Ensembling and Knowledge Distilling of Large Sequence Taggers for
Grammatical Error Correction

Anonymous ACL submission

Abstract

In this paper, we investigate GEC sequence
tagging architecture with focusing on ensem-
bling of the recent cutting-edge Transformers’
encoders in their Large configurations. We en-
courage ensembling models by majority votes
on span-level edits because it’s tolerant to the
model architecture and vocabulary size. Our
best ensemble achieves a new SOTA result,
the Fy5 score of 76.05 on BEA-2019 (test),
even without pre-training on synthetic datasets.
Also, we perform model distillation of a trained
ensemble to generate new training synthetic
datasets, "Troy-Blogs" and "Troy-1BW". Our
best single sequence tagging model that is pre-
trained on generated Troy- datasets in combi-
nation with publicly available synthetic PIE
dataset achieves a near-SOTA! result of the
Fy 5 score of 73.21 on BEA-2019 (test). The
code, datasets, and trained models are publicly
available?.

1 Introduction

Grammatical Error Correction (GEC) task has a
purpose to correct grammatical errors in natural
texts. It includes correcting errors in spelling, punc-
tuation, grammar, morphology, word choice, and
others. Intelligent GEC system receives text con-
taining mistakes and produces its corrected ver-
sion. GEC task is complicated and challenging:
the accuracy of edits, inference speed, and memory
limitations are the topics of intensive research.
Currently, Machine Translation (MT) is the
mainstream approach for GEC. In this setting,
errorful sentences correspond to the source lan-
guage, and error-free sentences correspond to the
target language. Early GEC-MT methods lever-
aged phrase-based statistical machine translation
(PBSMT) (Yuan and Felice, 2013). Then they

'To the best of our knowledge, our best single model gives
way only to much heavier TS model (Rothe et al., 2021).

http://github.com/
to-appear-after-publication

rapidly evolved to sequence-to-sequence Neural
Machine Translation (NMT) based on gated recur-
rent neural networks (Yuan and Briscoe, 2016) and
recent powerful Transformer-based Seq2Seq mod-
els. They autoregressively capture full dependency
among output tokens; however, it might be slow
due to sequential decoding. (Grundkiewicz et al.,
2019) leveraged Transformer model (Vaswani et al.,
2017) which was pre-trained on synthetic GEC data
and right-to-left re-ranking for ensemble. (Kaneko
et al., 2020) adopted several strategies of BERT
(Devlin et al., 2018) usage for GEC. Recently,
(Rothe et al., 2021) built their system on top of
T5 (Xue et al., 2021), a xxI version of T5 Trans-
former encoder-decoder model and reached new
state-of-the-art results (11B parameters).

The sequence tagging approach that generates a
sequence of text edit operations encoded by tags for
errorful input text is becoming more common now.
LaserTagger (Malmi et al., 2019) is a sequence tag-
ging model that casts text generation as a text edit-
ing task. Corrected texts are reconstructed from the
inputs using three main edit operations: keeping a
token, deleting it, and adding a phrase before the to-
ken. LaserTagger combines a BERT encoder with
an autoregressive Transformer decoder, which pre-
dicts edit operations. Parallel Iterative Edit (PIE)
model (Awasthi et al., 2019) does parallel decod-
ing, achieving quality that is competitive with the
Seq2Seq models®. It predicts edits instead of to-
kens and iteratively refines predictions to capture
dependencies. A similar approach is presented in
(Omelianchuk et al., 2020). GECToR system uses
various Transformers as an encoder, linear layers
with softmax for tag prediction and error detection
instead of a decoder. It also managed to achieve
competitive results being potentially several times
faster than Seq2Seq because of replacing autore-
gressive decoder with linear output layers.

*http://nlpprogress.com/english/
grammatical_error_correction
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Also, nowadays generation of synthetic data is
becoming significant for most GEC models. Natu-
ral languages are rich, and their Grammars con-
tain many rules and exceptions; therefore, pro-
fessional linguists usually need to annotate high-
quality corpora for further training of ML-based
systems mostly in a supervised manner (Dahlmeier
etal., 2013), (Bryant et al., 2019). At the same time,
human annotation is expensive, so researchers are
working on methods for augmentation of training
data, synthetic data generation, and strategies for
its efficient usage (Lichtarge et al., 2019), (Kiyono
et al., 2019), (Stahlberg and Kumar, 2021). Most
of the latest works use synthetic data to pre-train
Transformer-based components of their models.

