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ABSTRACT

Deep learning has revolutionized human society, yet the black-box nature of
deep neural networks hinders further application to reliability-demanding indus-
tries. In the attempt to unpack them, many works observe or impact internal
variables to improve the comprehensibility and invertibility of the black-box
models. However, existing methods rely on intuitive assumptions and lack math-
ematical guarantees. To bridge this gap, we introduce Bort, an optimizer for
improving model explainability with Boundedness and orthogonality constraints
on model parameters, derived from the sufficient conditions of model compre-
hensibility and invertibility. We perform reconstruction and backtracking on the
model representations optimized by Bort and observe a clear improvement in
model explainability. Based on Bort, we are able to synthesize explainable ad-
versarial samples without additional parameters and training. Surprisingly, we
find Bort constantly improves the classification accuracy of various architec-
tures including ResNet and DeiT on MNIST, CIFAR-10, and ImageNet. Code:
https://github.com/zbr17/Bort.

1 INTRODUCTION

The success of deep neural networks (DNNs) has promoted almost every artificial intelligence ap-
plication. However, the black-box nature of DNNs hinders humans from understanding how they
complete complex analyses. Explainable models are especially desired for reliability-demanding
industries such as autonomous driving and quantitative finance. Complicated as DNNs are, they
work as mapping functions to connect the input data space and the latent variable spaces (Lu et al.,
2017; Zhou, 2020). Therefore, we consider explainability in both mapping directions. (Forward)
Comprehensibility: the ability to generate an intuitive understanding of how each module trans-
forms the inputs into the latent variables. (Backward) Invertibility: the ability to inverse the latent
variables to the original space. We deem a model explainable if it possesses comprehensibility and
invertibility simultaneously. We provide the formal descriptions of the two properties in Section 3.1.
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Figure 1: Bort improves explainability and performance simultaneously. (a) Examples of reconstruc-
tion and saliency analysis. (b) Top-1 accuracy with various networks and optimizers on ImageNet.

Existing literature on explainability can be mainly categorized into black-box and white-box ap-
proaches based on whether involving internal variables. Black-box explanations focus on the exter-
nal behavior of the original complex model without considering the latent states (Zhou et al., 2016;
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Figure 2: Motivations of the two constraints. (a) Boundedness ensures semantic similarity is consis-
tent with dot products. (b) Orthogonality minimizes the reconstruction error for linear projection.

Lundberg & Lee, 2017; Fong & Vedaldi, 2017). For example, some methods employ simple proxy
models (Ribeiro et al., 2016) to mimic the input/output behavior of the target model. They tend
to produce an intuitive and coarse description of external behavior rather than an in-depth analysis
of the internal mechanism of the model. In contrast, white-box explanations delve into the model
to observe or intervene for a more thorough understanding. However, existing white-box explana-
tions lack a rigorous mathematical guarantee, as shown in Figure 2. For comprehensibility, most
methods (Simonyan et al., 2014; Zhou et al., 2016; Zhang et al., 2018; Liang et al., 2020) intuitively
assume that the activation of feature maps is associated with the similarity between the input data and
the corresponding kernel, but they provide no theoretical guarantee of the assumed “relation”. For
invertibility, conventional backtracking methods (Zeiler & Fergus, 2014; Springenberg et al., 2015)
usually employ a linear combination of kernels layer by layer for feature reconstruction. However,
they ignore the potential entanglement between kernels and thus lead to suboptimal reconstruction.

We find that almost all explainability literature is based on specific assumptions, which may be ob-
jectively incorrect or have no causal connection to the actual mechanism of the model. To bridge
this gap, we give formal definitions of comprehensibility and invertibility and derive their suffi-
cient conditions as boundedness and orthogonality, respectively. We further introduce an optimizer
with Bounded orthogonal constraint, Bort, as an effective and efficient instantiation of our method.
Extensive experiments demonstrate the effectiveness of Bort in both model explainability and per-
formance shown in Figure 1. We highlight our contributions as follows:

• Mathematical interpretation of explainability. We further derive boundedness and or-
thogonality as the sufficient conditions of explainability for neural networks.

• A plug-and-play optimizer, Bort, to improve explainability. Bort can be generally ap-
plied to any feedforward neural networks such as MLPs, CNNs, and ViTs.

• Clear improvement of model explainability. In addition to better reconstruction and
backtracking results, we can synthesize explainable adversarial examples without training.

• Consistent improvement of classification accuracy. Bort improves the performance of
various deep models including CNNs and ViTs on MNIST, CIFAR10, and ImageNet.

2 RELATED WORK

Optimization Problem. The properties of a trained neural network are highly affected by the opti-
mization problem. The basic SGD optimizer updates the parameters along the stochastic gradient di-
rection. The subsequent optimizers such as RMSProp (Tieleman et al., 2012) and Adam (Kingma &
Ba, 2014) accelerate convergence by computing the adaptive gradients with the second momentum
estimation and moving average. Other works focus on improving the generalization performance
with a flat loss landscape (Foret et al., 2020). Additionally, the optimization constraints also affect
model properties. The widely used L1 or L2 regularizations filter out redundant parameters for bet-
ter generalization. AdamW (Loshchilov & Hutter, 2017) separates weight decay from the training
objective to achieve this. Recent attempts adopt disentanglement constraints (Zhang et al., 2018;
Shen et al., 2021; Liang et al., 2020) to improve the model explainability by forcing each filter to
represent a specific data pattern. Transformation invariance constraints (Wang & Wang, 2021) later
emerge to improve explainability robustness. However, these methods usually suffer from the trade-
off between performance and explainability and cannot be generalized to different architectures. To
break through this dilemma, we propose Bort, an optimizer with bounded orthogonal constraints,
which improves both the model performance and explainability.

