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ABSTRACT

The Private Aggregation of Teacher Ensembles (PATE) framework Papernot et al.
(2017) is a versatile approach to privacy-preserving machine learning. In PATE,
teacher models are trained on distinct portions of sensitive data, and their predic-
tions are privately aggregated to label new training examples for a student model.
Until now, PATE has primarily been explored with classification-like tasks, where
each example possesses a ground-truth label, and knowledge is transferred to the
student by labeling public examples. Generative AI models, however, excel in
open ended diverse tasks with multiple valid responses and scenarios that may
not align with traditional labeled examples. Furthermore, the knowledge of mod-
els is often encapsulated in the response distribution itself and may be transferred
from teachers to student in a more fluid way. We propose hot PATE, tailored for
the diverse setting. In hot PATE, each teacher model produces a response distri-
bution and the aggregation method must preserve both privacy and diversity of
responses. We demonstrate, analytically and empirically, that hot PATE achieves
privacy-utility tradeoffs that are comparable to, and in diverse settings, signifi-
cantly surpass, the baseline “cold” PATE.

1 INTRODUCTION

Generative AI models, such as large language models (LLMs), are incredibly powerful tools that can
be fine-tuned for specific contexts, even without explicit supervision Radford et al. (2019); Brown
et al. (2020). Generative AI models diverge from conventional machine learning models in that they
support open ended, diverse tasks, where there are multiple appropriate responses, and this very
flexibility is essential for much of their functionality. Diversity is typically tuned via a temperature
parameter in the softmax, with higher temperature yielding higher entropy (more diverse responses).
Furthermore, when evaluating the coverage or extracting knowledge from a trained model, such as
for distillation tasks, the conventional approach involves querying the model on a prepared (sampled
or curated) test set of examples. However, with generative AI models, the knowledge coverage on a
specific domain is often encapsulated by the output distribution itself to a general instruction as part
of a prompt to the model, and can be evaluated or retrieved by sampling this distribution.

Frequently there is a need to train models or fine-tune publicly-available foundation models using
sensitive data such as medical records, incident reports, or email messages. In this case, privacy
must be preserved in the process. Specifically, we consider the strong mathematical guarantees of
differential privacy (DP) Dwork et al. (2006); Dwork & Roth (2014). An approach that achieves
privacy by modifying the training process is DPSGD Abadi et al. (2016), where noise is added to
clipped gradient updates. DPSGD can also be applied with fine tuning Yu et al. (2022); Duan et al.
(2023). An alternative approach to private learning, that only relies on black box training and use
of models that are not privacy-preserving, is Private Aggregation of Teacher Ensembles (PATE) Pa-
pernot et al. (2017); Bassily et al. (2018); Papernot et al. (2018). PATE follows the “sample and
aggregate” method (Nissim et al., 2007). We describe the basic workflow which we refer to here as
cold PATE.

The cold PATE framework

1. The sensitive dataset D of labeled training examples is partitioned into n parts D = D1 ⊔
· · · ⊔Dn. A teacher model Mi is trained on data Di for i ∈ [n].
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2. Unlabeled examples are sampled from the public distribution. For each such example x do
as follows: For each teacher i ∈ [n], apply Mi to x and obtain a label yi := Mi(x) ∈ V .
Compute the frequencies for j ∈ V

cj =
∑
i∈[n]

1{yi = j} (1)

and privately aggregate c to obtain a single label y ∈ V (or abort if there is insufficient
agreement).

3. Use the newly labeled privacy-preserving labeled examples (x, y) to train a student model.

The cold PATE workflow is limited by its formulation for classification-like tasks, where each ex-
ample x has a single ground-truth label y ∈ V , and the need for a source of unlabeled non-private
training examples to facilitate the knowledge transfer to the student. Generative AI models support
tasks with responses that are diverse and open ended. Moreover, knowledge is encapsulated in the
diversity of the response distribution and there is a promise of transferring knowledge to the student
in a more fluid way. We thus ask the following question:

Can we design a version of PATE that is effective for diverse and open-ended tasks
and unleashes more of the capabilities of generative models?

One motivation for our study is the effectiveness of in-context learning via prompts. A prompt
is an engineered prefix with a task that is given to the base model. Prompts can include specific
instructions and/or a set of shots (scenario examples). Prompts are appealing for multiple reasons:
A small number of shots Liu et al. (2021) often outperform tailored trained models Zhou et al.
(2022); Garg et al. (2023). Prompting is efficient, as it is simply inference – there is no need for
parameter updates. Finally, prompts only requires API access to the model, which is important
given the trend towards proprietary models.

