
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LINEAR MULTISTEP SOLVER DISTILLATION
FOR FAST SAMPLING OF DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sampling from diffusion models can be seen as solving the corresponding prob-
ability flow ordinary differential equation (ODE). The solving process requires a
significant number of function evaluations (NFE), making it time-consuming. Re-
cently, several solver search frameworks have attempted to find better-performing
model-specific solvers. However, predicting the impact of intermediate solving
strategies on final sample quality remains challenging, rendering the search pro-
cess inefficient. In this paper, we propose a novel method for designing solving
strategies. We first introduce a unified prediction formula for linear multistep
solvers. Subsequently, we present a solver distillation framework, which enables
a student solver to mimic the sampling trajectory generated by a teacher solver
with more steps. We utilize the mean Euclidean distance between the student and
teacher sampling trajectories as a metric, facilitating rapid adjustment and opti-
mization of intermediate solving strategies. The design space of our framework
encompasses multiple aspects, including prediction coefficients, time step sched-
ules, and time scaling factors. Our framework has the ability to complete a solver
search for Stable-Diffusion in less than 10 total GPU hours. Compared to previ-
ous reinforcement learning-based search frameworks, our approach achieves over
a 10× increase in search efficiency. With just 5 NFE, we achieve FID scores of
3.23 on CIFAR10, 7.16 on ImageNet-64, 5.44 on LSUN-Bedroom, and 15.69 on
MS-COCO, resulting in a 2× sampling acceleration ratio compared to handcrafted
solvers.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) have gained
widespread success in various applications including image generation (Dhariwal & Nichol, 2021;
Rombach et al., 2022), audio synthesis (Kong et al., 2021; Chen et al., 2021), video generation (Ho
et al., 2022b;a; Blattmann et al., 2023), and text-to-image synthesis (Saharia et al., 2022; Ruiz et al.,
2023; Podell et al., 2024; Esser et al., 2024). When generating samples, diffusion models perform
reverse solving of a predefined Stochastic Differential Equation (SDE) or its corresponding Proba-
bility Flow Ordinary Differential Equation (ODE) (Song et al., 2021b). This solving process often
required hundreds of function evaluations (NFE), making it extremely time-consuming compared
to classical generative models like Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014).

Fortunately, significant advancements have been made in accelerating the sampling process of dif-
fusion models. Existing acceleration methods can be broadly categorized into two classes. The first
class of methods involves an additional distillation training phase (Luhman & Luhman, 2021; Sali-
mans & Ho, 2022; Song et al., 2023b; Sauer et al., 2023; Luo et al., 2024). Distilled models require
only 1-4 NFE to generate high-quality samples. However, the distillation phase typically requires
several GPU days, posing a significant training cost, especially for large scale models. Additionally,
many of distilled models lack the ability to perform downstream tasks, such as image editing and
restoration (Kawar et al., 2021; 2022; Meng et al., 2022; Song et al., 2022; 2023a; Chung et al.,
2023). And the second class, which is also widely regarded, focuses on designing efficient solvers
without further training the model. Techniques such as parameterization, exponential integrators,
and higher-order solvers have successfully reduced the NFE to 15-20 for the sampling process (Lu
et al., 2022b; Zhao et al., 2023; Zhang & Chen, 2022; Liu et al., 2022; Lu et al., 2022a; Song et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

NFE=5

NFE=10

DEIS
Zhang & Chen (2022)

DPM-Solver++
Lu et al. (2022b)

UniPC
Zhao et al. (2023)

DLMS
Ours

Figure 1: Synthesized images of Stable-Diffusion (Rombach et al., 2022) with default classifier-free
guidance scale 7.5 and text prompt “A large brown bear walking through a forest”. Our proposed
DLMS can generate more realistic and visually detailed images compared with previous handcrafted
samplers (Zhang & Chen, 2022; Lu et al., 2022b; Zhao et al., 2023).

2021a; Karras et al., 2022). However, when the NFE is less than 10, the sample quality deteriorates
significantly.

The challenges have given rise to a series of search frameworks seeking more efficient solvers.
However, due to the iterative nature of solving processes, it is difficult to predict the impact of
intermediate solving strategies on the final sample quality, making the search process difficult and
inefficient. These frameworks still often require tens of GPU hours and were limited to specific
design space such as time steps (Watson et al., 2022; Li et al., 2023; Liu et al., 2023a; Sabour et al.,
2024; Chen et al., 2024), parameterization mode (Zheng et al., 2023), or solver combination (Liu
et al., 2023b).

In this paper, we propose a solver distillation framework that greatly accelerates the search effi-
ciency. We begin by presenting a unified prediction formula for linear multistep solvers. Next, we
introduce our solver distillation algorithm, which allows a student solver to replicate the sampling
trajectory of a teacher solver that uses more steps. We employ the mean Euclidean distance between
the student and teacher sampling trajectories as a metric, enabling quick adjustments and optimiza-
tion of intermediate solving strategies. Compared to previous reinforcement learning-based search
frameworks, our approach achieves over a 10× increase in search efficiency.

