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ABSTRACT

Contrastive learning is widely used in areas such as visual representation learning
(VRL) and sentence representation learning (SRL). Considering the differences
between VRL and SRL in terms of negative sample size and evaluation focus, we
believe that the solid findings obtained in VRL may not be entirely carried over to
SRL. In this work, we consider the suitability of the decoupled form of contrastive
loss, i.e., alignment and uniformity, in SRL. We find a performance gap between
sentence representations obtained by jointly optimizing alignment and uniformity
on the STS task and those obtained using contrastive loss. Further, we find that the
joint optimization of alignment and uniformity during training is prone to overfit-
ting, which does not occur on the contrastive loss. Analyzing them based on the
variation of the gradient norms, we find that there is a property of “gradient dissi-
pation” in contrastive loss and believe that it is the key to preventing overfitting.
We simulate similar “gradient dissipation” of contrastive loss on four optimiza-
tion objectives of two forms, and achieve the same or even better performance
than contrastive loss on the STS tasks, confirming our hypothesis.1.

1 INTRODUCTION

Unsupervised contrastive learning (Wu et al., 2018) is originated from visual representation learn-
ing (VRL) (Chen et al., 2020; He et al., 2020; Grill et al., 2020), and has achieved impressive
performances therein. Briefly, contrastive learning forces the representation of an input instance (or
“anchor”) to be similar to that of an augmented view of the same instance (or “postive example”) and
to differ from that of some different instances (or “negative examples”). One plausible justification
of this approach is that minimizing the loss of contrastive learning (or “contrastive loss”) is shown to
be equivalent to simultaneously minimizing an “alignment loss” and a “uniformity loss”, where the
former dictates the representation similarity between an instance and its positive examples, and the
latter forces the representations of all instances to spread uniformly on the unit sphere in the repre-
sentation space (Wang & Isola, 2020). Notably this decomposition of the contrastive loss relies on
the condition that the number of negative examples participating in the contrastive loss approaches
infinity. For VRL, it is arguable that such a condition holds reasonably well since usually a large
number (e.g., 65536 (He et al., 2020)) of negative examples are used in training.

In recent years, contrastive learning has also been adapted to sentence representation learning (SRL),
by fine-tuning the representations obtained from a pretrained language model (e.g. BERT (Devlin
et al., 2018)) (Yan et al., 2021; Giorgi et al., 2021; Gao et al., 2021; Zhang et al., 2022b). Such
approaches have demonstrated great performances not only for downstream classification tasks,
but also for semantic textual similarity (STS) tasks. It is noteworthy that significantly contrast-
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ing VRL, which are primarily evaluated using downstream classification tasks (Russakovsky et al.,
2015; Krizhevsky et al., 2009), or via “extrinsic” protocols (Chiu et al., 2016; Faruqui et al., 2016),
SRL particularly emphasizes the STS tasks, or “intrinsic” protocols, when evaluating the quality
of learned sentence representations (Reimers & Gurevych, 2019; Li et al., 2020; Yan et al., 2021;
Zhang et al., 2022c). This is because the representations obtained from the pretrained language
models have already shown strong transfer capability to downstream tasks (Devlin et al., 2018; Liu
et al., 2019) while their similarities are rather poorly correlated with the human-rated similarities
(Reimers & Gurevych, 2019; Li et al., 2020).

Following the justification of contrastive learning in VRL(Wang & Isola, 2020), some works (Gao
et al., 2021; Zhang et al., 2022b) attribute the success of contrastive learning on the STS tasks to a
good balance between alignment and uniformity. Consequently, alignment and uniformity losses are
adopted widely as the key metrics for evaluating the goodness of sentence representations learned
from contrastive learning (Gao et al., 2021; Zhang et al., 2022b;c;a; Klein & Nabi, 2022).

Noting that contrastive learning for SRL in fact only uses a rather small number of negative examples
(e.g, 63 (Gao et al., 2021; Zhang et al., 2022b) or smaller (Zhang et al., 2022c)), in this paper, we
question whether the “decomposition principle”, or jointly optimizing alignment and uniformity,
adequately explains the performance gain in the STS tasks brought by contrastive learning.

After extensive experiments, we find that optimization using alignment and uniformity losses pro-
duces lower performance than that with contrastive loss in the STS tasks. Moreover, this perfor-
mance degradation is not reflected by the alignment and uniformity metrics. Interestingly, we also
observe the same phenomenon in contrastive learning with another loss function, Decoupled Con-
trastive Loss (DCL) (Yeh et al., 2021), in which the optimization objectives are very similar to
alignment and uniformity. Our further studies also show that training with such decoupled forms
of contrastive loss cause severe overfitting, which does not occur in training with the standard con-
trastive loss. These observations suggest that alignment and uniformity losses might not serve suit-
able substitutes for contrastive loss in SRL and that the success of the standard contrastive learning
for SRL can not be adequately explained in terms of alignment and uniformity properties or some
delicate balance between the two.

This paper focuses on uncovering other important factors, beyond alignment and uniformity, that
contribute to the success story of contrastive learning in SRL and explain the performance gap
between the training scheme using the contrastive loss and those using a decoupled contrastive
loss (in terms of alignment and uniformity or their equivalent). Specifically, we hypothesize that
the training dynamics of the standard contrastive learning for SRL plays an essential role in its
effectiveness. To that end, we decompose the gradient of the contrastive loss into an alignment
component and a uniformity component and compare the norms of these two components with their
counter-parts in training with the decoupled contrastive losses. Interestingly, we observe a distinct
“gradient dissipation” phenomenon in training with the standard contrastive loss: the gradient signal
quickly drops and vanishes as soon as the negative example is adequately further away from the
anchor than the positive example, where the adequacy appears to be reflected by a rather moderate
threshold. Notably such a phenomenon does not appear in the training schemes using a decoupled
contrastive loss, when the negative sample size is small. This observation led us to believe that
“gradient dissipation” plays an essential role in standard contrastive learning.