When the data we have for the fine-tuning is sensitive, we would like the end product to be privacy-
preserving. Concretely, consider generating a representative set of synthetic privacy-preserving data
records from a set of sensitive data records. The sensitive records may include component that
are identifying and components that are shared with many other records. A privacy-preserving
aggregation ensures that the synthetic records do not include identifying information. We also need
to preserve diversity in order to ensures coverage, that is, that our set of synthetic records is indeed
representative. The synthetic records that are generated can then be used to train a student model
that is not necessarily generative. Or they can be used to construct student prompts that are privacy
preserving for downstream tasks. The latter allows for harnessing the ability of generative models
to generalize from few examples.

Concretely, we seek a PATE mechanism that supports the following. Each teacher is assigned a
disjoint subset of sensitive data records. These data records are used to construct a prompt that also
includes an instruction of the form “generate a representative data record given this examples set of
data records.” Each teacher then has its own distribution on responses. By repeating multiple times
we can obtain different samples that are a representative set of shots. We then hope to aggregate
responses of different teachers in a way that preserves both diversity and privacy.

A benefit of using prompts is that there is little cost to scaling up the number of teachers – each
teacher is simply a prompted base model and there is no need for training or significant storage. The
bottleneck to scaling up is therefore the amount of available sensitive data. Scaling up the number
of teachers is highly beneficial because generally with DP aggregation, the number of queries we
can support for a given privacy budget grows quadratically with the number of teachers.

Overview In this work we propose hot PATE, described in Section 2. The framework is suitable
for auto-regressive models and diverse and open ended tasks, where the appropriate response is a
sample from a distribution. With hot PATE, each teacher i ∈ [n] at each step computes a distribution
p(i) over tokens V . These distributions are aggregated so that the response token from the ensemble
is sampled from that aggregate distribution. The aggregation method should preserve privacy but
critically, to ensure knowledge transfer, should also preserve the diversity of the teachers distribu-
tions. Our primary technical contribution is formalizing this requirement and designing aggregation
methods with good privacy utility tradeoffs.
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In Section 3 we motivate and formalize a definition of preserving diversity that allows for knowledge
transfer while being mindful of the limitations imposed by privacy. Informally, for a parameter
τ ∈ [n]0, we require that any token that has probability at least q > 0 (no matter how small)
across c teachers where c ≥ τ , is “transferred” in that it has probability Ω(qc/n) in the aggregate
distribution. We also require that we do not transfer irrelevant tokens, that is, for any token j, its
probability in the aggregate distribution is not much higher than its average probability in the teacher
distributions. We then demonstrate that a natural approach for diversity-preserving aggregation,
where each teacher contributes a token yi sampled independently from p(i), inherently exhibit a
poor privacy-utility tradeoff, where utility deteriorates with the diversity of teacher distributions:
When q is small enough, even tokens with broad support c ≥ n/2 can not be transferred.

In Section 4 we propose ensemble coordination, which is the primary ingredient for designing a
privacy-preserving aggregation method where utility does not decrease with diversity. The coordi-
nated ensemble samples a shared randomness and based on that, each teacher i contributes a token
yi. The marginal distribution of each yi is p(i), same as with independent samples. But the key
difference is that teachers votes are highly positively correlated. This means that the frequency cj of
token j has high spread and in particular can (roughly) be Ω(τ) with probability Ω(q). This property
is the key for achieving DP aggregation with no penalty for diversity. In Section 5 we empirically
demonstrate the properties and benefits of ensemble coordination using a simple example on the
GPT3.5 interface.

In Section 6 we propose DP aggregation schemes that preserve diversity when applied to frequency
histograms generated by coordinated ensembles. We distinguish between applications with homoge-
neous or heterogeneous ensembles. The underlying assumption with homogeneous teachers, same
as with cold PATE, is that most teachers have the core knowledge we wish to transfer. In this case,
diversity preservation with τ > n/2 suffices. Heterogeneous teachers correspond to a setting where
each teacher is an agent of one or few users. In this case, we want to preserve diversity both within
and between teachers and allow smaller groups of teachers to support each prediction, that is, use
a smaller τ . We explore, analytically and empirically, data-dependent privacy analysis and demon-
strate potential for order of magnitude gains over DP composition in the number of queries.

Related work The recent work of Duan et al. (2023) adapted PATE to working with prompts:
Each part Di of the data was used to create a text prompt Ti. The ensemble is then used to label
curated queries. But while some design elements were tailored to LLMs, the workflow and privacy
analysis were identical to cold PATE Papernot et al. (2018) and inherited its limitations. The original
submission proposing PATE Papernot et al. (2017) included a discussion (Appendix B.1) of using
more of the teachers histogram than the maximizer for distillation tasks. They concluded that it
is beneficial for utility but does not justify the privacy loss. Despite the superficial resemblance,
this is very different from what we do. The token sampled from the aggregate distribution is in
a sense also the (noisy) maximizer of teacher agreement. The subtlety is that this token is still a
sample – we “force” the teachers to agree but there is a distribution on the agreement token. Finally,
there is a very rich literature on PATE extensions that go beyond classification tasks. The works we
are aware of address different problems and use different techniques than hot PATE. For example,
PATE had been used for image generation using generative adversarial networks (GAN). In Jordon
et al. (2018), a student discriminator is trained using teacher discriminators and a cold-PATE like
labeling approach. In Long et al. (2021), a student generator is trained by aggregating the gradients
produced by teachers discriminators, with private aggregation of the gradient vectors. The technical
component is the private aggregation of the gradients and is a different problem in a different context
than hot PATE.