Our framework has the ability to complete a solver distillation for Stable-Diffusion (Rombach et al.,
2022) in less than 1.5h on 8 NVIDIA V100 GPUs. The design scope includes the time steps,
the time scaling factors and the prediction coefficients. We extensively evaluate our approach on
various resolution datasets in both pixel space and latent space. The Distilled Linear Multistep
Solver (DLMS) significantly surpasses previous handcrafted and search-based solvers. Compared
to handcrafted solvers, DLMS achieves a 2× sampling acceleration ratio.

2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

Given the data distribution p0, diffusion models employ a forward process xt = αtx0 + σtϵ, t ∈
[0, T ] with marginal distribution {pt}T0 to gradually degenerate the data x0 ∼ p0 with Gaussian

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

noise ϵ ∼ N (0, I). The noise schedule αt, σt > 0 is designed to make pT approximately a pure
Gaussian distribution N (0, σ̃2I). Notably, there exists a corresponding Probability Flow ordinary
differential equation (PF-ODE) (Song et al., 2021b):

dxt =

[
f(t)xt −

1

2
g2(t)∇ log pt(xt)

]
dt, (1)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2 d logαt

dt σ2
t (Kingma et al., 2021). The PF-ODE shares the

same marginal distribution pt as the forward process. And the score function ∇ log pt(xt) can be
expressed using Tweedie’s formula (Robbins, 1992):

∇ log pt(xt) =
αtE[x0|xt]− xt

σ2
t

= −E[ϵ|xt]

σt
. (2)

To estimate the score function, a neural network ϵθ(xt, t) is trained to predict E[ϵ|xt] via the least
square estimation by minizing the L2 loss

Ex0∼pdata,ϵ∼N (0,I) ∥ϵθ(xt, t)− ϵ∥22 (3)

for each t ∈ [0, T ]. Consequently, we can sample from diffusion models by solving the empirical
PF-ODE:

dxt =

[
f(t)xt +

g2(t)

2σt
ϵθ(xt, t)

]
dt (4)

from time T to time 0. Additionally, the conditional sampling can be carry out by guided sampling
(Dhariwal & Nichol, 2021; Ho & Salimans, 2021). Remarkably, classifier-free guidance (Ho &
Salimans, 2021) defines a guided noise predictor:

ϵ̃θ(xt, t, c) = s · ϵθ(xt, t, c) + (1− s) · ϵθ(xt, t, ∅), (5)

where c is the condition, ∅ stand for the unconditional sampling, and s > 0 is the guidance scale.

In practice, except for the noise predictor ϵθ(xt, t), diffusion models can also be parameterized as
data predictor xθ(xt, t) to predict x0 or velocity predictor vθ(xt, t) to predict αtϵ − σtx0, where
the parameterizations are theoretically equivalent, but have impact in practice performance(Karras
et al., 2022; Hang et al., 2023).

2.2 FAST SAMPLING WITH EXPONENTIAL INTEGRATORS

Samplers based on exponential integrator have been found to be more efficient than directly solving
the ODE (4). Given an initial value xs at time s, the ODE solution xt can be analytically computed
with the following exponentially weighted integral by changing the variable from t to half log-SNR
λt := log(αt/σt) (Lu et al., 2022a;b):

xt =
αt

αs
xs − αt

∫ λt

λs

eλϵ̂θ(x̂λ, λ)dλ,xt =
σt

σs
xs + σt

∫ λt

λs

e−λx̂θ(x̂λ, λ)dλ (6)

where ϵ̂θ(·, λ) := ϵθ(·, t(λ)), x̂θ(·, λ) := xθ(·, t(λ)) and x̂λ := xt(λ). To predict the integral part,
DEIS (Zhang & Chen, 2022) approximates ϵθ(xt, t) with polynomial interpolation w.r.t t , similarly
DPM-Solver (Lu et al., 2022a) approximate ϵ̂θ(x̂λ, λ) w.r.t λ (equation 6, left) and DPM-Solver++
(Lu et al., 2022b) approximate x̂θ(x̂λ, λ) w.r.t λ (equation 6, right). UniPC (Zhao et al., 2023)
introduces a correcting strategy and various scale functions. And AMED-Solver (Zhou et al., 2024)
adopts an approximate mean value method instead polynomial interpolation.

2.3 EFFICIENT SAMPLER SEARCH

Recently, several frameworks have incorporated a search phase to enhance the efficiency of sam-
plers. The time step schedule is a commonly explored aspect (Chen et al., 2024; Sabour et al., 2024;
Li et al., 2023; Watson et al., 2022; Liu et al., 2023a). Moreover, DPM-Solver-v3 (Zheng et al.,
2023) aims to optimize the parameterization mode beyond noise prediction and data prediction.
USF (Liu et al., 2023b) strives to identify the most suitable solver for each time step.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Inputs

Time Step

Step Index

OutputsPrediction formula

Bottleneck Feature

Designer NetworkChannel-wise mean pooling
Fully connected layers
Embedding layers
Prediction step
Ground truth trajectory
Sampling trajectory
Optimization direction

Figure 2: Designer network architecture. We concatenate the embeddings of the bottleneck feature,
time step, and step index, and pass them through a fully connected layer to obtain the parameters
required for the prediction formula (7, 8).