To validate this hypothesis, we construct two new loss functions, both capable of inducing “gradient
dissipation” in their training dynamics. We test them experimentally and observe that indeed train-
ing with both losses gives comparable or even better performance in the STS tasks than the standard
contrastive loss. Interestingly, similar to the contrastive loss, training with these new loss functions
also eliminates the alleviates the overfitting problem observed in training using decouple contrastive
losses. This confirms that gradient dissipation serves a key role in the success of contrastive learn-
ing for SRL and suggests that properly conditioning the training dynamics is more important than
optimizing alignment and uniformity when not too many negative examples are used.

Along our development, we provide insights as to why gradient dissipation is a desirable property.
We also provide additional theoretical justifications on the effectiveness of the new loss functions by
showing that they are in fact upper bounds of the standard contrastive loss. Due to page limit, some
results, derivations and discussions are presented in Appendix.
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2 PRELIMINARY

2.1 CONTRASTIVE LEARNING IN SENTENCE REPRESENTATION LEARNING

Let C be a set of sentences. For each xi ∈ C, we use x′
i to denote an augmented view of xi. With

respect to anchor xi, x′
i is referred to a positive example, and any xj or x′

j (j ̸= i) is referred to as
a negative example. There is an encoder mapping each xi and x′

i to their representations hi and h′
i,

which are vectors in Rd. Considering the metric invariance, we usually normalize them to obtain
ĥi and ĥ′

i, which are constrained on the unit hypersphere Sd−1 centered at the origin. InfoNCE
Loss (Oord et al., 2018) or “contrastive loss” for anchor xi is defined by

Lcl = − log
exp

(
ĥT
i ĥ

′
i/τ

)
exp

(
ĥT
i ĥ

′
i/τ

)
+

∑N
j,j ̸=i exp

(
ĥT
i ĥ

′
j

)
/τ

(1)

where τ is the temperature hyperparameter and N represents the number of negative samples. The
quality of sentence representations is shown to insensitive to N (Gao et al., 2021), and a small N ,
such as 63 (Gao et al., 2021; Zhang et al., 2022b) or smaller (Zhang et al., 2022c) has shown to be
the same sufficient as the bigger one.

2.2 THE DECOUPLE VERSION OF CONTRASTIVE LOSS

Alignment and uniformity (Wang & Isola, 2020) decoupled from contrastive loss are shown to be
two significant properties. The losses based on the two properties are defined as

La&u = (1− λ)Lalign + λLuniform (2)

Lalign(f ;α) ≜ E
(ĥi,ĥ

′
i)∼ppos

[
∥ĥi − ĥ′

i∥α2
]
, α > 0 (3)

Luniform(f ; t) ≜ log E
i.i.d

(ĥi,ĥ
′
j)∼pdata

[
e−t∥ĥi−ĥ′

j∥
2
2

]
, t > 0 (4)

where α, t and λ are three hyperparameters. In the meantime, we follow another work (Yeh et al.,
2021) on decoupled contrastive learning, which removes the positive sample part from the denomi-
nator of contrastive loss:

Ldcl = − log
exp

(
ĥT
i ĥ

′
i/τ

)
∑N

j,j ̸=i exp
(
ĥT
i h

′
j

)
/τ

= −ĥT
i ĥ

′
i/τ︸ ︷︷ ︸

alignment

+ log

 N∑
j,j ̸=i

exp
(
ĥT
i h

′
j

)
/τ


︸ ︷︷ ︸

uniformity

(5)

Note that the alignment parts in the two works are recognized as equivalent (Yeh et al., 2021) and
we proved the uniformity part of them have the same lower bound (Appendix D), which corresponds
to the optimization objective of Minimum Energy Problem on the hypersphere (Kuijlaars & Saff,
1998; Liu et al., 2018). Therefore, the above two decoupled forms of contrastive loss are treated
equally in this paper.

2.3 PERFORMANCE COMPARISON

We compare the performance of contrastive loss and its two decoupled forms based on SimCSE
(Gao et al., 2021), and evaluate with seven datasets on semantic textual similarity (STS) tasks and
seven downstream classification datasets on transfer (TR) tasks from the SentEval toolkit (Conneau
& Kiela, 2018). We report the average Spearman correlation for the STS tasks and the average
accuracy for the TR tasks in Table 1 . Please refer to Appendix A for experimental details.

As can be seen from the results, we can find that (1) the performance on both STS and TR tasks
is better than original pretrained models after optimizing with any one of the three loss functions;
(2) the main improvement over the original pretrained models is on the STS tasks, while the im-
provement on the TR tasks is relatively weak; (3) the decoupled forms obtain the same or better
performance on TR tasks as contrastive loss, but there still have a performance gap between them
on STS tasks. These observations reflect to some extent the validity of alignment and uniformity to
replace contrastive loss on TR tasks, but it also implies that there are some other factors playing a
key role in the improvement of STS tasks, which have been neglected in the previous studies.

3



Published as a conference paper at ICLR 2023

Method BERTbase BERTlarge RoBERTabase RoBERTalarge
STS.Avg TR.Avg STS.Avg TR.Avg STS.Avg TR.Avg STS.Avg TR.Avg

Pretrained 56.70 85.34 54.11 85.52 56.57 83.20 53.90 83.76

Lcl 76.04 86.38 76.83 86.14 77.31 85.23 78.52 85.71

La&u 72.62 87.52 74.58 87.77 72.64 85.09 73.02 85.68
Ldcl 71.13 85.18 72.73 87.06 73.18 85.48 72.43 86.05

Ldcl+ 75.25 86.95 77.40 87.85 76.33 84.52 75.63 85.57

Lmpt 77.25 87.56 77.35 87.71 76.42 85.10 78.84 86.51
Lmet 78.38 87.94 78.38 87.94 77.38 85.74 78.71 86.42
Lmat 77.76 88.65 77.76 88.65 76.95 85.64 78.82 87.06

Table 1: Performance of the optimization objectives studied in this paper. All results reported are the
average value obtained from three runs. STS.Avg represents the average of Spearman correlation
on seven semantic textual similarity datasets. TR.Avg represents the average of accuracy on seven
downstream classification datasets.

