single models where they have462

F0.5 = 71.5 for RoBERTa(B)
5k , and F0.5 = 72.4 for463

the XLNet(B)
5k encoders.464

Figure 3: Pre-training of single tagging models on syn-
thetic and distilled datasets, tags vocabulary size is 5k.
Benchmark is BEA-2019 (dev).

6.3 One-stage training on distilled + 465

annotated dataset 466

We observed that models which were pretrained 467

on the Troy-Blogs dataset show good results on 468

Stage I, but loose their advantage after training on 469

Stage II. Thus, we trained one more model with 470

RoBERTa(L)5k encoder. 471

7



System P R F0.5

Single models
(Kiyono et al., 2019) 65.5 59.4 64.2
(Omelianchuk et al., 2020) 79.2 53.9 72.4
(Kaneko et al., 2020) 67.1 60.1 65.6
(Stahlberg and Kumar, 2021) 72.1 64.4 70.4
(Rothe et al., 2021) N/A N/A 75.88
RoBERTa(L)

5k , multi-stage training (this work) 80.70 53.39 73.21
RoBERTa(L)

5k , one-stage training (this work) 80.55 52.27 72.69
Ensembles
(Grundkiewicz et al., 2019) 72.3 60.1 69.5
(Kiyono et al., 2019) 74.7 56.7 70.2
(Omelianchuk et al., 2020) 79.4 57.2 73.7
(Kaneko et al., 2020) 72.3 61.4 69.8
(Stahlberg and Kumar, 2021) 77.7 65.4 74.9
DeBERTa(L)

10k ⊕ RoBERTa(L)
10k ⊕ XLNet(L)

5k 84.44 54.42 76.05
(this work)

Table 10: Comparison of our best single tagging models
and ensembles with related work on BEA-2019 (test).

We performed one-stage training where the Troy-472

Blogs dataset was concatenated with the most ac-473

curate W&I dataset that we usually use for Stage474

III. As a result, we got F0.5 = 55.81 on BEA-2019475

(dev) and F0.5 = 72.69 on BEA-2019 (test) (Table476

11). These results are obtained much easier than477

our best single model: just one-stage training478

for out-of-the-box RoBERTa, no pre-training on479

synthetic GEC data or multi-stage training.480

7 Conclusions481

Our best ensemble achieves a new SOTA result the482

F0.5 = 76.05 on BEA-2019 (test). Ensembling483

sequence taggers by majority votes on output edit484

spans provides better performance than averaging485

output tag probabilities while staying tolerant to486

models’ architecture and vocabulary sizes. Sin-487

gle models in the ensemble were not pre-trained488

on synthetic GEC datasets that gives a room for489

improvement in future work.490

We apply the knowledge distillation method491

to ensemble of sequence taggers for producing492

annotated Troy-Blogs and Troy-1BW datasets.493

After training on these datasets single GEC se-494

quence tagging models show competitive results,495

F0.5 = 73.21/72.69 on BEA-2019 (test) for multi-496

stage/one-stage training. Replacing Base encoders497

in GECToR (Omelianchuk et al., 2020) with their498

Large configurations does improves the quality hav-499

ing up to x3 bigger size. However, in accuracy our500

best single model still gives way only to a much501

heavier T5 xxl model with 11B params (Rothe502

et al., 2021) having x30 less own size.503

We make the code, datasets, and trained models504

publicly available14.505

14http://github.com/to-be-published

References 506

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, 507
Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel 508
iterative edit models for local sequence transduction. 509
In Proceedings of the 2019 Conference on Empirical 510
Methods in Natural Language Processing and the 9th 511
International Joint Conference on Natural Language 512
Processing (EMNLP-IJCNLP), pages 4259–4269. 513

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, 514
Sabyasachi Ghosh, and Vihari Piratla. 2019. Par- 515
allel iterative edit models for local sequence trans- 516
duction. In Proceedings of the 2019 Conference on 517
Empirical Methods in Natural Language Processing 518
and the 9th International Joint Conference on Natu- 519
ral Language Processing (EMNLP-IJCNLP), pages 520
4260–4270, Hong Kong, China. Association for Com- 521
putational Linguistics. 522

Christopher Bryant, Mariano Felice, Øistein E. Ander- 523
sen, and Ted Briscoe. 2019. The BEA-2019 shared 524
task on grammatical error correction. In Proceedings 525
of the Fourteenth Workshop on Innovative Use of NLP 526
for Building Educational Applications, pages 52–75, 527
Florence, Italy. Association for Computational Lin- 528
guistics. 529

Christopher Bryant, Mariano Felice, and Ted Briscoe. 530
2017. Automatic annotation and evaluation of error 531
types for grammatical error correction. In Proceed- 532
ings of the 55th Annual Meeting of the Association for 533
Computational Linguistics (Volume 1: Long Papers), 534
volume 1, pages 793–805. 535

Christopher Bryant, Mariano Felice, Øistein E. Ander- 536
sen, and Ted Briscoe. 2019. The bea-2019 shared 537
task on grammatical error correction. In Proceed- 538
ings of the Fourteenth Workshop on Innovative Use 539
of NLP for Building Educational Applications, pages 540
52–75. 541