In this work, we are focusing on exploring se-
quence tagging models and their ensembles. Al-
though most of our developments might eventu-
ally be applied to other languages, we work with
English only in this study. Being a rich-resource
language, English provides a highly competitive
area for GEC task®. We leave dealing with other
languages for future work.

2 Base System Overview

2.1 GECToR architecture

Our tagging models are inherited from the GEC-
ToR (Omelianchuk et al., 2020). To date, GEC-
ToR shows near-SOTA results on CoNLL-2014
and BEA-2019 benchmarks?. It is based on Al-
lenNLP (Gardner et al., 2017) and HuggingFace’s
Transformers (Wolf et al., 2019) libraries, and its
source code is freely available®*.

GECToR is a sequence tagging model which
contains a Transformer-based encoder stacked with
two output linear layers that are responsible for er-
ror detection and error correction. They are trained
with a cross-entropy loss function to produce tags
that encode token-level edits. Then iterative post-
processing is performed. GECToR predicts the
tag-encoded transformations for each token in the
input sequence; it can then apply these transforma-
tions to get the modified output sequence.

Since some corrections in a sentence may de-
pend on others, applying the GEC sequence-tagger
only once may not be enough to correct the sen-
tence entirely. Therefore, they use an iterative cor-
rection approach: it modifies the sentence by run-
ning the tagger on it again and repeat - up to four
times (Fig. 1).

*nttps://github.com/grammarly/gector
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Figure 1: GECToR model: iterative pipeline.

2.2 Tag-encoded edit operations

The primary edit operations are encoded by the
following tags: "KEEP" - leave the current token
unchanged, "DELETE" - delete the current token,
"APPEND TOKEN" - append the token "TOKEN"
after the current token, "REPLACE TOKEN" - re-
place the current token with the token "TOKEN".
Also, GECToR has special edit operations, such as
transforming to uppercase or lowercase, transform-
ing irregular verbs to their third forms, adding "s"
word ending, etc. We refer to (Omelianchuk et al.,

2020) for details of edit transforms.

2.3 Our contributions

We claim the following contributions:

1. We empirically investigate and improve the
GECToR sequence tagging system (Omelianchuk
et al., 2020) by upgrading Transformer encoders
to Large configurations, leveraging advanced tok-
enizer, additional filtering of edits-free sentences,
and increasing vocabulary size.

2. We show that ensembling of sequence tag-
gers by majority votes on output edit spans pro-
vides better performance compared to ensembling
by averaging of output tag probabilities while stay-
ing tolerant to models’ architecture and vocabulary
sizes.

3. We apply the knowledge distillation method
to produce annotated data by the ensemble of se-
quence taggers. Being trained on the distilled data,
single GEC tagging models show competitive per-
formance.

4. We make the code, datasets, and trained mod-
els publicly available.

3 Datasets
3.1 Annotated data

For training single models and ensembles, we
use parallel annotated data from Lang-8 Cor-
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Dataset Type Part #sent. | # tokens % edits
Lang-8* Ann Train* 1.04M 11.86M 42%
NUCLE* Ann Train* 57k 1.16M 62%
FCE* Ann Train* 28k 455k 62%
Train* 34.3k 628.7k 67%
W&I*F Ann Dev 3.4k 63.9k 69%
Test! 3.5k 62.5k N/A
LOCNESS" Ann Dev 1k 23.1k 52%
Test' 1k 23.1k N/A
1BWF Mon N/A 115M 0.8B N/A
BlogsI Mon N/A 13.5M 171M N/A
Troy-1BW Dis Train 1.2M 30.88M 100%
Troy-Blogs Dis Train 1.2M 21.49M 100%
PIE* Syn Train 1.2M 30.1M 100%

Table 1: Description and statistics of datasets used in
this work. Dataset types: (Ann)otated, (Syn)thetic,
(Mon)olingual, and (Dis)tilled. *Being combined these
datasets form Joint Train Dataset. 'BEA-2019 dev/test
parts are concatenations of W&I and LOCNESS dev/test
parts. ¥Only parts of original corpora from the cited
sources are used in our work.

pus of Learner English (Lang-8)° (Tajiri et al.,
2012), National University of Singapore Corpus
of Learner English (NUCLE)® (Dahlmeier et al.,
2013), First Certificate in English dataset (FCE)’
(Yannakoudakis et al., 2011), and Write & Improve
(W&I) Corpus (Bryant et al., 2019)3. Please, see
Table 1 for details.