2 HOT PATE

We use the term tokens for elements of the input and response strings and denote the vocabulary of
tokens by V . For an input context (prompt), the response sequence is generated sequentially token by
token. For diverse tasks, tokens are sampled from a probability distribution over V . The probabilities
are computed from weights (wj)j∈V computed by the model and a temperature parameter t > 0,
using a softmax function:

pj :=
ewj/t∑
i∈V ewi/t

.
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In low temperatures, the highest weight token argmaxj wj has probability close to 1. As we in-
crease the temperature, the probability distribution flattens with similarly-weighted tokens having
similar probabilities. Cold temperature is appropriate for classification-like tasks with one correct
response and hot temperature is appropriate for diverse tasks. We therefore refer to the outlined
PATE workflow as cold PATE and to our proposed workflow as hot PATE.

Figure 1: Hot PATE with an auto-regressive base model

Hot PATE (see illustration in Figure 1) partitions D to disjoint parts Di (i ∈ [n]) and constructs
a prompt Ti from data part Di. We then generate a sanitized response sequence R of tokens. We
initialize R← {} and proceed sequentially in lockstep, by repeating the following:

1. For i ∈ [n]: Let p(i) be the output distribution over V when querying the model with the
prompt Ti<instruction to complete prefix>R.

2. Apply a DP and diversity-preserving randomized aggregationM((p(i))i∈[n]) 7→ y, where
y ∈ V .

3. Concatenate R← R ∥ y.

This design is open-ended and assumes that the instructions are effective in producing students
prompts or components for such prompts, such as representative shots. This assumption aligns with
the demonstrated and evolving capabilities of contemporary large language models, as well as the
progress made in prompt engineering. An underlying requirement with both cold and hot PATE is
that a sufficient number of teachers possess the knowledge we wish to transfer. In both cases the
ensemble’s purpose is to privately transfer that knowledge to the student. The key distinction is that
with cold PATE, knowledge coverage is achieved by sampling examples from the input distribu-
tion (and then labeling them by the ensemble). In hot PATE, the intent is that coverage is attained
organically, through the broad range of diverse responses generated in response to a general instruc-
tion within the prompt. The requirement of preserving diversity, that we will make more precise
in the sequel, is needed in order to facilitate this knowledge transfer. We would like the aggregate
distribution, the output distribution of M((p(i))i∈[n]), to retain the diversity of individual teacher
distributions (p(i))i∈[n].

3 PRIVATE AND DIVERSE AGGREGATION

Diversity and privacy appear to be conflicting in that DP requires that the output token is supported
by sufficiently many teachers, a “reporting threshold” that depends on the privacy parameter values.
But preserving diversity means that tokens with low probability also need to be transferred to the
student.

The gold standard for preserving diversity is the average teacher distribution 1
n

∑
i∈[n] p

(i). But
this is not privacy preserving because tokens that have positive probabilities with only one or few
teachers are identifying and should not be released. Fortunately, we can settle for a weaker notion
of preserving diversity that is more robust. The premise in PATE is that the patterns of interest
are captured by many or even most teachers. Therefore, low probability across many teachers is
something we care to transfer whereas high probability in few teachers, the “bad case” for privacy
(and robustness), may not be something we have to transfer. The average distribution does not
distinguish the two cases, so it can not be a starting point. We first formalize our nuanced diversity
preservation notion:

Definition 1 (Diversity-preserving aggregation of distributions). Let f(p(i))i∈[n]) 7→ P map from
n probability distributions over V to a probability distribution over V ∪ {⊥}. We say that f is
diversity-preserving with τ ∈ N, β ∈ (0, 1], γ ≥ 1 if for any input and j ∈ V
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1. For all q ∈ [0, 1],

(cj,q :=
∑
i∈n

1{p(i)j ≥ q}) ≥ τ =⇒ Pj ≥ β · cj,q
n

q .

2. Pj ≤ γ 1
n

∑
i∈[n] p

(i)
j

The first requirement is that probability q across enough (τ ) teachers, no matter how small is q, is
transferred to the aggregate distribution. The second ensures that we do not output irrelevant tokens.