3 THE INADEQUACY OF OPTIMIZING ALIGNMENT AND UNIFORMITY

3.1 PROBLEM ANALYSIS

To gain a deeper understanding for the above performance gap, we record several metrics during the
training and evaluation process, the images of which are shown in Figure 1.

Figure 1a shows the Luniform-Lalign scatterplot of sentence representations on STS-B (Cer et al.,
2017) development set, where the colors represent the average Spearman correlation of the STS
tasks. It is important to note that the scatterplots of this style are widely used in recent works to
show that the proposed method is able to achieve a better balance between alignment and uniformity
than other methods (Gao et al., 2021; Zhang et al., 2022a;b;c; Klein & Nabi, 2022). Indeed, the
scatterplot shows that the sentence representations whose (Luniform, Lalign) located in the middle
of the image perform better than those whose location in the top left or bottom right. However, the
performance gap between different loss functions are not reflected by the locations in this figure.
Specifically, the sentence representations pretrained by Lcl and its decoupled forms can obtain the
almost same values of alignment and uniformity, but an obvious performance gap on the STS tasks.

Figure 1b shows the numerical variation of Lcl, Lalign and Luniform on the training set and devel-
opment set during the optimization process with Lcl. In terms of trends, all metrics on both the
training set and development set first decrease and then remain flat, which can be seen as a reference
for normal training process in the study. Figure 1c and 1d show the same metrics during the opti-
mization process with La&u and Ldcl. Comparing with Figure 1b, the different variation trends on
the training set and the development set imply some degree of overfitting. Specifically, when La&u

is applied for optimization, all three metrics except Lalign show first decrease and then increase in
the development set, while the similar situation occurs in all three metrics when Ldcl is applied.

3.2 OPTIMIZATION DYNAMICS STUDY

Since La&u and Ldcl can be treated as equivalent to Lcl only when negative samples tend to infinity,
we need to pay attention to what exactly is different between them when the number of negative
samples is small. To gain more insights on their differences, we investigate the gradient property
between contrastive loss and its decoupled forms in optimization dynamics.

The gradient of Lcl for the anchor hi can be split into two terms:

∂Lcl

∂hi

= −
1

τ
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j,j ̸=i exp
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ĥT
i ĥ′

j/τ
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)
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+
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j,j ̸=i

exp
(
ĥT
i ĥ′

j/τ
) I − Mhi

∥hi∥︸ ︷︷ ︸
∇pos
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−
1

τ

∑N
j,j ̸=i exp

(
ĥT
i ĥ′

j/τ
) (

ĥi − ĥ′
j

)
exp

(
ĥT
i ĥ′

i/τ
)
+

∑N
j,j ̸=i

exp
(
ĥT
i ĥ′

j/τ
) I − Mhi

∥hi∥︸ ︷︷ ︸∑N
j,j ̸=i

∇
negj
cl

(6)

where I is the identity matrix and Mhi is the projection matrix on hi.
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(a) Luniform-Lalign scatterplot. The
colors of the points represent the aver-
age Spearman correlation on STS tasks.
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(d) Metrics recorded during training via Ldcl.

Figure 1: The difference between contrastive loss and its two decoupled forms in the training and
evaluation phase. All above images are plotted based on the optimization process for BERTbase.

When training is driven by such a gradient signal, the first term ∇pos
cl points from ĥi to ĥ′

i, pulling
the anchor and the positive sample close to optimize alignment, while each ∇negj

cl in the second term
points from ĥ′

j to ĥi, pushing the anchor away from the negative samples to optimize uniformity.
Then the gradient norm on alignment is computed:

∥∥∥∇pos
cl

∥∥∥ =
1

τ

∑N
j,j ̸=i exp

(
cos θij′/τ

) ∥∥∥ĥ′
i − cos θii′ ĥi

∥∥∥
exp

(
cos θii′/τ

)
+

∑N
j,j ̸=i

exp
(
cos θij′/τ

) 1

∥hi∥
=

1

τ

∑N
j,j ̸=i exp

(
cos θij′/τ

)
sin θii′

exp
(
cos θii′/τ

)
+

∑N
j,j ̸=i

exp
(
cos θij′/τ

) 1

∥hi∥
(7)

where θii′ represents the angle between the anchor ĥi and the positive sample ĥ′
i, and θij′ represents

the angle between the anchor ĥi and the negative sample ĥ′
j . Likewise, we can calculate the gradient

norm of Lalign and Ldcl on alignment, which are expressed by ∥∇Lalign∥ and ∥∇pos
dcl ∥ separately:∥∥∥∥∂Lalign

∂hi

∥∥∥∥ = ∥∇Lalign∥ =
α(2 sin (θii′/2))

α−2

∥hi∥

∥∥∥ĥ′
i − cos θii′ ĥi

∥∥∥ =
α(2 sin (θii′/2))

α−2sinθii′

∥hi∥
(8)

∥∇pos
dcl ∥ =

1

τ ∥hi∥

∥∥∥ĥ′
i − cos θii′ ĥi

∥∥∥ =
sin θii′

τ ∥hi∥
(9)

Comparing equation 7, 8 and 9, we find that the gradient directions of these three parts are the same,
but a key difference among them is that θij′ is contained in ∥∇pos

cl ∥ but not in ∥∇Lalign∥ neither in
∥∇pos

dcl ∥, which leads to a difference in whether the gradient signal is related to θij′ .

Figure 2a visualizes this difference by plotting the heatmaps of ∥∇pos
cl ∥, ∥∇Lalign∥ and ∥∇pos

dcl ∥
with θii′-θij′. The leftmost four plots show the ∥∇pos

cl ∥ under the different number of negative
samples, while the rightmost two plots show ∥∇Lalign∥ and ∥∇pos

dcl ∥ under the condition of 64
negative sample size. Observing the leftmost four plots, we can find that the area of the shaded
part (or the area with weak gradient signals) gradually decreases as the number of negative sample
increases. Therefore, it is conceivable that when the number of negative samples tends to infinity,
these images will gradually become identical to the two rightmost images.