3.2 Monolingual data, distilled data

For knowledge distillation from the ensemble, we
use parts of two monolingual datasets: One Billion
Word Benchmark (1BW)°? (Chelba et al., 2013)
and The Blog Authorship Corpus (Blogs)'? (Schler
et al., 2005). Corresponding distilled datasets have
prefixes "Troy-"; see more details about their gen-
eration in Section V.

3.3 Synthetic data

After knowledge distillation for the final training
of the student model we also use parallel sentences
with synthetically generated grammatical errors
from the PIE dataset'! (Awasthi et al., 2019).

Shttps://sites.google.com/site/
naistlang8corpora
*https://www.comp.nus.edu.sg/~nlp/
corpora.html
"https://ilexir.co.uk/datasets/index.
html
8https://www.cl.cam.ac.uk/research/nl/
bea2019st/data/wi+locness_v2.1l.beal9.tar.
gz
*http://statmt.org/wmtll/
training-monolingual.tgz
Ohttps://www.kaggle.com/rtatman/
blog-authorship-corpus
"https://github.com/awasthiabhijeet/
PIE/tree/master/errorify

3.4 Evaluation

We report Fy5, Precision, and Recall metrics
computed by ERRANT scorer (Bryant et al., 2017)
on dev, and test datasets from W&I + LOCNESS
Corpus from BEA-2019 GEC Shared Task (Bryant
et al., 2019).

4 Our System’s Design

4.1 Tokenization

In the original GECToR code, the custom imple-
mentation'? of the Byte-Pair Encoding (BPE) tok-
enizer (Sennrich et al., 2016) is used. It was chosen
because out-from-the-box AllenNLP’s tokenizer
was too slow, and HuggingFace’s Transformers’
tokenizers did not provide BPE to words mapping.
Our work is fully implemented with Transformers
from the HuggingFace Transformers library. In
particular, we moved to the recently released fast
tokenizers from it. Now encoders have the same
tokenizers for fine-tuning as they had for initial
pre-training that leads to better quality after fine-
tuning.

4.2 Initialization and training setup

Encoder is loaded with its default pretrained
weights; the linear layers’ weights are initialized
with random numbers. Our models are trained
by Adam optimizer (Kingma and Ba, 2015) with
default hyperparameters. The loss function is a
multi-class categorical entropy. The early stopping
technique is used: stopping criteria is 3 epochs
without improving the loss function on the dev set,
which is random 2% from the same source as train-
ing data and is different for each stage.

4.3 Training stages

Model’s training is performed during several stages.
On Stage I, model is pretrained on synthetic
datasets; this stage is optional. Then, on Stage II,
we carry out warming training on the Joint Train
Dataset, which contains Lang-8, NUCLE, FCE,
W&I Train datasets (Table 1). Thus we perform
coarse fine-tuning on a large amount of diverse
GEC data. Datasets are used sequentially; no shuf-
fling is made. Also, in order not to ruin out-of-the-
box pretrained weights of the encoder, during the
first two epochs, we train only linear layers (so-
called "cold epochs"); later, we make all model’s
weights trainable.

Phttps://github.com/google/
sentencepiece
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On Stage III, we continue fine-tuning on the
W&I Train dataset, which contains only the highest
quality data. Another difference between Stages
II and III is the share of edit-free sentences in the
training data. We observed that too many sentences
in training data without edits lead to reducing the
appearance rate of the tagger and deteriorating the
overall quality. Therefore, we filter out edit-free
sentences from the Joint Train Dataset, which is
used in Stage II. On Stage III, we fine-tune the
model on the unfiltered version of the W&I Train
dataset.

Training Base Large
stage # P R Fos P R Fos
Stage I. N/A N/A N/A N/A N/A N/A
Stage II. 50.12  34.04 4579 | 52.11 3734 4829
Stage III. 5377 3923 50.06 | 5485 4254  51.85
Inf. tweaks | 62.49 3226 52.63 | 65.76 3386 55.33

Table 2: Performance of our system with RoOBERTa en-
coder after each training stage and inference tweaks on
BEA-2019 (dev). Pre-training on synthetic data (Stage
I) as was done in (Omelianchuk et al., 2020) is not per-
formed.