Requirements are stricter (and can be harder to satisfy) when β and γ are closer to 1 and when τ
is smaller. A setting of τ = 0 and β = γ = 1 allows only for the average distribution to be the
aggregate. A larger τ increases robustness in that more teachers must support the transfer.
Remark 1 (failures). We allow ⊥ (failure) in the support of the aggregate distribution because
under the DP requirement there are input distributions (for example, those with disjoint supports,
e.g. responses to instructions that ask for a patient ID) where no token can be returned. Hot PATE
has several options to work with failure responses: (i) The step can be repeated (different shared
randomness may yield a token), (ii) a response token can instead be sampled from a non-private
default prompt or model, or (iii) the prompt instructions can be redesigned.
Remark 2 (Setting of τ ). In homogeneous ensembles, most teachers receive a representative part
of the data and possess the knowledge we wish to transfer. This occurs when we use a random
partition so that most teachers obtain a representative set of data records. In this case, we aim to
transfer the parts of the distributions that are common to most teachers and τ > n/2 suffices. In
heterogeneous ensembles, each teacher might have data from one or very few “users.” This arises
when each teacher has small capacity (prompts currently have limited size of 8k-64k tokens OpenAI
(2023b)) or when by design each teacher is an agent of a single user. In this situation, we aim to
transfer parts of the distribution that are common to smaller subgroups of teachers and set τ ≪ n,
possibly as low as permitted under the privacy requirement.

Before describing DP aggregation methods that satisfy Definition 1, we instructively examine a
scheme that can not satisfy the requirements, as it exhibits an inherent privacy-diversity tradeoff:
Sample independently yi ∼ p(i) for each teacher i ∈ [n], compute frequencies cj as in (1), and
apply any DP aggregation to the histogram {(j, cj)} (as with cold-PATE). Now consider the case
of identical teacher distributions that are uniform over k special tokens with probability q = 1/k
each. From Definition 1, each of the k special tokens needs to be reported with probability at least
β/k. But the frequencies cj of these tokens are concentrated around cj ≈ n/k. In terms of DP, each
frequency value cj has sensitivity 1 and for large enough k, the counts drop below the ”DP reporting
threshold” of our privacy parameters and therefore none of these tokens can be reported. To transfer
these distributions through such a frequencies histogram we need to adjust the DP parameters to
allow for reporting threshold to be below n/k, that is, to decrease proportionally to k. Therefore, any
DP aggregation of this histogram can not satisfy Definition 1 in that it would fail for a sufficiently
large k. We run into the same issue if we define our histogram with cj :=

∑
i p

(i)
j (as proposed

in Duan et al. (2023)). The issue again is that the maximum frequency decreases with diversity (k).

The approach where each teacher contributes a sample, however, is appealing as it “factors out” the
distributions: Instead of aggregating distributions, we work with a histogram of frequencies. But
with independent sampling we arrived at a dead end – and it may seem that we need to ditch the
sampling approach all together. Fortunately, our proposed aggregation method also samples teacher
distributions to generate a histogram of frequencies. The difference is that the frequency of a token
is not concentrated around its expectation. A tokens j that broadly has a low probability q will
appear, sometimes, with very high frequency cj that does not depend on q. What does depend on q
is the probability of this event. This allows it to pass through a high “privacy threshold.”

4 ENSEMBLE COORDINATION

Ensemble coordination, described in Algorithm 1, is a randomized mapping from a set of n proba-
bility distributions over V to a histogram over V with total count n. We sample shared randomness
ρ. For each teacher i ∈ [n] we compute yi ∈ V that is a function of ρ and p(i). We then compute
the frequencies cj for j ∈ V , as in (1), and return the frequency histogram.
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Algorithm 1: CoordinatedSamples
Input: Teacher distributions (p(i))i∈[n]

foreach token j ∈ V do draw iid uj ∼ Exp[1] // Draw shared randomness ρ = (uj)j∈V

foreach teacher i do // Draw coordinated samples (yi)i∈[n]

yi ← argmaxj
p
(i)
j

uj
// bottom-k sampling transform

foreach token j ∈ V do // Compute frequencies
cj ←

∑
i∈[n] 1{yi = j}

return {(j, cj)}j∈V , ρ = (uj)j// Histogram of frequencies

Importantly, ensemble coordination over prompts can be implemented via an enhanced API access
to the model. The best approach is to support the shared randomness ρ as input along with the query.
Alternatively, we can use API access that returns the distribution over tokens – The current OpenAI
text completion interface returns the five highest probabilities OpenAI (2023b).

The sampling method in ensemble coordination is a classic technique called coordinated sampling.
The technique was first introduced in statistics applications in order to obtain samples that are stable
under distribution shifts Kish & Scott (1971); Brewer et al. (1972); Saavedra (1995); Rosén (1997);
Ohlsson (2000). It was then introduced in computer science for sampling-based sketches and a form
of Locality Sensitive Hashing (LSH) Cohen (1994; 1997); Broder (2000); Indyk & Motwani (1998).