3 METHODOLOGY

In this section, we present our method to solve the PF-ODE (4). We start with the discussion about
the optimal linear multistep prediction strategy. And then we introduce how to achieve the optimal
solver with an adaptive time schedule and time scaling factors. Finally, we introduce some practical
techniques to further improve performance.

3.1 TOWARDS OPTIMAL LINEAR MULTISTEP SOLVER

Given a time schedule {tn}Nn=0 decreasing from t0 = T to tN = 0, the solvers are trying to
predict the ground truth trajectory {xG

tn}
N
n=0 with a numerical simulation trajectory {xS

tn}
N
n=0 with

xS
t0 = xG

t0 . Linear multistep solvers aim to predict each local intermediate xG
tn , n ≥ 1 by leveraging

the linear combination of p precious outputs from the denoising network. Take the data prediction
type (equation 6, right) for example, the prediction formula can be expressed as:

Dn =

p∑
k=1

akxθ(x
S
tn−k

, sn−ktn−k), (7)

xS
tn =

σtn

σtn−1

xS
tn−1
− αtn(e

λtn−1
−λtn − 1)Dn (8)

where {ak}pk=1 are the prediction coefficients and the time scaling factors {sn}Nn=0 are usually set to
1. This implies that the candidate xS

tn lies in a p-dimensional hyperplane and hence the theoretically
optimal xS

tn is the linear projection of xG
tn onto the hyperplane.

It is worth noting that for each trajectory {xG
tn}

N
n=0 and for each step n the optimal coefficients

{a∗k}
p
k=1 are different. Nevertheless, some studies have shown that the ODE trajectories from diffu-

sive models have similar properties(Chen et al., 2024), so it is possible to design a unified {ak}pk=1
that works well on all trajectories just as in most of previous works, but we consider this to be a
suboptimal choice.

As mentioned in the previous paragraph, we aim to assign distinct coefficients for each trajectory
and step. To achieve this, we establish a mapping g : (xS

tn−1
, tn−1, n − 1) 7−→ {ak}pk=1. Draw-

ing inspiration from Zhou et al. (2024) we utilize the bottleneck feature htn−1
obtained from the

pretrained denoising model instead of xS
tn−1

to circumvent additional computational costs. Subse-
quently, we employ an extremely lightweight designer network gϕ(htn−1 , tn−1, n − 1) to generate
the coefficients {ak}pk=1. The network architecture is shown in Fig. 2. Given the availability
of the ground truth trajectory {xG

tn}
N
n=0, we can establish the optimal solver by minimizing the

square distance d(xS
tn ,x

G
tn) where the prediction xS

tn is computed using equations (7) and (8) with
{ak}pk=1 = gϕ(htn−1 , tn−1, n − 1). In practical terms, we utilize a numerical ground truth trajec-
tory xT

tn generated by a teacher solver Φt such as DPM-Solver++ with M interpolation time steps
between tn−1 and tn, which we denote as xT

tn = Φt(x
T
tn−1

, tn−1, tn,M).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 ADAPTIVE TIME SCHEDULE

Adaptive time schedule is a class of approaches that can significantly improve the efficiency of
various solvers. Some previous works (Xia et al., 2024; Zhou et al., 2024) also show that adjusting
the time scaling factors {sn}Nk=1 properly can improve the accuracy of the solution. In Sec. 3.1, we
described how to get the distilled solver for a fixed time schedule {tn}Nn=0. In this section, we show
how to use our distillation framework to get adaptive time schedules.

When adjusting the prediction coefficients {ak}pk=1 in Sec. 3.1, we chose xS
tn−1

at time tn−1 as
the starting point to predict xG

tn . Now, we aim to incorporate tn−1 and sn−1 into the design space.
Therefore, we modify the starting point to be xS

tn−2
at time tn−2. To ensure each trajectory has an

independent adaptive time schedule rather than a unified schedule, we include the time schedules
{tn}Nn=0 and {sn}Nn=0 in the output of gϕ. This is achieved by setting {ak}pk=1, tn−1, sn−1 =
gϕ(htn−2

, tn−2, n − 2) for n ≥ 2. Let Q denote the buffer list that collects outputs xθ(x
S
tn , sntn).

We write the prediction formula (7, 8) as:
xS
n = Φ(xS

n−1, tn−1, tn, {ak}pk=1, Q). (9)
Thus, the distillation phase can be summarized by Algorithm 1. After the distillation phase, Algo-
rithm 2 shows the sampling process with a trained designer network gϕ. It is worth noting that we

Algorithm 1 Linear Multistep Solver Distillation
Require: Designer network gϕ, teacher solver Φt, number of time steps N , number of interpolation

time steps M , initial timestep T , max order p.
1: repeat
2: Sample initial value xS

t0 = xT
t0 ∼ N (0, σ̃2I)

3: t0 ← T, s0 ← 1. Initialize an empty buffer Q.
4: Set the parameter gradient of ϕ to 0

5: Q
buffer←− xθ(x

S
t0 , s0t0)

6: Extract the bottleneck feature ht0
7: for n = 2 to N do
8: {ak}max(n−1,p)

k=1 , tn−1, sn−1 ← gϕ(htn−2
, tn−2, n− 2)

9: xS
tn−1

← Φ(xS
n−2, tn−2, tn−1, {ak}max(n−1,p)

k=1 , Q) ▷ Generate prediction xS
tn−1

.