The final stage 1is ‘"inference tweaks"
(Omelianchuk et al., 2020) for balancing be-
tween the model’s precision and recall. It is
performed by introducing additional hyperpa-
rameters: additional confidence (AC) to the
probability for the KEEP tag and minimum error
probability (MEP) for corrections tags. These
hyperparameters are found through a random
search on the BEA-2019 dev set.

4.4 Upgrading to Large encoders

In the GECToR paper (Omelianchuk et al., 2020),
authors investigated encoders from ALBERT (Lan
et al., 2020), BERT (Devlin et al., 2018), GPT-
2 (Radford et al., 2018), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019) Transform-
ers in their Base configurations. Most likely, Base
configurations were chosen due to the better infer-
ence speed/quality ratio. They found that XLNet,
RoBERTa, and BERT show the best quality.

We reproduce experiments for these encoders,
but now we explore Large configurations as well.
We additionally explore encoder from DeBERTa
(He et al., 2020) (Table 3).

We observe that all models which are equipped
with Large encoders have higher Precision, Re-
call, and Fjp 5 values than those equipped with their
Base versions. The price for it is 2.3 - 2.5 times
slower inference for Large configurations (Table 4).

Base Large

Encoder P R Fos P R Fos

BERT 57.21 2993 4839 | 61.18 3126  51.35
DeBERTa | 6422 31.87 5338 | 66.35 3277 55.07
RoBERTa | 6249  32.26  52.63 6576  33.86  55.33
XLNet 63.16  30.59 5207 | 6427 3517 55.14

Table 3: Performance of our system on BEA-2019 (dev)
for different encoders from pretrained Transformers in
Base and Large configurations.

Time, sec # params
Encoder Base’ Large Blz:se Large
BERT 19.28 49.17 120M 350M
DeBERTa | 23.75 58.32 150M | 410M
RoBERTa 19.05 45.66 129M 360M
XLNet 30.46 71.19 120M 345M

Table 4: Inference times and models’ sizes of our single
tagging models. Inference time for NVIDIA Tesla P100
on BEA-2019 dev part, single models, batch size=128.
Each value is an averaged time of 5 model inferences.

The single model with RoOBERTa encoder shows
the best performance among Large configurations,
whereas DeBERTa slightly outperforms RoBERTa
and is the best one among Base configurations. At
the same time, RoOBERTa remains the fastest one in
both configurations.

4.5 Exploring tag vocabulary sizes

Most of the tag-encoded edits are token-specific,
e.g., "APPEND Amelia", "REPLACE Brandon",
and so on. Thus, the tag vocabulary size matters,
and it should be a compromise between the cov-
ering of the natural language dictionary and the
model’s generalization abilities.

We create the tag vocabulary by taking the most
frequent edit tags which were generated from the
Joint Train dataset (Table 1). To find the optimal
tag vocabulary sizes, we experiment with {5k, 10k}
vocabulary sizes (Table 5).

Encoder P R Fos
DeBERT2{Y 6635 3277 55.07
RoBERTa!Y) 6576 33.86 5533
XLNetY 6427 3517 55.14
DeBERTa\:) 6546 3459 5555
RoBERTa\s) 6472 36.04 55.83
XLNet{%) 64.12 3402 5448

Table 5: Performance on BEA-2019 (dev) for varied tag
vocabulary sizes and encoders in their (L)arge configu-
rations. Subscripts encode the models’ tag vocabulary
sizes from the set {5k, 10k}.

We observe that increasing the vocabulary size
to 10k for Large encoders may improve the quality,



as it happened for models with RoBERTa and De-
BERTa. Nevertheless, also we see an example of
quality deterioration for the model with XLNet.

5 Ensembling the GEC taggers

Ensembling is a proven quality boosting method
for the models’ sets that have diverse outputs. Most
of the recent GEC solutions got their best results by
ensembling single models (Stahlberg and Kumar,
2021), (Omelianchuk et al., 2020), (Awasthi et al.,
2019). In this section we consider two ensembling
methods for our GEC tagging models: averaging
of output tag probabilities and majority votes on
output edit spans (Fig. 2).