2



Published as a conference paper at ICLR 2023

Model Explainability. The desire to understand deep neural networks promotes the development
of explainable approaches over the past decade. We primarily categorize them into black-box and
white-box explanations based on whether they consider the internal neural states. Black-box ex-
planations focus on the external behaviors of a model. Saliency-based methods assign importance
scores to pixels that most influence the model predictions using activation maps (Zhou et al., 2016),
gradient maps (Selvaraju et al., 2017; Chattopadhay et al., 2018; Smilkov et al., 2017; Sundarara-
jan et al., 2017; Kapishnikov et al., 2019), or perturbation maps (Petsiuk et al., 2018). Proxy-
based methods approximate the input/output correlation by a simple proxy model, such as linear
model (Ribeiro et al., 2016), Shapley value (Lundberg & Lee, 2017), and probabilistic model (Fong
& Vedaldi, 2017; Zintgraf et al., 2017). Despite their promising results, the black-box nature pre-
vents them from further understanding the internal mechanism of the model. Therefore, we advocate
white-box methods to provide an in-depth understanding of a deep network. However, we find that
existing white-box methods are usually based on ungrounded assumptions. Backtracking meth-
ods (Simonyan et al., 2014; Zeiler & Fergus, 2014; Springenberg et al., 2015) assume that each filter
represents a pattern and can reconstruct input features by a weighted sum; decomposition meth-
ods (Bach et al., 2015; Shrikumar et al., 2017) believe that overall features can be expanded linearly
near the reference point; hybrid-model-based methods rely on the coupled transparent rules (e.g., de-
cision tree (Wan et al., 2020), additive model (Agarwal et al., 2021), and entropy rule (Barbiero et al.,
2022)) to help understanding the internal mechanism; other methods expect disentanglement (Zhang
et al., 2018; Shen et al., 2021; Liang et al., 2020; Chen et al., 2020) and invariance (Wang & Wang,
2021) constraints to regularize the parameters for better explainability. In addition, some meth-
ods (Li et al., 2018; Chen et al., 2019) try to condense the prototypes inside the model to reveal the
learned concepts. We notice that only a few works (Marconato et al., 2022) try to formulate a mathe-
matical definition of explainability, so the relationship between these assumptions and explainability
lacks theoretical guarantees. To bridge this gap, we seek to define explainability mathematically for
FNNs and derive its sufficient conditions to optimize an explainable network.

3 METHOD
In this section, we introduce the motivation and derivation of Bort in detail. Section 3.1 formulates
an explainability framework including comprehensibility and invertibility properties for neural net-
works. Section 3.2 further derives a set of sufficient conditions (i.e., boundedness and orthogonality
constraints). Finally, Section 3.3 introduces the efficient optimizer Bort and discuss its properties.

3.1 EXPLAINABILITY FRAMEWORK

Even though numerous efforts have explored how to define explainability descriptively (Zhang &
Zhu, 2018; Gilpin et al., 2018; Bodria et al., 2021), it remains elusive to provide the mathemati-
cal definition due to its high association with the specific model type. Therefore, in this work, we
concentrate on feedforward neural networks (FNN for short) and attempt to investigate the corre-
sponding formal explainability definition. FNNs cover a large number of mainstream models, such
as CNN (LeCun et al., 1995) and ViT (Dosovitskiy et al., 2020). We find that all these models
can be unified under one meta-structure, a multi-layer perceptron (MLP for short) with optional
nonparametric operations. For example, the convolutional layer and the transformer layer addition-
ally use folding/unfolding and the self-attention operation, respectively. Therefore, we focus on the
explainability of MLP which can be naturally generalized.

For an l-layer MLP f , we denote the dataset as X = {xk:1≤k≤Nd
∈ Rd0} and the latent variables

of each layer as zi ∈ Rdi . The overall MLP can be regarded as a composite mapping f = f1 ◦ f2 ◦
· · · ◦ fl. Each layer fi is a fully-connected layer with an activation function as zi = fi(z

i−1) =
σ(Wiz

i−1 + bi), where Wi = [wi
1, · · · ,wi

di
]T ∈ Rdi×di−1 and b ∈ Rdi are weight and bias

parameters respectively, and σ denotes the activation function. To understand the overall model, we
start from each layer and consider both directions simultaneously.

Forward Projection. In this direction, information flows from input zi−1 to output zi. To under-
stand the internal mechanism, we first analyze each component’s functionality. It is easy to know
that the activation function like ReLU (Nair & Hinton, 2010) works as the switch and the bias bi acts
as the threshold. These two components altogether filter out the unactivated neural nodes. However,
we only roughly know that the weight Wi behaves like an allocator, which brings the input data
to activate the most related neural node. For an explainable neural network, we argue that the row
vector wi

j in Wi should look similar to a semantic pattern, which we call comprehensibility. We
provide the formal definition as follows:
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Definition 1 (Comprehensibility). A weight wi
j in FNN is said to be comprehensible if there exists

a semantic pattern z ∈ Z similar to it, which means their elements are proportional, that is
∃z ∈ Z,∃k > 0,wi

j = kz,

where Z represents the set of semantic data patterns.
Backward Reconstruction. This direction considers how the output zi backtracks to the input
as ẑi−1 = g(zi, fi), where g denotes the backtracking operation. If this backtracking operation
can proceed layer by layer and ultimately reconstruct the original input data x with high precision,
we call this property invertibility, which means that any editing of latent variables can be visually
reflected by changes in the input data. The formal definition of invertibility is as follows.
Definition 2 (Invertibility). An FNN is said to be ϵ-invertible if there exists a backtracking operation
g which satisfies