Comparing the leftmost plot with the rightmost two plots, we can clearly see the difference between
them, where the former has a “gradient dissipation” situation that the latter does not have. So let
us think what will happen during training. θij′ will increase and θii′ will decrease gradually. For
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(a) Comparison among contrastive loss and its decoupled forms in the alignment part of the gradient norm.
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Figure 2: Gradient norms of contrastive loss and its two decoupled forms with respect to the align-
ment part. The 1/∥hi∥ in all equations are ignored when the images are plotted. All θij′ in one
equation are treated as the same value. All hyper-parameters in equations are consistent with the
columns corresponding to BERTbase in Table 2.

∥∇pos
cl ∥, the gradient signals of some anchors will suddenly dissipate at a certain training phase

and only the anchors whose θij′ is not too larger than θii′ will still receive the gradient signals.
For ∥∇Lalign∥ and ∥∇pos

dcl ∥, since they are not constrained by θij′ , their gradient signals will not
vary with the horizontal axis. All anchors except those with absolutely small θii′ will receive the
continuous gradient signals during training.

We point out that the above qualitative conclusion does not fail to hold if the angle is replaced with
a generic distance function ρ(., .) on the hypersphere. Then the difference on “gradient dissipation”
can be intuitively described as: “When the number of negative samples is small, contrastive loss
tries to keep ρ(ĥi, ĥ′

i) small relative to ρ(ĥi, ĥ′
j) by some value, while its decoupled forms try to

keep ρ(ĥi, ĥ′
i) absolutely small”. Here, we unthinkingly hypothesize that the “gradient dissipation”

is a key property in the performance gap between contrastive loss and its decoupled forms, and more
insights on this hypothesis will be provided in Section 5.

Due to the space limitation of the main text, only the gradients related to the alignment part are
analyzed here. Please refer to Appendix B for the analysis of the uniformity part and Appendix C
for the derivation of all equations in this section and the subsequent ones.

4 EXPERIMENTAL VERIFICATION

4.1 VALIDATION VIA THE INTRODUCTION OF Ldcl+

To validate our hypothesis, we try to simulate this property with the smallest changes. Then two facts
are noticed: (1) Ldcl will gradually become negative during training; (2) the “gradient dissipation”
only occurs when θij′ is larger enough with respect to θii′ . These two facts inspire us to introduce
a ReLU function (Glorot et al., 2011) on top of Ldcl to force the truncation of the gradient signal
provided to the anchor when Ldcl < 0:

Ldcl+ = max
(
−ĥT

i ĥ
′
i/τ + log

(∑N
j,j ̸=i exp

(
ĥT
i ĥ

′
j

)
/τ

)
, 0
)

(10)

Likewise, we can obtain its gradient norm associated with alignment:

∥∥∇pos

dcl+

∥∥ =


sin θij′

τ

1

∥hi∥
, −ĥT

i ĥ
′
i/τ + log

∑N
j,j ̸=i exp

(
ĥT
i ĥ

′
j

)
/τ > 0

0, −ĥT
i ĥ

′
i/τ + log

∑N
j,j ̸=i exp

(
ĥT
i ĥ

′
j

)
/τ ≤ 0

(11)

The leftmost plot of Figure 2b shows
∥∥∇pos

dcl+

∥∥ under the condition of 64 negative sample size.
Comparing with the leftmost plot of Figure 2a, we can find that the images of

∥∥∇pos
dcl+

∥∥ and ∥∇pos
cl ∥
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are almost identical, which proves that the added ReLU function can indeed simulate the property
of “gradient dissipation”. More importantly, the experimental results in Table 1 demonstrate the
effectiveness of Ldcl+ , which obtains a 3%-7% improvement over Ldcl on STS tasks in the different
pretrained models.

4.2 VALIDATION VIA THE UPPER BOUNDS FOR Lcl

In fact, Ldcl+ is introduced not only for the above mentioned observations, but also because Ldcl+ +
log 2 can be proved to be the upper bound of Lcl. Further, we find that another upper bound with the
property of “gradient dissipation”, which can be derived after a second relaxation based on Ldcl+ :

Lcl ≤ log 2 + max
(
−ĥT

i ĥ
′
i/τ + log

∑N
j,j ̸=i exp

(
ĥT
i ĥ

′
j/τ

)
, 0
)
= log 2 + Ldcl+

≤ log 2 +
1

τ
max

(
−ĥT

i ĥ
′
i +max

j,j ̸=i

(
ĥT
i ĥj

)
+ τ log(N − 1), 0

) (12)

where τ log(N − 1) can be replace as the margin hyperparameter m. Then we can get a new loss
function:

Lmpt = max

(
−ĥT

i ĥ
′
i +max

j,j ̸=i
ĥT
i ĥj +m, 0

)
(13)

where the hardest negative sample is selected for optimization. Since this new loss function is very
close in form to Triplet Loss (Weinberger & Saul, 2009), we express this loss function as Lmpt
(Minimum dot Product Triplet Loss). To further increase the diversity of gradient norm variations,
we replace the dot product with the Euclidean distance to obtain Lmet (Minimum Euclidean distance
Triplet Loss) and the angle to obtain Lmat (Minimum Angle Triplet Loss):

Lmet = max{∥ĥi − ĥ′
i∥2 − min

j,j ̸=i
∥ĥi − ĥ′

j∥2 +m, 0} (14)

Lmat = max{θii′ − min
j,j ̸=i

θij′ +m, 0} (15)

Their performance on STS tasks and TR tasks are reported in Table 1 and find that the performance of
these loss functions ahead of the decoupled forms of contrastive loss, and is comparable to or better
than those of contrastive loss. Likewise, the gradient norm variations associated with alignment,∥∥∇pos

mpt

∥∥, ∥∇pos
met∥ and ∥∇pos

mat∥, are plotted in Figure 4c. As we can see, there are some difference
among the gradient norms variations due to the choice of different distance functions, but it does not
bring a significant difference to their performance, which proves that it is the “gradient dissipation”
property and not a specific distance function that is at work.