Ensembling by averaging of output tag probabilities

Tags
Tags
Tags

Ensembling by majority votes on output edit spans
Tags 1 » Corrected sentence 1
Tags 2 | M Corrected sentence 2} @ m) Corrected sentence

» Corrected sentence 3

Encoder 1

Encoder 2 + m Corrected sentence

Encoder 3

Encoder 1
Encoder 2

Any GEC model

Figure 2: Ensembling by averaging of output tag proba-
bilities (top) and ensembling by majority votes on output
edit spans (bottom).

5.1 Exploring averaging of output tag
probabilities (" + ” operation)

First, we reproduce the ensembling approach from
(Omelianchuk et al., 2020). We add DeBERTa and
carry out experiments with varying Base and Large
configurations of encoders (Table 6).

We observe that ensembling by averaging of out-
put tag probabilities improves the quality of cor-
rections; the more models we combine, the better
results we obtain. More surprisingly, combining
the same encoders’ architectures in Base and Large
configurations may provide slightly better results
than we get for the Base and Large models sepa-
rately, see ROBERTa(?) + RoBERTa(%) in Table
6.

Although the ensemble RoBERTa(%) + BERT(%)
+ DeBERTa(") + XLNet(X) shows the best per-
formance, we select ensemble the ROBERTa(%) +
DeBERTa(X) + XLNet(E) for further experiments.
It has higher Recall that makes it possible to trade
Recall for Precision later during inference tweaks.

Ensemble P R Fo.s
RoBERTa(?) + DeBERTa(?) 5344 3491 4831
RoBERTa(?) + XLNet(?) 5345 343 48.08
RoBERTa(?) + DeBERTa(?) + XLNet(?) 5478 3487  49.17
RoBERTa(?) + BERT(?) + DeBERTa(?) +

+ XLNet(®) 5634 3376  49.69
RoBERTa(?) 5012 34.04 4579
RoBERTa(%) 5211 3734 4829
RoBERTa(?) + RoBERTa(™) 5483 3593  49.61
RoBERTa(%) + DeBERTa(%) 5412 3977 5048
RoBERTa(™) + XLNet(*) 5383  38.65 4991
RoBERTa(*) + BERT*) + DeBERTa(%) 5731 3741 518
RoBERTa(%) + DeBERTa(%) + XLNet(*) 5430 39.95  50.66
RoBERTa(%) + BERT*) + DeBERTa(%) +

+ XLNet(®) 5697 3852 5199

Table 6: Comparison of ensembles by averaging of
output tag probabilities after Stage II for (B)ase and
(L)arge encoders, tag vocabulary size is Sk. Benchmark
is BEA-2019 (dev).

5.2 Exploring majority votes on output edit
spans (< operation)

This aggregation method combines single models’
outputs on the post-processing step (Fig. 2). We
take span-level edits and leave only those which
have most of the votes from the ensemble. A
similar approach is used in (Liang et al., 2020),
where the authors combined sequence tagging and
sequence-to-sequence models for the Chinese lan-
guage. The advantage of this ensembling method
is that we can combine the results of models with
different output dimensions and even different ar-
chitectures. In our work, it allows us to combine
models with different tag vocabulary sizes. We
leave ensembling with Seq2Seq GEC systems as a
part of our future work.

First, we compare ensembling by averaging of
output tag probabilities ” +” and by majority votes
on output edit spans & for the selected ensemble
after training on Joint Train Dataset ("Stage II"),
finetuning on W&I dataset ("Stage III") and opti-
mization of hyperparameters ("inference tweaks")
(Table 7). We observe that ensembles based on ma-
jority votes on output edit spans show better results
because of better Precision. However, Fj 5 scores
of both ensembling types are close to each other
after inference tweaks.