∃ϵ > 0,∀zi−1, s.t.∥zi−1 − g(zi, fi)∥2 = ∥zi−1 − g(fi(z
i−1), fi)∥2 ≤ ϵ

3.2 BOUNDEDNESS AND ORTHOGONALITY

Boundedness. Previous explainability approaches (Zhou et al., 2016; Simonyan et al., 2014; Zeiler
& Fergus, 2014; Springenberg et al., 2015; Zhang et al., 2018; Shen et al., 2021) assume that the
activation value zij is a natural indicator, which represents the possibility that the corresponding
parameter wi

j encodes the input pattern. However, a parameter wi
j with a high activation value is

often dissimilar to the input pattern according to Definition 1. Considering σ as a monotone function,
a higher activation value indicates a larger inner product, which is computed as

sij = wi
j · zi−1 = ∥wi

j∥∥zi−1∥ cos⟨wi
j , z

i−1⟩. (1)
This means that not only a high similarity but also a large amplitude may cause a prominent activa-
tion, as illustrated in Figure 2a. We need to ensure that if wi

j encodes the input pattern zi−1, wi
j ’s

elements should be proportional to zi−1’s when training converges. To address this, we propose to
restrict all wi

j in a bounded closed hypersphere as follows:

∀i, j, ∥wi
j∥2 ≤ Cw,where Cw is a constant. (2)

We denote ∥zi−1∥2 as Cz , so the inner product in Eq. (1) has an upper-bound as follows:

sij = wi
j · zi−1 ≤ CwCz. (3)

According to Cauchy-Schwarz inequality, sij takes its maximum only when there exists a non-
negative k such that wi

j = kzi−1, which happens to be the similarity in Definition 1. The bounded-
ness constraint ensures that a large activation value represents a high similarity between the corre-
sponding weight and the input pattern, which is a sufficient condition of Comprehensibility.

Orthogonality. In the FNN model, each weight wi
j corresponds to a specific pattern. A number

of approaches (Zeiler et al., 2010; Zeiler & Fergus, 2014; Springenberg et al., 2015) believe that the
linear combination of these weights can reconstruct the input as follows:

ẑi−1 = g(si,W i) =

di∑
k=1

wi
ks

i
k = W iTsi, (4)

where sij represents the projection of zi−1 onto wi
j (i.e., inner product) and ẑi−1 denotes the re-

constructed input. We replace g function in Definition 2 with Eq. (4) and formulate an optimization
problem to achieve the optimal reconstruction as follows:1

min
W

Ez∼pz∥z − g(Wz)∥ = Ez∼pz∥z −W Ts∥22 = Ez∼pz∥z −W TWz∥22, (5)

where pz is the distribution of z. We minimize Eq. (5) by letting ∇L = 2Ez∼pz (zz
T )(W TW −

I) = 0, seeing Appendix A.2.1 for details. The invertibility property is expected data-independent.
Thus we remove the first term Ez∼pz (zz

T ) and get:

W TW = I, (6)
which we call the orthogonality constraint. 2 This constraint ensures optimal reconstruction by
employing Eq. (4), thus being a sufficient condition of Invertibility.

1We omit the superscript for brevity.
2To ensure Eq. (6) solvable, W requires full row rank, which means the FNN should be wide enough.

Besides, the term orthogonality here means that columns of W i should be orthogonal, not row wi
j .
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3.3 BORT OPTIMIZER

In this section, we introduce Bort, an optimizer with boundedness (Eq. (2)) and orthogonality
(Eq. (6)) constraints for ensuring comprehensibility and invertibility simultaneously. Let Lt be the
objective function. We first formulate the constrained optimization problem as follows:

min
W i,bi

Lt(X;W i, bi, 1 ≤ i ≤ l) (7)

s.t.

{
∥wi

j∥ ≤ Cw, 1 ≤ i ≤ l, 1 ≤ j ≤ di,

W iTW i = I, 1 ≤ i ≤ l
.

As the orthogonality constraint implies the boundedness constraint, we simplify Eq. (7) as follows:
min
W i,bi

Lt(X;W i, bi, 1 ≤ i ≤ l) (8)

s.t.W iTW i = I, 1 ≤ i ≤ l.

Then we convert Eq. (8) into an unconstrained form by utilizing the Lagrangian multiplier:

min
W i,bi

Lt(X;W i, bi, 1 ≤ i ≤ l) +

l∑
i=1

λi∥W iTW i − I∥2F , (9)

where the second term in Eq. (9) is the penalty term denoted as Lr, which is convex concerning
W iTW i. By calculating the derivative (derived in Appendix A.2.2), we propose Bort as follows:

(W i)∗ ←W i − α(∇Lt +∇Lr) = W i − α∇Lt − αλ
(
W i(W i)TW i −W i

)
, (10)

where α is the learning rate and λ is the constraint coefficient. Following Eq. (10), it is convenient to
combine Bort with any other advanced gradient descent algorithm by adding an additional gradient
term. Subsequently, we illustrate that the additional constraint does not limit the model capacity.
Proposition 1. Given a two-layer linear model h(x) = vTWx with parameter v ∈ Rm and
W ∈ Rm×n, model capacity is equivalent whether or not proposed constraints are imposed on W .
Remark. We only consider the most simple case without activation functions, proved in Ap-
pendix A.2.3. Rigorous proof of keeping model capacity in general cases remains to be completed.

Early research (Huang et al., 2006) proves that a two-layer network with random hidden nodes is a
universal approximator (Hornik et al., 1989), which means that scattering latent weights benefits the
property of universal approximation. Moreover, we discover in Section 4.1 that the orthogonality
can even improve model performance. In addition, we design Salient Activation Tracking (SAT), a
naive interpreter to take full advantage of boundedness and orthogonality (c.f. Appendix A.3).

4 EXPERIMENT

In this section, we evaluate the performance and explainability of Bort-optimized models. We con-
duct classification experiments on MNIST, CIFAR-10, and ImageNet, which shows that Bort boost
the classification accuracy of various models including VGG16 (Simonyan & Zisserman, 2014),
ResNet50 (He et al., 2016), DeiT (Touvron et al., 2021), and Swin (Liu et al., 2021) in Section 4.1.
We also present visualization results and compute the reconstruction error to demonstrate the ex-
plainability endowed by Bort in Section 4.2. Moreover, we discover that only a few binarized latent
variables are enough to represent the primary features, whereby we can synthesize the adversarial
samples without additional training and parameters. Bort can be incorporated to any other optimiza-
tion algorithms including SGD, AdamW (Loshchilov & Hutter, 2017), and LAMB (You et al., 2019).
We denote the variant of Bort as Bort-X, where X is the first letter of the incorporated optimizer.