10: Q
buffer←− xθ(x

S
tn−1

, sn−1tn−1)
11: Extract the bottleneck feature htn−1

12: {ak}max(n,p)
k=1 , tn, sn ← gϕ(htn−1 , tn−1, n− 1)

13: tn ← sg(tn) ▷ Stop the gradient of tn.
14: xS

tn ← Φ(xS
n−1, tn−1, tn, {ak}max(n,p)

k=1 , Q) ▷ Generate prediction xS
tn .

15: if n=2 then
16: xT

tn−1
← sg(Φt(x

T
tn−2

, tn−2, tn−1,M))
17: end if
18: xT

tn ← sg(Φt(x
T
tn−1

, tn−1, tn,M)) ▷ Solve the numerical ground truth xT
tn .

19: Ln(ϕ)← d(xS
tn ,x

T
tn) ▷ Calculate the prediction error at time tn.

20: Perform backpropagation for Ln(ϕ).
21: Q← sg(Q), tn−1 ← sg(tn−1) ▷ Stop the gradient of buffers and tn−1

22: end for
23: Update the parameter ϕ
24: until convergence

have employed the stop gradient operation multiple times in Algorithm 1, which is crucial for the
proper functioning of the algorithm. When using the state xS

tn−2
at time tn−2 to predict xT

tn at time
tn, retaining the gradients of tn−2, tn,x

S
tn−2

,xT
tn will lead to two issues:

• Firstly, the gradients from past time steps will not be removed from the computation graph,
resulting in a linear increase in memory usage with each step n.

• Secondly, tn will move towards tn−2 to ease the prediction difficulty, ultimately resulting
in the collapse of the entire time schedule. This is not an ideal outcome.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Distilled Solver Sampling
Require: Designer network gϕ, number of time steps N , initial timestep T , max order p.

1: Sample initial value xS
t0 ∼ N (0, σ̃2I)

2: t0 ← T, s0 ← 1. Initialize an empty buffer Q.
3: for n = 1 to N do
4: Q

buffer←− xθ(x
S
tn−1

, sn−1tn−1)
5: Extract the bottleneck feature htn−1

6: {ak}max(n,p)
k=1 , tn, sn ← gϕ(htn−1 , tn−1, n− 1)

7: xS
tn ← Φ(xS

n−1, tn−1, tn, {ak}max(n,p)
k=1 , Q)

8: end for
9: return xS

tN

In addition, we find it necessary to adopt data prediction type (equation 6, right). We believe this is
because the data prediction type can automatically align the noise intensity with the time step t to
stabilize the prediction error of the solver.

3.3 PRACTICAL TECHNIQUES

In this section, we introduce several practical techniques to further improve the performance of
DLMS.

High-order initialization. Since the prediction formula (7, 8) covers almost all linear multi-step
solvers with exponential integrators such as DDIM (Song et al., 2021a), PLMS(iPNDM) (Zhang &
Chen, 2022; Liu et al., 2022), DPM-Solver++ (Lu et al., 2022b), UniP-p (Zhao et al., 2023) and
DEIS (Zhang & Chen, 2022). We can initialize with these pre-designed solvers by setting the output
biases of the designer network gϕ. Therefore, DLMS has a theoretical accuracy that is at least on
par with the aforementioned methods. Thus, we still refer to the number of history outputs p used
in each step as the “order”. Although our framework still works with DDIM (Song et al., 2021a)
initialization, using higher-order solvers allows the distillation phase to be completed more quickly
with fewer generated trajectories. In our experiments, initializing with any higher-order methods
did not show significant differences; for simplicity, we recommend PLMS (Zhang & Chen, 2022;
Liu et al., 2022) as the initial solving strategy. Its prediction coefficients are as follows:

p = 1, a1 = 1 (10)

p = 2, (a1, a2) = (
3

2
,−1

2
) (11)

p = 3, (a1, a2, a3) = (
23

12
,−16

12
,
5

12
) (12)

p = 4, (a1, a2, a3, a4) = (
55

24
,−59

24
,
37

24
,− 9

24
) (13)

Analytical First Step (AFS). In Algorithm 1, the initial time step t0 = T and time scaling factor
s0 = 1 are excluded from the design space. Instead, we can treat t0 = T as a virtual initial step.
Specifically, we set xθ(x

S
t0 , s0t0) = 0 and ht0 = 0, without employing the denoising network. This

approach ensures that t1 is the actual first time step at which the diffusion model is engaged, while
t1 and s1 remain in the design space. This strategy is fundamentally equivalent to the analytical first
step (AFS) proposed by Dockhorn et al. (2022).

Exponential Moving Average (EMA). Due to NFE limitations, the student solver cannot fully
replicate the sampling trajectory generated by the teacher solver. This leads to a non-zero stochastic
gradient even at convergence. To reduce the impact of parameter oscillations on solver performance,
we introduce EMA updates inspired by diffusion models. During solver distillation, we apply EMA
updates with half-lives of 1, 2, and 3 kimg, selecting the best-performing configuration from four
parameter sets.