To additionally improve the precision of ensem-
bling by majority votes we introduce hyperparam-
eter Npin, "majority quorum". Majority quorum
Npin denotes minumum number of votes for trig-
gering the edit, here 1 < Npin < Ngingle_models-
Increasing IV,,;, boosts the Precision by the cost of
Recall because it filters out more edits where single



Stage Ensemble P R Fo.5
St T RoBERTa(%) + DeBERTa(L) + XLNet(L) N/A N/A N/A
St. 1 RoBERT2(L) @ DeBERTa(L) @ XLNet(E) N/A N/A N/A
St RoBERTa(%) + DeBERTa(%) + XLNet(L) 543 3995 5066

St RoBERTa(™) @ DeBERTa() @ XLNet(X) 5674 3853  51.84

RoBERTa(%) + DeBERTa(L) + XLNet(L)
RoBERTa(%) @ DeBERTa(%) @ XLNet(L)

St. III
St. III

58.08
60.58

43.17
41.92

5433
55.63

RoBERTa(%) + DeBERTa(%) + XLNet(L)
RoBERTa(L) @ DeBERTa(L) @ XLNet(L)

35.56
3451

57.76
57.88

In.tw. 68.45

In.tw. 69.67

Table 7: Performance of selected ensemble for averag-
ing of output tag probabilities ("+") and majority votes
on output edit spans ("@") ensembling types. Ensembles
are not pre-trained on synthetic data (Stage I). Bench-
mark is BEA-2019 (dev).

models disagree (Table 8). Setting N,,;,, = 1is a
poor strategy because we can’t rely on the majority
when resolving conflicting edits, so the resulting
text might contain controversial and incoherent ed-
its.

Increasing number of systems leads to higher
quality, but requires adapting the V,,;, parameter
(Table 8). Based on this limited analysis we ob-
serve that Nyuin = Naingle_models — 1 Works the
best. For our pool of models there is no gain over
using more than 4 models, but we want to explore
adding more diverse models based on Seq2Seq ap-
proach to such an ensemble in future works.

Next, since the majority votes on output edit
spans is capable of combining any models, we test
the ensemble of the best models that we already
have trained (Table 9).

Finally, we evaluate our best ensemble
DeBERTa\") @ RoBERTa\%) @ XLNet!% on the
BEA-2019 (test) dataset and achieve 76.05 of
Fp5 score. This is a significant improvement
over 5 = 73.70 for the best ensemble from
(Omelianchuk et al., 2020) and to the best of our
knowledge is a new state-of-the-art (SOTA) re-
sult for ensembles on BEA-2019 (test) bench-
mark. It is worth noting that the solution is ob-
tained without pre-training on synthetic data.

6 Knowledge distillation

Knowledge distillation is the method for transfer-
ring knowledge from a large model ("teacher") to a
smaller one ("student") (Hinton et al., 2015), (Kim
and Rush, 2016). It has strong practical applica-
tions because large models usually have expensive
inference costs and are inconvenient for deploy-
ment.

In our case, the teacher model is an ensemble

of trained sequence taggers, whereas the student
model is a single sequence tagger. The ensem-
ble receives errorful texts and generates their cor-
rected versions. Later these input-output pairs
of sentences are used for training single models.
Of course, like any synthetic annotation method,
knowledge distilled data contains a certain share
of systematic errors that deteriorates the student
model’s quality.

6.1 Distilling the data.

In this work, we use two monolingual corpora to
generate our distilled datasets: One Billion Words
Benchmark ("1BW"), which mostly contains news,
and The Blog Authorship Corpus ("Blogs"), which
contains blog texts on various topics (Table 1). Be-
ing real-world natural texts, these datasets contain
a certain share of grammatical errors, which are
corrected by our system. For text pre-processing,
we use the tokenizer from Spacy'3.

As a teacher, we use the ensemble of the se-
quence taggers containing Large encoders with

5k vocabulary: DeBERTaé? + RoBERTaé? +

XLNetéi) (Table 7). It corrects 5% of processed
sentences in 1BW and 28% of sentences in Blogs
datasets. Distilled versions of the datasets have
the prefix "Troy-" in their names (Table 1). Con-
sidering our past experience, we fill our distilled
datasets only with edited sentence pairs, and we
limit their number to 1.2M. We also limit the syn-
thetic PIE dataset from (Awasthi et al., 2019) to
1.2M sentence pairs for better comparability in the
experiments. We leave exploring other ensembles
in the role of a teacher model for future research.