4.1 CLASSIFICATION EXPERIMENTS

4.1.1 RESULTS ON MNIST/CIFAR-10

To begin with, we test Bort on MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky et al., 2009). We
hope to focus purely on fully-connected layers and variants (e.g., convolution layers) by eliminating
potential interference (e.g., pooling layers). Therefore, we design a 5-layer all convolutional network
(dubbed as ACNN-Small) by replacing all internal max-pooling layers with convolution layers with
stride two (see Table 4 in the appendix for detail) following All-CNN (Springenberg et al., 2015).
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Table 1: Top-1 accuracy (%) of ACNN-Small and LeNet on MNIST and CIFAR-10 datasets.

Model Optimizer Setting Dataset
Epoch Lr λwd λ MNIST CIFAR-10

LeNet SGD 40 0.01 0.01 79.01 57.35
Bort-S 40 0.01 0.01 0.1 88.85 (+9.84) 62.24 (+4.89)

ACNN-Small SGD 40 0.01 0.01 98.42 66.67
Bort-S 40 0.01 0.01 0.1 99.25 (+0.83) 72.75 (+6.08)

Experimental details. We optimize LeNet (LeCun et al., 1995) and ACNN-Small with SGD and
Bort-S separately. The training recipe is quite simple. We set the learning rate to 0.01 without any
learning rate adjustment schedule and train each model for 40 epochs with batch size fixed to 256.
No data augmentation strategy is utilized. The constraint coefficient is set to 0.1, and the weight
decay is set to 0.01. All experiments are conducted on one NVIDIA 3090 card.

Result analysis. As shown in Table 1, ACNN-Small optimized by Bort-S perform significantly
better than the counterpart model. We attribute this to the orthogonality constraint, which avoids
redundant parameters for efficient representation. We further train a LeNet to assess the effect of
other modules (e.g., pooling). We see Bort consistently boosts the classification accuracy of LeNet.
This shows the internal distribution properties imposed by Bort are robust to external interference
(see ablation studies in Appendix A.8).

4.1.2 RESULTS ON IMAGENET

We evaluate Bort on the large-scale ImageNet (Deng et al., 2009) with both CNN models (i.e.,
VGG16 (Deng et al., 2009) and ResNet50 (He et al., 2016)) and ViT-type models (i.e., DeiT-S (Tou-
vron et al., 2021) and Swin-S (Liu et al., 2021)) We also combine Bort with three widely used
optimizers (i.e., SGD, AdamW (Loshchilov & Hutter, 2017), and LAMB (You et al., 2019)).

Table 2: Top-1 and Top-5 accuracy (%) on ImageNet (Deng et al., 2009) dataset.
Model Optimizer Epoch Lr BS Top-1 Top-5

VGG16

SGD 300 0.05 1024 73.13 90.75
Bort-S 300 0.05 1024 73.36 (+0.23) 91.06 (+0.31)
AdamW 300 0.001 1024 64.66 85.11
Bort-A 300 0.001 1024 69.75 (+5.09) 88.72 (+3.61)

ResNet50

SGD 300 0.05 1024 76.57 92.92
Bort-S 300 0.05 1024 77.60 (+1.03) 93.31 (+0.39)
AdamW 300 0.001 1024 76.91 93.33
Bort-A 300 0.001 1024 77.61 (+0.70) 93.53 (+0.20)
LAMB 300 0.005 2048 79.72 94.53
Bort-L 300 0.005 2048 79.90 (+0.18) 94.37 (-0.16)

DeiT-S AdamW 300 0.0005 1024 79.79 94.72
Bort-A 300 0.0005 1024 80.41 (+0.62) 95.24 (+0.52)

Swin-S AdamW 300 0.0005 1024 82.63 96.02
Bort-A 300 0.0005 1024 82.71 (+0.08) 96.18 (+0.16)

Experimental details. In recent years, numerous approaches have improved the classification per-
formance on ImageNet significantly. Two training recipes are involved. (1) For training CNN-type
models (i.e., VGG16 and ResNet50), we follow the recipe in public codes (Wightman, 2019). We
set the learning rate to 0.05 for SGD, 0.001 for AdamW, and 0.005 for LAMB. We utilize 3-split
data augmentation including RandAugment (Cubuk et al., 2020) and Random Erasing. We train the
model for 300 epochs with the batch size set to 1024 for SGD and AdamW and 2048 for LAMB. For
LAMB, weight decay is 0.002 and λ coefficient to 0.00002; For SGD and AdamW, we set weight
decay to 0.00002 and λ coefficient to 0.0001. (2) For ViT-type models (i.e., DeiT-S and Swin-S), we
refer to the official descriptions (Touvron et al., 2021; Liu et al., 2021). We fix the batch size to 1024
and train models for 300 epochs with learning rate being 0.0005. We set weight decay to 0.005 and
λ to 0.05. Data augmentation includes RandAugment, Random Erasing, CutMix (Yun et al., 2019),
and Mixup (Zhang et al., 2017). All experiments are conducted on 8 A100 cards. For more detailed
training settings, we refer readers to Table 6 and Table 7 in the appendix.

Result analysis. Table 2 presents the classification accuracy on ImageNet with various models and
optimizers. Although Bort is an optimizer designed specifically for explainability, it is not trapped
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in the trade-off between performance and explainability. The results demonstrate that Bort can sig-
nificantly improve the performance of various model types, especially with SGD and AdamW. We
contribute this to Bort’s constraint on the parameter space, which filters out redundant parameters
by orthogonality while maintaining the model capacity. In recent research, OSCN (Dai et al., 2022)
has also discovered a similar phenomenon that Gram-Schmidt orthogonalization improves the per-
formance of the conventional SCN (Wang & Li, 2017).