Inception distance at the final step. Some search-based frameworks directly use Fréchet Inception
Distance (FID) (Heusel et al., 2017) as the optimization objective (Liu et al., 2023b; Watson et al.,
2022; Li et al., 2023). In contrast, our method employs square distance as the optimization target.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Since square distance is less sensitive to high-frequency information, we observe that optimizing
square distance does not always lead to better FID scores. Therefore, in experiments conducted in
pixel space, we replace the final step’s objective from pixel square distance to Inception Distance
(the square distance of features from the Inception network). We only make this replacement in
the final step because we find that Inception Distance does not effectively capture the differences
between noisy images. In latent space tasks, the issue of high-frequency information is not present.
To avoid unnecessary calls to the network modules, we do not perform this replacement in those
cases.

3.4 COMPARING WITH RELATED METHODS

Comparing with Progressive Distillation. Progressive distillation (Salimans & Ho, 2022) is a
distillation method for diffusion models that gradually distills the results of multi-step solvers into
fewer steps. In our framework, we also employ a multi-step teacher solver and aim to distill the
results into our student solver with fewer steps. However, our approach does not require training
the parameters of the diffusion model, while the parameter requirements and training duration for
progressive distillation (PD) are thousands of times greater than those of our framework.

Comparing with AMED-Plugin. AMED-Plugin(Zhou et al., 2024) is a method for selecting in-
termediate time steps for existing solvers and time schedules. The designer network gϕ used in our
work is modified from AMED-Plugin. In contrast, the DLMS in this paper do not rely on existing
solvers or time schedules. AMED-Plugin can be seen as adjusting half of the time schedule, while
our proposed adaptive time schedule method is for full time schedule adjustment.

Comparing with USF. USF (Liu et al., 2023b) is a search framework based on reinforcement learn-
ing. The authors train a predictor network to estimate the FID performance of a solver with specific
hyperparameters, using this to guide an evolutionary search process for hyperparameter optimiza-
tion. The relationship between hyperparameters and performance is complex, making the training
of a predictor network both challenging and time-consuming.

In contrast, our framework leverages local prediction error to design an optimal solution strategy,
which aligns more closely with the iterative nature of the sampling process and the criteria for
manually designing solvers. Furthermore, while USF simply combines existing handcrafted solvers,
our approach utilizes prediction formulas (7, 8) to achieve a true unification of multiple solving
strategies. This enables us to develop new solving strategies by learning the prediction coefficients
{ak}pk=1.

4 EXPERIMENTS

In this section, we demonstrate that DLMS exhibits significant advantages in both unconditional and
conditional sampling with pixel-space and latent-space diffusion models. We conducted experiments
across multiple datasets with resolutions ranging from 32 to 512 and compared our approach with
current state-of-the-art both handcrafted and search-based solvers. Then, we showcase the benefits
across various aspects of the design space, as well as the ablation studies of the practical techniques
we provided. Finally, we visualize the adaptive time schedules and the samples generated by DLMS.

5 DATASETS AND SETTINGS

In our experiments, we uniformly use the noise schedule αt = 1, σt = t from Karras et al. (2022).
We initialized the prediction coefficients with PLMS (Zhang & Chen, 2022; Liu et al., 2022), using
a uniform time schedule (Ho et al., 2020) and time scaling factors of 1. We use DPM-Solver++ (Lu
et al., 2022b) to generate ground truth trajectories. The designer network gϕ consists of a two-layer
MLP with a total parameter count of only 9k. We use Adam as the optimizer with a learning rate of
5× 10−3. To ensure fairness, we use the same random seed to evaluate the FID score.

EDM on CIFAR10, FFHQ, ImageNet-64. The sampling on CIFAR10 (Krizhevsky et al., 2009)
32×32 , FFHQ (Karras et al., 2019) 64×64, ImageNet-64 (Deng et al., 2009) 64×64 is based on
the pretrained pixel-space diffusion model provided by EDM (Karras et al., 2022). Among these,
ImageNet-64 is for conditional sampling and CIFAR10, FFHQ are for unconditional Sampling. The

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

order p for student solver DLMS is set to 4. The number of interpolation time steps M is set to
4. For each dataset, we conduct solver distillation on 20k trajectories. The distillation times are
approximately 5 min, 10 min, and 17 min, respectively, on 8 NVIDIA V100 GPUs. We measure
sample quality using the FID score calculated on 50k generated images.

Latent-Diffusion on LSUN-Bedroom. The unconditional sampling on LSUN-Bedroom (Yu et al.,
2015) 256×256, is based on the pretrained latent-space diffusion model provided by Latent-
Diffusion (Rombach et al., 2022). The order p for student solver DLMS is set to 3. The number
of interpolation time steps M is set to 1. We conduct solver distillation on 10k trajectories. The
distillation times are approximately 20min on 8 NVIDIA V100 GPUs. We measure sample quality
using the FID score calculated on 50k generated images.

Guided-Diffusion on ImageNet. The conditional sampling on ImageNet (Deng et al., 2009)
256×256, is based on the pretrained pixel-space diffusion model provided by Guided-Diffusion
(Dhariwal & Nichol, 2021). The order p for student solver DLMS is set to 3. The number of in-
terpolation time steps M is set to 3. We conduct solver distillation on 5k trajectories with default
guidance scale 2.0. The distillation times are approximately 40min on 8 NVIDIA V100 GPUs. We
measure sample quality using the FID score calculated on 10k generated images.