4.3 MECHANISTIC ANALYSIS OF GRADIENT DISSIPATION

To gain a better understanding of the property of “gradient dissipation”, we develop a interest in
Lmpt because the degree of “gradient dissipation” can be adjusted by the only parameter m (Figure
2b) and independent of the number of negative samples. With this more flexible form, how the
margin value effects the performance can be quantitatively observed. Recalling that the “gradient
dissipation” occurs when dij , i.e. |ρ(ĥi, ĥ

′
i) −minj,j ̸=i ρ(ĥi, ĥ

′
j)| goes outside a certain range and

we can obtain different final dij by selecting different m during training. Figure 3a shows the
performance on STS tasks and TR tasks with different dij . It can be clearly observed that the
performance of STS tasks are much more sensitive to dij than that of TR task. Specifically, too
large or too small dij will cause the performance of the STS task to drop sharply. In contrast, the
performance on TR tasks does not vary significantly with dij , which seems to explain to some extent
why the decoupled forms can work well in VRL. Surprisingly, no trade-offs are needed to guarantee
the good performance on STS and TR tasks and a suitable margin value helps to achieve a double-
best performance for both STS and TR tasks, which indicates that sentence representation quality
can achieve both intrinsic and extrinsic excellence.

For a more in-depth look, we set m to 0.10, 0.23 (corresponding the best performance) and 0.80
respectively, and record the numerical variation of Lcl, Lalign and Luniform on the training and
development sets. Comparing Figure 3c and 3d first, we find that Lcl can drop to lower on both
training and validation sets when m is 0.23, and this difference is magnified by the Luniform, while
Lalign remains almost constant. This observation is consistent with our intuition: when m is too
small, the gradient signals may be weak at the beginning of the training, leading to no improvement
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Figure 3: The plots of the loss functions proposed in this work. dij in (a) and (b) presents Euclidean
distance. We first calculate the average distance of all negative samples to the anchor, then subtract
the distance of positive samples to anchor from it to get the distance gap, and finally plot the average
distance gap of all anchor in the mini-batch in the figure. All above images are plotted based on the
optimization process for BERTbase.

in the uniformity of the representation vectors. Then turn the attention to Figure 3e, which plots
the same metrics when m is 0.80, the curves as a whole is highly similar to Figure 1d, with the
same overfitting phenomenon. We think it can be interpreted as an excessively large margin leads
the optimization process exceptionally difficult, preventing the “gradient dissipation” phenomenon
from occurring during training.

To summarize, the above phenomenons further illustrate that the timing of gradient dissipation is
very important; too early “gradient dissipation” will result in under-tuned models, while too late
“gradient dissipation” will result in degraded model performance and overfitting during training.
We further study the connection between Lmpt and the Mixup-based approaches (Kalantidis et al.,
2020; Zhang et al., 2022b) in Appendix E.

5 DISCUSSION

In this section, we share some thoughts and observations to explain why we believe that the “gradient
dissipation” plays a key role in SRL. We start by considering it in the relation to the STS tasks. For
consistency with the retrieval scenario in practice, the STS tasks care about the orders among the
semantic similarity of the anchors rather than the specific values among them (Reimers & Gurevych,
2019). In the ideal case, we should let the samples closer to the anchor if they are more semantically
similar to the anchor, and no need to care about their absolute distance to the anchor. Intuitively,
the property of “gradient dissipation” only works to puts negative samples further away from the
anchor compared to positive samples, which is consistent with the need for STS tasks. On the other
hand, alignment and uniformity only describe the relation between the anchor and its samples, while
ignoring the relations between the positive samples and the negative samples. In other words, this
optimization form overemphasizes the characteristics of the individual sentence itself and ignores the
actual connections between the semantics. In early exploratory trials, we find that dij is continuously
enlarged when the decouple forms are adopted for training (Figure 3b), which is far beyond the level
when trained by contrastive loss. Considering the limitations of data augmentation to generate
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positive samples and the noise in sampling negative samples, we suspect that the large distance gap
brought by the decouple forms compromises the original semantic information of the pretrained
models to some extent.

Combining on the above thoughts and observations, we hypothesize that the “gradient dissipation”
property is responsible for the better performance in the STS evaluation.

6 RELATED WORK

Sentence representation learning (SRL) (Kiros et al., 2015; Conneau et al., 2017; Reimers &
Gurevych, 2019; Li et al., 2020) is one of the fundamental tasks in NLP, aiming at learning semanti-
cally rich high-dimensional representation at the sentence level. The good sentence representations
need to satisfy both (1) high correlation with human-rated similarities (intrinsic evaluation) and (2)
good transferability (extrinsic evaluation) (Chiu et al., 2016; Faruqui et al., 2016).

The pretrained language models (Devlin et al., 2018; Liu et al., 2019) were once regraded as the
source for obtaining universal sentence representations, and the representations obtained by pre-
trained models have shown extraordinary performance on tranfer tasks. However, these representa-
tions obtained from the pretrained models even get lower performance than the average Glove em-
beddings (Pennington et al., 2014) on semantic textual similarity (STS) tasks (Reimers & Gurevych,
2019). Then more studies have found the word representation space of pretrained models, such
as BERT (Devlin et al., 2018) and ELMo (Peters et al., 2018), are anisotropic (Ethayarajh, 2019),
where word embeddings are concentrated on a high-dimensional conical space (Gao et al., 2018).

Early works (Li et al., 2020; Su et al., 2021) try to diminish the anisotropy of the pretrained repre-
sentation space using the whitening transformation (Su et al., 2021) or the flow function (Li et al.,
2020). These approaches are easy to implement, but limited improvement for STS tasks. Recently,
contrastive learning methods based on instance discrimination (Zhang et al., 2022a;b;c) are intro-
duced to SRL. However, a great deal of works (Yan et al., 2021; Gao et al., 2021; Zhou et al., 2022;
Zhang et al., 2022b) focus on how to obtain or generate better positive and negative samples. At
the same time, we find that even though there are significant differences in current contrastive learn-
ing methods in VRL and SRL, such as differences in pretraining and fine tuning, and differences
in negative sample sizes (see Section 1 for details), few works have dabbled in the optimization
mechanisms of contrastive learning in SRL. Instead, a large number of findings from VRL, such as
alignment and uniformity (Wang & Isola, 2020; Gao et al., 2021), momentum updates (He et al.,
2020; Wu et al., 2021) and bootstrap (Grill et al., 2020; Cao et al., 2022), have been directly applied.