4.2 EXPLAINABILITY EXPERIMENTS

4.2.1 VERIFICATION OF PROPERTIES

We conduct experiments to verify the existence of orthogonality and boundedness constraints. We
first train ACNN-Small models with SGD and Bort-S on MNIST separately to see whether Bort can
ensure the two constraints. Then, we compute the reconstruction ratio for each layer to show the
contribution of the two constraints to invertibility.
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Figure 3: Distribution analysis and reconstruction ratio. (a) We monitor the distribution of diagonal
and non-diagonal elements of Gram Matrix. (b) We compute the reconstruction ratio of each layer.

Distribution analysis. Figure 3a shows the distribution of Gram Matrix G = W TW , where W
denotes the convolution weight. We can see that Bort-S drives the diagonal elements closer to 1 and
the non-diagonal ones to 0 while SGD with L2 regularization keeps squeezing all elements to 0.
This result demonstrates that our proposed Bort can effectively ensure the two constraints.

Reconstruction ratio. Following the reconstruction protocol described in Eq. (4), we compute the
reconstruction error ratio as ∥zi−1− ẑi−1∥/∥zi−1∥. Figure 3b shows that layers optimized by Bort-
S can consistently reconstruct with much higher precision than SGD, demonstrating that Bort-S is
significantly superior to SGD in boosting invertibility.

4.2.2 QUALITATIVE VISUALIZATION

In this part, we conduct reconstruction experiments and saliency analysis on MNIST, CIFAR-10,
and ImagenNet. Depending on the dataset size, we train the ACNN-Small (5 layers) on MNIST and
CIFAR-10 and the ACNN-Base (12 layers) on ImageNet, seeing Table 4 and Table 5 for details in
the appendix. We generate the visualizations using feature maps at the 5th layer and 8th layer of
ACNN-Small and ACNN-Base, respectively.

Reconstruction. After training the models, we employ guided backpropagation (Springenberg
et al., 2015) to reconstruct the input data (c.f. Appendix A.4). As shown in Figure 4, the model
optimized by Bort-S can well preserve detailed information, such as texture and edge, during recon-
struction. In contrast, the model optimized by SGD will clutter features. This phenomenon fully
demonstrates that Bort can improve the invertibility of models.

Saliency Analysis. Exploiting boundedness and orthogonality, we design SAT algorithm to gen-
erate saliency maps (see details in Appendix A.3). Figure 5 displays the saliency map visualization
results. Compared with conventional CAM (Zhou et al., 2016), our SAT approach renders more
precise pattern localizations, thanks to the pixel-level feature backtracking. Moreover, the saliency
maps of the model optimized by Bort concentrate more on salient objects than baseline optimizers
(i.e., SGD/AdamW), proving the advantage of Bort in boosting the comprehensibility of models.
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Image

SGD

Bort-S

MNIST CIFAR-10 ImageNet

Figure 4: Reconstruction on MNIST, CIFAR-10, and ImageNet. We adopt guided backpropagation
to reconstruct the input data, and our Bort achieves better reconstruction performance.

Image

SAT (SGD)

SAT (Bort-S)

MNIST CIFAR-10 ImageNet

CAM (SGD)

Figure 5: Generating saliency maps by CAM (Zhou et al., 2016) and our proposed SAT. We observe
that SAT with Bort-S generates the best results and focuses mainly on the salient parts of objects.
We set K = 64 for MNIST and CIFAR-10 and K = 64 for ImageNet.

4.2.3 QUANTITATIVE ANALYSIS

Deletion/insertion metrics. We compute the deletion/insertion metrics (Petsiuk et al., 2018) on
MNIST, CIFAR-10, and ImageNet. The deletion metric measures the performance drop as removing
important pixels gradually, while the insertion metric does the opposite process. For deletion, the
smaller the Area Under Curve (AUC) value, the better the explainability; for insertion, a larger AUC
is expected. Baselines on ImageNet and MNIST/CIFAR-10 are optimized by AdamW and SGD,
respectively. As shown in Table 3, in most cases, for the common interpreters (i.e., CAM, IG, RISE,
XRAI, and GuidedIG), the Deletion/Insertion metrics of models optimized by Bort are significantly
better than the baseline (optimized by SGD/AdamW). Besides, we also observed that when using
naive SAT, the model optimized by Bort achieved consistent improvement in all cases. We think this
is because SAT takes full advantage of the boundedness and orthogonality provided by Bort.

Table 3: Insertion and deletion metrics on MNIST, CIFAR-10, and ImageNet.

Method Optimizer
MNIST CIFAR-10 ImageNet

Deletion↓ Insertion↑ Deletion↓ Insertion↑ Deletion↓ Insertion↑

CAM
SGD/AdamW 0.25 0.67 0.32 0.70 0.49 0.67
Bort 0.31 (+0.07) 0.63 (–0.05) 0.29 (–0.04) 0.76 (+0.06) 0.44 (–0.05) 0.77 (+0.10)

IG
SGD/AdamW -0.04 0.73 -0.37 0.81 0.07 0.79
Bort -0.07 (–0.03) 0.78 (+0.05) -0.44 (–0.07) 0.84 (+0.03) 0.07 (+0.00) 0.88 (+0.09)

RISE
SGD/AdamW 0.06 0.64 0.14 0.75 0.43 0.75
Bort 0.02 (–0.04) 0.72 (+0.08) 0.14 (+0.00) 0.78 (+0.03) 0.39 (–0.05) 0.82 (+0.06)

XRAI
SGD/AdamW 0.12 0.73 0.24 0.76 0.39 0.78
Bort-S 0.13 (+0.01) 0.79 (+0.06) 0.22 (–0.02) 0.79 (+0.03) 0.34 (–0.04) 0.84 (+0.06)

GuidedIG
SGD/AdamW -0.04 0.71 -0.28 0.78 0.06 0.82
Bort -0.05 (–0.01) 0.78 (+0.06) -0.26 (+0.01) 0.82 (+0.04) 0.07 (+0.00) 0.88 (+0.06)

SAT (Ours)
SGD/AdamW 0.26 0.61 0.31 0.76 0.35 0.78
Bort 0.05 (–0.20) 0.80 (+0.20) 0.27 (–0.04) 0.81 (+0.05) 0.32 (–0.04) 0.84 (+0.07)
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4.2.4 FEATURE DECOMPOSITION AND ADVERSARIAL SAMPLES

In this part, we explore what Bort can provide for an in-depth understanding of networks through
feature decomposition and sample synthesis (see details in Appendix A.5). We examine an extreme
case where we can reconstruct the input data with partial features. Most adversarial samples rely
on additional training and parameters, and only a few attempts focus on semantic adversarial sam-
ple generation (Mao et al., 2022). Therefore, we investigate whether we can achieve this without
additional expense after thoroughly understanding the internal mechanism of networks.