Similarly to independent sampling, the marginal distribution of yi for each teacher i is simply p(i).
Therefore, the expected frequency of token j is

Eρ[cj ] =
∑
i

p
(i)
j . (2)

The key difference is that votes of different teachers are highly positively correlated. For two teacher
distributions i, k, the probability of them having the same sample is the weighted Jaccard similarity
of the distributions:

Pr
ρ
[yi = yk] =

∑
j min{p(i)j , p

(k)
j }∑

j max{p(i)j , p
(k)
j }

In particular, when two distributions are identical, the samples are the same yi = yk.

We establish that the respective requirements of Definition 1, diversity-transfer and relevance, can
be satisfied by only selecting tokens that appear with high frequency in the histogram. We show that
a token j for which m teachers i have p

(i)
j > q has frequency at least m/2 with probability at least

0.34q (see proof in Appendix A):

Lemma 1 (diversity transfer). For any token j and p, q ∈ [0, 1],

Pr
ρ

[
cj ≥ p ·

∑
i∈n

1{p(i)j ≥ q}

]
≥ 1

2
ln(1/p)q

To establish relevance we show that high frequency must have a “backing.” The following is imme-
diate from (2) and Markov’s inequality (and is tight in the sense that for any T there are distributions
where equality holds):

Lemma 2 (relevance). For any token j and T ,

Pr
ρ
[cj ≥ T ] ≤ 1

T

∑
i∈[n]

p
(i)
j

Therefore, broadly speaking, it is possible to satisfy the requirements of Definition 1 by reporting
only tokens with frequency that is Ω(τ), where τ is the required teachers support. Our DP aggrega-
tion methods are presented in Section 6.
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5 EMPIRICAL DEMONSTRATION

We demonstrate the properties of coordinated ensembles using the OpenAI GPT3.5 text completion
interface OpenAI (2023b). Given a text prompt, the interface provides the tokens and probabilities
of the top-5 tokens. We generated 103 queries (prompts) of the following form (see Example in
Figure 2) and collected the top-5 tokens and their probabilities.

On planet Z, some numbers are edible. <name> from
planet Z eats the following numbers for breakfast:
<random permutation of {63, 56, 28, 17} ∪ {m ∼ U{11, . . . , 99}> Give me
an example breakfast number in planet Z. Respond with
just the number.

The top 5 tokens returned in all of the 103 queries were 2 digit decimal numbers. The response token
was more likely to be one of the example numbers in the prompt than a different number.

Figure 2: Query to GPT3.5

Our queries were constructed to have a shared “general” component that we aim to capture via the
private aggregation: The four common numbers that we color-code in plots 17,28,56, 63. Other
components such as the name and the fifth number are considered “private.” A limitation of the
interface is that we can not obtain the full distribution over tokens. We thus scaled up each partial
distribution of top-5 to obtain a distribution p(i) for queries i ∈ [103].

Figure 3 (left) reports the distribution of the average probabilities 10−3
∑103

i=1 p
(i) of each token with

a positive probability. The model displayed some preference for 63 over the three other special num-
bers. The right plot is a histogram of the frequencies (normalized by 103) obtained by independently
sampling one token yi from each distribution p(i). There was little notable change between different
sampling: For each token j, the frequency is a sum of independent Poisson random variables with
parameters p(i)j , that we know from standard tail bounds to be concentrated around its expectation.

Figure 3: Average probabilities (left) and normalized frequency histogram from independent sam-
ples (right)

Figure 4 reports example frequency histograms obtained with coordinated sampling (Algorithm 1)
for three samples of the shared randomness ρ. Note that a different special token dominates each
histogram, and the maximum frequency is much higher than the respective expected value.

Figure 5 reports aggregate results for 103 frequency histograms produced for each of coordinated
and independent samples. From each histogram we collected the highest and second highest fre-
quencies of a special number and the highest frequency of a non-special number. The left plot
shows the counts (sorted in decreasing order) of each of these three values. Note that with indepen-
dent samples, frequencies remain close to their expectations: The top frequency corresponds to that
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Figure 4: Histograms from coordinated samples for different sampling of shared randomness ρ

of 63. The second highest to one of the other special numbers. Note that with independent sampling
no token (special or not) in no trial had frequency > 0.5. Moreover, the gap between the top and
second frequencies was consistent and reflected the gap of the expected frequencies between the two
top special tokens.

With coordinated samples, about half of the trials had a dominant token with frequency > 0.5. The
dominant token was always one of the special tokens, but not necessarily the special token with the
highest average frequency. Figure 5 (right) shows the probability of each of the special numbers
to have frequency above > 0.5. We can see that all four special numbers are represented with
probability roughly proportional to their average probability.

Figure 5: Counts of top frequencies in decreasing order (left). Distribution of dominant token (right)

We observe two benefits of coordinated sampling. First, tokens appear with high frequency, which is
easier to report privately. Second, when there is dominance, there tends to be a large gap between the
highest and second highest frequencies, which is beneficial with data-dependent privacy analysis.