Although there are a large number of works (Gao et al., 2021; Zhang et al., 2022b;c;a; Klein & Nabi,
2022) in SRL that use alignment and uniformity as evaluation metrics, to our knowledge, this work
is the first work to study their inadequacy as the optimization objectives in SRL.

7 CONCLUSION

In this paper, we focus on the performance gap between contrastive loss and its decoupled forms,
i.e., alignment and uniformity in SRL. Our series of new findings contribute to a deeper understand-
ing of how contrastive loss can improve the quality of sentence representation on STS tasks: (1)
Alignment and Uniformity Loss or their equivalent are not suitable as alternative loss functions for
contrastive loss in SRL due to their lower performance and overfitting problem; (2) The “gradient
dissipation” property of contrastive loss under a small number of negative samples plays a key role
in the performance on STS tasks and preventing overfitting; (3) The “gradient dissipation” prop-
erty works to control a suitable distance gap between anchor-positive and anchor-negative samples,
while alignment and uniformity are the properties that control the absolute large distance of them;
(4) Other two loss functions with “gradient dissipation” property also can solve the overfitting prob-
lem, and obtain the same or even better performance than contrastive loss, even if their “gradient
dissipation” properties are not sensitive to the number of negative samples. We hope these findings
to build a better understanding to the key properties of contrastive loss in SRL. Further, some new
loss functions that are not bound to the form of contrastive loss can be designed via these properties,
improving the quality of the sentence representation synthetically.
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A EXPERIMENT DETAILS

A.1 EXPERIMENT SETUP

Following recent works in SRL (Gao et al., 2021; Yan et al., 2021; Zhang et al., 2022b), we use the
SentEval toolkit (Conneau & Kiela, 2018) to evaluate the quality of sentence representations.

For intrinsic evaluation, i.e., correlation to human judgments, we use seven Semantic Textual Sim-
ilarity (STS) datasets (STS12-16 (Agirre et al., 2012; 2013; 2014; 2015; 2016), STS-B (Cer et al.,
2017) and SICK-R (Marelli et al., 2014) in SentEval. For extrinsic evaluation, i.e., transfer ability to
downstream tasks, we also select seven downstream task datasets (MR (Pang & Lee, 2005), CR (Hu
& Liu, 2004), SUBJ (Pang & Lee, 2004), MPQA (Wiebe et al., 2005), SST-2 (Socher et al., 2013),
TREC (Voorhees & Tice, 2000) and MRPC (Dolan & Brockett, 2005)) to verify the migration ability
of the sentence representations. We followed the default configuration recommended by SentEval
for training and evaluation.
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A.2 TRAINING DETAILS

We validate the effectiveness of all loss functions based on the SimCSE (Gao et al., 2021) as it is
effective but simple enough, so the performance is not easily influenced by other factors.

Following Gao et al. (2021), we observe the following points during training: (1) No data in any
STS training set is used for training; (2) 1,000,000 sentences sampled from the English Wikipedia2

are used for training instead; (3) Spearman correlation on STS-B development set is recorded each
125 steps; (4) The checkpoints corresponding to the highest Spearman correlation will be saved for
evaluation; (5) The training period is one epoch for all pretrained models.

We implement the codes using Python3.7 and Pytorch1.12.0 and experiment with the single 32G
NVIDIA V100 GPU.

Method Parameter BERTbase BERTlarge RoBERTabase RoBERTalarge

Lcl

τ 0.05 0.05 0.05 0.05
learning rate 1e-5 1e-5 1e-5 1e-5

batch size 64 64 128 128

La&u

α 2 2 2 2
t 6 6 6 6
λ 0.1 0.1 0.2 0.4

learning rate 1e-5 1e-5 1e-5 1e-5
batch size 64 64 64 64

Ldcl

τ 0.03 0.01 0.02 0.02
learning rate 1e-5 5e-5 1e-5 1e-5

batch size 64 64 64 64

Ldcl+

τ 0.17 0.18 0.15 0.17
learning rate 3e-5 5e-5 1e-5 1e-5

batch size 64 64 64 64

Lmpt

m 0.23 0.24 0.29 0.31
learning rate 1e-5 1e-5 7e-6 7e-6

batch size 64 64 64 64

Lmet

m 0.45 0.50 0.43 0.45
learning rate 1e-5 1e-5 7e-6 7e-6

batch size 128 128 128 128

Lmat

m 0.15π 0.17π 0.14π 0.13π
learning rate 1e-5 3e-5 7e-6 7e-6

batch size 128 128 128 128

Table 2: The parameters corresponding to the best results of the STS tasks, which are also corre-
sponding to the reported results and the plotted figures in this paper.

A.3 PARAMETER SETTING

For all loss functions, we perform a grid search on learning rate ={7e-6, 1e-5, 3e-5, 5e-5} and
batch size ={64, 128, 256, 512}. For other hyperparameters in every optimization objectives, we
first narrow the interval with an extensive search, then the grid search is conducted in the following
ranges:

• Lcl and Ldcl

– τ = {0.03, 0.05, 0.07}
• La&u

– λ = {0.1, 0.3, 0.5, 0.7, 0.9}
2https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m for simcse.txt
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– α = {1.0, 2.0, 3.0}
– t ∈ [2, 10], step size is 1

• Ldcl+

– τ ∈ [0.10, 0.20], step size is 0.01

• Lmpt

– m ∈ [0.20, 0.35], step size is 0.01

• Lmet

– m ∈ [0.40, 0.50], step size is 0.01

• Lmat

– m ∈ {0.10π, 0.20π], step size is 0.01π

The optimal parameters are shown in Table 2, which are adopted to report all results and plot to all
plots in this paper.