Stable-Diffusion on MS-COCO prompts. The text-to-image sampling on MS-COCO(2014) (Lin
et al., 2014) 512×512, is based on the pretrained latent-space diffusion model provided by Stable-
Diffusion v1.5 (Rombach et al., 2022). The order p for student solver DLMS is set to 2. The number
of interpolation time steps M is set to 1. We conduct solver distillation on 5k trajectories with
default guidance scale 7.5. The distillation times are approximately 1.5h on 8 NVIDIA V100 GPUs.
We measure sample quality using the FID score calculated on 30k generated images generated by
30k prompts from the MS-COCO validation set.

5.1 MAIN RESULTS

We select the current state-of-the-art artificially designed solvers as baseline methods, including
DEIS Zhang & Chen (2022), DPM-Solver++ (Lu et al., 2022b), and UniPC (Zhao et al., 2023).
All results are obtained from an open-source toolbox1, utilizing the recommended settings from the
original papers. Detailed results can be found in the Appendix A.

4 5 6 7 8 9 10
NFE

0

5

10

15

20

25

30

FI
D

DEIS
DPM-Solver++
UniPC
DLMS

(a) CIFAR10 32×32
(Pixel space, unconditional)

4 5 6 7 8 9 10
NFE

0

5

10

15

20

25

30

35

FI
D

DEIS
DPM-Solver++
UniPC
DLMS

(b) FFHQ 64×64
(Pixel space, unconditional)

4 5 6 7 8 9 10
NFE

5

10

15

20

25

30

FI
D

DEIS
DPM-Solver++
UniPC
DLMS

(c) ImageNet-64 64×64
(Pixel space, conditional)

4 5 6 7 8 9 10
NFE

5

10

15

20

25

FI
D

DEIS
DPM-Solver++
UniPC
DLMS

(d) LSUN-Bedroom 256×256
(Latent space, unconditional)

4 5 6 7 8 9 10
NFE

5

10

15

20

25

30

FI
D

DPM-Solver++
UniPC
DLMS

(e) ImageNet 256×256
(Pixel space, guidance scale 2.0)

5 6 7 8 9 10
NFE

12

13

14

15

16

17

FI
D

DEIS
DPM-Solver++
UniPC
DLMS

(f) MS-COCO 512×512
(Latent space, guidance scale 7.5)

Figure 3: Comparison of FID↓ scores between DLMS and handcrafted solvers.

1https://github.com/zju-pi/diff-sampler.

8

https://github.com/zju-pi/diff-sampler


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Fig. 3 presents a comparison of FID scores between DLMS and previous handcrafted methods.
As shown in Fig. 3, handcrafted solvers based on polynomial interpolation exhibit a sharp decline
in performance as NFE decreases. In contrast, our proposed DLMS maintains high-quality sam-
pling, demonstrating a significant advantage over baseline methods. In text-to-image generation
with Stable-Diffusion (Rombach et al., 2022), DLMS achieves an FID of 13.54 with only 6 NFE,
while the baseline methods require 10 NFE for comparable performance, resulting in a 2× acceler-
ation ratio.

We further compare our method with other search frameworks. The methods include in the compar-
ison are the reinforcement learning-based framework USF (Liu et al., 2023b), the parameterization-
focused DPM-Solver-v3 (Zheng et al., 2023). Additionally, we include GITS (Chen et al., 2024),
an outstanding adaptive time scheduling method, and AMED-Plugin (Zhou et al., 2024), a closely
related work. As shown in Tab. 1, DLMS still stands out among various search frameworks.

Table 1: Comparison of FID↓ on CIFAR10 between DLMS and search-based solvers.

Solver NFE
4 5 6 7 8 9 10

DPM-Solver-v3 - 12.21 8.56 - 3.50 - 2.51
USF 11.50 6.86 5.18 3.81 3.41 3.02 2.69

AMED-Plugin - 6.61 - 3.65 - 2.63 -
GITS 10.11 6.77 4.29 3.43 2.70 2.42 2.28

DLMS 4.52 3.23 2.81 2.53 2.43 2.37 2.24

In Tab. 2, we compare the total GPU hours required for a 7 NFE solver with USF and DPM-Solver-
v3. Due to limitations in code availability, the reported time costs are sourced from original papers
and measured on different devices. Nevertheless, our method demonstrates a significant order-of-
magnitude advantage, achieving a 10× increase in search efficiency.

Table 2: Comparison of total GPU hours for search phase.
Solver CIFAR10 MS-COCO Device

DPM-Solver-v3 28 88 NVIDIA A40
USF 12.15 106.64 NVIDIA 3090/A100

DLMS 0.7 10 NVIDIA V100

5.2 ABLATION STUDY

Tab. 3 demonstrates the ablation effects of each component in the DLMS framework. As shown
in the results, the time step-related time schedule and time scaling contribute the most significant
improvements.