Image

Top 64 recon. Full recon.

SGD

Bort-S

(a)

64 patterns 8 clusters

Kmeans

(b)

Source

Target

Adversary

(c)
Figure 6: Feature decomposition and adversarial sample synthesis. (a) Networks optimized by Bort
achieve precise reconstruction only with the 64 most salient features. (b) We visualize the top 64
features separately and run the K-Means algorithm to see their relations. (c) We synthesize semantic
adversarial samples without any additional expense.

Feature decomposition. Given the feature map at the 5th layer of ACNN-Small trained on
MNIST, we choose the 64 most salient channels out of 2592 channels according to the maximum
activations in each 6 × 6 feature slice. Then, we set the maximum activation to 1 at each chosen
channel while setting all other activations to 0. Finally, we only keep 64 binarized variables from
the original 2592 × 6 × 6 variables. Figure 6a shows that even extremely sparse variables can re-
construct the input data for Bort-optimized but not SGD-optimized networks. We also reconstruct
each variable and use the K-Means algorithm to cluster them as shown in Figure 6b. We observe
pattern-related clusters, showing the Bort-optimized CNN is compositional and understandable.

Adversarial sample synthesis. For image classification tasks, most networks predict class scores
using a fully-connected layer following the spatial-aggregating pooling layer. Therefore, we con-
jecture that spatial information is not important for classification, and we can manipulate spatial
features to synthesize adversarial samples. We first choose a source and target data pair and denote
their feature map as Zs and Zt, respectively. Different from decomposition, we select the top 64
channels of source Zs according to the target Zt and synthesize a sparse binarized feature map
Ztr with them. Finally, we reconstruct Ztr to obtain the adversarial sample without additional pa-
rameters and training. Interestingly, as shown in Figure 6c, the obtained adversary is semantically
explainable and easily fools the classifier.

5 CONCLUSION

In this work, we provide a formal definition of explainability with comprehensibility and invertibil-
ity. We then derive two sufficient conditions (i.e., boundedness and orthogonality) and introduce the
optimizer Bort to optimize FNNs efficiently with two constraints. Classification results demonstrate
that by filtering out redundant parameters, Bort consistently boosts the performance of CNN-type
and ViT-type models on MNIST, CIFAR-10, and ImageNet datasets. Visualization and saliency
analysis qualitatively and quantitatively prove Bort’s superiority in improving the explainability of
networks. Surprisingly, we find that highly sparse binarized latent variables in networks optimized
by Bort can characterize primary sample features, whereby we can synthesize adversarial samples
without additional expense. We expect our work to inspire more research for understanding deep
networks. As we derive Bort under the assumption that f is a sufficiently wide network, it would be
an interesting direction to investigate the properties of Bort for narrow or extremely deep networks.
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A APPENDIX

A.1 CLARIFICATION OF TERMS

Explainability and interpretability are often used interchangeably in many works of literature,
although some papers actually point out subtle differences between them. In this paper, we refer to
the definition in Montavon et al. (2018), where an “interpretation” maps abstract concepts into an
understandable domain and an “explanation” reveals the internal mechanism (e.g., how the internal
features are calculated by the model). Our Bort optimizer does not focus on the input/output behavior
of the model for mapping the output features back to an understandable format (eg, image and
text), but aims at revealing the internal mechanism of the black-box model by constraining the
model parameters. Specifically, it includes: (1) aligning the inner product operation in FNN to the
cosine similarity (comprehensibility); (2) allowing the internal features of the network to recover
the features of the previous layer to the greatest extent (transparency/invertibility). We think that the
property pursued by Bort is closer to the ”explainability” in Montavon et al. (2018) (also similar to
”model-centric” in Edwards & Veale (2017)).

A.2 DERIVATION AND PROOF DETAILS

A.2.1 DERIVATION OF EQ. (5)

Let A = W TW and L = Ez∼pz∥z−Az∥22. We compute the first-order derivate of L with respect
to A as follows:

dL = dEz∼pz Tr
[
(z −Az)T (z −Az)

]
= dEz∼pz Tr

[
zzT (A2 − 2A+ I)

]
= Tr

[
2Ez∼pz (zz

T )(A− I) dA
]
,

∇L = 2Ez∼pz (zz
T )(A− I). (11)

To minimize L, we need to let the derivate be zero. Thus, we get ∇L = 2Ez∼pz (zz
T )(W TW −

I) = 0.

A.2.2 DERIVATION OF EQ. (10)

We denote the second term in Eq. (9) as Lr =
∑l

i=1 λi∥W iTW i − I∥2F . Since ∥W iTW i − I∥22
is convex with respect to W iTW i, boundedness and orthogonality will hold at convergence if λi

large enough. Following the standard gradient descent algorithm, we compute the gradient of Lr

with respect to W i as follows:
dLr = λi dTr

[
((W i)TW i − I)T ((W i)TW i − I)

]
= 4λi Tr

[
((W i)TW i(W i)T − (W i)T ) dW i

]
∇Lr = 4λi

(
W i(W i)TW i −W i

)
. (12)

For simplicity, we let λi be the same, so ∇Lr becomes 4λ
(
W i(W i)TW i −W i

)
. By substitute

Eq. (12) into standard gradient descent algorithm, we propose Bort as follows:
(W i)∗ ←W i − α(∇Lt +∇Lr) = W i − α∇Lt − αλ

(
W i(W i)TW i −W i

)
, (13)

where α is the learning rate and λ is the constraint coefficient.