A.4 EVALUATION PROTOCOL

We report the performance of the sentence representation on the STS task using the Spearman’s rank
correlation, which has been widely used in recent works. Compared with the Pearson’s correlation,
Spearman’s rank correlation focuses on relative ranking instead of absolute scores, which is more in
line with practical retrieval applications of text similarity matching (Reimers et al., 2016).

B THE ANALYSIS ON UNIFORMITY PART
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Figure 4: Gradient norms of all the loss functions studied in the main text with respect to the uni-
formity part. All plotted images ignore 1/∥hi∥ and reflect only the gradient contribution of a single
negative sample to the anchor.

Similar to the main text, we study the uniformity part of the gradient norm of all the loss functions
mentioned in the main text, and their formulas are shown below:∥∥∥∇negj

cl

∥∥∥ =
1

τ

exp (cos θij′/τ) sin θij′

exp (cos θii′/τ) +
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1
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(16)
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2t exp (2t cos(θij′)) sin θij′∑N
i
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(17)

15



Published as a conference paper at ICLR 2023
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′
j

)
/τ ≥ 0

(19)

∥∥∇pos
mpt

∥∥ =


sin (θij′)

∥hi∥
, ĥT
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The derivation of all the above equations can be found in Appendix C, and their trends with θii′ -θij′
are plotted in Figure 4. The findings of the uniformity part is highly similar to those of the alignment
part:

• ∥∇negj

cl ∥ approaches ∥∇Lj
uniform∥ and ∥∇negj

dcl ∥ as the negative sample size increases.

• When the number of negative samples is small, “gradient dissipation” exists for ∥∇negj

cl ∥,
while ∥∇Lj

uniform∥ and ∥∇negj

dcl ∥ do not exist.

• ∥∇negj

dcl+∥ exists the similar “gradient dissipation” property of ∥∇negj

cl ∥.

• ∥∇pos
mpt∥, ∥∇pos

met∥ and ∥∇pos
mat∥ also exist the propety of “gradient dissipation”, but differs

from ∥∇negj

cl ∥ in the trend of the gradient norms.

C FORMULA DERIVATION
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i − ĥi −

(
ĥ′
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C.2 THE DERIVATION OF EQUATION 7 AND EQUATION 16
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ĥT
i ĥ
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i

∥∥∥2

2

)α
2

=
(
2− 2ĥT
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∥∥∥ĥi − ĥ′
j

∥∥∥2

2

)
(29)

∂Luniform

∂hi
=

−2t
∑N

j,j ̸=i exp

(
−t
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C.4 THE DERIVATION OF EQUATION 9, 11, 18 AND 19
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C.5 THE DERIVATION OF EQUATION 12
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ĥT
i ĥ
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where the first inequality sign holds due to the following inequality:
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C.6 THE DERIVATION OF
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′
i

)
− min

j,j ̸=i
ρ
(
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where ρ(., .) represents a function used to calculate the similarity. Then the gradient of Lmdt with
respect to hi is calculated and decomposed:
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where ∇neg

mdt is only contributed by the negative sample with the closest distance to the anchor. By
specifying ρ(., .) as dot product, l2-norm and angle, we can get the gradient norm of Lmpt, Lmet

and Lmat with respect to the part of alignment respectively:
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(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
< m

1

∥hi∥
, ρ(ĥi, ĥ

′
i) = −θij′ and ρ

(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
< m

0, ρ
(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
≥ m

(39)

Similarly, we can derive the gradient norm of each loss function corresponding to the part of unifor-
mity respectively:

∥∇neg
mdt∥ =



sin (min
j,j ̸=i

θij′)

∥hi∥
, ρ(ĥi, ĥ

′
j) = ĥT

i ĥ
′
j and ρ

(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
< m

cos (min
j,j ̸=i

θij′/2)

∥hi∥
, ρ(ĥi, ĥ

′
j) = −

∥∥∥ĥi − ĥ′
j

∥∥∥
2

and ρ
(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
≥ m

1

∥hi∥
, ρ(ĥi, ĥ

′
j) = −θij′ and ρ

(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
< m

0, ρ
(
ĥi, ĥ

′
i

)
− min

j,j ̸=i
ρ
(
ĥi, ĥ

′
j

)
≥ m

(40)

D THE CONNECTION BETWEEN THE TWO DECOUPLED FORMS

In this paper, two important study objectives are two decoupled forms of contrastive loss. The first
one is the alignment and uniformity proposed by Wang & Isola (2020):

Lalign (f ;α) ≜ E
(ĥi,ĥ

′
i)∼ppos

[
∥ĥi − ĥ′

i∥α2
]
, α > 0 (41)

Luniform (f ; t) ≜ log E
i.i.d

(ĥi,ĥ
′
j)∼pdata

[
exp(−t∥ĥi − ĥ′

j∥22)
]
, t > 0 (42)

And the second one is decoupled contrastive loss (DCL, Ldcl) proposed by Yeh et al. (2021):

Ldcl = − log
exp

(
ĥT
i ĥ

′
i/τ

)
∑N

j,j ̸=i exp
(
ĥT
i h

′
j

)
/τ

= −ĥT
i ĥ

′
i/τ + log

N∑
j,j ̸=i

exp
(
ĥT
i h

′
j

)
/τ (43)

where the first term of equation 43 is acknowledged by DCL’s authors to be equivalent to equation
41, while the difference between the second term and Luniform is only the order of the logarithmic
function and the first summation operation when the losses are calculated for all samples in the same
mini-batch. Their lower bounds can be obtained through Jensen’s Inequality:

Luniform = log
1

M(N − 1)

M∑
i

N∑
j,j ̸=i

[
exp(−t∥ĥi − ĥ′

j∥22)
]

≥ 1

M

M∑
i

log
1

N − 1

N∑
j,j ̸=i

[
exp(−t∥ĥi − ĥ′

j∥22)
]

≥− t

M(N − 1)