6.2 Pre-training on synthetic and distilled
datasets ("'multi-stage training'')

First, we reproduce the training scheme from
(Omelianchuk et al., 2020) for a single model,
RoBERTaéi) where PIE synthetic data is used for
pre-training (Stage I), then the model is trained on
Joint Train Dataset (Stage II), after that it is trained
on the high-quality W&I dataset (Stage III), and
finally, a hyperparameter search of additional con-
fidence probability and the minimum error prob-
ability is performed (Inf. tweaks). We observe
that sequence tagger with RoOBERTa-Large encoder
shows slightly better performance than RoBERTa-
Base from (Omelianchuk et al., 2020) where the

Bhttps://spacy.io/
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Ensemble Nsingle_models  Nmin P R Fos
RoBERTa%f) ® RoBERTa%? ® RoBERTa(%I(;; 3 1 4449 4196  43.96
ROBERTa(y) & RoBERT{.) @ RoBERTa%g; 3 2 5796 4179 53.79
ROBERTa; ) @ RoBERTa!,’ & RoBERTa!}) 3 3 67.54 3099  54.65
RoBERTa%f) ® RoBERTa%I;) & RoBERTaié,l & DeBERTaggé 4 1 4021 4168  40.50
RoBERTa?]s )@ RoBERTa?? & RoBERTaESI)C & DeBERTa%gk 4 2 5502 4314 5215
RoBERTa'?’ @ RoBERTalY) & RoBERTa%{;,)C ® DeBERTa%IJ; 4 3 6448 3749 5636
ROBERTa?) ® RoBERTa!,’ & RoBERTa\}) & DeBERTa! L) 4 4 7171 27.89  54.57
RoBERTa(?I:) ® RoBERTa%];) ® RoBERTaijg,l & DeBERTa(%{;% & XLNetig,)c 5 1 3720 4088  37.88
RoBERTa?],f) ® RoBERTa?ﬁ> ® RoBERTa%ﬁ,l ® DeBERTa%g ) ® XLNet%{;,)c 5 2 5177 43.65  49.92
RoBERTa?]: )@ RoBERTa?? ® RoBERTa{(;; ® DeBERTa%I(;,)C @ XLNetaﬁi 5 3 61.89 4143 5633
ROBERTaY) @ RoBERTa, @ RoBERTa%g; ® DeBERTa%Sé @ XLNet%ﬁ; 5 4 5643 3443 5643
RoBERTa'?) @ RoBERTa'Y) @ RoBERTa\() & DeBERTal({) & XLNet!() 5 5 7312 2600  53.67

Table 8: Exploring an impact of N,,;, ("majority quorum"), a minumum number of votes to trigger the edit in
majority votes ensembling. Benchmark is BEA-2019 (dev).

Ensemble P R Fos
DeBERTal%) GRoBERTa! %) & XLNet! %) 69.67 3451 5788
DeBERTa%g,Z @GROBERT: 35 31 EBXLNetég 31 70.13 3423 57.97
DeBERTa?I,;’ GBROBERTa%ﬁ §OXLNet ?ﬁ 7071 3378 58.02
DeBERTa! ;) ®RoBERTa\l;) GXLNet(" 7032 34.62 5830

Table 9: Performance of best single models ensembled
by majority votes on output edit spans. Subscripts en-
code the models’ tag vocabulary sizes from the set {5k,
10k}. Benchmark is BEA-2019 (dev).

last one had an 8x larger training dataset on Stage
I (Fig. 3).

Next, we replace the synthetic PIE dataset with
our distilled datasets, Troy-1BW and Troy-Blogs.
We observe that on Stage I, there is a difference
with training on purely synthetic data that leads
to the dramatic rise of Recall. However, when we
start training on Stage II, a sharp deterioration in
both Precision and Recall appears. It seems that the
student model does not receive new information
compared to Stage I. This is more noticeable for
models trained on the Troy-Blogs dataset, which
significantly drops Recall after training. At the
same time, on Stage II, the Fy 5 is better for models
pretrained on distilled Troy- datasets.

Finally, after training on Stage III and perform-
ing inference tweaks, single models pretrained on
both datasets show very similar performance, but
the model with RoBERTaé? trained on Troy-1BW
was slightly better. This single model reaches
Fo5 = 73.21 on BEA-2019 (test), that signifi-
cantly improves the results from (Omelianchuk
et al., 2020) for single models where they have

Fy5 = 71.5 for RoBERTagf), and Fy 5 = 72.4 for

(B)

the XLLN ety encoders.
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7| I RoBERTa-Base, pre-training on PIE (Omelianchuk et al. 2020))
RoBERTa-Large, pre-training on PIE
RoBERTa-Large, pre-training on PIE + Troy-1BW
714 RoBERTa-Large, pre-training on PIE + Troy-Blogs
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Figure 3: Pre-training of single tagging models on syn-
thetic and distilled datasets, tags vocabulary size is Sk.
Benchmark is BEA-2019 (dev).