Ciprian Chelba, Tomás Mikolov, Mike Schuster, Qi Ge, 542
Thorsten Brants, and Phillipp Koehn. 2013. One 543
billion word benchmark for measuring progress in 544
statistical language modeling. CoRR, abs/1312.3005. 545

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. 546
2013. Building a large annotated corpus of learner 547
english: The nus corpus of learner english. In Pro- 548
ceedings of the Eighth Workshop on Innovative Use 549
of NLP for Building Educational Applications, pages 550
22–31. 551

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 552
Kristina N. Toutanova. 2018. Bert: Pre-training of 553
deep bidirectional transformers for language under- 554
standing. In Proceedings of the 2019 Conference of 555
the North American Chapter of the Association for 556
Computational Linguistics: Human Language Tech- 557
nologies, Volume 1 (Long and Short Papers), pages 558
4171–4186. 559

Matt Gardner, Joel Grus, Mark Neumann, Oyvind 560
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew 561
Peters, Michael Schmitz, and Luke S. Zettlemoyer. 562

8

http://github.com/to-be-published
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005


2017. Allennlp: A deep semantic natural language563
processing platform.564

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and565
Kenneth Heafield. 2019. Neural grammatical error566
correction systems with unsupervised pre-training567
on synthetic data. In Proceedings of the Fourteenth568
Workshop on Innovative Use of NLP for Building569
Educational Applications, pages 252–263, Florence,570
Italy. Association for Computational Linguistics.571

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and572
Weizhu Chen. 2020. Deberta: Decoding-enhanced573
bert with disentangled attention. arXiv preprint574
arXiv:2006.03654.575

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.576
Distilling the knowledge in a neural network. arXiv577
preprint arXiv:1503.02531.578

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun579
Suzuki, and Kentaro Inui. 2020. Encoder-decoder580
models can benefit from pre-trained masked language581
models in grammatical error correction. In Proceed-582
ings of the 58th Annual Meeting of the Association583
for Computational Linguistics, pages 4248–4254.584

Yoon Kim and Alexander M. Rush. 2016. Sequence-585
level knowledge distillation. In Proceedings of the586
2016 Conference on Empirical Methods in Natu-587
ral Language Processing, pages 1317–1327, Austin,588
Texas. Association for Computational Linguistics.589

Diederik P Kingma and Jimmy Ba. 2015. Adam (2014),590
a method for stochastic optimization. In Proceedings591
of the 3rd International Conference on Learning Rep-592
resentations (ICLR), arXiv preprint arXiv, volume593
1412.594

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-595
moto, and Kentaro Inui. 2019. An empirical study of596
incorporating pseudo data into grammatical error cor-597
rection. In Proceedings of the 2019 Conference on598
Empirical Methods in Natural Language Processing599
and the 9th International Joint Conference on Natu-600
ral Language Processing (EMNLP-IJCNLP), pages601
1236–1242.602

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-603
moto, and Kentaro Inui. 2019. An empirical study of604
incorporating pseudo data into grammatical error cor-605
rection. In Proceedings of the 2019 Conference on606
Empirical Methods in Natural Language Processing607
and the 9th International Joint Conference on Natu-608
ral Language Processing (EMNLP-IJCNLP), pages609
1236–1242, Hong Kong, China. Association for Com-610
putational Linguistics.611

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,612
Kevin Gimpel, Piyush Sharma, and Radu Soricut.613
2020. Albert: A lite bert for self-supervised learning614
of language representations. In ICLR 2020 : Eighth615
International Conference on Learning Representa-616
tions.617

Deng Liang, Chen Zheng, Lei Guo, Xin Cui, Xiuzhang 618
Xiong, Hengqiao Rong, and Jinpeng Dong. 2020. 619
Bert enhanced neural machine translation and se- 620
quence tagging model for chinese grammatical error 621
diagnosis. Proceedings of the 6th Workshop on Natu- 622
ral Language Processing Techniques for Educational 623
Applications, pages 57–66. 624

Jared Lichtarge, Christopher Alberti, Shankar Kumar, 625
Noam Shazeer, Niki Parmar, and Simon Tong. 2019. 626
Corpora generation for grammatical error correction. 627
In Proceedings of the 2019 Conference of the North 628
American Chapter of the Association for Computa- 629
tional Linguistics: Human Language Technologies, 630
Volume 1 (Long and Short Papers), pages 3291–3301. 631

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 632
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 633
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 634
Roberta: A robustly optimized bert pretraining ap- 635
proach. arXiv preprint arXiv:1907.11692. 636

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil 637
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag, 638
realize: High-precision text editing. In Proceedings 639
of the 2019 Conference on Empirical Methods in Nat- 640
ural Language Processing and the 9th International 641
Joint Conference on Natural Language Processing 642
(EMNLP-IJCNLP), pages 5054–5065, Hong Kong, 643
China. Association for Computational Linguistics. 644