Due to the limitation of the interface that returns only the top 5 probabilities, we constructed our
example to have k = 4 special tokens that should be transferred to the student distribution. Note that
the benefits of coordinated sampling scale up with k: With k special tokens, the top frequency with
independent sampling decreases proportionally to k whereas the top frequency with coordinated
sampling remains high and does not depend on k. With larger k, the lines for coordinated sampling
in Figure 5 (left) would remain the same whereas the lines for independent sampling would shift
down proportionally to k.

6 AGGREGATION METHODS OF FREQUENCY HISTOGRAMS

Our aggregation methods are applied to frequency histograms generated by a coordinated ensemble
and return a token or ⊥. We propose two meta schemes that preserves diversity in the sense of
Definition 1: One for homogeneous ensembles, where we use τ > n/2, in Section 6.1 and one
for heterogeneous ensembles, where τ ≪ n/2 (but large enough to allow for DP aggregation),
in Section 6.2. We then discuss DP implementations that admit data-dependent privacy analysis.
The latter allows for many more queries for the same privacy budget: The privacy loss does not
depend on queries with no yield, with high agreement, or with agreement with a public prior. With
heterogeneous ensembles we can also gain from individualized per-teacher privacy charging. For
privacy analysis, it suffices to consider the histogram in isolation, as it has the same sensitivity as
vote histograms with cold PATE: When one teacher distribution changes, one token can gain a vote
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and one token can lose a vote. This because the shared randomness ρ is considered “public” data.
Diversity preservation is considered for the end-to-end process from the teacher distributions.

6.1 HOMOGENEOUS ENSEMBLES

Algorithm 2: DistAgg homogeneous

c, ρ← CoordinatedSamples((p(i))i∈[n]) // Algorithm 1
(j, ĉj)← NoisyArgMaxL(c) // DP noisy maximizer with error L
if ĉj > (n/2 + L) then return j else return ⊥

When τ > n/2, there can be at most one token j with frequency cj ≥ τ . If there is such a token,
we aim to report it. Otherwise, we return ⊥. Our scheme is described in Algorithm 2 in terms of a
noisy maximizer (NoisyArgMaxL) procedure. The latter is a well studied construct in differential
privacy McSherry & Talwar (2007); Durfee & Rogers (2019); Qiao et al. (2021). Generally, methods
vary with the choice of noise distribution and there is a (high probability) additive error bound L
that depends on the privacy parameters and in some cases also on the support size and confidence.
For our purposes, we abstract this as NoisyArgMaxL that is applied to a frequency histogram c
and returns (j, ĉj) such that |cj − ĉj | < L and maxh∈V ch − cj ≤ 2L. We show that the method is
diversity preserving (proof is provided in Appendix A):
Lemma 3 (Diversity-preservation of Algorithm 2). For µ > 1, Algorithm 2, instantiated with
NoisyArgMaxL as described, is diversity preserving in the sense of Definition 1 with τ =
µ(n/2 + 2L), β = ln(µ)/2 and γ = 2.

The two most common noise distributions for DP are Gaussian and Laplace noise. (Cold) PATE
was studied with both. The Gaussian-noise based Confident-GNMax aggregator Papernot et al.
(2018); Duan et al. (2023) empirically outperformed the Laplace-based LNMAX Papernot et al.
(2017) on cold PATE. for Algorithm 2. The advantages of Gaussian noise are concentration (less
noise to separate a maximizer from low frequency tokens), efficient composition, and more effective
data dependent privacy analysis. Laplace-based noise on the other hand can preserve sparsity (a
consideration as the key space of tokens or strings of token can be quite large), there is an optimized
mechanism with sampling (for medium agreement), and there are recent improvement on data-
dependent privacy analysis across many queries (the situation with hot PATE) Cohen & Lyu (2023).
Our privacy analysis in Section 7 uses a data-dependent Laplace-based approach.

6.2 HETEROGENEOUS ENSEMBLES

Algorithm 3: DistAgg Heterogeneous

c, ρ← CoordinatedSamples((p(i))i∈[n]) // Algorithm 1
Sample j ∈ V with probability cj

n // Weighted sampling of a token from c
if cj ≥ 2L then return j else return j or ⊥

For lower values of τ , we propose the meta-scheme described in Algorithm 3: We perform weighted
sampling of a token from c and return it if its count exceeds 2L. If it is below 2L we may return
either j or ⊥. We propose DP implementations in Section 8. We establish that Algorithm 3 is
diversity-preserving (proof provided in Appendix A).
Lemma 4 (Diversity-preservation of Algorithm 3). For µ > 1, Algorithm 3 is diversity preserving
in the sense of Definition 1 with τ = µ2L, β = 1

2µ ln(µ) and γ = 1.