A.2.3 PROOF OF PROPOSITION 1

Proof. We denote the model capacity as Hu,Hc for unconstrained/constrained cases, respectively.
(1) It is obvious that Hu ⊇ Hc because Hc might be squeezed by additional constraints. (2) We
then demonstrate that Hu ⊆ Hc. Given a set of configuration (v0,W0) ∈ Hu, we have any data x
being projected to vT

0 W0x. We can decompose W0 utilizing SVD as follows:
∃ U ∈ Rm×m,V ∈ Rn×n,Σ ∈ Rm×n s.t. UTU = I,V TV = I,W0 = UΣV T . (14)

Therefore, if letting W1 = V T and v1 = ΣTUTv0, we have vT
0 W0x = vT

1 W1x, which means
the configuration (v0,W0) and (v1,W1) are equivalent. Thus (v1,W1;W1

TW1 = I) ∈ Hc.
Hu ⊆ Hc is proved. Above all,Hu = Hc.
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Algorithm 1: The SAT algorithm.
Input: The top feature map Z, the backtracking mapping g, number k, constant B, and

threshold γ.
Output: Saliency map A.

1 Reset set of tuples M = ∅;
2 Compute the vector y ∈ Rc by passing Z through a max-pooling layer;
3 Get the index set of k largest elements of vy as Ik = {i | yi ∈ topk(y)};
4 foreach i ∈ Ik do
5 Initiate the zero-filled Z0 with the same size of Z;
6 Get the ith slice of Z0 as Z0

i ;
7 Set the position in Z0

i corresponding to the maximum in Zi to constant B;
8 Recover the signal Si as Si = g(Z0);
9 Obtain the mask M i by binarizing Si through a given threshold γ;

10 Update M←M
⋃
{(M i, yi)};

11 Calculate the saliency map as A =
∑

(Mi,yi)∈M yiM
i.

A.3 DETAILS OF SALIENT ACTIVATION TRACKING (SAT)

Motivation for SAT. We believe that mainstream interpretation methods are suboptimal for Bort
because they do not take full advantage of boundedness and orthogonality, which results in Dele-
tion/Insertion metrics not being significantly improved in a few cases, as shown in Table 3. There-
fore, we germinated the idea of building a saliency map generation algorithm (SAT) for visual tasks
exploiting boundedness and orthogonality.

Implementation of SAT. Due to boundedness and orthogonality, the model optimized by Bort ex-
hibits the properties of Principal Component Analysis (PCA) to some extent. Therefore, analogous
to the PCA reconstruction process, SAT selects the k most salient channels of the top feature map
Z ∈ Rc×h×w for back-propagation. Note that if we do backpropagation directly, we will get fea-
tures/signals instead of attribution/saliency, because saliency is more similar to masks than signals.
To address this, we convert the features into masks by binarizing the reconstructed features of each
channel, and calculate the final saliency map by weighted average of those masks. This design idea
also appeared in RISE (Petsiuk et al., 2018). The difference is that RISE randomly samples the
mask, and we calculate the mask of the k salient channel by back-propagation. We present the SAT
algorithm as follows:

A.4 DETAILS OF GUIDED-BACKPROPAGATION

We follow the standard algorithm of Guided-BP (Springenberg et al., 2015) for recovering the sig-
nals layer by layer. During the forward phase, we denote the input as ai and the ReLU layer com-
putes the output as

si = ReLU(ai) =

{
0, if ai ≤ 0

ai, if ai > 0
. (15)

We need to store the positions where ai > 0. During the back-propagation phase, given the feature
ŝi from the upper layer, the Guided-BP defines the backpropagation rule as

âi = GuidedBP (ŝi) =

{
ŝi, if ai > 0 and ŝi > 0

0, otherwise
. (16)

Other convolution layers can perform backpropagation according to Eq. (4).

A.5 DETAILS OF DECOMPOSITION AND SYNTHESIS

Given input image X , we first calculate the top feature map Z = f(X) ∈ Rc×h×w, and get the
vector y ∈ Rc by passing Z into a max-pooling layer.
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Table 4: Architecture of ACNN-Small for MNIST and CIFAR-10.

Layer
ACNN-Small

for MNIST for CIFAR-10
Input 28× 28 gray image Input 32× 32 RGB image

conv1 5× 5, 8, padding 1 + ReLU 5× 5, 24 channel + ReLU
conv2 2× 2, 24, stride 2 2× 2, 64, stride 2
conv3 4× 4, 288, padding 1 + ReLU 4× 4, 512, padding 1 + ReLU
conv4 2× 2, 864, stride 2 2× 2, 1536, stride 2
conv5 3× 3, 2592, padding 1 + ReLU 3× 3, 4608, padding 1 + ReLU
pool adaptive max pool
softmax 10-way softmax

Table 5: Architecture of ACNN-Base for ImageNet.

Layer
ACNN-Base
for ImageNet

Input 224× 224 RGB image
conv1 10× 10, 96, stride 3, padding 4 + ReLU
conv2 1× 1, 96, stride 1 + ReLU
conv3 3× 3, 96, stride 2 + ReLU
conv4 3× 3, 256, stride 1 + ReLU
conv5 1× 1, 256, stride 1 + ReLU
conv6 3× 3, 256, stride 2 + ReLU
conv7 3× 3, 384, stride 1 + ReLU
conv8 1× 1, 384, stride 1 + ReLU
conv9 3× 3, 384, stride 2 + ReLU
conv10 3× 3, 1024, stride 1 + ReLU
conv11 1× 1, 1024, stride 1 + ReLU
conv12 1× 1, 1000, stride 1 + ReLU
pool adaptive max pool

Decomposition. Analogous to PCA algorithm, we obtain the index set I of k largest elements
of y. For any index i ∈ sI , we initiate a zero-filled Z0 with the same size of Z. Then we set the
position in slice Z0

i corresponding to the maximum in Zi to a constant value B. Finally, we perform
backpropagation to get Si = g(Z0). Repeating the above procedure k times, we can obtain the set
of recovered signals S = {Si | i ∈ I}, which is a top-k decomposition of X .