Table 3: FID results of ablation study on CIFAR10.
NFE 4 6 8 10

DLMS 4.52 2.81 2.43 2.24
w/o AFS 6.48 3.30 2.42 2.30

w/o bottleneck feature 4.71 3.40 2.46 2.25
w/o high-order initialization 4.92 3.25 2.94 2.44

w/o Inception distance 6.67 3.77 3.10 2.80
w/o time scaling 7.75 3.86 3.07 2.41

w/o adaptive time schedule 10.41 6.18 3.17 3.03
Handcrafted(best) 25.66 9.40 3.99 2.89

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 VISUALIZATIONS

Visual Quality. We present qualitative comparisons in Fig. 1. Handcrafted solvers struggle to gen-
erate vegetation and accurately colored bears with 5 NFEs. In contrast, DLMS effectively learns the
generation results of the teacher solver with double NFEs. With 10 NFEs, DLMS is the only method
that successfully produces the correct lighting and head pose. Additional samples are provided in
Appendix B.

Visualization of adaptive time schedule. Fig. 4 shows the adaptive time schedules obtained from
DLMS with 10 NFE using AFS. By comparing these schedules with handcrafted time schedules such
as logSNR (Zheng et al., 2023; Lu et al., 2022b), polynomial (Karras et al., 2022), time uniform (Ho
et al., 2020) and time square (Zhang & Chen, 2022), we uncover some intriguing findings. The
adaptive time schedules exhibit striking differences across various datasets. For the CIFAR10 and
FFHQ datasets, the adaptive time schedules are similar to the time square schedule. In contrast, for
ImageNet-64 and LSUN-Bedroom, they resemble the time uniform schedule. Notably, the schedule
learned for the Stable-Diffusion model aligns closely with the uniform logSNR schedule, except for
the final step.

The observed differences may arise from several factors, including the solving strategy, image res-
olution, solving space, and guidance. For instance, in the EDM context, DPM-Solver++ (Lu et al.,
2022b) and UniPC (Zhao et al., 2023) perform better with logSNR, while DEIS (Zhang & Chen,
2022) demonstrates superior performance with the time square schedule. However, on other models,
all three solvers tend to prefer the time uniform schedule. This highlights the importance of simul-
taneously searching for both time schedules and solving strategies within our framework across
different datasets.

0 2 4 6 8 10
Step Index

4

2

0

2

4

6

H
al

f l
og

SN
R

CIFAR10
ImageNet-64
FFHQ
logSNR
Polynomial
Time uniform
Time square

(a) EDM

0 2 4 6 8 10
Step Index

4

3

2

1

0

1

2

3

H
al

f l
og

SN
R

LSUN-Bedroom
logSNR
Polynomial
Time uniform
Time square

(b) Latent-Diffusion

0 2 4 6 8 10
Step Index

2

1

0

1

2

3

H
al

f l
og

SN
R

MS-COCO
logSNR
Polynomial
Time uniform
Time square

(c) Stable-Diffusion

Figure 4: Visualization of adaptive time schedule.

6 CONCLUSION

We propose a linear multistep solver distillation framework. Our framework enables the student
solver to replicate the sampling trajectory of a teacher solver that utilizes more steps, facilitating
rapid adjustments and optimization of prediction coefficients, time step schedules, and time scal-
ing factors. Experiments demonstrate the effectiveness of our framework across various resolution
datasets, using both pixel-space and latent-space pre-trained diffusion models, and reveal a signifi-
cant improvement in sample quality with 4 10 NFEs.

Limitations and Future Work. Our framework is currently limited to ODE solvers, while in prac-
tice, stochastic samplers (Xue et al., 2024) often outperform deterministic samplers. Therefore,
extending our method to stochastic samplers is a promising direction. Additionally, integrating our
work with approaches such as Deepcache (Ma et al., 2024) and FreeU (Si et al., 2024) is also worth
exploring.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity
of ODE-based diffusion sampling. In Forty-first International Conference on Machine Learning,
2024.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. In International Conference on Learning
Representations, 2021.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. IEEE, 2009.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In Advances in Neural Information Processing Systems, volume 34, pp. 8780–8794, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers.
Advances in Neural Information Processing Systems, 35:30150–30166, 2022.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, pp. 2672–2680, 2014.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Efficient diffusion training via min-snr weighting strategy. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 7441–7451, October 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models. In Advances in Neural Information Processing Systems, pp. 8633–
8646, 2022b.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochas-
tically. Advances in Neural Information Processing Systems, 34:21757–21769, 2021.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Advances in Neural Information Processing Systems, 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei
Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architec-
tures for automated diffusion model acceleration. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7105–7114, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pp.
740–755. Springer, 2014.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. In International Conference on Machine
Learning, pp. 21915–21936. PMLR, 2023a.

Enshu Liu, Xuefei Ning, Huazhong Yang, and Yu Wang. A unified sampling framework for solver
searching of diffusion probabilistic models. In The Twelfth International Conference on Learning
Representations, 2023b.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning Representations, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. In Advances in Neural
Information Processing Systems, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Image synthesis and editing with stochastic differential equations. In International Conference
on Learning Representations, 2022.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In International Conference on Learning Representations, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Herbert E. Robbins. An Empirical Bayes Approach to Statistics, pp. 388–394. Springer New York,
New York, NY, 1992. ISBN 978-1-4612-0919-5. doi: 10.1007/978-1-4612-0919-5 26. URL
https://doi.org/10.1007/978-1-4612-0919-5_26.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–
22510, 2023.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In Advances in Neural Infor-
mation Processing Systems, pp. 36479–36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. arXiv preprint arXiv:2311.17042, 2023.

Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu. Freeu: Free lunch in diffusion u-net.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4733–4743, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
with score-based generative models. In International Conference on Learning Representations,
2022.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine learning, pp. 32211–32252, 2023b.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers
for diffusion models by differentiating through sample quality. In International Conference on
Learning Representations, 2022.

Mengfei Xia, Yujun Shen, Changsong Lei, Yu Zhou, Deli Zhao, Ran Yi, Wenping Wang, and Yong-
Jin Liu. Towards more accurate diffusion model acceleration with a timestep tuner. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5736–
5745, June 2024.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. Advances in Neural
Information Processing Systems, 36, 2024.

13

https://doi.org/10.1007/978-1-4612-0919-5_26


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2022.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. In Advances in Neural Information
Processing Systems, pp. 49842–49869, 2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. Advances in Neural Information Processing Systems, 36:
55502–55542, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7777–7786, June 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A FID RESULTS FOR DLMS AND HANDCRAFTED SOLVERS.

Table 4: Comparison of FID↓ scores between DLMS and handcrafted solvers.

Dataset Solver NFE
4 5 6 7 8 9 10

CIFAR10

DEIS 25.66 14.39 9.40 6.94 5.55 4.68 4.09
DPM-Solver++ 46.52 24.97 11.99 6.74 4.54 3.42 3.00

UniPC 45.20 23.98 11.14 5.83 3.99 3.21 2.89
DLMS 4.52 3.23 2.81 2.53 2.43 2.37 2.24

FFHQ

DEIS 28.31 17.36 12.25 9.37 7.59 6.39 5.56
DPM-Solver++ 45.95 22.51 13.74 8.44 6.04 4.77 4.12

UniPC 44.78 21.40 12.85 7.44 5.50 4.47 3.84
DLMS 9.63 6.85 5.82 5.16 4.81 4.23 4.12

ImageNet-64

DEIS 23.53 14.75 12.57 8.20 6.84 5.97 5.34
DPM-Solver++ 56.63 25.49 15.06 10.14 7.84 6.48 5.67

UniPC 55.63 24.36 14.30 9.57 7.52 6.34 5.53
DLMS 10.07 7.16 7.08 6.31 5.93 4.57 4.30

LSUN-Bedroom

DEIS 12.89 6.83 5.35 4.78 4.43 4.25 4.05
DPM-Solver++ 48.49 18.44 8.39 5.18 4.12 3.77 3.60

UniPC 39.66 13.76 6.46 4.52 3.96 3.72 3.56
DLMS 8.20 5.44 4.44 3.99 3.89 3.70 3.50

ImageNet
DPM-Solver++ 26.30 17.08 13.06 11.08 9.95 9.25 8.72

UniPC 24.99 15.71 11.95 10.24 9.36 8.82 8.45
DLMS 19.74 13.83 10.90 9.66 9.07 8.89 8.22

MS-COCO

DEIS - 15.16 13.95 13.61 13.58 13.46 13.38
DPM-Solver++ - 17.40 15.78 15.08 14.77 14.43 14.18

UniPC - 17.33 15.70 15.06 14.74 14.44 14.28
DLMS - 15.69 13.54 13.20 13.07 12.69 11.72

B MORE QUALITATIVE RESULTS

(a) DEIS, FID=25.66 (b) DLMS, FID=4.52

Figure 5: Uncurated samples on CIFAR10 32× 32 with 4 NFE.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) DEIS, FID=28.31 (b) DLMS, FID=9.63

Figure 6: Uncurated samples on FFHQ 64× 64 with 4 NFE.

(a) DEIS, FID=14.75 (b) DLMS, FID=7.16

Figure 7: Uncurated samples on ImageNet-64 64× 64 with 5 NFE.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) DEIS, FID=12.89 (b) DLMS, FID=8.20

Figure 8: Uncurated samples on LSUN-Bedroom 256× 256 with 4 NFE.

Table 5: Additional samples of Stable-Diffusion (Rombach et al., 2022) with a classifier-free guid-
ance scale 7.5, using only 10 NFE and selected text prompts.

Text Prompts DPM-Solver++
(FID=14.18)

DEIS
(FID=13.38)

DLMS
(FID=11.72)

“a sandwich on wheat bread sits on a plate”

“three big elephants walking across a wide
river”

“Air force jet in a take off position above the
tree line.”

“An empty bench next to a potted tree up
against a brick wall.”

“A star hangs upon a canopied bed in a bed-
room.”

17


	Introduction
	Background and Related Work
	Diffusion Models
	Fast sampling with Exponential Integrators
	Efficient Sampler Search

	Methodology
	Towards Optimal Linear Multistep Solver
	Adaptive Time Schedule
	Practical Techniques
	Comparing with Related Methods

	Experiments
	Datasets and Settings
	Main Results
	Ablation Study
	Visualizations

	Conclusion
	FID Results for DLMS and Handcrafted Solvers.
	More Qualitative Results