CONCLUSION

We proposed and evaluated hot PATE, an extension of the PATE framework, that facilitates open
ended private learning via prompts. The design is based on a notion of robust and diversity-
preserving aggregation of distributions that can be implemented in a privacy preserving way. We
expect our design to have further applications.
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7 PRIVACY ANALYSIS CONSIDERATIONS

Hot PATE issues a large number of queries for token by token generation. The privacy loss can be
mitigated by scaling up the number of teachers n. Prompts are relatively inexpensive. The current
OpenAI API supports 105 context/output tokens for $5-$10 OpenAI (2023a). Therefore the limiting
factor on n is the amount of available private data for creating homogeneous teachers (see Remark 2)
rather than training cost or model storage. Scaling up n is important as (due to composition theorems
for differential privacy) the number of queries we can issue to the ensemble increases quadratically
with the number n of teachers.

Additionally, we demonstrate empirically and analytically significant gains from data dependent
privacy analysis. Broadly speaking, privacy loss is higher on “borderline” queries where the ag-
gregation has two or more likely outputs. That is, queries that return a particular token with high
probability or return⊥with high probability incur very little privacy loss. We demonstrate that when
conditioning on the sampled shared randomness, only a small fraction of frequency histograms are
“borderline.” Moreover, for queries with low yield (large probability of ⊥ response and low proba-
bility of returning a token), the total privacy loss only depends on yield responses.

For queries we used Algorithm 2, where for NoisyArgMax we used Cohen et al. (2021) with the
maximum sanitized frequency, with privacy parameters (ε0, δ0). To analyse privacy across queries
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Figure 6: Left: Number of ⊤ responses for ε0-DP queries for total ε = 1 loss. Right: Cummulative
maximum frequency for varying common part α.

in a data-dependent way we applied the boundary-wrapper method in the Target Charging Technique
(TCT) of Cohen & Lyu (2023). The wrapper modifies slightly the output distribution of the query
algorithm (conditioned on ρ) to include an additional outcome ⊤ (target). The probability of ⊤
increases for “borderline” queries and is at most 1/3. The technique allows us to analyse the privacy
loss by only counting target hits. Figure 6 (left) reports the number of ⊤ (target) responses we can
have with the boundary wrapper as a function of ε0 with overall privacy budget is ε = 1. When
ε0 ≤ 0.01, it is about (10ε0)−2.

We consider teacher distributions with probability vectors of the form p(i) = α · s+ (1− α) · r(i),
where s and r(i) are probability vectors. That is, with probability α there is a sample from the
common distribution s, and with probability (1−α), there is a sample from an arbitrary distribution.
The distribution of the maximum frequency c of a token is dominated by sampling y ∼ Exp[α] and
then c ∼ Bin[e−y·(1−α), n]. It is visualized in Figure 6 (right) for varying values of α. Qualitatively
across all α > 0, there is probability ≈ α of being above a high threshold (and returning a token).

Figure 7: Sweep of α, showing probabilities of outcomes: token, ⊥, ⊤ (target hit).

Figure 7 shows the distribution of responses as we sweep α, broken down by⊤ (target hit),⊥ (abort),
and token (yield). The number of queries per target hit, which is the inverse of the probability of ⊤,
is ⪆ ε0n. It is lowest at α ≈ T/n and is very high for small and large α, meaning that the privacy
cost per query is very small.

The yield (probability of returning a token) per query is ≈ α. Note that as α decreases, both yield
and target probabilities decrease but their ratio remains the same: In the regime α ≤ T/n, the yield
per target hit is ≈ ε0n/2. Queries with α ≫ T/n are essentially free in that the yield (token)
probability is very high and the ⊤ (target hit) probability is very low.

When using n = Cδ/ε0 (Cδ ≈ 2 log(1/δ0) and plugging this in, we obtain that we get ⪆ 0.005 1
Cδ

n2

yields for overall privacy budget ε = 1. This means that we pay only for yield and not for queries.
This holds in the “worst case” across all α values, but the number of yields can be much higher
when queries have large α (and “yields” do not incur privacy loss).
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8 DP METHODS FOR HETEROGENEOUS ENSEMBLES

We propose two DP methods to implement Algorithm 3 (Section 6.2) with different trade offs. In
both cases we can apply data-dependent privacy analysis so that queries that do not yield a token
(that is, return ⊥) are essentially “free” in terms of the privacy loss. The parameter L depends on
the privacy parameters (and logarithmically on |V |).

Private Weighted Sampling This methods gains from sparsity but the calculation of privacy loss
is for the whole ensemble. We can do the analysis in the TCT framework Cohen & Lyu (2023) so
that privacy loss only depends on yield queries (those that return a token). We perform weighted
sampling by frequency of each token to obtain the sampled histogram c′ and then sanitize the fre-
quencies of sampled tokens using the end-to-end sparsity-preserving method of Cohen et al. (2021)
to obtain c∗. The sanitizing prunes out some tokens from c′ with probability that depends on the fre-
quency cj , privacy parameters, and sampling rate. All tokens in c′ with frequency above 2L, where
L only depends on the privacy parameters, remain in c∗.1 The final step is to return a token from
c∗ selected uniformly at random or to return ⊥ if c∗ is empty. We mention the related earlier (non
optimized) sparsity-preserving methods Bun et al. (2019); Korolova et al. (2009); Vadhan (2017)
and optimized but not sparsity-preserving Ghosh et al. (2012).