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem N. 645
Chernodub, and Oleksandr Skurzhanskyi. 2020. Gec- 646
tor – grammatical error correction: Tag, not rewrite. 647
In Proceedings of the Fifteenth Workshop on Innova- 648
tive Use of NLP for Building Educational Applica- 649
tions, pages 163–170. 650

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 651
Dario Amodei, and Ilya Sutskever. 2018. Language 652
models are unsupervised multitask learners. 653

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas- 654
tian Krause, and Aliaksei Severyn. 2021. A Simple 655
Recipe for Multilingual Grammatical Error Correc- 656
tion. In Proc. of ACL-IJCNLP. 657

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and 658
James W. Pennebaker. 2005. Effects of age and gen- 659
der on blogging. In AAAI Spring Symposium: Com- 660
putational Approaches to Analyzing Weblogs, pages 661
199–205. 662

Rico Sennrich, Barry Haddow, and Alexandra Birch. 663
2016. Neural machine translation of rare words with 664
subword units. In Proceedings of the 54th Annual 665
Meeting of the Association for Computational Lin- 666
guistics (Volume 1: Long Papers), pages 1715–1725, 667
Berlin, Germany. Association for Computational Lin- 668
guistics. 669

Felix Stahlberg and Shankar Kumar. 2021. Synthetic 670
data generation for grammatical error correction with 671
tagged corruption models. In Proceedings of the 672

9

http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/2021.bea-1.4
https://www.aclweb.org/anthology/2021.bea-1.4
https://www.aclweb.org/anthology/2021.bea-1.4
https://www.aclweb.org/anthology/2021.bea-1.4
https://www.aclweb.org/anthology/2021.bea-1.4


16th Workshop on Innovative Use of NLP for Build-673
ing Educational Applications, pages 37–47, Online.674
Association for Computational Linguistics.675

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-676
sumoto. 2012. Tense and aspect error correction677
for esl learners using global context. In Proceedings678
of the 50th Annual Meeting of the Association for679
Computational Linguistics (Volume 2: Short Papers),680
volume 2, pages 198–202.681

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob682
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz683
Kaiser, and Illia Polosukhin. 2017. Attention is all684
you need. In Advances in neural information pro-685
cessing systems, pages 5998–6008.686

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien687
Chaumond, Clement Delangue, Anthony Moi, Pier-688
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,689
et al. 2019. Huggingface’s transformers: State-of-690
the-art natural language processing. arXiv preprint691
arXiv:1910.03771.692

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,693
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and694
Colin Raffel. 2021. mT5: A massively multilingual695
pre-trained text-to-text transformer. In Proceedings696
of the 2021 Conference of the North American Chap-697
ter of the Association for Computational Linguistics:698
Human Language Technologies, pages 483–498, On-699
line. Association for Computational Linguistics.700

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-701
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.702
Xlnet: Generalized autoregressive pretraining for lan-703
guage understanding. In Advances in Neural Infor-704
mation Processing Systems, volume 32, pages 5753–705
5763.706

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.707
2011. A new dataset and method for automatically708
grading esol texts. In Proceedings of the 49th An-709
nual Meeting of the Association for Computational710
Linguistics: Human Language Technologies-Volume711
1, pages 180–189. Association for Computational712
Linguistics.713

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-714
ror correction using neural machine translation. In715
Proceedings of the 2016 Conference of the North716
American Chapter of the Association for Computa-717
tional Linguistics: Human Language Technologies,718
pages 380–386.719

Zheng Yuan and Mariano Felice. 2013. Constrained720
grammatical error correction using statistical ma-721
chine translation. In Proceedings of the Seventeenth722
Conference on Computational Natural Language723
Learning: Shared Task, pages 52–61, Sofia, Bulgaria.724
Association for Computational Linguistics.725

A Appendix 726

System P R F0.5

Single models
(Kiyono et al., 2019) 67.9 44.1 61.3
(Omelianchuk et al., 2020) 77.5 40.1 65.3
(Kaneko et al., 2020) 69.2 45.6 62.6
(Stahlberg and Kumar, 2021) 72.8 49.5 66.6
(Rothe et al., 2021) N/A N/A 68.9
RoBERTa(L)

5k , multi-stage training (this work) 74.40 41.05 64.0
RoBERTa(L)

5k , one-stage training (this work) 70.12 42.66 62.12
Ensembles
(Grundkiewicz et al., 2019) N/A N/A 64.2
(Kiyono et al., 2019) 72.4 46.1 65.0
(Omelianchuk et al., 2020) 78.2 41.5 66.5
(Kaneko et al., 2020) 72.6 46.4 65.2
(Stahlberg and Kumar, 2021) 75.6 49.3 68.3
DeBERTa(L)

10k ⊕ RoBERTa(L)
10k ⊕ XLNet(L)

5k (this work) 76.1 41.6 65.3

Table 11: Comparison of our best single tagging models
and ensembles with related work on CoNLL-14 (test).

10

https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/W13-3607
https://aclanthology.org/W13-3607
https://aclanthology.org/W13-3607
https://aclanthology.org/W13-3607
https://aclanthology.org/W13-3607