M∑
i

N∑
j,j ̸=i

∥ĥi − ĥ′
j∥22

(44)

For a mini-batch of data, the total loss is the mean value of the loss calculated for each anchor in the batch:

Lneg
dcl = log

N∑
j,j ̸=i

exp
(
ĥT
i h

′
j

)
/τ (45)
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Lneg
dcl − log(N − 1) =

1

M

M∑
i

log
1

N − 1

N∑
j,j ̸=i

exp(ĥT
i h

′
j)/τ

≥ 1

τM(N − 1)

M∑
i

N∑
j,j ̸=i

ĥT
i h

′
j

=− 1

2τM(N − 1)

M∑
i

N∑
j,j ̸=i

∥ĥi − ĥ′
j∥22 +

1

2τM(N − 1)

(46)

where M is batch size. Comparing equation 44 and 46, their common optimization objective is to
maximize the sum of the squares of the Euclidean distance of all pairwise samples. Further, this
optimization objective corresponds to a specific form of the minimum energy problem on the hy-
persphere (Kuijlaars & Saff, 1998; Liu et al., 2018), which is generalized from traditional Thomson
Problem (Thomson, 1904) in physics.

E RELATION WITH MIXUP-BASED METHODS

We focus on a class of Mixup-based methods (Kalantidis et al., 2020; Zhang et al., 2022b) in con-
trastive learning which have similar optimization objectives to Lmpt. These methods use Mixup
(Zhang et al., 2018) to generate hard negative samples for robustness and performance improve-
ment, indicating the effeteness in VRL (Kalantidis et al., 2020) and SRL (Zhang et al., 2022b). It
should to be noted that such methods are the improvements at the sample level, while do not change
the property of “gradient dissipation” in contrastive loss.

Existing works generate mixup negative samples with two methods. The first one is generating by
linearly weighting the representations of two hard negative samples (Kalantidis et al., 2020). If we
regard ĥi as the anchor, the mixup negative sample for the anchor can be defined as:

h̃′
k = λĥ′

m + (1− λ)ĥ′
n, m ̸= i, n ̸= i (47)

where ĥ′
m, ĥ′

n are two hard negative samples and h̃′
k represents the mixup hard negative sample and

λ is the weight parameter. The second method is generating by linearly weighting the representations
of a positive sample and a random negative sample (Kalantidis et al., 2020; Zhang et al., 2022b):

h̃′
k = λĥ′

i + (1− λ)ĥ′
k, k ̸= i (48)

where ĥ′
k is a random negative sample and λ should be less than 0.5 to avoid generating pseudo-

negative samples with high probability.

Then we discuss the relation between both two sample generation methods with Lmpt. When M
mixup negative samples are added to the original contrastive loss, the following inequality holds:

Lmix = − log
exp

(
ĥT
i ĥ

′
i/τ

)
exp

(
ĥT
i ĥ

′
i/τ

)
+

∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

))
= log

1 +

∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

)
exp

(
ĥT
i ĥ

′
i/τ

)


= log
(
1 + exp

(
−ĥT

i ĥ
′
i/τ

)(∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

)))
= log

(
1 + exp

(
−ĥT

i ĥ
′
i/τ + log

(∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

))))
≤ log 2 + max

(
−ĥT

i ĥ
′
i/τ + log

(∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

))
, 0
)

(49)

Then we need to perform a secondary relaxation, and the process needs to be discussed on the
following sub-conditions:
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Condition 1 If h̃′
k is generated using the way in equation 47, the maximum value of the N + M

terms in the log function must be taken in the first N terms, and the following inequality holds:

Lmix ≤ log 2 + max
(
−ĥT

i ĥ
′
i/τ + log

(∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

))
, 0
)

≤ log 2 + max

(
−ĥT

i ĥ
′
i/τ +max

j

(
ĥT
i ĥj

)
/τ + log(N +M), 0

)
= log 2 +

1

τ
max

(
−ĥT

i ĥ
′
i +max

j

(
ĥT
i ĥj

)
+ τ log(N +M), 0

) (50)

Condition 2.1 If h̃′
k is generated using the way in equation 48 and the maximum value of the N+M

terms in the log function is taken in the first N terms, the inequality 50 still holds.

Condition 2.2 If h̃′
k is generated using the way in equation 48 and the maximum value of the N+M

terms in the log function is taken in the latter M terms, the another inequality holds:

Lmix ≤ log 2 + max
(
−ĥT

i ĥ
′
i/τ + log

(∑N
j exp

(
ĥT
i ĥ

′
j/τ

)
+

∑M
k exp

(
ĥT
i h̃

′
k/τ

))
, 0
)

≤ log 2 + max
(
−ĥT

i ĥ
′
i/τ +max

k

(
ĥT
i h̃k

)
/τ + log(N +M), 0

)
= log 2 + max

(
−ĥT

i ĥ
′
i/τ +max

k

(
ĥT
i

(
λĥ′

i + (1− λ)ĥ′
k

)
/τ

)
+ log(N +M), 0

)
= log 2 + max

(
−1− λ

τ
ĥT
i ĥ

′
i +

1− λ

τ
max

k

(
ĥT
i ĥ

′
k

)
+ log(N +M), 0

)
= log 2 +

1− λ

τ
max

(
−ĥT

i ĥ
′
i +max

k

(
ĥT
i ĥ

′
k

)
+

τ

1− λ
log(N +M), 0

)
(51)

These observations show the connection between Lmpt and the mixup-based contrastive methods:
(1) if mixup negative samples are generated with the first method, the optimization objective of
Lmpt will be equated to some extent with that of Lmix by appropriately adjusting m; (2) if mixup
negative samples are generated with the second method, Lmix will have two upper bounds with
different margins, τ log(N + M) and τ

1−λ log(N + M), during training. On the contrary, the
margin m in Lmpt will no longer change during training. Therefore, the optimization objective of
Lmpt can be similar or equal to the mixup-based methods by using a appropriate m (slightly larger
than τ log(N+M)), which provides a new perspective to explain the well-performance of Lmpt-like
loss functions.
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