Synthsis. Given the target feature map Zt = f(Xt) and the source feature map Zs = f(Xs),
we first construct the index set It of k largest elements of yt. Then we initiate a zero-filled Ztr.
Subsequently, for each index i ∈ It, we set the position in slice Ztr

i corresponding to the maximum
in Zs

i to a constant value yiB. Obviously, Ztr possesses the salient channels of Zt and the spatial
information of Zs simultaneously. Finally, we get the adversarial sample as Xadv = g(Ztr), which
may have the outlook of Xs, but be classified the same as Xt.

A.6 ARCHITECTURE DETAILS

In this work, we mainly focus on fully-connected layers and the variants. Previous research (Sprin-
genberg et al., 2015) has discovered that networks only with convolution layers achieve compet-
itive performance as conventional CNN. Therefore, we replace each internal max-pooling layer
with a convolution layer (stride 2). According to the different image sizes of datasets, we design
two networks (i.e., ACNN-Small and ACNN-Base) with different perceptive fields following All-
CNN (Springenberg et al., 2015). The detailed architectures are displayed in Table 4 and Table 5.
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Table 6: Recipes for optimization setting on ImageNet.

Model Optimizer λwd λ Epoch DropPath Momen. BS LR Sched. Warmup

VGG16

SGD 0.00005 300 0.9 1024 0.05 Cos. 5
Bort-S 0.00002 0.001 300 0.9 1024 0.05 Cos. 5
AdamW 0.00002 300 1024 0.001 Cos. 5
Bort-A 0.00002 0.0001 300 1024 0.001 Cos. 5

ResNet50

SGD 0.00002 300 0.9 1024 0.05 Cos. 5
Bort-S 0.00002 0.0001 300 0.9 1024 0.05 Cos. 5
AdamW 0.00002 300 1024 0.001 Cos. 5
Bort-A 0.00002 0.0001 300 1024 0.001 Cos. 5
LAMB 0.02 300 2048 0.005 Cos. 5
Bort-L 0.002 0.00002 300 2048 0.005 Cos. 5

DeiT-S AdamW 0.05 300 0.1 1024 0.0005 Cos. 5
Bort-A 0.005 0.05 300 0.1 1024 0.0005 Cos. 5

Swin-S AdamW 0.05 300 0.3 1024 0.0005 Cos. 5
Bort-A 0.005 0.05 300 0.3 1024 0.0005 Cos. 5

Table 7: Recipes for loss and data setting on ImageNet.

Model Optimizer AA Mixup CutMix Erase Color AugSplit JSD BCD

VGG16

SGD m9-mstd0.5 0.6 3 !

Bort-S m9-mstd0.5 0.6 3 !

AdamW m9-mstd0.5 0.6 3 !

Bort-A m9-mstd0.5 0.6 3 !

ResNet50

SGD m9-mstd0.5 0.6 3 !

Bort-S m9-mstd0.5 0.6 3 !

AdamW m9-mstd0.5 0.6 3 !

Bort-A m9-mstd0.5 0.6 3 !

LAMB m7-mstd0.5 0.1 1 0 3 !

Bort-L m7-mstd0.5 0.1 1 0 3 !

DeiT-S AdamW m9-mstd0.5 0.8 1 0.25 0.3
Bort-A m9-mstd0.5 0.8 1 0.25 0.3

Swin-S AdamW m9-mstd0.5 0.8 1 0.25 0.4
Bort-A m9-mstd0.5 0.8 1 0.25 0.4

A.7 TRAINING RECIPES ON IMAGENET

Numerous attempts have explored effective techniques to boost the classification performance on
ImageNet in recent years. To compare with other optimizers under fair settings, we employ two
mainstream training recipes. For CNN-type networks (i.e., VGG16 and ResNet50), we follow the
setting in the popular open-source library timm (Wightman, 2019); For ViT-type networks (i.e.,
DeiT-S and Swin-S), we employ the official setting described in the original papers. Detailed settings
are shown in Table 6 for optimization and Table 7 for data augmentations and loss functions.

Figure 7: Ablation study about λwd and λBort on CIFAR-10.
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Figure 8: More reconstruction results on MNIST, CIFAR-10, and ImageNet datasets.

A.8 ABLATION STUDY ON CIFAR-10

In this part, we explore the influence of hyper-parameters (i.e., weight decay λwd and constraint
coefficient λBort) on CIFAR-10 dataset. Figure 7 shows that our Bort is more stable under different
λBort. In contrast, a large λwd tends to collapse networks. We think this is because the constraints
of Bort limit weights on the hyper-sphere instead of forcing them to move towards the original point.

A.9 MORE QUALITATIVE RESULTS

We provide more visualization results in this part. To ensure the fairness of visualization, we ran-
domly select candidates for visualization. For reconstruction results shown in Figure 8, Bort con-
sistently boosts the reconstruction accuracy for all three datasets. Optimized by Bort, networks
become invertible and easily recover most of the detailed information, such as edges and textures.
For saliency maps shown in Figure 9, networks optimized by Bort better focus on the salient objects
than SGD, especially for the ACNN-Small model on MNIST and CIFAR-10. We also discover that
for the larger ACNN-Base model on ImageNet not all results are distinctly improved when opti-
mized by Bort. We think this is because ACNN-Base is not wide enough to ensure perfect feature
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Figure 9: More saliency map results on MNIST, CIFAR-10, and ImageNet datasets.

backtracking according to the orthogonality condition (i.e., Eq. (6) is not solvable). To address this,
modifying the architecture with more channels for each layer may be one possible solution, which
we will investigate in the future.
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