6.3 One-stage training on distilled +
annotated dataset

We observed that models which were pretrained
on the Troy-Blogs dataset show good results on
Stage I, but loose their advantage after training on
Stage II. Thus, we trained one more model with

RoBERTaé? encoder.



System P R Fo.s

Single models

(Kiyono et al., 2019) 65.5 594 64.2
(Omelianchuk et al., 2020) 79.2 53.9 724
(Kaneko et al., 2020) 67.1 60.1 65.6
(Stahlberg and Kumar, 2021) 72.1 64.4 70.4
(Rothe et al., 2021) N/A N/A 75.88

RoBERTa%?,muni-stage training (this work) ~ 80.70 5339 7321
RoBERTa I];), one-stage training (this work) 80.55 5227  72.69

5

Ensembles

(Grundkiewicz et al., 2019) 72.3 60.1 69.5
(Kiyono et al., 2019) 74.7 56.7 70.2
(Omelianchuk et al., 2020) 79.4 57.2 73.7
(Kaneko et al., 2020) 72.3 61.4 69.8
(Stahlberg and Kumar, 2021) 71.7 65.4 74.9

DeBERTa{S) ® RoBERTa(S) @ XLNet!t) 8444 5442 76.05
(this work)

Table 10: Comparison of our best single tagging models
and ensembles with related work on BEA-2019 (test).

We performed one-stage training where the Troy-
Blogs dataset was concatenated with the most ac-
curate W&I dataset that we usually use for Stage
III. As aresult, we got F5 = 55.81 on BEA-2019
(dev) and Fjy 5 = 72.69 on BEA-2019 (test) (Table
11). These results are obtained much easier than
our best single model: just one-stage training
for out-of-the-box RoBERTa, no pre-training on
synthetic GEC data or multi-stage training.

7 Conclusions

Our best ensemble achieves a new SOTA result the
Fp5 = 76.05 on BEA-2019 (test). Ensembling
sequence taggers by majority votes on output edit
spans provides better performance than averaging
output tag probabilities while staying tolerant to
models’ architecture and vocabulary sizes. Sin-
gle models in the ensemble were not pre-trained
on synthetic GEC datasets that gives a room for
improvement in future work.

We apply the knowledge distillation method
to ensemble of sequence taggers for producing
annotated Troy-Blogs and Troy-1BW datasets.
After training on these datasets single GEC se-
quence tagging models show competitive results,
Fy5 = 73.21/72.69 on BEA-2019 (test) for multi-
stage/one-stage training. Replacing Base encoders
in GECToR (Omelianchuk et al., 2020) with their
Large configurations does improves the quality hav-
ing up to x3 bigger size. However, in accuracy our
best single model still gives way only to a much
heavier TS xxI model with 11B params (Rothe
et al., 2021) having x30 less own size.

We make the code, datasets, and trained models
publicly available'?.

Yhttp://github.com/to-be-published
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A Appendix

System P R Fo.s
Single models

(Kiyono et al., 2019) 67.9 44.1 61.3
(Omelianchuk et al., 2020) 71.5 40.1 65.3
(Kaneko et al., 2020) 69.2 45.6 62.6
(Stahlberg and Kumar, 2021) 72.8 49.5 66.6
(Rothe et al., 2021) N/A N/A 68.9
RoBERTa'%), multi-stage training (this work) 7440 4105  64.0
RoBERTaS?, one-stage training (this work) 70.12 42.66 62.12
Ensembles

(Grundkiewicz et al., 2019) N/A N/A 64.2
(Kiyono et al., 2019) 72.4 46.1 65.0
(Omelianchuk et al., 2020) 78.2 41.5 66.5
(Kaneko et al., 2020) 72.6 46.4 65.2
(Stahlberg and Kumar, 2021) 75.6 49.3 68.3
DeBERTa(Y) @ RoBERTalY) @ XLNet!™) (thiswork)  76.1 416 653

Table 11: Comparison of our best single tagging models
and ensembles with related work on CoNLL-14 (test).
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