Individual Privacy Charging This method does not exploit sparsity, but benefits from individual
privacy charging Kaplan et al. (2021); Cohen & Lyu (2023). It is appropriate when 2L ≪ n.
The queries are formulated as counting queries over the set of teachers. The algorithm maintain
a per-teacher count of the number of counting queries it “impacted.” A teacher is removed from
the ensemble when this limit is reached. Our queries are formed such that at most O(2L) teachers
(instead of the whole ensemble) can get “charged” for each query that yields a token.

To express Algorithm 3 via counting queries we do as follows: We draw a sampling rate of teachers
uniformly from 1/n, . . . , 1 and then uniformly draw a token from v ∈ V . We sample the teachers
with this sampling rate and count the number c′v of sampled teachers with yi = v. We then do
a BetweenThresholds test on c′j (using Cohen & Lyu (2023) which improves over Bun et al.
(2017)) to check if c′v ≥ 2L. For “above” or “between” outcomes we report v. If it is a “between”
outcome we increment the loss counter of all sampled teachers with yi = v (about 2L of them).
We note that the actual implementation is much more efficiently and does not require this “blind”
search.

Teachers that reach their charge limit get removed from the ensemble. The uniform sampling of
the sampling rate and token emulated weighted sampling. The probability that a token gets selected
is proportional to its frequency. The sub-sampling of teachers ensures that we only charge the
sampled teachers. Teachers are charged only when the query is at the “between” regime so (with
high probability) at most≈ 2L teachers are charged. Because we don’t benefit from sparsity, there is
overhead factor of log(|V |(n/L)) in the privacy parameter (to contain the error in so many queries)
but we gain a factor of n/L by not charging the full ensemble for each query in the case where most
teachers have different “solutions” to contribute.

A PROOFS

Proof of Lemma 1. Let i be such that p(i)j ≥ q. Fix the sampled min value x ∼ Exp[q] for q part of
the probability of j. We get that

Pr[yi = j] ≥ Pr
y∼Exp[1−q]

[y > x] = e−x(1−q)

For x < − ln p
1−q we have that the probability is at least e−x(1−q) ≥ p. Different teachers that share

part of the distribution can only be positive ly correlated. So we get that if there are cj,q teachers with
p
(i)
j ≥ q then the distribution of the number of teachers with yi = j dominates Bin[e−x(1−q), cj,q],

1We remark that the method also produces sanitized (noised) frequency values c∗j for tokens in c∗ such that
|c∗j − cj | ≤ L. And hence can also be used for NoisyArgMax

14



Under review as a conference paper at ICLR 2024

which for any x ≤ − ln p
1−q dominates Bin[p, cj,q]. So with probability at least 1/2, we have at least

pcj,q teachers with yi = j.

This happens with probability at least

Pr
x∼Exp[q]

[x <
− ln p

1− q
] = 1− e(ln p)q/(1−q) ≥ −(ln p)q

For p = 1/2 we get that the probability is ≥ 0.69q. For p = 2/3 it is ≥ 0.4q.

Proof of Lemma 3. We apply Lemma 1 with p = 1/µ. We obtain that the token j has frequency at
least cj ≥ n/2 + 2L with probability at least 0.5 ln(µ)q. Therefore we have ĉj ≥ n/2 + L with
probability at least 0.5 ln(µ)q. Note that a token can only be reported if its frequency is cj > n/2.
Using T = n/2 in Lemma 2 we obtain that the relevance requirement is satisfied with γ = 2.

Proof of Lemma 4. Consider the first requirement of Definition 1. Consider a token j with cj,q ≥ τ .
From Lemma 1 using p = 1/µ we obtain that the token j has frequency at least cj ≥ cj,q/µ ≥ 2L
with probability at least 0.5 ln(µ)q. The token is sampled with probability min{1, kcj/n} and if so
appears also in c∗ (since cj ≥ 2L). The expected size (number of entries) of c∗ is at most k and thus
it is returned if sampled with probability at least 1/k. Overall it is sampled and reported with prob-
ability at least min{1/k, cj/n}. In total, the probability is Pj ≥ min{1/k, cj,q/(µn)}0.5 ln(µ)q ≥
1

2kµ ln(µ)
cj,q
n q.

The second requirement of Definition 1 is immediate. The expected frequency of token j is∑
i∈[n] p

(i)
j and it is sampled with probability at most k

n

∑
i∈[n] p

(i)
j . It can only be the output if

sampled.
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